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Endogenously Expressednef Uncouples Cytokine and
Chemokine Production from Membrane Phenotypic
Maturation in Dendritic Cells 1

Davorka Messmer,2* Jean-Marc Jacqué,† Christine Santisteban,‡ Cynthia Bristow,‡

Seol-Young Han,‡ Lorley Villamide-Herrera,* ‡ Erin Mehlhop, 3* Preston A. Marx,§¶

Ralph M. Steinman,* Agegnehu Gettie,§ and Melissa Pope4*‡

Immature dendritic cells (DCs), unlike mature DCs, require the viral determinant nef to drive immunodeficiency virus (SIV and
HIV) replication in coculture with CD4 � T cells. Since immature DCs may capture and get infected by virus during mucosal
transmission, we hypothesized that Nef associated with the virus or produced during early replication might modulate DCs to
augment virus dissemination. Adenovirus vectors expressingnef were used to introducenef into DCs in the absence of other
immunodeficiency virus determinants to examine Nef-induced changes that might activate immature DCs to acquire properties of
mature DCs and drive virus replication. Nef expression by immature human and macaque DCs triggered IL-6, IL-12, TNF-�,
CXCL8, CCL3, and CCL4 release, but without up-regulating costimulatory and other molecules characteristic of mature DCs.
Coincident with this, nef-expressing immature DCs stimulated stronger autologous CD4� T cell responses. Both SIV and HIV
nef-expressing DCs complemented defective SIVmac239 deltanef, driving replication in autologous immature DC-T cell cultures.
In contrast, if DCs were activated after capturing delta nef, virus growth was not exacerbated. This highlights one way in which
nef-defective virus-bearing immature DCs that mature while migrating to draining lymph nodes could induce stronger immune
responses in the absence of overwhelming productive infection (unlikenef-containing wild-type virus). Therefore, Nef expressed
in immature DCs signals a distinct activation program that promotes virus replication and T cell recruitment but without complete
DC maturation, thereby lessening the likelihood that wild-type virus-infected immature DCs would activate virus-specific immu-
nity, but facilitating virus dissemination. The Journal of Immunology, 2002, 169: 4172–4182.

A s the most potent APCs, dendritic cells (DCs)5 are cen-
tral to the immune responses against incoming patho-
gens (1). In the steady state DCs in the periphery (like

those at the body surfaces) are in an immature state and mature
upon migration to the draining lymphoid tissues, where they
present Ag to naive T cells and initiate Ag-specific immune re-
sponses (1). A pathogen must induce DC maturation for effective

adaptive immunity to be activated against the pathogen (reviewed
in Ref. 2). Maturation can be induced by two major classes of
stimuli; one group signaling through the toll-like receptors (TLRs)
and the second via members of the TNF/TNFR family (reviewed
in Ref. 2). Changes that occur during DC maturation include up-
regulation of CD83, CD25, HLA-DR, and costimulatory mole-
cules such as CD86 and CD80 (1), modulation of chemokine re-
ceptor expression (3), secretion of soluble factors such as IL-12 (4,
5) and chemokines (6), and the expression of DC stimulatory and
survival molecules such as CD40 and TRANCE-R (7, 8).

In the context of immunodeficiency viruses, however, DCs ef-
fectively promote virus amplification and spread especially upon
encountering CD4� T cells (reviewed in Ref. 9). Furthermore,
immature DCs may be one of the first leukocytes entrapping and
possibly replicating immunodeficiency virus crossing a mucosal
surface (10, 11) and then (most notably as a more mature cell)
transmitting infection to nearby CD4� T cells for amplification
(12–14). Thus, a paradox exists between the ability of DCs to
present virus for activation of anti-viral immunity vs their ability to
exacerbate virus growth. Understanding what drives virus replica-
tion in the DC-T cell milieu is critical to identify ways to limit this
and favor immune activation.

Nef proteins of SIV and HIV are critical for viral pathogenesis
and contain motifs that have been implicated in modulating cellu-
lar signaling as well as the trafficking of molecules between the
outside and the inside of the cells in ways to facilitate virus dis-
semination (reviewed in Ref. 15–17). However, the exact mecha-
nism of enhanced virus replication mediated through nef is not
understood. Nef has been shown to exert both positive (15–18) and
negative (19–21) effects on T cell activation that might contribute
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to virus spread. In addition, soluble factors secreted from nef-ex-
pressing macrophages are sufficient to recruit and activate resting
T cells, rendering them permissive to HIV infection (22). Recent
studies have provided the first insight into how nef may also mod-
ify immature DCs to promote virus spread rather than Ag presen-
tation. One report suggests that nef modulates DC-specific, ICAM-
3-grabbing nonintegrin (DC-SIGN, CD209) expression on the DC
surface to favor DC-T cell interactions and subsequent virus
spread (23). Other work revealed that nef (introduced via a vac-
cinia recombinant vector) down-modulated class I MHC expres-
sion in immature DCs (24), reducing their ability to stimulate class
I MHC-restricted CD8� T cell responses. However, this was not
supported by a separate study using an adenoviral vector to intro-
duce nef (25). Exogenously added recombinant Nef was also
shown to activate immature DCs while decreasing class I MHC
(26).

SIV (27) and HIV (28) replication in immature DC-T cell co-
cultures is dependent on the presence of nef. Yet mature DCs
readily promote SIV delta nef (delta nef) growth (27), suggesting
that when a mature DC encounters the virus it somehow overrides
the need for nef. To investigate more closely how nef in a wild-
type virus could influence immature DC functions to foster virus
dissemination, we introduced nef into immature DCs using recom-
binant adenovirus (Adeno). Several groups, including our own,
found that Adeno infection had little if any impact on DC mem-
brane phenotype (Fig. 2) (25, 29–35), making it a reliable way to
introduce genes of interest. Expression of nef in an immature DC
triggers the DC to secrete inflammatory cytokines and chemokines
much like mature DCs, yet in the absence of the membrane phe-
notypic changes that are typical of maturation. Furthermore, nef-
expressing DCs exhibited increased ability to activate autologous
CD4� T cells and were able to enhance replication of delta nef in
immature macaque DC-T cell cultures. However, maturation of the
DCs within the virus-loaded cultures was not sufficient to rescue
delta nef replication. HIV nef and SIV nef were interchangeable
between human and macaque DCs in their ability to trigger these
functions. These data suggest that nef induces selective or different
pathways of the DC maturation signaling network, creating an en-
vironment encouraging T cell recruitment and generalized activa-
tion of T cells by phenotypically immature DCs. This milieu
readily amplifies virus replication, but would less efficiently induce
Ag-specific T cell responses, accenting how wild-type virus
growth may be driven in the absence of an effective anti-viral
immune response.

Materials and Methods
Culture medium

RPMI 1640 (Cellgro; Fisher Scientific, Springfield, NJ) was supplemented
with 2 mM L-glutamine (Life Technologies, Grand Island, NY), 50 �M
2-ME (Sigma-Aldrich, St. Louis, MO), 10 mM HEPES (Life Technolo-
gies), penicillin (100 U/ml)-streptomycin (100 �g/ml; Life Technologies),
and 1% human plasma (heparinized).

Animals

Adult macaques (Macaca mulatta) were housed in the Tulane Regional
Primate Research Center. Animal care operations were in compliance with
the regulations detailed under the animal welfare act, and in the Guide for
the Care and Use of Laboratory Animals. Before use, all animals used in
this study tested negative for Abs to SIV, type D retroviruses, and simian
T cell leukemia virus type 1. Male and female adult macaques were used
for this study.

SIV isolates

The cloned viruses SIVmac239 (wild type) and SIVmac239 delta nef (delta
nef) (36) were grown as previously described (37).

Generation of DCs

DCs were generated from PBMCs isolated from healthy macaques or HIV
seronegative human donors. Donors were not screened for anti-Adeno im-
munity. Buffy coat units were purchased from the New York Blood Center
to generate human DCs. Peripheral blood was collected by standard veni-
puncture using heparinized Vacutainers (BD Bioscience, San Jose, CA)
from healthy SIV-seronegative rhesus macaques (anesthetized with 10
mg/kg ketamine HCl). The mononuclear cell fraction was isolated by Fi-
coll-Hypaque (Amersham Pharmacia Biotech, Uppsala, Sweden) density
gradient (38). DCs were generated from either adherent PBMCs as previ-
ously described (27) or CD14� monocytes isolated using the anti-human
CD14 MACS system (Miltenyi Biotech, Auburn, CA) (6) and were plated
at 3 � 106 cells/well in a six-well tray (3 ml/well) in the presence of 100
U/ml recombinant human IL-4 (R&D Systems, Minneapolis, MN) and
1000 U/ml recombinant human GM-CSF (Immunex, Seattle, WA). Cyto-
kines were added to the cultures on days 0, 2, 4, and 6 in culture. After 6–7
days in culture, immature DCs were harvested for infection.

Analysis of DC phenotype

The DC phenotype was monitored by flow cytometry for each experiment.
At least 1 � 104 DCs were resuspended in PBS/5% FCS/0.1% sodium
azide (staining buffer; 100 �l/well of a V-bottom 96-well tray (ICN Bio-
medicals, Aurora, OH)). The cultures were stained with the appropriate
PE-conjugated IgGs (BD Biosciences; Ancell, Bayport, MN; R&D Sys-
tems) or with PE-labeled mAbs against HLA-DR, CD25, CD58, CD80,
(BDIS), CD4, CD40, CD86, CD206, CXCR4, CCR5 (BD PharMingen,
San Diego, CA), CD83 (Immunotech, Marseilles, France), HLA-ABC
(DAKO, Carpinteria, CA), CD74 (Ancell), CD209 (used for both human
and macaque cells; R&D Systems), or CCR5 (used for macaque cells;
R&D Systems). Indirect staining with goat F(ab�)2 anti-mouse Ig (Bio-
Source, Camarillo, CA) was used to detect CD205 expression using the
mouse anti-human CD205 clone 38-2 (39), CD209 staining using either
mAb 507 (provided by Dr. V. KewalRamani) (40) for macaque cells or
DC28 for human cells (AIDS Research and Reference Reagent Program,
National Institutes of Health, Bethesda, MD). The necessary unconjugated
IgGs were included as negative controls for the indirect staining. The cells
were incubated with the Abs for at least 20 min at 4°C, then were washed
four times with staining buffer and fixed in 10% formalin in PBS (pH
7.2–7.4). For the indirect stains, the cells were washed after the primary Ab
staining, incubated with the secondary goat-anti-mouse Ig, and washed
again before fixation. Stained cells were examined by flow cytometry using
a FACScan (BD Biosciences), and the data were analyzed with CellQuest
software (BD Biosciences).

Isolation and phenotyping of CD4� T cells

The CD14-negative fractions of the macaque and human PBMCs were
cultured at 0.5–1 � 107/ml for 6–7 days with the DCs, with additional
fresh medium being added to the cultures every 2 days. On the day of the
assay, the CD4� T cells were further purified by negative selection using
anti-CD8 and anti-HLA-DR MACS beads (Miltenyi Biotech) (6). The re-
sulting cell preparations were at least 99% viable by trypan blue dye ex-
clusion. Comparative infection studies (using macaque cells that are usu-
ally more fragile than human cells) confirmed that such cultured T cells
were functional and behaved just like T cells freshly isolated from PBMCs
on the day of the experiment, avoiding the need to re-bleed the donors (data
not shown). The purity of the CD3�CD4� T cells was verified as �95%
by direct staining flow cytometry for membrane expression of CD8 and
HLA-DR (vs the simultest isotype control). The activation state of the
isolated CD4� T cells was also monitored each time before performing the
experiments by direct staining with FITC-conjugated anti-CD3 (BD
PharMingen) combined with PE-conjugated anti-CD69, -CD25, or
-HLA-DR (BD Biosciences, Fig. 5F).

Adeno isolates and infection of DCs

Adenovirus expressing the HIV-1 SF2 nef allele (Adeno-nefHIV), a mutant
in the PxxP region of SF-2 nef (Adeno-nefHIVPA), or Adeno expressing the
green fluorescent protein (Adeno-gfp) were previously described by Swin-
gler et al. (22). Adeno expressing gfp and the HIV-1 SF2 nef allele was
constructed using the Adeno-quest kit from Quantum Biotech (Qbiogene,
Carlsbad, CA) and their pQBI-AdCMV5GFP shuttle vector. This virus was
used for the extensive FACS analyses, allowing us to gate on gfp� cells in
both the control and nef-loaded populations. Recombinant Adeno encoding
the SIVmac239 nef allele (Adeno-nefSIV) was derived from Adeno type 5,
deleted of E1 and E3 regions to generate a replication-deficient Adeno (29),
and purchased from Quantum Biotech (Durham, NC). For Adeno infection,
105 immature DCs were infected in 50 �l medium with 100-1000 PFU of
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virus in a 96-well, round-bottom tray (ICN Biomedicals) for 2 h at 37°C.
After 2 h fresh medium containing 1% human plasma was added. For T cell
activation experiments 102–104 immature DCs were infected in 50 �l me-
dium, and after 2 h 105 autologous T cells were added to the DCs. Adeno-
infected DCs or DCs mixed with T cells were cultured for various lengths
of time before the indicated parameters were measured. Adeno stocks were
monitored for endotoxin contamination using the Single Test Limulus
Amebocyte Lysate Assay (N289-06; BioWhittaker, Walkersville, MD).
Endotoxin levels in the Adeno preparations were routinely �0.06 endo-
toxin units/ml.

Immunoperoxidase staining of cells for Nef

Cytospins of DCs were prepared using a cytocentrifuge (Shandon, Pitts-
burgh, PA), loading �2 � 104 cells/slide (41). Slides were air-dried for 1 h
at room temperature and subsequently fixed in absolute acetone for 10 min
at room temperature. The slides were incubated with a mouse mAb rec-
ognizing SIVmac251 Nef (17.2, AIDS Research and Reference Reagent
Program) for 30 min at room temperature, washed five times with staining
buffer, and incubated for 30 min with HRP-conjugated donkey anti-mouse
Ig (DAM-HRP; 1/300 dilution; Jackson ImmunoResearch, West Grove,
PA) for 30 min at room temperature. Non bound HRP-conjugated donkey
anti-mouse Ig was washed off, and bound HRP was detected with stable
3,3�-diaminobenzidine tetrahydrochloride dihydrate (Research Genetics,
Huntsville, AL). The slides were mounted in PBS/glycerol and analyzed
using an Olympus AX70 microscope (Melville, NY).

Determination of T cell activation

To assess levels of T cell activation and proliferation, 102–104 immature
DCs (infected or not with Adeno) were mixed with 1 � 105 CD4� T cells
and cultured in a round-bottom, 96-well tray for up to 6 days. Tritiated
thymidine ([3H]TdR; 1 �Ci/well; NEN, Boston, MA) was added to the
cells for the final 8 h of culture, and the [3H]TdR incorporated by prolif-
erating cells was measured using a Wallac 1205 Betaplate liquid scintil-
lation counter (Gaithersburg, MD). Responses are reported as mean counts
per minute of [3H]TdR incorporated by duplicate or triplicate cultures
(�SEM). T cell activation was also monitored by flow cytometry, where
additional wells containing replicate DC-T cell mixtures were collected
after 3 days and stained for T cell activation markers (PE-CD25, CD69, or
HLA-DR) in combination with CD3 (FITC). The T cells were analyzed by
gating on small and large activated lymphocytes by forward scatter ex-
cluding the DCs and DC-T cell conjugates. The gate marker was set rel-
ative to the isotype controls for each condition, and the percentage of cells
stained above this cut-off point is given. Expression of the nuclear activa-
tion Ag Ki-67 was also monitored as a measure of T cell activation after
1–3 days of DC-T cell coculture by immunoperoxide staining of acetone-
fixed cells (above) using the anti-Ki-67 mAb (MIB-1, AMAC, Westbrook,
ME) (41). The percentage of Ki-67� cells was calculated by counting the
numbers of Ki-67� cells in five independent fields (averaging 100 total
cells in each) and is expressed as mean � SEM over the five fields.

Measurement of chemokines and cytokines

The supernatants of Adeno-infected DCs (vs mock controls) were col-
lected, by taking 50 �l from the 200-�l cultures and replacing it with 50
�l fresh medium at the indicated time points. Aliquots were stored at
�20°C before analysis of the chemokine and cytokine content by ELISA.
Recombinant anti-human CCL3 (macrophage inflammatory protein-1�
(MIP-1�)), CCL4 (MIP-1�), CCL5 (RANTES), CXCL8 (IL-8), IL-10, and
IL-6 ELISAs were obtained from R&D Systems. CCL3, CCL4, CCL5,
CXCL8, and IL-6 ELISAs cross-reacted with macaque chemokines and
cytokines. Anti-human IL-12 ELISA was purchased from Endogen
(Woburn, MA) and cross-reacted with macaque IL-12. Recombinant anti-
monkey ELISAs for TNF-�, IL-10, and IFN-� were purchased from U-
CyTech (Utrecht, The Netherlands).

In vitro SIV infection of DC-T cell cultures

After infection of immature DCs with Adeno as described above, 105 T
cells were added to 104 DCs (per well) in a 96-well, round-bottom tray. The
cocultures were subsequently pulsed with 5 � 103 50% T cell infectious
dose of SIVmac239 wild type or delta nef/105 cells for 1.5 h at 37°C as
previously described (27). Every 2 days of a 15-day coculture, 50-�l ali-
quots were collected and stored at �20°C before the p27 content was
analyzed by ELISA (Zeptometrix, Buffalo, NY). To determine whether the
addition of maturation stimuli would rescue delta nef replication in imma-
ture DC-T cell cultures, the cultures were infected (27), after which the
indicated maturation stimuli were added. These included 50% monocyte-
conditioned medium (MCM) (42), soluble CD40 ligand (CD40L; 1/100 of

a baculovirus stock) (6), or a combination of PGE2 (10�7 M, PGE2; Sigma
P6532) with TNF-� (50 ng/ml; R&D Systems). Two or 3 days postinfec-
tion, DC maturation in the infected cultures was verified by FACS, mea-
suring the expression of CD25, CD86, CD83, and HLA-DR. In some ex-
periments 5 ng/ml staphylococcal enterotoxin B (SEB) or allogeneic CD4�

T cells were added to provide an activated T cell environment.

Statistical analysis

The statistical significance of the nef-induced chemokine and cytokine pro-
duction was analyzed by comparing the peak values of chemokine or cy-
tokine production in Adeno-nef- vs Adeno-gfp-infected DCs. The nonpara-
metric SIGN test was used to directly compare the two groups. There were
no statistically significant differences between the mock and Adeno-gfp
controls, and p values (to three decimal places) are shown for the Adeno-
gfp vs Adeno-nef cultures. A value of p � 0.05 was considered statistically
significant.

Results
Nef does not induce changes in the membrane phenotype of
immature DCs

To measure nef-induced changes in immature DCs, Adeno vectors
were used to express nef in the DCs (Adeno-nef). Infection of
immature DCs with Adeno expressing the green fluorescent pro-
tein (gfp; Adeno-gfp) or Adeno expressing gfp and the HIV-1 SF2
nef allele (Adeno-gfp-nefHIV) enabled measurement of infection
efficiency by FACS by monitoring the percentage of gfp-positive
DCs (Fig. 1A). The infection efficiency in different donors ranged
from 5–90% (�10 experiments), averaging 40% for human DCs
and 53% for macaque DCs. Similarly, the levels of gfp expression
varied between donors and the various Adeno preparations, with
the Adeno-gfp infections sometimes appearing more efficient than
the Adeno-gfp-nefHIV infections, as shown in Fig. 1A. However,
this did not alter the nef effects observed (below). Both the levels
of expression and the numbers of expressing cells typically peaked
around 48 h postinfection with either Adeno-gfp-nefHIV or Ad-
eno-gfp, and therefore gfp expression was routinely measured at
this time. The levels of Nef expression (immunoperoxidase stain-
ing; Fig. 1B) were variable between cells, with some Nef-positive

FIGURE 1. Expression of gfp and nef in immature DCs infected with
recombinant Adeno. A, FACS analysis of immature human or macaque
DCs infected with Adeno-gfp-nefHIV (nef) or Adeno-gfp (gfp) or unin-
fected (mock) monitored 48 h postinfection (peak infection). The dot plots
showing forward size scatter (FSC; x-axes) vs log green fluorescence in-
tensity (gfp; y-axes) were gated on large cells and indicate the gfp-positive
Adeno-infected DCs. B, Macaque DCs were spun onto glass slides 48 h
after mock infection or infection with Adeno-nefSIV (nef) or Adeno-gfp
(gfp). The cells were immunoperoxidase stained (dark reaction product) for
the expression of SIV Nef. Faintly stained Nef-positive cells readily visible
above background staining of Adeno-gfp-infected or uninfected cells and
the isotype controls (not shown) are indicated by asterisks. The original
magnification was �40. Typical results from one of more than five exper-
iments are provided.
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cells staining very strongly for the Nef protein (dark reaction prod-
uct) and others quite faintly, but above background (asterisks). The
amount of Nef-expressing DCs and that of gfp-expressing DCs
correlated closely. Nef expression in Adeno-nefHIV-infected DCs
was also confirmed by Western blot (data not shown).

To test our hypothesis that nef creates a mature DC we first
analyzed whether the expression of nef in DCs alters the DC mem-
brane phenotype. Our initial studies (�15 experiments) revealed
that neither Adeno infection (35) nor the presence of nef (Fig. 2)
up-regulated the expression of common maturation markers
(HLA-DR, CD25, CD83, CD86). The same was true when SIV-
mac239 nef was tested in both human and macaque DCs (data not
shown), but more detailed analyses have been performed with the
HIV construct that we have available in house. Advances in the
DC field highlight many molecules that are expressed by DCs at
different stages of activation, some of which may be important in
HIV/SIV replication and/or DC-T cell communication (reviewed
in Ref. 9). Thus, a wide panel of markers was monitored to more
extensively assess the effects of nef on immature DC membrane
phenotype (Fig. 2). Uninfected controls run in parallel (not shown)
with those cells in Fig. 2 confirmed that Adeno infection has no
impact on the expression of these markers by DCs (35). Notably,

the DC phenotype was identical in the Adeno-gfp- and Adeno-gfp-
nef-infected DC cultures (Fig. 2). Despite some variability be-
tween both human and macaque donors (Fig. 2B), there was no
consistent up- or down-modulation of any markers in response to
nef, even when the gfp-positive fractions (Adeno-infected cells)
were directly compared (Fig. 2). Importantly there were no
changes in the expression of known HIV-binding molecules such
as CD4, CCR5, CXCR4, CD206 (macrophage mannose receptor),
or CD209 (DC-SIGN) in response to nef.

Nef induces chemokine and inflammatory cytokine production in
immature DCs

Another characteristic feature of DC maturation is the secretion of
chemokines and inflammatory cytokines (6, 43, 44). It has been
shown that nef triggers macrophages to secrete CCL3 (MIP-1�)
and CCL4 (MIP-1�) (22) and that exogenous recombinant Nef
induces human DCs to secrete several cytokines and chemokines
(26). We specifically investigated whether nef expressed in an im-
mature DC could induce changes in chemokine or cytokine ex-
pression. Human and macaque DCs were analyzed for HIV nef-
induced production of chemokines (Figs. 3 and 4). Nef expression
in DCs induced the secretion of �-chemokines CCL3, CCL4, and

FIGURE 2. Phenotypic analysis of Adeno-infected immature human and macaque DCs. Human and macaque immature DCs were infected with
Adeno-gfp-nefHIV (nef) or Adeno-gfp (gfp). Forty-eight hours postinfection the DCs were analyzed for expression of the indicated markers by staining with
PE-conjugated mAbs or PE-conjugated goat anti-mouse Ig to detect unlabeled primary Abs. Indirect stains for CD205 (human and monkey, mAb 38-2)
and CD209 (human, mAb DC28) are shown. Macaque DCs shown were stained with PE-labeled mAb 12507 (anti-CD209), but gave the same results with
indirect staining. A, PE staining (log PE) of large gfp-positive cells (forward scatter (FSC) vs log PE) data are shown from one representative experiment
of at least three similar experiments (different donors) for both monkey and human DCs. Isotype controls for direct stains exhibited mean fluorescence
intensities of �1 log and indirect stains 1–1.5 logs. B, The PE relative fluorescence intensity (RFI) of the gfp-gated cells was calculated for each donor.
The RFI for each phenotypic marker was determined by subtracting the mean fluorescence intensity of the appropriate isotype control. Symbols represent
the same donor in each graph. f, Œ, and F, Three or four individual macaques; �, ‚, and E, three human donors. Staining equivalent to the isotype control
was assigned a value of 0.1 to accommodate log-scale analysis.
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CCL5 (RANTES). The secretion of CCL3 and CCL4 in human
immature DCs peaked at around 6–18 h. CCL5 secretion tended to
peak later (18–48 h) and at consistently lower levels. When im-
mature macaque DCs were infected with Adeno-nefHIV, chemo-
kine production was induced, but was delayed compared with that
of human DCs, with the peak production occurring after 48–72 h
(Fig. 3A). The peak chemokine levels from independent experi-
ments using DCs from 6–12 different human (upper row) or ma-
caque (lower row) donors are summarized in Fig. 4A. The p values
indicate the significance of the nef-induced secretion in each case
(Adeno-nef vs Adeno-gfp populations). While nef-dependent
CCL3 and CCL4 secretion was statistically significant, CCL5 pro-
duction was not; it was generally secreted at lower levels and less
reproducibly between donors. CCL3 secretion was induced by
both HIV and SIV nef in macaque (Fig. 3B) and human DCs (data
not shown). The kinetics of CCL4 production by HIV or SIV nef-
bearing DCs were similar to those of CCL3 (data not shown).

Two biochemical interactions of Nef have been described that
putatively link Nef to signal transduction pathways: SH3 domains
of protein tyrosine kinases of the Src family involving the con-
served proline-rich (PxxP)4 repeat in Nef (45–47), and a serine
kinase (48) implicated in the effect of Nef on signal transduction in
T cells. Both interactions have been mapped to the highly con-
served core of the Nef molecule (49). Human and monkey DCs
were infected with Adeno-nefHIV, Adeno-nefHIVPA (PxxP mu-

tant), and Adeno-gfp. Just like wild-type nef, the PxxP mutant of
nef induced CCL3 (Fig. 3C), CCL4, and CCL5 (data not shown)
production in immature DCs. Therefore, the proline-rich motif is
not required for nef-induced chemokine production by DCs.

We also observed that nef triggered statistically significant se-
cretion of IL-12, TNF-�, CXCL8 (IL-8), and IL-6 in immature
human (Fig. 4) and macaque (Fig. 4A and data not shown) DCs.
On the average, cytokine release by macaque DCs was lower than
that produced by human DCs (e.g., IL-12 (Fig. 4A) and TNF-�
(data not shown)) and in the case of TNF-� did not reach statistical
significance. There was almost no background cytokine secretion
in uninfected or Adeno-gfp-infected immature DCs of TNF-�,
IL-6, or IL-12. In contrast, high levels of CXCL8 secretion were
observed in uninfected immature DCs, as previously described (6).
However, the nef-induced CXCL8 production was statistically sig-
nificant. No nef-induced IL-1�, IL-10, or IFN-� production was
detected (data not shown).

Adeno-nef-infected DCs activate autologous T cells in coculture

The secretion of inflammatory cytokines and chemokines by nef-
expressing DCs (Figs. 3 and 4) is a characteristic feature of DC
maturation, yet the membrane phenotype of nef-expressing DCs
remains that of an immature DC (Fig. 2). Since mature DCs are
more potent in T cell stimulation than immature DCs, and this
usually coincides with elevated costimulatory molecule expression

FIGURE 3. SIV and HIV nef-induced chemokine production in human and monkey DCs. A, Immature human and macaque DC were left uninfected
(mock) or were infected with Adeno-nefHIV (nefHIV) or Adeno-gfp (gfp). The supernatants were collected at the indicated time points after infection and
assayed for CCL3, CCL4, and CCL5. The results represent one of �10 experiments. B, Immature macaque DCs were left uninfected (mock) or were
infected with Adeno-SIVnef (nefSIV), Adeno-HIVnef (nefHIV), and Adeno-gfp (gfp), and supernatants taken at 24, 48, and 72 h were assayed for CCL3
production. C, Supernatants from human and macaque DCs uninfected (mock) or infected with Adeno-nefHIV (nefHIV), Adeno-nefHIVPA (nefHIVPA), and
Adeno-gfp (gfp) were sampled at the indicated times, and CCL3 was detected by ELISA. The results shown in B and C are representative of at least three
independent experiments.
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(1), we were interested to ascertain what impact nef had (if any) on
the ability of immature DCs to activate autologous CD4� T cells.
Cocultures of nef-expressing DCs (vs control DCs) and autologous
T cells were analyzed for T cell activation by several methods. T
cell proliferation was monitored by [3H]TdR incorporation (Fig. 5,
A–D), expression of the cell cycle nuclear Ag Ki-67 (Fig. 5E), and
up-regulation of activation markers by FACS (Fig. 5F). The
negligible expression of CD69 and CD25 by the purified T cells
before culture with nef-bearing vs control DCs is evident in Fig.
5F (top row).

Infection of immature DCs with either Adeno-nefHIV or Ad-
eno-nefSIV provoked CD4� T cell proliferation in human and ma-
caque autologous DC-T cell cultures (Fig. 5, A and C). In the
human system T cells cultured with Adeno-nefSIV-infected DCs
showed lower [3H]TdR uptake compared with Adeno-nefHIV-in-
fected DCs. This was not apparent, however, in the macaque sys-
tem. These levels of increased autologous T cell proliferation stim-
ulated by the nef-expressing immature DCs reflected responses
induced by mature DCs, but were significantly lower than re-
sponses seen in allogeneic systems (Fig. 5B). The increased au-
tologous T cell proliferation observed in the presence of nef-ex-
pressing DCs was dependent on the numbers of DCs added to the
cocultures (Fig. 5C). Differences in T cell activation were still
evident at a dose of 1 DC/30 T cells, but not at the 1/100 ratio. The
background autologous MLRs induced by the mock and gfp-
loaded DCs similarly decreased with lower DC numbers. Further
evidence that DCs are needed to augment T cell activation was
provided by the fact that addition of nef-triggered DC supernatants
to purified CD4� T cells resulted in minimal T cell proliferation
(�500 cpm [3H]TdR uptake compared with 100–200 cpm for the
untreated, mock, or gfp-DC supernatant controls vs the stronger
responses seen in PMA/ionomycin-positive controls; Fig. 5D).
Thus, soluble factors released by nef-triggered DCs alone are not
sufficient to drive the T cell proliferation seen in the nef-DC-T cell
cultures.

Expression of the nuclear activation Ag Ki-67 was also in-
creased in nef-bearing DC-T cell cocultures (Fig. 5E). In addition,

FACS analysis revealed an increase in the expression of the acti-
vation markers CD69 and CD25 by T cells cocultured with nef-
bearing autologous DCs (Fig. 5F). The percentage of CD69� T
cells went from 26–29%, and that of CD25� T cells from 14–18%
in the mock or gfp-infected DC-T cell cultures to �45 and 26%,
respectively, in the nef-loaded DC-T cell mixtures (Fig. 5F). Peak
T cell activation levels are shown (Fig. 5). Hence, paralleling the
elevated secretion of chemokines and cytokines induced by nef,
nef-loaded immature DCs also stimulate greater autologous MLRs.

Nef, but not activation with maturation stimuli, drives delta nef
replication in immature DC-T cell cultures

Mature, but not immature, DCs facilitate delta nef amplification in
concert with autologous CD4� T cells, whereas wild-type virus
replicates strongly in the presence of either DC subset (27). We
have hypothesized that nef in the wild-type virus can modulate
immature DCs to act more like their mature counterparts to drive
virus growth. While we detected nef-induced secretion of soluble
factors by immature DCs as well as a nef-dependent augmentation
of their ability to stimulate autologous MLRs, this did not coincide
with changes in DC membrane phenotype. Thus, we set out to
delineate whether activating DCs via traditional maturation stimuli
vs nef would promote delta nef replication in the immature DC-T
cell milieu.

Immature macaque DC-T cell cocultures were pulsed with delta
nef (27), and the maturation stimulus, MCM, was added after the
infection to mature the DCs in the culture. After 2–3 days the DCs
had matured (FACS confirmed up-regulated CD25, CD80, CD83,
and CD86; data not shown); however, replication of delta nef was
consistently lower than that of wild-type virus (Fig. 6A). Since
MCM contains chemokines (50) that may interfere with the spread
of infection in the DC-T cell mixtures, other maturation stimuli
that are known to activate macaque DCs (PGE2/TNF-� or CD40L)
(6) were examined. Just as with MCM-activated DCs, maturation
of the DC with either PGE2/TNF-� or CD40L (confirmed by
FACS analysis after 2–3 days; data not shown) did not rescue the

FIGURE 4. Peak cytokine and chemokine
production induced by nef in immature DCs.
Data represent the concentrations of chemo-
kines and cytokines at the peak of production
for 105 DCs. Values are plotted for 6–12 in-
dependent experiments, where each dot repre-
sents the results from an individual donor. A,
Immature Human (upper row) or macaque
(lower row) DCs were mock-infected or in-
fected with Adeno-nefHIV (nef) or Adeno-gfp
(gfp). The supernatants were analyzed for
CCL3, CCL4, CCL5, and IL-12 levels by
ELISA. B, Supernatants from immature hu-
man DCs after mock infection or infection
with Adeno-nefHIV or Adeno-gfp were ana-
lyzed for TNF-�, CXCL8, and IL-6 produc-
tion by ELISA. The p values shown in each
graph indicate the significance of the differ-
ence between nef- and gfp-expressing DCs
cultures.
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impaired replication of the delta nef virus (Fig. 6B). As expected,
wild-type virus grew normally in the immature DC-T cell mix-
tures, and activation of T cells with SEB rescued the delta nef
replicative capacity. The slight decrease in virus production upon

addition of the maturation stimuli was seen at most time points in
all experiments, but was not significant.

Although the DCs matured in response to the stimuli, it was
possible that the 1–2 days it took for DCs to fully mature were too

FIGURE 5. Nef expression in immature DCs induces T cell activation. A, Immature human or macaque DCs (104 cells/well) were mock-infected (mock) or infected
with Adeno-nefHIV (nefHIV), Adeno-nefSIV (nefSIV), or Adeno-gfp (gfp). After infection, resting autologous 105 CD4� T cells were added. T cell proliferation was
assessed after 3 days (human) or 6 days (macaque) by measuring the amount of [3H]TdR incorporated. The mean counts per minute � SEM [3H]TdR incorporated in
triplicate cultures of one experiment that is representative of three are shown. B, Immature (Imm) and mature (Mat) DCs were generated from healthy macaque blood and
cultured with CD4� T cells isolated from the same (Autologous) or a different (Allogeneic) animal (104 DC with 105 T cells). The amount of [3H]TdR incorporated during
the last 8 h of a 5-day culture is shown (mean counts per minute � SEM from triplicate cultures from one of at least four similar experiments). C, Graded doses of mock-,
nefHIV-, or gfp-infected immature human DCs were added to autologous CD4� T cells (105 cells/well) to obtain DC/T cell ratios of 1/10, 1/30, and 1/100. Three days
after culture T cell proliferation was analyzed by measuring [3H] TdR uptake. Results are representative of two experiments, and values shown are the means (�SEM)
of duplicate wells. D, Purified CD4� T cells (105/well) were cultured in medium (med) or in the presence of DC-conditioned supernatants (mock, nefHIV, or gfp).
Supernatants were collected from mock-, nefHIV-, or gfp-infected immature DCs, and each was diluted relative to adding the nef-DC supernatant at a final of 1 ng/ml CCL3
(MIP-1�). CD4� T cells were cultured with PMA (10 ng/ml; Sigma) and ionomycin (1 �M; Sigma) as a positive control for T cell activation (PMA/Ion). [3H]TdR
incorporation was measured after 3 days of culture, and data from one of two identical experiments are shown. E, Mock-, nefHIV-, or gfp-loaded immature DCs were mixed
with autologous CD4� T cells (1 DC/10 T cells) and cultured for 1–3 days. At each time point the cells were collected, and cytospins were prepared. The acetone-fixed
cells were then immunoperoxidase-stained for Ki-67 expression, and the numbers of Ki-67� cells were counted. The mean percentages (�SEM) of Ki-67� cells were
calculated by counting five separate fields of at least 100 cells each. Data are shown from one of three comparable experiments. F, CD4� T cells were purified (�95%)
by depleting CD8�HLA-DR� cells, and their activation status was monitored before coculture with the DCs (T cells). Mock-, nefHIV-, nefSIV-, or gfp-loaded immature
human DCs were cultured for 3 days with autologous CD4� T cells (1 DC/10 T cells). Before and after culture, the T cells were assayed for expression of the early activation
marker CD69 as well as CD25 (for nefHIV where more extensive analyses were performed) by staining with FITC-conjugated anti-CD3 and PE-conjugated anti-CD69
or anti-CD25. The FITC-Ig and PE-Ig controls were included and used to set the marker gates shown in the DC-T cell cocultures. Fluorescence data are shown for cells
gated on forward scatter and side scatter to encompass resting and activated T cells excluding DCs or DC-T cell conjugates. The percentages of PE� cells above
the indicated markers are shown in each DC-T cell panel. One example, representative of three independent experiments, is shown. Identical results were obtained
with human and macaque cells.
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late to rescue the infectious delta nef persisting in these cultures.
To test this, we stimulated the T cells after 1–2 days, since imme-
diate activation of the T cells readily reveals the presence of in-
fectious delta nef (Fig. 6B) (27). Addition of SEB to delta nef-

infected cocultures immediately or 2 days later rapidly amplified
delta nef in these cultures (Fig. 6C). Similarly, adding delta nef-
pulsed DCs to allogeneic CD4� T cell immediately or 1 day after
the virus pulse also resulted in robust delta nef replication and un-
derscored how DCs retain infectious delta nef virus for consider-
able lengths of time (Fig. 6D). Therefore, infectious virus persists
for up to 2 days and can be rescued upon encountering activated
CD4� T cells, but not simply by maturation of virus-carrying DCs
within the cultures.

Since nef appears to have unique influence over immature DCs,
triggering certain pathways of DC activation, but not others, we
were interested in determining whether nef-bearing DCs could
drive virus growth in the immature DC-T cell milieu. Immature
DCs carrying nef (or not) were mixed with autologous CD4� T
cells and immediately exposed to delta nef. The expression of ei-
ther SIV (Fig. 6, E and F) or HIV (Fig. 6F) nef in DCs facilitated
SIV delta nef replication in immature DC-T cell cultures (Fig. 6, E
and F). Taken together these results stress how HIV and SIV nef
are interchangeable and signal selective pathways in immature
DCs that drive virus replication in immature DC-T cell cultures.

Discussion
In an attempt to mimic the effects being exerted by virus-associ-
ated Nef as it enters the DC and/or the Nef expressed early during
replication of DC-trapped virus as probably occurs following mu-
cosal transmission, the studies described herein represent the first
extensive investigation into the impact of endogenously derived
Nef on the biology of primary immature (human and macaque)
DCs. This stems from the observation that the absence of nef re-
sulted in defective virus replication in immature DC-T cell mix-
tures (27). To selectively monitor the impact of Nef on immature
DCs in the absence of other immunodeficiency virus determinants
we first chose to employ the adenoviral vector system (that we and
others have shown has little if any impact on DC function (25,
30–35)) to introduce the nef gene into DCs. DC-expressed Nef
uniquely activates immature DCs to specifically foster DC-T cell
communication benefiting immunodeficiency virus replication in-
stead of immune activation against the virus, emphasizing how the
virus may exploit the APC arm of the immune system to ensure its
dissemination.

Expression of nef in human and macaque DCs induces signifi-
cant production of inflammatory cytokines and chemokines (Figs.
3 and 4). This probably requires infection and actual expression of
the Nef protein, since loading immature DCs with large amounts of
inactivated, noninfectious virus (51) does not induce chemokine or
cytokine secretion (our unpublished observations). Exogenously
applied recombinant Nef was recently shown to trigger similar
patterns of cytokine and chemokine release by immature human
DCs (26). We similarly saw chemokine release by immature DCs
exposed to recombinant Nef (our unpublished observations). How-
ever, the levels of cytokine and chemokine production appear to be
greater in response to endogenous DC-derived Nef (Fig. 3 and 4),
while we similarly observed negligible secretion of IL-1� and
IL-10 (26). How exogenous or endogenous Nef signal DCs still
remains to be determined and is being examined in ongoing stud-
ies. While macrophages were induced to secrete CCL3 and CCL4
by nef (22), immature DCs secreted a much broader panel of fac-
tors: CCL3, CCL4, CCL5, TNF-�, CXCL8, IL-6, and IL-12.

Chemokine and cytokine production by DCs normally correlates
with complete DC maturation when stimulated with bacteria,
CD40L, LPS, dsRNA, or mixtures of cytokines (5, 6, 43, 44, 52).
The soluble factors secreted during these responses differ depending
on the stimulus (6, 43), suggesting that specific stimuli trigger DCs
differently. Notably, nef induced the production of a wide range of

FIGURE 6. Nef expression in DCs enhances delta nef replication in immature
DC-T cell cultures. Immature DCs and CD4� T cells were obtained from healthy
macaques, and DC-T cell cocultures were infected with wild-type (wt) or delta nef
(delta) SIVmac239 (27). After infection the cells were washed, and the indicated
stimuli were added. The various DC-T cell mixtures were then cultured for up to
15 days, during which time supernatants were collected every 2 days, and pro-
ductive infection was monitored by p27 ELISA. A, Fresh medium (med.) or fresh
medium with 50% MCM was added to the cultures after infection. Peak virus
production levels detected after 9 days are shown. B, After infection, fresh medium
(med.), MCM, PGE2 and TNF-� (P/T), CD40L, and SEB were added to the delta
nef-infected cultures. Cocultures infected with wild-type virus (wt) were included
as a control. The peak p27 levels seen on day 10 of culture are provided. C, After
infection of immature DC-T cell cultures with wild-type virus (wt; f and Œ) or
delta nef (delta; � and ‚), SEB was added immediately (day 0 (d0)) or 2 days later
(d2) to the cultures. Virus replication was assayed over the following 11 days. D,
Immature DCs were pulsed with either delta nef (� and ‚) or wild-type virus (f
and Œ), and the virus was washed away before DCs were mixed with allogeneic
CD4� T cells immediately (d0) or after an overnight incubation (d1). Productive
infection was monitored over the next 15 days. E, Immature macaque DCs were
infected with Adeno-nefSIV (nef) or Adeno-gfp (gfp) or were mock-infected as a
control (mock). After 2 h autologous CD4� T cells were added to the DCs, and the
cocultures were immediately infected with delta nef. As a positive control for virus
replication SEB was added to the delta nef-infected DC-T cell cultures. F, Imma-
ture macaque DCs were pulsed with Adeno-nefHIV (Expt. 1), Adeno-nef-
SIV (Expt. 2), or Adeno-gfp (gfp) or were mock-infected (mock) as a
control. Autologous CD4� T cells were then added just before the cocul-
tures were infected with delta nef. The bars show peak p27 levels from two
independent experiments. These data are representative of at least three
separate experiments.
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chemokines and cytokines, but this did not parallel membrane phe-
notypic changes typical of DC activation (Fig. 2) that are critical for
DCs to acquire potent immunostimulatory activity (reviewed in Ref.
2). This contrasts what was observed when recombinant Nef was
provided exogenously (26). Our data suggest that endogenously de-
rived Nef uncouples the secretion of inflammatory cytokines and che-
mokines from triggering membrane phenotypic maturation in imma-
ture primate DCs.

Credence for one stimulus activating distinct pathways in DCs
was first provided by Rescigno et al. (53) when they described how
LPS regulated two separate pathways in murine DCs: one inducing
membrane phenotypic maturation, and the second preventing cell
death. Subsequent studies examining LPS triggering through
TLR4 (54) or dsRNA via TLR3 (55) further highlight how one
stimulus-receptor interaction can signal distinct pathways within
DCs, specifically MyD88 adaptor protein-dependent cytokine pro-
duction vs MyD88-independent membrane phenotypic maturation.
Interestingly, we observed nef-mediated Stat3 activation in imma-
ture DCs (35) that may favor MyD88-dependent cytokine secre-
tion (56). The fact that nef, but not maturation stimuli, could rescue
the defective replication of SIV delta nef in the immature DC-T
cell mixtures (Fig. 6), further emphasizes how nef exploits DC
biology and uniquely triggers immature DCs to favor virus ampli-
fication rather than activation of anti-viral immunity. Similarly,
membrane phenotypic changes indicative of low level DC activa-
tion were comparable in the immature DC-T cell cocultures ex-
posed to delta nef or wild-type SIV where only wild-type virus
grew effectively (27). Certain DC stimuli have been suggested to
protect DCs from viral infection (44), while nef probably favors
pathways to promote virus amplification.

Unlike earlier reports using primary DCs and transfected cell
lines, we observed no consistent down-modulation of class I MHC
molecules (24, 26) or up-regulation of CD209 (23) or CD74 (57).
While we observed up-regulation of CD74 and CD209 in response
to nef in two donors, there was no change or even down-regulation of
these molecules in all other donors tested (Fig. 2B). This underscores
the importance of studying primary cells from multiple donors. It is
postulated that the down-modulation of MHC class I or II molecules
would reduce immune function in infected settings, while elevated
CD209 would foster DC-T cell contact, and each would drive virus
growth. The low level CD209 expression present on macaque DCs
(Fig. 2) (40) makes it even less likely that this is the sole mechanism
at work here, agreeing with the indication that CD209-ICAM-3 in-
teractions are not essential for HIV replication (58).

The reason for the discrepancies in nef-mediated effects on im-
mature DCs is not immediately apparent, but may reflect the dif-
ferent viral vectors used to introduce nef, the use of recombinant
Nef, and/or the nef alleles examined in primary cells vs transfected
cell lines. The different methodologies used to generate the DCs in
each study also cannot be excluded. However, many of our obser-
vations were made using both HIV and SIV nef expressed in pri-
mary macaque and human DCs and not cells lines often used by
others. The level of Nef expression in primary DCs vs the variously
tested cell lines or the amount of recombinant Nef added may also
influence these events. This has been described for T cells, where the
intracellular concentrations of Nef dictated whether CD4 vs class I
MHC were down-regulated or T cell activation was affected (59).
Interestingly, nef-induced chemokine production was routinely de-
tected in immature DCs independent of the Adeno infection fre-
quency or the intensity of the gfp (and so Nef) expression (data not
shown), suggesting that sufficient Nef was being expressed under
these conditions. Accurate comparative measurements of DC-associ-
ated Nef were not possible in these primary cell cultures. Studies are
needed (e.g., using systems in which the nef gene is under the control

of inducible promoters) to better define how different levels of Nef
may impact primary DC biology.

The nef gene can directly activate CD4� T cells (15, 60). HIV
or SIV nef-expressing immature DCs augmented autologous
CD4� T cell activation (much like a mature DC) in both human
and macaque systems (Fig. 5), but required fewer nef-expressing
DCs compared with human DCs exposed to recombinant Nef (26).
At this stage it is not clear how DC-derived Nef exactly influenced
the T cells in these cultures and whether it was mediated directly
or indirectly via the nef-carrying DCs. Although we do not see a
nef-induced increase in CD209 expression that may favor DC-T
cell binding (23), it is possible that nef-bearing DCs up-regulate
other T cell-binding molecules and/or that the T cells become more
adhesive as a result of chemokine exposure (reviewed in Refs. 61
and 62), resulting in elevated autologous reactivity (63, 64).

In our previous studies we did not observe T cell activation in
autologous immature DC-T cell cultures infected with wild-type
SIV (27) or HIV (41, 65). It is quite possible, however, that much
smaller subsets of T cells were activated, making them difficult to
detect in the infected cultures. This may have been further con-
founded by preferential infection (and ultimately death) of the ac-
tivated cells in these cultures. Similarly, significant chemokine or
cytokine production was not detected in wild-type vs delta nef
SIV-infected cultures (our unpublished observations). This is prob-
ably largely due to the relatively low frequency of virus-producing
DCs in these cultures (9). Even if secreted at lower levels in wild
type-infected cultures, it is possible that cells in the cultures use up
the factors being secreted, rendering them even more difficult to
detect. Counteractions by other lentiviral determinants cannot be
ruled out at this point. As appreciated by others (23, 24), intro-
ducing nef in a viral vector enables the provision of larger amounts
of nef into more DCs in the absence of an infectious immunode-
ficiency virus, allowing us to reveal otherwise subtle nef-induced
changes (in DCs and T cells) that probably go undetected in wild-
type virus infection.

Although the mechanism(s) needs to be elucidated, we have
demonstrated that DC-borne nef overtly modulates the immature
DC-T cell milieu, fostering virus spread. Chemokines have been
shown to prevent in vitro infections when added to cultures in
recombinant forms (66). While immature DCs (Figs. 3 and 4) (26)
and macrophages (22) secrete �-chemokines in response to Nef,
HIV (22) and SIV (Fig. 6) still replicate normally. It is possible
that macrophage or DC-derived chemokines (secreted in response
to Nef) exhibit different biological activities to the recombinant
forms and/or that the presence of a variety of factors within such
a cellular milieu overrides any blocking effect that a solitary che-
mokine might otherwise have. Furthermore, the concentration of
chemokine(s) used may have quite different effects on the outcome
of the infection, since, for example, high dose RANTES has been
shown to actually enhance infection (67). Thus, the amounts and
combinations of chemokines secreted in these cultures may actu-
ally create a more conducive environment for virus growth.

One function of nef in a wild-type virus infection may be to
modify macrophages (22) and immature DCs (Figs. 3 and 4) (26)
to secrete chemokines that would recruit T cells (especially mem-
ory T cells (reviewed in Refs. 61, 68, and 69) to the initial site of
infection, driving cell-to-cell spread of the virus. T cells in a DC-T
cell milieu do not need to enter the cell cycle for virus to replicate
in vitro (41, 65) or in vivo (70–72), and cytokines (73) secreted by
the DCs (Figs. 3 and 4) and/or DCs themselves (27) might be
sufficient to signal the recruited T cells (much like in the autolo-
gous MLR) to amplify virus replication. Preferential recruitment of
memory T cell subsets would further favor virus amplification in
the presence of immature DCs (9).
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Recent findings support the idea that both soluble factors and
cell contact are essential to drive virus expansion in resting CD4�

T cells. Specifically, the factor(s) present in the supernatants of
Nef-stimulated macrophages that renders resting CD4� T cells
permissive to HIV infection requires contact between the target T
cells and B cells (M. Stevenson, unpublished observations). We
propose that similar events take place in our DC-T cell cocultures,
where Nef-triggered immature DCs are able to provide the neces-
sary soluble and cellular determinants to drive virus growth in the
presence of resting CD4� T cells. This is supported by observa-
tions that the levels of T cell activation diminished with decreasing
DC numbers and that simply adding the supernatants from Nef-
expressing immature DCs was insufficient to induce the same lev-
els of T cell proliferation. Studies to elucidate these complex
mechanisms are ongoing.

The presence of wild-type virus (nef)-carrying immature DCs in
this locale would be unlikely to stimulate active anti-viral immu-
nity, since the DCs have not up-regulated MHC and costimulatory
molecules needed to appropriately activate strong Ag-specific im-
mune responses. While wild-type virus-bearing DCs (as well as
Adeno-nef-infected DCs) are responsive to maturation stimuli (our
unpublished observations), the robust replication of virus already
established before virus-specific T cell activation would be exac-
erbated by subsequently matured DCs (e.g., Fig. 6A) triggering the
T cells and probably simply overwhelm the immune system. In
contrast, when confronted with delta nef infection, immature DCs
could capture virus and begin to process viral Ags in the absence
of an all-consuming infection (27). Our in vitro evidence that delta
nef virus growth was not augmented after maturing the DCs in this
milieu (Fig. 6, A and B) suggests that these matured cells could
then go on to more effectively activate anti-viral immune responses
that might contribute to the lessened viral loads seen during acute
delta nef infection (74, 75). Once T cells are activated, virus will
ultimately begin to spread between the permissive cells. This un-
derscores how without nef to exploit the APCs, the immune system
can initially cope to somewhat restrict virus dissemination.

Recombinant adenoviral vectors are also being used in HIV vac-
cine studies (76). Since in vitro studies have indicated that adeno-
viruses tend not to directly activate DCs (25, 29–35), optimal vac-
cine efficacy would require that the DCs be additionally activated
for maximal presentation of introduced Ags (2). In light of the
findings reported herein, we speculate that if an adenoviral vaccine
construct contained nef, the initial triggering of immature DCs by
Nef may favor the recruitment of T cells to the site of immuniza-
tion, but additional stimuli would be necessary to fully activate the
DCs for induction of strong anti-viral immunity.

Encompassing primary DCs from macaques and humans, these
studies highlight how the immunodeficiency virus nef can manip-
ulate immature DCs, exploiting unique aspects of DC biology to
forge virus dissemination while avoiding the activation of virus-
specific T cells. A better understanding of how these and poten-
tially other virus-mediated modifications of DCs are manifest will
be critical to identify strategies to bias the DC system toward ac-
tivation of anti-viral immunity instead of facilitating virus spread.
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M. Pope. 2002. Activation of Stat3 in immature primate dendritic cells by HIV
Nef. AIDS Res. Hum. Retroviruses. 18:1045.

36. Kestler, H. W., D. J. Ringler, K. Mori, D. L. Panicali, P. K. Sehgal, M. D. Daniel,
and R. C. Desrosier. 1991. Importance of the nef gene for maintenance of high
virus loads and for development of AIDS. Cell 65:651.

37. Pope, M., D. Elmore, D. Ho, and P. Marx. 1997. Dendritic cell-T cell mixtures,
isolated from the skin and mucosae of macaques, support the replication of SIV.
AIDS Res. Hum. Retroviruses 13:819.

38. O’Doherty, U., R. Ignatius, N. Bhardwaj, and M. Pope. 1997. Generation of
monocyte-derived cells from the precursors in rhesus macaque blood. J. Immu-
nol. Methods 207:185.

39. Mahnke, K., M. Guo, S. Lee, H. Sepulveda, S. L. Swain, M. Nussenzweig, and
R. M. Steinman. 2000. The dendritic cell receptor for endocytosis, DEC-205, can
recycle and enhance antigen presentation via MHCII�, lysosomal compartments.
J. Cell Biol. 151:673.

40. Wu, L., A. A. Bashirova, T. D. Martin, L. Villamide, E. Mehlhop, A. O. Chertov,
D. Unutmaz, M. Pope, M. Carrington, and V. N. KewalRamani. 2002. Rhesus
macaque dendritic cells efficiently transmit primate lentiviruses independently of
DC-SIGN. Proc. Natl. Acad. Sci. USA 99:1568.

41. Pope, M., S. Gezelter, N. Gallo, L. Hoffman, and R. M. Steinman. 1995. Low
levels of HIV-1 in cutaneous dendritic cells promote extensive viral replication
upon binding to memory CD4� T cells. J. Exp. Med. 182:2045.

42. Ignatius, R., M. Marovich, E. Mehlhop, L. Villamide, K. Mahnke, W. I. Cox,
F. Isdell, S. Frankel, J. R. Mascola, R. M. Steinman, et al. 2000. Canarypox-
induced maturation of dendritic cells is mediated by apoptotic cell death and
tumor necrosis factor-� secretion. J. Virol. 74:11329.

43. Huang, Q., N. Liu do, P. Majewski, A. C. Schulte le, J. M. Korn, R. A. Young,
E. S. Lander, and N. Hacohen. 2001. The plasticity of dendritic cell responses to
pathogens and their components. Science 294:870.

44. Cella, M., M. Salio, Y. Sakakibara, H. Langen, I. Julkunen, and A. Lanzavecchia.
1999. Maturation, activation, and protection of dendritic cells induced by double-
stranded RNA. J. Exp. Med. 189:821.

45. Arold, S., P. Franken, M. P. Strub, F. Hoh, S. Benichou, R. Benarous, and
C. Dumas. 1997. The crystal structure of HIV-1 Nef protein bound to the Fyn
kinase SH3 domain suggests a role for this complex in altered T cell receptor
signaling. Structure 5:1361.

46. Lee, C.-H., K. Saksela, U. A. Mirza, B. T. Chait, and J. Kuriyan. 1996. Crystal
structure of the conserved core of HIV-1 Nef complexed with a src family SH3
domain. Cell 85:931.

47. Saksela, K., G. Cheng, and D. Baltimore. 1995. Proline-rich (PxxP) motifs in HIV-1
Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced
growth of Nef� viruses but not for downregulation of CD4. EMBO J. 14:484.

48. Sawai, E. T., A. S. Baur, H. Struble, B. M. Peterlin, J. A. Levy, and
C. Cheng-Mayer. 1994. Human immunodeficiency virus type 1 Nef associates
with a cellular kinase in T lymphocytes. Proc. Natl. Acad. Sci. USA 91:1539.

49. Iafrate, A. J., S. Bronson, and J. Skowronski. 1997. Separable functions of Nef
disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 sig-
naling. EMBO J. 16:673.

50. Reddy, A., M. Sapp, M. Feldman, M. Subklewe, and N. Bhardwaj. 1997. A
monocyte conditioned medium is more effective than defined cytokines in me-
diating the terminal maturation of human dendritic cells. Blood 90:3640.

51. Frank, I., M. J. Piatak, H. Stoessel, N. Romani, D. Bonnyay, J. D. Lifson, and
M. Pope. 2002. Infectious and whole inactivated simian immunodeficiency vi-

ruses interact similarly with primate dendritic cells (DCs): differential intracel-
lular fate of virions in mature and immature DCs. J. Virol. 76:2936.

52. Rescigno, M., and P. Borrow. 2001. The host-pathogen interaction: new themes
from dendritic cell biology. Cell 106:267.

53. Rescigno, M., M. Martino, C. L. Sutherland, M. R. Gold, and
P. Ricciardi-Castagnoli. 1998. Dendritic cell survival and maturation are regu-
lated by different signaling pathways. J. Exp. Med. 188:2175.

54. Kaisho, T., O. Takeuchi, T. Kawai, K. Hoshino, and S. Akira. 2001. Endotoxin-
induced maturation of MyD88-deficient dendritic cells. J. Immunol. 166:5688.

55. Alexopoulou, L., A. C. Holt, R. Medzhitov, and R. A. Flavell. 2001. Recognition
of double-stranded RNA and activation of NF-�B by Toll-like receptor 3. Nature
413:732.

56. Harroch, S., Y. Gothelf, M. Revel, and J. Chebath. 1995. 5� upstream sequences
of MyD88, an IL-6 primary response gene in M1 cells: detection of functional
IRF-1 and Stat factors binding sites. Nucleic Acids Res. 23:3539.

57. Stumptner-Cuvelette, P., S. Morchoisne, M. Dugast, S. Le Gall, G. Raposo,
O. Schwartz, and P. Benaroch. 2001. HIV-1 Nef impairs MHC class II antigen
presentation and surface expression. Proc. Natl. Acad. Sci. USA 98:12144.

58. Wu, L., T. D. Martin, R. Vazeux, D. Unutmaz, and V. N. KewalRamani. 2002.
Functional evaluation of DC-SIGN monoclonal antibodies reveals DC-SIGN in-
teractions with ICAM-3 do not promote human immunodeficiency virus type 1
infection. J. Virol. 76:5905.

59. Liu, X., J. A. Schrager, G. D. Lange, and J. W. Marsh. 2001. HIV Nef-mediated
cellular phenotypes are differentially expressed as a function of intracellular Nef
concentrations. J. Biol. Chem. 276:32763.

60. Schrager, J. A., V. Der Minassian, and J. W. Marsh. 2002. HIV nef increases T
cell ERK MAP kinase activity. J. Biol. Chem. 277:6137.

61. Sallusto, F., C. R. Mackay, and A. Lanzavecchia. 2000. The role of chemokine
receptors in primary, effector, and memory immune responses. Annu. Rev. Im-
munol. 18:593.

62. Sallusto, F., and A. Lanzavecchia. 2000. Understanding dendritic cell and T-
lymphocyte traffic through the analysis of chemokine receptor expression. Im-
munol. Rev. 177:134.

63. Nussenzweig, M. C., and R. M. Steinman. 1980. Contributions of dendritic cells
to stimulation of the murine syngeneic mixed leukocyte reaction. J. Exp. Med.
151:1196.

64. Revy, P., M. Sospedra, B. Barbour, and A. Trautmann. 2001. Functional antigen-
independent synapses formed between T cells and dendritic cells. Nat. Immunol.
2:925.

65. Pope, M., M. G. H. Betjes, N. Romani, H. Hirmand, P. U. Cameron, L. Hoffman,
S. Gezelter, G. Schuler, and R. M. Steinman. 1994. Conjugates of dendritic cells
and memory T lymphocytes from skin facilitate productive infection with HIV-1.
Cell 78:389.

66. Granelli-Piperno, A., B. Moser, M. Pope, D. Chen, Y. Wei, F. Isdell, F.
O’Doherty, W. Paxton, R. Koup, S. Mojsov, et al. 1996. Efficient interaction of
HIV-1 with purified dendritic cells via multiple chemokine coreceptors. J. Exp.
Med. 184:2433.

67. Trkola, A., C. Gordon, J. Matthews, E. Maxwell, T. Ketas, L. Czaplewski,
A. E. Proudfoot, and J. P. Moore. 1999. The CC-chemokine RANTES increases
the attachment of human immunodeficiency virus type 1 to target cells via gly-
cosaminoglycans and also activates a signal transduction pathway that enhances
viral infectivity. J. Virol. 73:6370.

68. Sallusto, F., D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia. 1999. Two
subsets of memory T lymphocytes with distinct homing potentials and effector
functions. Nature 401:708.

69. Rossi, D., and A. Zlotnik. 2000. The biology of chemokines and their receptors.
Annu. Rev. Immunol. 18:217.

70. Spina, C. A., H. E. Prince, and D. D. Richman. 1997. Preferential replication of
HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro.
J. Clin. Invest. 99:1774.

71. Veazey, R. S., M. DeMaria, L. V. Chalifoux, D. E. Shvetz, D. R. Pauley,
H. L. Knight, M. Rosenzweig, R. P. Johnson, R. C. Desrosiers, and
A. A. Lackner. 1998. Gastrointestinal tract as a major site of CD4� T cell de-
pletion and viral replication in SIV infection. Science 280:427.

72. Veazey, R. S., I. C. Tham, K. G. Mansfield, M. DeMaria, A. E. Forand,
D. E. Shvetz, L. V. Chalifoux, P. K. Sehgal, and A. A. Lackner. 2000. Identifying
the target cell in primary simian immunodeficiency virus (SIV) infection: highly
activated memory CD4� T cells are rapidly eliminated in early SIV infection in
vivo. J. Virol. 74:57.

73. Unutmaz, D., V. N. KewalRamani, S. Marmon, and D. R. Littman. 1999. Cyto-
kine signals are sufficient for HIV-1 infection of resting human T lymphocytes.
J. Exp. Med. 189:1735.

74. Johnson, R. P., and R. C. Desrosiers. 1998. Protective immunity induced by live
attenuated simian immunodeficiency virus. Curr. Opin. Immunol. 10:436.

75. Ignatius, R., K. Tenner-Racz, D. Messmer, A. Gettie, A. Luckay, C. Russo,
S. Smith, P. A. Marx, R. M. Steinman, P. Racz, et al. 2002. Increased macrophage
infection upon subcutaneous inoculation of rhesus macaques with simian immu-
nodeficiency virus-loaded dendritic cells or T cells but not with cell-free virus.
J. Virol. 76:9787.

76. Shiver, J. W., T. M. Fu, L. Chen, D. R. Casimiro, M. E. Davies, R. K. Evans,
Z. Q. Zhang, A. J. Simon, W. L. Trigona, S. A. Dubey, et al. 2002. Replication-
incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-
virus immunity. Nature 415:331.

4182 ACTIVATION OF nef-EXPRESSING IMMATURE DCs

 at R
ockefeller U

niversity L
ibrary on A

ugust 11, 2020
http://w

w
w

.jim
m

unol.org/
D

ow
nloaded from

 

http://www.jimmunol.org/

	Endogenously expressed nef uncouples cytokine and chemokine production from membrane phenotypic maturation in dendritic cells
	Recommended Citation

	tmp.1597169819.pdf.YzVgv

