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Deletion of the nef gene from simian immunodeficiency virus (SIV) strain SIVmac239 yields a virus that
undergoes attenuated growth in rhesus macaques and offers substantial protection against a subsequent
challenge with some SIV wild-type viruses. We used a recently described model to identify sites in which the
SIVAnef vaccine strain replicates and elicits immunity in vivo. A high dose of SIVAnef was applied to the
palatine and lingual tonsils, where it replicated vigorously in this portal of entry at 7 days. Within 2 weeks, the
virus had spread and was replicating actively in axillary lymph nodes, primarily in extrafollicular T-cell-rich
regions but also in germinal centers. At this time, large numbers of perforin-positive cells, both CD8" T cells
and CD3-negative presumptive natural killer cells, were found in the tonsil and axillary lymph nodes. The
number of infected cells and perforin-positive cells then fell. When autopsy studies were carried out at 26
weeks, only 1 to 3 cells hybridized for viral RNA per section of lymphoid tissue. Nevertheless, infected cells were
detected chronically in most lymphoid organs, where the titers of infectious virus could exceed by a log or more
the titers in blood. Immunocytochemical labeling at the early active stages of infection showed that cells
expressing SIVAnref RNA were CD4* T lymphocytes. A majority of infected cells were not in the active cell cycle,
since 60 to 70% of the RNA-positive cells in tissue sections lacked the Ki-67 cell cycle antigen, and both
Ki-67-positive and -negative cells had similar grain counts for viral RNA. Macrophages and dendritic cells,
identified with a panel of monoclonal antibodies to these cells, were rarely infected. We conclude that the
attenuated growth and protection observed with the SIVAnef vaccine strain does not require that the virus shift
its characteristic site of replication, the CD4* T lymphocyte. In fact, this immunodeficiency virus can replicate
actively in CD4" T cells prior to being contained by the host, at least in part by a strong killer cell response
that is generated acutely in the infected lymph nodes.

The simian immunodeficiency virus (SIV), when deleted of
its nef gene (SIVAnef), exhibits two major features in the rhe-
sus macaque. First, virus replication is greatly attenuated in
most monkeys (5, 18-20). Second, infection with the Anef
strain of SIVmac239 protects most monkeys against challenge
with SIVmac239 and -251 (7, 8, 19, 30). Nevertheless, the
SIVAnef vaccine strain has considerable replicative potential.
In vitro, the vaccine strain replicates similarly to wild-type SIV
in activated T cells and T cells that are cocultured with mature
dendritic cells (17, 22). In vivo, upon vaccination with SIV Anef,
the virus reaches infectious titers that are 1 to 10% of those
found with wild-type SIV; these titers then subside to a low set
point (5).

We have now investigated the cellular sites of acute and
chronic infection with SIVAnef in vivo to better understand its
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lower level of replication relative to the wild type and its
capacity to act as a vaccine. We wanted to determine if the
absence of the nef gene alters the site of SIV replication in vivo
from CD4" T cells to dendritic cells and macrophages and
whether this resulted in less active virus replication but more
effective immune stimulation. SIV-specific CD4* (11, 30) and
CD8™" (38) immune responses have been documented in the
blood during chronic infection with SIVAnef, and furthermore,
temporary depletion of CD8" T cells results in a rapid increase
in viral RNA in the plasma (23). Therefore, infection with this
attenuated vaccine strain most likely represents a “battle-
ground” in which there is ongoing virus replication and im-
mune-based resistance, but where is the virus replicating?
Chakrabarti et al. showed that infected cells are found in
lymphoid tissues (5), but these cells remain to be defined.
To pursue these questions, we have used a recently de-
scribed system in which infection is initiated by atraumatic
application of SIV to the oral mucosa-associated lymphoid
tissue (MALT), both the palatine and lingual tonsils (31). It is
known that SIV is highly infectious via the oral route (3, 27).
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TABLE 1. Antibodies used in the present study

Dilution
Antibody (clone) Main specificities in lymphoid tissue” Source? (reference)
Frozen Paraffin
CD3 (Leu4) T cells 1:50 Becton Dickinson
CD3 (polyclonal) T cells 1:50 Dakopatts
CD4 (NCL-CD4-1F6) T helper, DC, macrophages 1:40 Novocastra
CD4 (Leu3a) T helper, DC, macrophages 1:40 Becton Dickinson
CD4 (M-T477) T helper, DC, macrophages 1:50 Becton Dickinson
CDS8 (Leu2a) T suppressor/cytotoxic cells 1:70 Becton Dickinson
CD8 (CB/144B) T suppressor/cytotoxic cells 1:70 Dakopatts
Perforin (PI-8) Activated CTL, NK cells 1:100 1:70 Dakopatts
Granzyme B (GrB-7) Activated CTL, NK cells 1:20 Dakopatts
TIA-1 15-kDa protein in cytotoxic cells 1:500 1:500 Coulter
CDla (Leu 6) Subset of DC and T cells 1:20 Becton Dickinson
CD207 (Langerin) Langerhans-type cells 1:20 1:10 S. Saeland (35, 36)
CD208 (DC-LAMP) Mature DC 1:400 S. Saeland (9)
CDS83 (HB15A) DC, activated lymphocytes 1:200 Immunotech
CD68 (KP1) Macrophages, some DC 1:70 1:20 Dakopatts
CD169 (ID2) Sialoadhesin, macrophages 1:200 P. Crocker (16)
CD20 (L26) B cells 1:50 1:50 Dakopatts
R4/23 Follicular DC 1:30 Dakopatts

“ DC, dendritic cells; CTL, cytotoxic T cells; NK, natural killer cells.

b Becton Dickinson or BD-PharMingen, San Diego, Calif.; Novocastra, Newcastle upon Tyne, United Kingdom; Dakopatts, Copenhagen, Denmark; Coulter Corp,
Krefeld, Germany; Immunotech, Marseille, France; S. Saeland, Schering-Plough, Dardilly, France; P. R. Crocker, University of Dundee, Scotland.

By applying virus directly to the tonsil, it becomes feasible to
directly analyze the site of primary infection and its spread to
other lymphoid organs. Application of vaccines to the oral
MALT may also facilitate vaccination of adult and pediatric
populations, with the potential to produce stronger mucosal
immunity. Elsewhere (unpublished data) we will show that
tonsillar application of SIVAnef in fact provides protection
against a subsequent tonsillar challenge with SIVmac251.
Here we studied two animals at early time points, 4 and 7
days after tonsillar application of SIVAnef, and three animals
at both 2 and 26 weeks to identify sites in which the vaccine
virus replicates and spreads. During acute infection and
spread, many infected cells were evident in lymphoid tissues.
CD4" T cells were clearly the dominant sites for vaccine rep-
lication, but in these infected lymph nodes, there was a marked
expansion of perforin-positive, cytolytic lymphocytes. Chroni-
cally, infectious virus was recovered from most lymphoid tis-
sues, and infected cells were observed in tissue sections. These
findings add to the evidence that an infected host can contain
a significant level of virus replication in T cells, even after an
initial period of active acute SIV replication and spread.

MATERIALS AND METHODS

Animals and virus inoculation. Juvenile and young adult rhesus monkeys
(Macaca mulatta) of Indian origin were bred at the German Primate Centre
(Deutsches Primatenzentrum) or imported from the United States (Laboratory
Animal Breeder & Services, Yemassee, N.C.). Animal care was in accordance
with guidelines of the German Primate Centre. Monkeys were of either sex, had
a body weight of 4.5 to 6 kg, and were antibody negative for simian T-lympho-
tropic virus type 1, simian D-type retrovirus, and SIV. Animals were caged
individually and monitored as described (30).

Virus inoculation, physical examination, and bleeding were performed under
ketamine anesthesia, while removal of peripheral lymph nodes used deeper
anesthesia via a combined injection of ketamine, xylazine, and atropine. The
infecting virus was the attenuated SIV nef deletion mutant SIVANU, in which
513 bp had been deleted from the nef gene and the U3 region of STVmac239 (15).
For the preparation of our virus stock, supernatant from freshly transfected
CEMx174 cells was harvested and used to infect fresh monkey peripheral blood
mononuclear cells (PBMCs). The virus stock had an in vitro titer of 10> median

tissue culture infectious doses (TCIDs) in the human T-cell line C81-66. Ap-
plication of SIVANU to the palatine and lingual tonsils was performed as de-
scribed (31), using ~10° TCIDs,,

Determination of virus load and serology. Cell-associated virus loads were
determined in a limiting dilution coculture assay with mononuclear cells from
blood and lymphoid organs as described before (30, 31). Viral RNA in plasma
was determined by a quantitative RNA-PCR (33). The detection limit of this
assay is 40 RNA equivalents per ml of plasma. SIV-specific serum antibodies
were detected by Western blotting (32).

In situ hybridization. The in situ hybridization was performed on either
paraffin or cryostat sections as described previously (34). Briefly, 5-um sections
were cut onto slides coated with 3-aminopropyltriethosilane. Frozen sections
were fixed in 4% paraformaldehyde for 30 min and subjected to in situ hybrid-
ization. Dewaxed paraffin sections were either boiled in a domestic pressure
cooker in citrate buffer (pH 6.0) for 5 min or treated with proteinase K (0.01
mg/ml) for 8 min at room temperature and subjected to in situ hybridization to
detect viral RNA.

We used a 3°S-labeled, single-stranded antisense RNA probe of SIVmac239
(Lofstrand Labs, Gaithersburg, Md.). The probe was composed of fragments of
1.4 to 2.7 kb, which collectively represent approximately 90% of the SIV genome.
The specific activity of the probe was 2 X 10° dpm of probe/ml. The hybridization
was performed overnight at 45°C in a moist chamber. The slides were washed,
digested with RNase (Boehringer Mannheim GmbH, Mannheim, Germany) at
37°C for 40 min, and washed again. Then the slides were dipped into photo
emulsion (NTB2; Kodak, Rochester, N.Y.), exposed for 3 to 7 days, developed,
counterstained with Hemalaun, and mounted. As a positive control, cytospin
preparations of SIV-infected PBMCs were used. As a negative control, sections
were hybridized with a 3°S-labeled sense probe. The sections were examined with
a microscope equipped with epiluminescent illumination (Axiophot; Carl Zeiss
Inc., Jena, Germany). Cells were considered positive for viral gene expression if
the grain count was more than six times the background.

Immunocytochemistry. Immunocytochemistry was performed by the alkaline
phosphatase—anti-alkaline phosphatase (APAAP) and peroxidase methods. Par-
affin-treated or frozen sections were incubated with primary antibodies to
defined cellular antigens and perforin as summarized in Table 1. The immuno-
labeling was performed before in situ hybridization. To identify the perforin-
positive cells, immunohistochemical double labeling was made on paraffin-
treated or frozen sections. Dewaxed paraffin sections were placed in a domestic
pressure cooker containing 1 mM EDTA (pH 8), boiled for 7 min, and chilled to
room temperature. The sections were incubated with the primary antibody,
anti-CD4 (Novocastra), anti-CD3, or Ki-67, overnight. Binding of anti-CD3 was
detected with the peroxidase-antiperoxidase technique, and binding of the other
antibodies was detected with the APAAP method using either New Fuchsin as
the red chromogen or Fast Blue salt, giving a blue reaction product. The sections
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FIG. 1. Virus load over time in the blood of rhesus macaques after
tonsillar infection with SIVAnef. (A) Cell-associated virus in PBMCs
was determined by a limiting-dilution coculture technique, and the
endpoint was calculated. Virus loads are expressed as the number of
infectious cells per 10° PBMCs. (B) Levels of viral RNA in plasma
measured by quantitative reverse transcription-PCR and expressed as
RNA equivalents per ml. The detection limit of this assay is 40 RNA
equivalents per ml. Individual monkeys are indicated by four-digit
numbers.

were than heat treated again for 15 min and incubated with antibody to perforin
overnight, followed by visualization with the APAAP method.

The perforin-containing CD8" T-cell subset was detected on frozen sections.
These were fixed in acetone and treated with a ready-to-use peroxidase blocking
reagent (Dako) for 10 min. After rinsing in phosphate-buffered saline, the sec-
tions were incubated with a mixture of mouse anti-CD8 and rat antiperforin
antibodies. The sections were fixed in 4% paraformaldehyde and incubated with
a biotinylated rabbit anti-mouse immunoglobulin (Ig) (Dako). After incubation
with the StreptAB complex/horseradish peroxidase (Dako), the CD8™ cells were
visualized with 3-amino-9-ethylcarbazole (Sigma-Aldrich, St. Louis, Mo.). To
detect binding of antiperforin, the sections were incubated with an anti-rat Ig
secondary antibody followed by the tertiary antibody (rat APAAP; Dako) and
visualized with Fast Blue salt.

RESULTS

Recovery of infectious virus from the lymphoid tissues of
monkeys vaccinated with SIVAnef via the tonsillar route. A
high dose of SIVAnef (=10° infectious units) was applied to
the palatine tonsils and the back of the tongue (lingual tonsils)
of five animals. Three of five animals underwent peripheral
lymph node biopsies (axillary lymph nodes) at 2 weeks and
blood sampling at several time points, and the animals were
euthanized at 26 weeks. In these monkeys, we observed an
acute burst of virus replication (Fig.. 1A), peaking at a level
that was similar to the amount of infectious cell-associated
virus found in animals infected with wild-type virus. By con-
trast, peak levels of viral RNA in plasma were about 10% of
those measured in SIV wild-type-infected animals (Fig.. 1B).
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FIG. 2. Cell-associated virus load in lymphoid organs and blood of
rhesus macaques during acute infection (4 and 7 days postinfection,
upper two panels) with attenuated SIVAnef and in the chronic stage
(26 weeks, lower three panels). Mononuclear cell suspensions from
each organ and the blood were prepared, and infectious units were
determined as described for Fig. 1. Missing bars mean that no virus
could be isolated; nd means the organ was not obtained; ne means the
culture could not be evaluated because of contamination; the asterisks
indicate that the endpoint was not reached. dpi, days postinfection;
wpi, weeks postinfection; Ln, lymph node; tons, tonsil; cervic, cervical,
retrophar, retropharyngeal; submand, submandibular; axill, axillary;
mesent, mesenteric; Peyer’s, Peyer’s patches. Individual monkeys are
indicated on the right of each panel by Mm (for Macaca mulatta) and
four-digit numbers.

The results with the tonsillar route of vaccination were similar
to those observed after intravenous SIVAnef infection, i.e., a
burst of replication followed by a decay in viremia to a low set
point (5, 8).

The lymphoid tissues were examined from the three chron-
ically infected animals as well as two monkeys euthanized
acutely 4 and 7 days after infection (Fig. 2). In the latter
animals, the highest titers of infectious virus were measured
primarily at the portal of entry, the tonsils (Fig. 2). Actually,
the infection of the tonsils was focal in nature, since separate
portions of the tonsil could have very different extents of in-
fection, as assessed by virologic and histologic (in situ hybrid-
ization of viral RNA) criteria (not shown). For the chronically
infected monkeys assayed at 26 weeks, infectious virus was
found in almost all peripheral lymphoid tissues (Fig. 2). The
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TABLE 2. Frequency of SIVAnef or SIVmac251 RNA-positive cells in lymphoid tissue

No. of RNA-positive cells/mm? of lymphoid tissue”

Tissue® 7205 (wt, 1882 (wt, 1965 (Anef, 8153 (Anef, 1933 (Anef) 1955 (Anef) 9031 (Anef)
4 dpi) 7 dpi) 4 dpi) 7 dpi) 2 wpi 26 wpi 2 wpi 26 wpi 2 wpi 26 wpi

Palatine tonsil 18.40 15.18 0.48 19 1 0.70 0
Lingual tonsil 12.13 13.5 0 0.20 2.11 0.90 0
Retropharyngeal LN 0 1.80 0.27 0.25 0.90
Submandibular LN 0 1.47 0.20 0.13 0.75 0.34 0.11
Cervical LN 0.25 0 0 0 0.40 0.20 0
Axillary LN 0.08 0.60 0.03 0.08 10.1 1.58 21.5 0.50 1.16 0.4
Inguinal LN 0 2.43 0 0.02 0.70 0.50 0.30
Mesenteric LN 0.06 1.04 0.16 0.34 0.91 0.25 0.10
Paragastric LN 0.18 0 0 0 0.22 0.10
Spleen 0.05 0.55 0 0.14 0.74 0.12 0.03
GALT 0 0.12 0 0 1-2¢ 1-2¢ 1-2¢

“ LN, lymph node; GALT, gut-associated lymphoid tissue.

® The animal number, infecting strain (wt, SIVmac251; Anef, SIVAnef), and time postinfection (dpi, days postinfection; wpi, weeks postinfection:) are indicated.

©1to 2 RNA™ cells in four sections.

titers of virus in chronically infected animals varied consider-
ably from one organ to another, but it was evident that infec-
tion could be comparably active in the tonsillar site of entry
and the sites to which the virus had spread. Furthermore, the
titers in lymphoid tissues were generally much higher than in
blood (compare Fig. 2 with Fig. 1A). We conclude that a high
dose of the SIVAnefvaccine strain undergoes active replication
acutely, spreads from one lymphoid organ to another, and
replicates chronically at low levels in lymphoid tissues. How-
ever, the extent of replication of the vaccine is much greater in
lymphoid tissues than in blood.

Tempo and spread of the SIVAnef vaccine strain in sections
of lymphoid tissues. (i) Studies at 4 and 7 days. Following in
situ hybridization of tonsil sections with radiolabeled antisense
RNA probes, the day 4 animal showed only a few infected cells
(Table 2). In contrast, prior studies with much lower doses
(about 2%) of wild-type SIV showed active infection at the
portal of entry by day 4 (31) (Table 2). This is consistent with
the fact that SIVAnef exhibits attenuated growth properties in
vivo (15) even in the highly permissive tonsil. At day 7, exten-
sive infection (19 SIV RNA™ cells/mm? of tissue) with the
vaccine strain was evident both in the germinal centers of the
tonsil and in extrafollicular regions (Table 2, Fig.. 3A). Since
day 7 is well before the time of seroconversion (3 to 4 weeks),
germinal center cells can be infected in the absence of anti-
body-trapped virus.

We observed some spread of SIVAnef to lymph nodes as
early as day 4 by histology and also with the virus isolation
coculture technique. However, 10-fold-less virus, based on the
number of positive cells by in situ hybridization, was present in
the retropharyngeal lymph nodes that drain the tonsil than at
the portal of virus entry. More distant lymph nodes, the spleen,
and MALT showed either no signs of virus replication or only
minimal virus production (<0.1 cell/mm?).

(ii) Studies at 2 weeks. For the three long-term-infected
animals, we took axillary lymph node biopsies at 2 weeks to
look for the early spread of infection prior to seroconversion.
All three axillary nodes were infected, with two of them having
numerous RNA-positive cells by in situ hybridization (Table 2,

FIG. 3. Active replication and spread of SIVAnef following infec-
tion via the tonsil. Lymphoid tissues were examined by in situ hybrid-
ization with **S-labeled antisense probes (labeled cells were not found
with the control sense probe; not shown). Cells expressing viral RNA
appear black (A, B, and D) or green (C). (A) The tonsil during acute
infection, 1 week after infection with SIVAnef. Many RNA -positive
cells (black) are in the extrafollicular T-cell-rich regions but are also
found in germinal centers (GC). (B) Axillary lymph nodes, to which
infection has spread at 2 weeks, contain many infected cells, including
in the germinal centers. (C and D) Mesenteric node and auxiliary node
26 weeks after infection contain a few but clear-cut (arrows) RNA-
positive cells, typically in the germinal centers.
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Is in lymphoid nodes. Tissue sections from lymph node (LN) and tonsil were labeled with
the indicated monoclonal antibodies using an immunoperoxidase method (red color) and by in situ hybridization (black) to visualize RNA-positive
cells. (A) Two infected CD4™" cells (arrows) in the lymphoepithelium of the acutely infected tonsil at 1 week. (B and C) Low- and high-power views
of peripheral lymph nodes at 2 weeks to show labeling of infected cells for the CD4 T-cell marker (arrows). (D to F) Double labeling for CD1a
(D), DC-LAMP/CD208 (E), and CD68 (F). Most infected cells are negative. Infected T cells can be found close to noninfected dendritic cells (E,

arrows). An occasional CD68-positive cell is infected (F, arrow).

Fig. 3B). The replication was similar in magnitude to that
observed in the tonsil at day 7 (Table 2).

(iii) Studies at 26 weeks. At autopsy at 26 weeks, infected
cells were noted in many peripheral lymphoid tissues, including
the spleen and gut. These cells were mainly found in the ger-
minal centers (Table 2 and Fig. 3C and D, arrows). One chron-
ically infected monkey even replicated infectious virus in the
thymus at a low level. This animal presented with the highest
virus load in lymphoid tissue compared to that observed in the
others. No infection was found in the liver, kidneys, or lamina
propria of the intestine. The frequency of infected cells in the
lymph nodes was much less than that observed acutely at the
site of entry (tonsils) or spread (axillary lymph nodes) (com-
pare Fig. 3C and D with Fig. 3A and B). Morphologically,
every virus-positive cell resembled a lymphocyte. The remark-
able drop in infected CD4" T cells means that, following
application of SIVAnef, the replication and spread of virus
from CD4" lymphocytes were successfully contained by the
host.

Of interest was the nearly complete absence of virus or RNA
trapping by follicular dendritic cells. Bound SIVAnef RNA was

absent in the three animals studied at 26 weeks and extensively
sampled (tonsils, lymph nodes, spleen, and MALT; Fig. 3C and
D). The absence of trapping was in part unexpected, since all
animals seroconverted and remained persistently seropositive
during the course of this study. Also, plasma virus levels were
above the limit of detection (Fig. 1B), and a low level of virus
replication was evident in some of the germinal centers (Fig.
3C and D).

Another feature of infection with the SIVAnef vaccine strain
was its focal nature in chronically infected lymph nodes. Oc-
casional germinal centers could have several infected cells,
while most others in the field had none (Fig. 3D). This is
consistent with prior data that immunodeficiency viruses seed
germinal centers under limiting dilution conditions, and then
virus spreads to other cells locally within the environment of
the germinal center (6).

Identification by immunolabeling of the types of cells in-
fected with SIVAnef. Tissue sections were immunolabeled with
a panel of monoclonal antibodies (Table 1) prior to in situ
hybridization for SIV RNA. The antibodies recognized T cells
(CD4), macrophages (sialoadhesin/CD169 and macrosialin/
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CD68), and dendritic cells (Langerin/CD207, DC-LAMP/
CD208, CD1a, and CD83). At the site of entry, i.e., the crypt
lymphoepithelium of the tonsils, the infected cells were CD4™
and had lymphoid morphology (Fig. 4A), which was also the
case in the lymph nodes to which the infection had spread
acutely at 2 weeks (Fig. 4B and C).

As illustrated in Fig. 4D to F, it was difficult to identify
infected cells that were labeled with antibodies to dendritic
cells and macrophages, although in rare instances infected cells
were found to be labeled for either CD1a, CD68 (Fig.. 4F,
arrow) or CD169. Interestingly, infected cells could be juxta-
posed to noninfected, more mature dendritic cells carrying the
DC-LAMP marker (Fig.. 4E, arrows), consistent with in vitro
data that mature dendritic cells are able to drive the replication
of SIVAnef in T cells (17, 22). In summary, the predominant
site for replication at the portals of entry and spread of the SIV
vaccine strain is the CD4™ T cell, much the same as wild-type
SIV (31).

Majority of infected CD4* T cells do not express the Ki-67
cell cycle antigen. It has been suggested that the nef gene
product facilitates virus replication by increasing the state of
cellular activation (1, 14). We explored the activation status of
the infected T cells by double labeling the specimens for the
cell cycle antigen Ki-67 (13, 28). This antigen produces a strong
and discrete nuclear stain. However, wild-type SIV replicated
primarily in cells that were not double labeled for Ki-67 (Fig.
5A and B). This confirms prior data with HIV-1 infection (37).
The same finding was observed with SIVAnef. 65 to 70% of the
RNA positive cells were not labeled for Ki-67 (Fig. 5C and D)
and therefore not clearly in cell cycle at all. In both Ki-67-
positive and -negative T cells, the grain counts generated from
the **S-labeled probe ranged from 60 to 300 per cell (white and
black arrows, respectively, in Fig.. 5D), indicating that the
levels of virus production per infected cell were similar in
cycling and noncycling cells. Thus, the absence of a nef gene
does not substantially alter the capacity of SIV to replicate in
noncycling T cells.

Marked expansion of perforin-positive, CD3*, and CD3~
cells in acutely infected lymph nodes. It is known that signifi-
cant antiviral, CD8" T-cell responses develop during infection
with SIVAnef (23). To gain evidence for such a response in
vivo, we stained the specimens for lysosomal granules contain-
ing the pore-forming protein perforin, a key component of
CD8" cytolytic T lymphocytes and natural killer (NK) cells.
Perforin-positive lymphocytes were rare in the lymph node and
the tonsil of uninfected macaques. In contrast, perforin-posi-
tive lymphocytes were abundant (7 to 14 cells per field with a
40X objective) in the acutely infected tonsil (day 7, Fig. 6A)
but not in the poorly infected retropharyngeal lymph node at
that time (Fig. 6B). When the lymph nodes became infected
(week 2), perforin-positive cells were abundant, including in
germinal centers (Fig. 6C). At later time points (26 weeks),
perforin-positive cells were difficult to detect (Fig. 6D). There-
fore, it appears that lytic cells are most abundant early in
response to the vaccine strain.

We assessed the lineage of the perforin-positive cells by
immunohistochemical double labeling. The majority of per-
forin-positive cells in the acutely infected tonsil (Fig. 6E) and
lymph nodes (Fig. 6F) did not display CD4. However, a sig-
nificant percentage (25 to 32%) were CD3™ (arrows, Fig. 6G),
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FIG. 5. SIV wild type (A and B) and SIVAnef (C and D) often
replicate in cells that do not immunolabel for the cell cycle antigen
Ki-67 (red). Black arrows indicate Ki-67-negative RNA-infected cells,
while white arrows indicate Ki-67-positive infected cells.

suggesting that they were cytolytic T lymphocytes. Likewise,
about 30% of the perforin-positive cells double labeled for the
CDS killer T-cell marker (arrows, Fig. 6H). Most perforin-
positive cells were CD3 negative and were most likely NK cells
(Fig. 6G).

Additional findings that are not shown are as follows. Per-
forin-positive cells were similarly abundant in the infected lym-
phoid tissues of animals given wild-type SIVmac251 through
the tonsillar route (31), again within CD3-negative and CD3"
lymphocyte subsets. In both wild-type- and SIVAnef vaccine
strain-infected monkeys, some of the perforin-positive cells
were double labeled for Ki-67, the cell cycle antigen. We found
many perforin-positive cells in the lumen of the high endothe-
lial venules of the T-dependent zone as well as the medullary
sinuses, indicating that the killer cells were able to migrate out
of the lymphoid tissues into the blood. These results indicate
that there is a strong cytolytic cell response in the acutely
infected lymphoid tissues, with both T cells and NK cells par-
ticipating.

DISCUSSION

The SIVAnef vaccine strain has limited but clear replicative
potential in vivo, as assessed by measurements of infectious
units and viral RNA in blood. By applying the SIVAnef vaccine
strain directly to the tonsils of rhesus macaques, we demon-
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FIG. 6. Detection of perforin-positive lymphocytes in tissue sections following tonsillar infection of rhesus macaques with SIVAnef. Single-color
immunolabeling (red) at 1 week in the heavily infected tonsil (A) and weakly infected retropharyngeal lymph node (B) and at 2 weeks (C) and
26 weeks (D) in strongly infected and weakly infected nodes. Two-color immunolabeling, with perforin in blue, shows the cells to be CD4 negative
(red color in E and F), either CD3™ (arrows, G) or CD3~ (arrowheads, G), or CD8" (arrows, H).

strated significant virus replication at the site of inoculation at
1 week and shortly thereafter in peripheral lymph nodes. Then
the virus is brought under control, though it continues to rep-
licate at lower levels in most lymphoid tissues.

Here we stress two new findings. First, the vaccinated ani-
mals are containing a substantial primary and spreading infec-
tion with SIVAnef in the CD4" T-cell compartment. The
SIVAnef vaccine strain therefore is not less virulent, because it
shifts its site of infection from T cells to non-T cells, such as

macrophages or dendritic cells. Second, there is a major ex-
pansion of perforin-positive killer cells, including CD8" and
CD3" T cells, in lymph nodes that are supporting viral repli-
cation. The SIVAnef vaccine strain therefore seems to elicit a
strong local immune response, even though killer cells can be
difficult to detect in the bloodstream (38). SIV-specific CD8"
T-cell responses become more evident when one challenges
the vaccinated animals with wild-type SIV (38).

In designing this study, we wanted to explore the possibility
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that the efficacy of the SIVAnef vaccine strain reflected a rel-
ative increase in virus replication in dendritic cells, leading to
more effective antigen presentation and antiviral immunity.
However, we could not demonstrate viral RNA by in situ
hybridization in cells that were double labeled with dendritic
cell markers. These included Langerin/CD207, a constituent of
the Birbeck granules of Langerhans cells (35, 36); DC-LAMP/
CD208, a lysosome-associated membrane protein of more ma-
ture dendritic cells (9); CD1a, a marker for Langerhans cells as
well as dendritic cells in the external and crypt epithelia of the
tonsils (31); and CD83 (39). Also, we only rarely found RNA-
positive cells that were double labeled for sialoadhesin/CD169
(16) and macrosialin/CD68 (25), two markers that are abun-
dant in resident and inflammatory macrophages.

Instead, the site for virus replication in vivo, acutely and
chronically, proved to be the CD4™ T cell. More than half of
the infected cells were not in cell cycle at the time of exami-
nation, as indicated by Ki-67 staining. This also occurs with
infection with human immunodeficiency virus (HIV) and wild-
type SIV (37). These findings might be explained as a compos-
ite of several elements in the virus-host interaction. Initially
SIVAnef is able to replicate in T cells that are interacting with
mature dendritic cells, as occurs in tissue culture (22), perhaps
through the aegis of the HIV-1 and SIV binding lectin DC-
SIGN (12, 24). DC-SIGN is proposed to mediate the known
capacity of dendritic cells to capture virus and transmit infec-
tion in trans to T cells. In contrast, replication of SIVAnef is
compromised when immature dendritic cells are carrying the
vaccine (22). When an immune response develops, especially a
CD8" T-cell response that is known to dampen the levels of
infection in vivo (23), virus replication is contained.

The new data in this paper on the number and types of
infected cells in SIVAnef-vaccinated monkeys indicate that the
host can contain or resist a substantial early infection of CD4™
T cells with an immunodeficiency virus. Elsewhere we will
document that monkeys vaccinated via the tonsillar route are
indeed protected against a challenge with the pathogenic
SIVmac251. Perhaps infection with SIVAnef has some paral-
lels with what takes place when SIVagm infects its natural
African green monkey host.

During acute infection with SIVagm, there are abundant
infected cells in lymphoid tissues, and then viral RNA and
DNA levels fall to a low set point (10). The resistance that the
host can mount to infected T cells also is reminiscent of indi-
viduals (26) and of macaques (21, 29) treated with highly active
antiretroviral therapy early in acute infection with HIV-1 or
SIV. In these individuals, the virus does take hold initially, but
early treatment seems to allow the immune system or other
defenses to control the infection. Conceivably, the initial virus
infection interferes or retards further progression of infection,
although our observations raise the possibility that T-cell and
NK cell activity in the lymphoid tissue, especially at the portal
of virus entry, may be playing a containment role. These lines
of evidence are consistent with recent SIV-HIV hybrids results
in macaques (2, 4), concluding that vaccines for immunodefi-
ciency viruses need not provide sterilizing immunity against
infection of CD4" T cells, but rather need to contain the
infection, allowing the host to establish a low viral set point
compatible with immunocompetence.

LYMPHOID TISSUE IN SIVAnef INFECTION 695

ACKNOWLEDGMENTS

This work was supported by grant QLRT-PL 1999-01215 from the
European Community and by grants AI40045 and AI40874 from the
NIH and Direct Effect.

We thank Gudrun Grossschupff, Petra Mayer, and Birgit Raschdorff
for excellent technical assistance.

REFERENCES

1. Alexander, L., Z. Du, M. Rosenzweig, J. U. Jung, and R. C. Desrosiers. 1997.
A role for natural simian immunodeficiency virus and human immunodefi-
ciency virus type 1 nef alleles in lymphocyte activation. J. Virol. 71:6094-6099.

2. Amara, R. R., F. Villinger, J. D. Altman, S. L. Lydy, S. P. O’Neil, S. I.
Staprans, D. C. Montefiori, Y. Xu, J. G. Herndon, L. S. Wyatt, M. A.
Candido, N. L. Kozyr, P. L. Earl, J. M. Smith, H.-L. Ma, B. D. Grimm, M. L.
Hulsey, J. Miller, H. M. McClure, J. M. McNicholl, B. Moss, and H. L.
Robinson. 2001. Control of mucosal challenge and prevention of AIDS by a
multiprotein DNA/MVA vaccine. Science 292:69-74.

3. Baba, T. W., A. M. Trichel, L. An, V. Liska, L. N. Martin, M. Murphey-Corb,
and R. M. Ruprecht. 1996. Infection and AIDS in adult macaques after
nontraumatic oral exposure to cell-free SIV. Science 272:1486-1489.

4. Barouch, D. H., S. Santra, J. E. Schmitz, M. J. Kuroda, T. M. Fu, W.
‘Wagner, M. Bilska, A. Craiu, X. X. Zheng, G. R. Krivulka, K. Beaudry, M. A.
Lifton, C. E. Nickerson, W. L. Trigona, K. Punt, D. C. Freed, L. Guan, S.
Dubey, D. Casimiro, A. Simon, M. E. Davies, M. Chastain, T. B. Strom, R. S.
Gelman, D. C. Montefiori, and M. G. Lewis. 2000. Control of viremia and
prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA
vaccination. Science 290:486-492.

5. Chakrabarti, L., V. Baptiste, E. Khatissian, M.-C. Cumont, A.-M. Aubertin,
L. Montagnier, and B. Hurtel. 1995. Limited viral spread and rapid immune
response in lymph nodes of macaques inoculated with attenuated simian
immunodeficiency virus. Virology 213:535-548.

6. Cheynier, R., S. Henrichwark, F. Hadida, E. Pelletier, E. Oksenhendler, B.
Autran, and S. Wain-Hobson. 1994. HIV and T cell expansion in splenic
white pulps is accompanied by infiltration of HIV-specific cytotoxic T lym-
phocytes. Cell 78:373-387.

7. Cranage, M. P., A. M. Whatmore, S. A. Sharpe, N. Cook, N. Polyanskaya, S.
Leech, J. D. Smith, E. W. Rud, M. J. Dennis, and G. A. Hall. 1997. Macaques
infected with live attenuated SIVmac are protected against superinfection
via the rectal mucosa. Virology 229:143-154.

8. Daniel, M. D, F. Kirchhoff, S. C. Czajak, P. K. Sehgal, and R. C. Desrosiers.
1992. Protective effects of a live attenuated SIV vaccine with a deletion in the
nef gene. Science 258:1938-1941.

9. de Saint-Vis, B., J. Vincent, S. Vandenabeele, B. Vanbervliet, J.-J. Pin, S.
Ait-Yahia, S. Patel, M.-G. Mattei, J. Banchereau, S. Zurawski, J. Davoust, C.
Caux, and S. Lebecque. 1998. A novel lysosome-associated membrane gly-
coprotein, DC-LAMP, induced upon DC maturation, is transiently ex-
pressed in MHC class II compartment. Immunity 9:325-336.

10. Diop, O. M., A. Gueye, M. Dias-Tavares, C. Kornfeld, A. Faye, P. Ave, M.
Huerre, S. Corbet, F. Barre-Sinoussi, and M. C. Muller-Trutwin. 2000. High
levels of viral replication during primary simian immunodeficiency virus
SIVagm infection are rapidly and strongly controlled in African green mon-
keys. J. Virol. 74:7538-7547.

11. Gauduin, M. C., R. L. Glickman, S. Ahmad, T. Yilma, and R. P. Johnson.
1999. Immunization with live attenuated simian immunodeficiency virus in-
duces strong type 1 T helper responses and beta-chemokine production.
Proc. Natl. Acad. Sci. USA 96:14031-14036.

12. Geijtenbeek, T. B. H., D. S. Kwon, R. Torensma, S. J. van Vliet, G. C. F. van
Duijnhoven, J. Middel, I. L. M. H. A. Cornelissen, H. S. L. M. Nottet, V. N.
KewalRamani, D. R. Littman, C. G. Figdor, and Y. van Kooyk. 2000. DC-
SIGN, a dendritic cell specific HIV-1 binding protein that enhances trans-
infection of T cells. Cell 100:587-597.

13. Gerdes, J., H. Lemke, H. Baisch, H. H. Wacker, U. Schwabb, and H. Stein.
1984. Cell cycle analysis of a cell proliferation-associated human nuclear
antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133:1710—
1715.

14. Glushakova, S., J. C. Grivel, K. Suryanarayana, P. Meylan, J. D. Lifson, R.
Desrosiers, and L. Margolis. 1999. Nef enhances human immunodeficiency
virus replication and responsiveness to interleukin-2 in human lymphoid
tissue ex vivo. J. Virol. 73:3968-3974.

15. Gundlach, B. R., H. Linhart, U. Dittmer, S. Sopper, S. Reiprich, D. Fuchs,
B. Fleckenstein, G. Hunsmann, C. Stahl-Hennig, and K. Uberla. 1997. Con-
struction, replication, and immunogenic properties of a simian immunode-
ficiency virus expressing interleukin-2. J. Virol. 71:2225-2232.

16. Hartnell, A., J. Steel, H. Turley, M. Jones, D. G. Jackson, and P. R. Crocker.
2001. Characterization of human sialoadhesin, a sialic acid binding receptor
expressed by resident and inflammatory macrophage populations. Blood
97:288-296.

17. Ignatius, R., F. Isdell, U. O’Doherty, and M. Pope. 1998. Dendritic cells from



696

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

STAHL-HENNIG ET AL.

skin and blood of macaques both promote SIV replication with T cells from
different anatomical sites. J. Med. Primatol. 27:121-128.

Johnson, R. P., J. D. Lifson, S. C. Czajak, K. S. Cole, K. H. Manson, R.
Glickman, J. Yang, D. C. Montefiori, R. Montelaro, M. S. Wyand, and R. C.
Desrosiers. 1999. Highly attenuated vaccine strains of simian immunodefi-
ciency virus protect against vaginal challenge: inverse relationship of degree
of protection with level of attenuation. J. Virol. 73:4952-4961.

. Johnson, R. P., and R. C. Desrosiers. 1998. Protective immunity induced by

live attenuated simian immunodeficiency virus. Curr. Opin. Immunol. 10:
436-443.

Kestler, H.W., 3rd, D. J. Ringler, K. Mori, D. L. Panicali, P. K. Sehgal, M. D.
Daniel, and R. C. Desrosiers. 1992. Importance of the nef gene for mainte-
nance of high virus loads and for development of AIDS. Cell 65:651-662.
Lori, F., M. G. Lewis, J. Xu, G. Varga, D. E. Zinn, Jr., C. Crabbs, W. Wagner,
J. Greenhouse, P. Silvera, J. Yalley-Ogunro, C. Tinelli, and J. Lisziewicz.
2000. Control of SIV rebound through structured treatment interruptions
during early infection. Science 290:1591-1593.

Messmer, D., R. Ignatius, C. Santisteban, R. M. Steinman, and M. Pope.
2000. The decreased replicative capacity of STVmac239Anef is manifest in
cultures of immature dendritic cells and T cells. J. Virol. 74:2406-2413.
Metzner, K. J., X. Jin, F. V. Lee, A. Gettie, D. E. Bauer, M. Di Mascio, A. S.
Perelson, P. A. Marx, D. D. Ho, L. G. Kostrikis, and R. I. Connor. 2000.
Effects of in vivo CD8 (+) T cell depletion on virus replication in rhesus
macaques immunized with a live, attenuated simian immunodeficiency virus
vaccine. J. Exp. Med. 191:1921-1932.

Pohlmann, S., E. J. Soilleux, F. Baribaud, G. J. Leslie, L. S. Morris, J.
Trowsdale, B. Lee, N. Coleman, and R. W. Doms. 2001. DC-SIGNR, a
DC-SIGN homologue expressed in endothelial cells, binds to human and
simian immunodeficiency viruses and activates infection in trans. Proc. Natl.
Acad. Sci. USA 98:2670-2675.

Rabinowitz, S. S., and S. Gordon. 1991. Macrosialin, a macrophage-re-
stricted membrane sialoprotein differentially glycosylated in response to
inflammatory stimuli. J. Exp. Med. 174:827-836.

Rosenberg, E., M. Altfed. S. Poon, M. Phillips, B. Wilkes, R. Eldridge, G.
Robbins, R. D’Aquila, P. Goulder, and B. Walker. 2000. Immune control of
HIV-1 following early treatment of acute infection. Nature 407:523-526.
Ruprecht, R. M., T. W. Baba, V. Liska, N. B. Ray, L. N. Martin, M. Murphey-
Corb, T. A. Rizvi, B. J. Bernacky, M. E. Keeling, H. M. McClure, and J.
Andersen. 1999. Oral transmission of primate lentiviruses. J. Infect. Dis.
179(Suppl. 3):S408-412.

Schluter, C., M. Duchrow, C. Wohlenberg, M. G. Becker, G. Key, H.-D. Flad,
and J. Gerdes. 1993. The cell proliferation-associated antigen of antibody
Ki-67: a very large, ubiquitous nuclear protein with numerous repeated
elements, representing a new kind of cell cycle-maintaining protein. J. Cell
Biol. 123:513-522.

Spring, M., C. Stahl-Hennig, N. Stolte, N. Bischofberger, J. Heeney, P. Ten
Haaft, K. Tenner-Racz, P. Racz, D. Lorenzen, G. Hunsmann, and U. Ditt-

30.

31

32.

33.

34,

35.

36.

37.

38.

39.

J. VIROL.

mer. 2001. Enhanced cellular immune response and reduced CD8* lympho-
cyte apoptosis in acutely SIV-infected rhesus macaques after short-term
antiretroviral treatment. Virology 279:221-232.

Stahl-Hennig, C., U. Dittmer, T. Nisslein, H. Petry, E. Jurkiewicz, D. Fuchs,
H. Wachter, K. Maetz-Rensing, E.-M. Kuhn, F.-J. Kaup, E. W. Rud, and G.
Hunsmann. 1996. Rapid development of vaccine protection in macaques by
live-attenuated simian immunodeficiency virus. J. Gen. Virol. 77:2969-2981.
Stahl-Hennig, C., R. M. Steinman, K. Tenner-Racz, M. Pope, N. Stolte, K.
Matz-Rensing, G. Grobschupff, B. Raschdorff, G. Hunsmann, and P. Racz.
1999. Rapid infection of oral mucosal-associated lymphoid tissue with simian
immunodeficiency virus. Science 285:1261-1265.

Stahl-Hennig, C., G. Voss, S. Nick, H. Perty, D. Fuchs, H. Wachter, C.
Coulibaly, W. Luke, and G. Hunsmann. 1992. Immunization with Tween-
ether-treated SIV adsorbed onto aluminum hydroxide protects monkeys
against experimental SIV infection. Virology 186:588-596.

Ten Haaft, P., B. Verstrepen, K. Uberla, B. Rosenwirth, and J. Heeney. 1998.
A pathogenic threshold of virus load defined in simian immunodeficiency
virus-or simian-human immunodeficiency virus-infected macaques. J. Virol.
72:10281-10285.

Tenner-Racz, K., H.-J. Stellbrink, J. van Lunzen, C. Schneider, J.-P. Jacobs,
B. Raschdorff, G. Grofschupff, R. M. Steinman, and P. Racz. 1998. The
unenlarged lymph nodes of HIV-1 infected, asymptomatic patients with high
CD4 T cell counts are sites for virus replication and CD4 T cell proliferation:
the impact of active antiretroviral therapy. J. Exp. Med. 187:949-959.
Valladeau, J., V. Duvert-Frances, J. J. Pin, C. Dezutter-Dambuyant, C.
Vincent, C. Massacrier, J. Vincent, K. Yoneda, J. Banchereau, C. Caux, J.
Davoust, and S. Saeland. 1999. The monoclonal antibody DCGM4 recog-
nizes Langerin, a protein specific of Langerhans cells, and is rapidly inter-
nalized from the cell surface. Eur. J. Immunol. 29:2695-2704.

Valladeau, J., O. Ravel, C. Dezutter-Dambuyant, K. Moore, M. Kleijmeer, Y.
Liu, V. Duvert-Frances, C. Vincent, D. Schmitt, J. Davoust, C. Caux, S.
Lebecque, and S. Saeland. 2000. Langerin, a novel C-type lectin specific to
Langerhans cells, is an endocytic receptor that induces the formation of
Birbeck granules. Immunity 12:71-81.

Zhang, Z., T. Schuler, M. Zupancic, S. Wietgrefe, K. A. Staskus, K. A.
Reimann, T. A. Reinhart, M. Rogan, W. Cavert, C. J. Miller, R. S. Veazey, D.
Notermans, S. Little, S. A. Danner, D. D. Richman, D. Havlir, J. Wong, H. L.
Jordan, T. W. Schacker, P. Racz, K. Tenner-Racz, N. L. Letvin, S. Wolinsky,
and A. T. Haase. 1999. Sexual transmission and propagation of SIV and HIV
in resting and activated CD4(+) T cells. Science 286:1353-1357.

Zhong, L., A. Granelli-Piperno, M. Pope, R. Ignatius, M. Lewis, S. S.
Frankel, and R. M. Steinman. 2000. Presentation of SIVgag to monkey T
cells using dendritic cells transfected with a recombinant adenovirus. Eur.
J. Immunol. 30:3281-3290.

Zhou, L.-J., and T. F. Tedder. 1995. Human blood dendritic cells selectively
express CD83, a member of the immunoglobulin superfamily. J. Immunol.
154:3821-3835.



	The simian immunodeficiency virus Δnef vaccine, after application to the tonsils of rhesus macaques, replicates primarily within CD4+ T cells and elicits a local perforin-positive CD8+ T-cell response
	/var/tmp/StampPDF/10TT4gUePF/tmp.1597163106.pdf.yWtFr

