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Recombinant canarypox virus vectors containing human immunodeficiency virus type 1 (HIV-1) sequences
are promising vaccine candidates, as they replicate poorly in human cells. However, when delivered intramus-
cularly the vaccines have induced inconsistent and in some cases transient antigen-specific cytotoxic T-cell
(CTL) responses in seronegative volunteers. An attractive way to enhance these responses would be to target
canarypox virus to professional antigen-presenting cells such as dendritic cells (DCs). We studied (i) the
interaction between canarypox virus and DCs and (ii) the T-cell responses induced by DCs infected with
canarypox virus vectors containing HIV-1 genes. Mature and not immature DCs resisted the cytopathic effects
of canarypox virus and elicited strong effector CD81 T-cell responses from chronically infected HIV1 indi-
viduals, e.g., cytolysis, and secretion of gamma interferon (IFN-g) and b-chemokines. Furthermore, canarypox
virus-infected DCs were >30-fold more efficient than monocytes and induced responses that were comparable
to those induced by vaccinia virus vectors or peptides. Addition of exogenous cytokines was not necessary to
elicit CD81 effector cells, although the presence of CD41 T cells was required for their expansion and
maintenance. Most strikingly, canarypox virus-infected DCs were directly able to stimulate HIV-specific,
IFN-g-secreting CD4 helper responses from bulk as well as purified CD41 T cells. Therefore, these results
suggest that targeting canarypox virus vectors to mature DCs could potentially elicit both anti-HIV CD81 and
CD41 helper responses in vivo.

Current antiviral treatments consisting of highly active anti-
retroviral therapy (HAART) have made a major impact on
reducing mortality due to human immunodeficiency virus
(HIV) infection (39). However, HAART does not reduce viral
loads in all patients (43), and even in patients with no detect-
able plasma viremia, latent reservoirs of HIV persist for pro-
longed periods (10, 23, 24, 25, 28, 59, 61). Recent studies
estimate that more than 60 years of HAART would be re-
quired to eradicate the virus in the latent reservoirs (9). As
antiviral drugs are too expensive to be widely used in develop-
ing countries, the development of anti-HIV vaccines is of great
urgency.

There is strong evidence supporting a role of cytotoxic T
lymphocytes (CTLs) in the containment of HIV replication. In
early HIV infection, the appearance of CTLs correlates with
control of viremia and reduction of symptoms (34). In chronic
infection, major histocompatibility complex (MHC) tetramer
studies show an inverse correlation between CTL effectors and
low viral loads (40). In late infection, the loss of anti-HIV CTL
responses correlates with higher viral loads and progression of
disease (32). Individuals with multiple exposures to HIV but
who remain uninfected show anti-HIV CTL responses in some
cases (47). Finally, CD81 CTLs have been shown to be criti-
cally involved in the control of simian immunodeficiency virus

in macaques, the best model of HIV infection in humans (29,
49).

HIV-specific CD41 T cells also contribute to immune resis-
tance toward HIV. Individuals who maintain a very low viral
load and do not progress to disease have vigorous HIV-specific
CD41 T-cell responses (44, 46), along with strong and broad
anti-HIV CTL responses (31). Further studies have supported
an association between robust HIV type 1 (HIV-1)-specific
CTLs and strong helper cell responses (30, 58). A drop in
HIV-specific CD41 T cells leads to a decline in anti-HIV CTL
levels and more rapid disease progression (31, 44, 46). Pre-
sumably, effective anti-HIV vaccines will need to elicit CD41

helper as well as CD81 CTL responses in order to maintain
effective CTL function.

Several approaches are being taken to elicit anti-HIV CTL
responses using vaccine formulations (reviewed in reference
37). A promising approach entails canarypox virus vectors.
Canarypox virus undergoes abortive replication in mammalian
cells (42, 55). Recombinant genes are controlled by early pro-
moters in canarypox virus and expressed before the block in
replication (42, 55). Canarypox vaccines have an excellent
safety profile in phase 1 trials, and their effectiveness against a
variety of infectious agents has been demonstrated in both
animals and humans (42, 54). Canarypox virus vectors contain-
ing HIV-1 genes (can-HIV vectors) have been reported to
elicit specific CTL responses in uninfected volunteers when
administered intramuscularly (5, 11, 17, 19, 21, 22). However,
the responses have been intermittent and inconsistent, some-
times requiring the addition of cytokines in vitro for detection
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(26). To increase the magnitude and durability of these re-
sponses, it may be critical to target these vectors to potent
antigen-presenting cells (APCs), namely, dendritic cells (DCs)
(4, 51).

In this study, we characterized the interaction between ca-
narypox virus and DCs at different stages of their development.
We found that mature DCs infected with can-HIV stimulated
IFN-g- and b-chemokine-producing and cytolytic CD81 effec-
tor cells in vitro from chronically infected individuals. These
responses, which are induced only by DCs and not other APCs,
were readily detectable in the absence of repetitive stimulation
or exogenous cytokines. Strikingly, canarypox virus-infected
DCs also expanded HIV-specific CD41 T cells in culture.
These CD41 T-cell responses were essential for the develop-
ment of anti-HIV CD81 CTLs. Our results reveal for the first
time that canarypox virus has the potential to stimulate both
CD41 and CD81 arms of the anti-HIV immune response.
They support the use of canarypox virus as a vaccine vector
which has the potential to elicit virus-specific CD41 T-cell help
for the induction and maintenance of CTL responses to HIV-1.

MATERIALS AND METHODS

Culture medium. RPMI 1640 medium with 10 mM HEPES, 5 mM L-glu-
tamine, 20 mg of gentamicin per ml, and 1% human plasma, 5% heat-inactivated
human serum, or 10% fetal calf serum was used.

Human subjects. Patients, recruited through the Rockefeller University clin-
ical research center, signed informed consents approved by the Institutional
Review Board. All nine individuals were 37- to 47-year-old males chronically
infected with HIV-1 (duration of infection ranged from 4 to 9 years) who had
CD4 counts ranging from 75 to 633/ml and plasma viremia levels which ranged
from undetectable to 192 3 103/ml by the Roche Ultrasensitive PCR kit. Six of
the nine individuals were on HAART, and two were on therapy intermittently
due to noncompliance. Seronegative individuals served as controls. Three pa-
tients expressed HLA Ap0201.

APCs. Buffy coats from uninfected individuals or 60 to 80 ml of blood from
HIV-11 patients were sources of peripheral blood mononuclear cells (PBMCs).
Mononuclear cells, enriched or depleted of T cells, were obtained by rosetting
PBMCs with neuraminidase-treated sheep erythrocytes (6). Immature DCs were
generated from the T-cell-depleted fractions after supplementation with recom-
binant human interleukin-4 (IL-4 1,000 U/ml; Schering Plough Corporation,
Kenilworth, N.J.) and recombinant human granulocyte-macrophage colony-stim-
ulating factor (GM-CSF; 100 IU/ml; Immunex Corporation, Seattle, Wash.)
every other day. To generate mature DCs, nonadherent immature DCs were
transferred to new plates on day 6 and incubated for 2 days in monocyte condi-
tioned medium (MCM; 50%, vol/vol) prepared as previously described (7).
HIV-negative donors were used as a source of monocytes for preparing the
MCM.

Virus stocks. The recombinant WR vaccinia viruses used were vP1170 WR-eco
gpt (parental), vP1287 gag(IIIB), vP1288 pol(IIIB), vP1218 nef(MN), and
vP1286 env gp120 TM(MN), containing HIV-1 clade B gag, pol, nef, and env
genes. Canarypox virus vectors were ALVAC (parental) and vCP300 encoding
HIV-1 gp120(MN) and transmembrane anchor regions of gp41(LAI), Gag(LAI),
and protease(LAI); Pol(LAI) CTL domains (residues 172 to 219, 325 to 383, and
461 to 519); and Nef(BRU) CTL domains (residues 66 to 147 and 182 to 206).
Canarypox virus (5 to 10 PFU/cell or vaccinia virus (1 to 2 PFU/cell) was used to
infect APCs. James Tartaglia and William I. Cox (Virogenetics Corporation,
Troy, N.J.) provided the titered doses of virus stocks.

Fluorescence-activated cell sorting (FACS) analysis. Monoclonal antibody
(MAb) 183, directed to HIV p24 protein, was kindly provided by Melissa Pope.
Phycoerythrin (PE)-conjugated HLA DR, CD14, CD25, and isotype-matched
controls (Becton Dickinson, Montainview, Calif.), CD86 (PharMingen, San Di-
ego, Calif.), CD83 (Immunotech, Coulter Corporation, Hialeah, Fla.), and PE-
conjugated goat anti-mouse immunoglobulin G (IgG; TAGO, Burlingame, Cal-
if.) were used for phenotyping. For surface staining, cells were phenotyped with
the above panel of MAbs using a FACScan. For intracellular staining, cells were
fixed with 4% paraformaldehyde and permeabilized with 1% saponin (6). Anti-
body to HIV p24 protein was added for 30 min, cells were washed, and secondary

PE-conjugated goat-anti mouse IgG was added for 30 min prior to FACScan
analysis.

Viability. In addition to trypan blue exclusion, apoptosis and necrosis were
assessed by staining with fluorescein isothiocyanate (FITC)-annexin V and pro-
pidium iodide, using an Early Apoptosis detection kit (Kayima Biomedical Com-
pany, Seattle, Wash.).

IFN-g ELISPOT assays. PBMCs, monocytes, or DCs were infected with pox-
viruses, and IFN-g enzyme-linked immunospot (ELISPOT) assays were carried
out as described elsewhere (35). In brief, poxvirus-infected or uninfected cells
were added together with T cells (1 3 105 to 2 3 105/well) to 96-well plates
precoated with IFN-g antibody (Mabtech, Stockholm, Sweden) for 16 to 24 h.
After washing, a second biotinylated anti-IFN-g antibody (Mabtech) was added
followed by avidin-bound biotinylated horseradish peroxidase H (Vector Labo-
ratories, Burlingame, Calif.) to develop the spots. ELISPOT assays were also
used to assess the expansion of antigen-specific T cells over time. T cells were
cocultured for 7 days with DCs infected with canarypox virus control (can-ctl) or
can-HIV. ELISPOTs were then elicited in responding T cells by restimulation
with antigen-pulsed APCs. The latter consisted of monocytes infected with vac-
cinia virus or canarypox virus vectors or pulsed with 5 mg of either HIV p24 or
control protein (Protein Science, Meriden, Conn.) per ml. T cells and monocytes
were used at a ratio of 1:1. Cells stimulated with phytohemagglutinin were used
as a positive control, and T cells, DCs, or monocytes alone were negative
controls. Responses were counted as positive if a minimum of 10 spot-forming
cells (SFC) per 2 3 105 cells were detected after the control was subtracted, and
if the numbers of spots were at least twice those in the negative control wells.

RANTES detection. DCs were infected with either can-ctl or can-HIV and
cocultured with autologous T cells at a DC-to-T cell (DC:T) ratio of 1:30. After
6 to 7 days, the supernatants of cultures with HIV-specific CTLs were tested for
RANTES using an enzyme-linked immunosorbent assay (ELISA) kit (R & D
Systems, Minneapolis, Minn.).

CTL induction. Monocytes and mature DCs (107 cells/ml) were infected with
can-ctl (ALVAC) or can-HIV (vCP300) at a multiplicity of infection (MOI) of
10, or infected with vaccinia virus at MOIs of 1 to 2.5, for 1 h at 37°C. The cells
were washed twice and added to enriched T cells. Where indicated, DCs were
pulsed with the HLA Ap0201-restricted Pol peptide ILKEPVHGV (10 mg/ml)
for 2 h at room temperature. The T-cell-enriched fraction was obtained from
sheep erythrocyte rosetted cells by depletion of NK cells with anti-CD56
(PharMingen) and sheep anti-mouse magnetic beads (Dynal, Lake Success,
N.Y.). In some experiments, T cells were further purified into CD81 and CD41

T-cell fractions using magnetic beads (Miltenyi Biotech, Auburn, Calif.); 2 3 106

T-cells were cultured with APCs at a ratio of 10:1 (unless otherwise indicated) in
24-well plates for 7 days.

Chromium release assay. After 7 days, effector cells in the DC-T cell cocul-
tures were harvested, counted, and plated in graded doses in 96-well plates.
B-lymphoblastoid cell lines (BLCLs) generated from each patient served as
targets. The BLCLs were infected with recombinant vaccinia virus vectors as
described above and incubated with 4 mCi of Na51CrO4 for 1 h. Alternatively, T2,
an HLA Ap02011 class II2 and transporter-associated protein (TAP)-deficient
cell line, was used as a target. T2 cells were pulsed with the HLA Ap0201-
restricted influenza virus matrix peptide GILGFVFTL (negative control peptide)
or HLA Ap0201-restricted HIV-1 Gag SLYNTVATL and Pol ILKEPVHGV
peptides at 10 mg/ml for 1 h and then labeled with Na51CrO4 as described above.
Target cells were added to effector cells at effector-to-target cell (E:T) ratios of
30:1 to 10:1. After 5 to 6.5 h, the assay mixtures were harvested. Two steps were
taken to calculate HIV-1 antigen-specific lysis. We first calculated the percent
specific lysis for each stimulating APC population (e.g., can-ctl- or can-HIV-
infected DCs) using the formula (ER 2 SR)/(TR 2 SR), where ER represents
the release in the experimental sample, SR is spontaneous release, and TR is
total release. We then deducted any nonspecific lysis obtained with DCs pulsed
with control vectors or peptides from that obtained by DCs pulsed with HIV-1
antigen-expressing vectors or peptides. This value is referred to as HIV antigen-
specific lysis.

RESULTS

Interactions of canarypox virus vectors and DCs. In previ-
ous studies we found that poxvirus vectors profoundly affected
DC function (18). For example, vaccinia virus induces exten-
sive apoptosis of immature DCs, inhibits their maturation, and
diminishes their T-cell-stimulating capacity. In contrast, ma-
ture DCs are relatively resistant to these adverse outcomes.
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Therefore, we investigated the consequences of canarypox vi-
rus infection on DCs in terms of cytopathicity, maturation
effects, and extent and durability of HIV protein expression.

We first compared the effects of canarypox virus infection on
DC viability at two distinct stages of development. Immature
DCs, akin to tissue resident DCs, can be derived in vitro from
monocytes following culture in GM-CSF and IL-4. These
APCs are highly efficient at antigen capture but far less able to
activate T cells (4). Mature DCs are generated from immature
DCs after the addition of maturation stimuli such as a MCM,
lipopolysaccharide or CD40 ligand (CD40L). Following matu-
ration, DCs downregulate antigen capture, upregulate MHC
and costimulatory molecules, express the maturation-associ-
ated markers CD83 (62) and DC-LAMP (14), and acquire
potent T-cell-stimulating capacity (4). We infected either im-
mature or mature DCs with can-HIV or can-ctl. In the former
case, the immature DCs were exposed to MCM immediately
after infection to induce maturation. If the DCs were imma-
ture at the time of infection, there was a rapid and significant
decrease in viability as assessed by trypan blue exclusion. The
effect was more rapid than with vaccinia virus, apparent after
only 1 day postinfection (Fig. 1A). Mature DCs resisted the
cytopathic effect to a great extent, as in the case of vaccinia
virus (18). To analyze the mechanism of cytopathicity, DCs
were stained with FITC-annexin V, a marker of early apoptosis
(33, 56), and propidium iodide. Up to 60% of infected imma-
ture DCs were already apoptotic or dead at 1 day postinfec-
tion, compared to only 15 to 20% infected mature DCs, when
one discounts uninfected control values (Fig. 1B). The apopto-
tic effect was clearly induced by canarypox virus and not HIV
genes, as we used the parental vector for these experiments.
Furthermore, similar results were obtained with can-HIV. Un-
like vaccinia virus, canarypox virus did not inhibit DC matura-

tion when MCM was added to canarypox virus-infected imma-
ture DCs (data not shown).

We next compared the levels of HIV-1 protein expression in
DCs following infection with can-HIV and a vaccinia virus
construct containing the gag gene (vac-gag). As above, we
infected either immature or mature DCs, and in the former
case, the immature DCs were exposed to MCM immediately
after infection to induce maturation. The cells were stained to
detect p24 expressed by the gag gene as a measure of the
degree of infection (Fig. 1C; Table 1). Vaccinia virus vectors
encoding Gag induced higher frequencies of p241 cells in
immature DCs (67% 6 21%) and mature DCs (44% 6 20%)
compared to can-HIV (15% 6 11% in immature DCs and 7%
6 6% in mature DCs). Maturation reduced the frequency of
p24-expressing DCs, consistent with our previous observations
that mature DCs are generally more resistant to poxvirus in-
fection. Nevertheless, p24 expression in mature DCs was sus-
tained over 3 days in culture (data not shown). We found
MOIs of 5 to 10 to be optimal for canarypox virus-induced
recombinant protein expression. Lower doses (MOIs of 1 to 2)
resulted in even lower levels of p24 expression, whereas higher
doses did not increase the levels significantly but compromised
viability (not shown). These data are consistent with our recent
studies of vaccinia viruses (18).

Although only low frequencies of mature DCs were infected
with canarypox virus, their resistance to the virus’s cytopathic
effects, sustained protein expression, and potency as stimula-
tors of T-cell responses prompted us to use them for all sub-
sequent experiments.

Mature DCs, but not monocytes, induce strong HIV-1-spe-
cific CD81 responses following infection with canarypox virus.
To ascertain whether canarypox virus-infected mature DCs
could present HIV antigens to CD81 T cells, we took advan-

FIG. 1. Interaction of recombinant poxvirus with DCs. (A) Immature and mature DCs were uninfected or infected with vac-gag (MOI of 2)
or can-HIV (MOI of 10). The immature DCs were exposed to MCM immediately following infection. The percentage of live cells, as determined
by trypan blue exclusion, is shown in immature DCs plus MCM (left) and mature DCs (right) at different time points after infection. The mean
and standard error of three experiments are shown. (B) Immature DCs were uninfected or infected with canarypox virus, after which MCM was
added. Mature DCs were infected or uninfected in like manner. At multiple time points after infection, the extent of apoptosis and necrosis was
determined by staining the cells with FITC-annexin V (An.V) and propidium iodide (PI). Results shown are representative of three experiments.
(C) Immature and mature DCs were uninfected or infected with vac-gag (MOI of 2) or can-HIV (MOI of 10) as for panel A; 24 h later, the cells
were permeabilized and stained with a MAb against HIV-1 p24 protein. Anti-IgG1 antibody was the isotype control used to set the horizontal limit
of background staining. The gates were set to exclude dead cells. One representative experiment of eight is shown. In panels B and C, the y axis
is set on a logarithmic scale and the percentages of cells are indicated in the corresponding gates.

2144 ENGELMAYER ET AL. J. VIROL.



tage of a cohort of nine chronically infected HIV-1 individuals
who had been previously characterized in our laboratory (see
Materials and Methods). Patients were screened for HIV-spe-
cific CD81 T-cell responses in fresh PBMCs by ELISPOT
assay using vaccinia virus vectors encoding HIV genes (35). All
individuals had responses to antigens derived from Pol, four
had responses to both Pol and Gag antigens, and one had

responses to antigens derived from Gag, Pol, Env, and Nef.
The number of HIV-specific CD81 T cells ranged from 20 to
225 in 200,000 PBMCs, i.e., an HIV-1 antigen-specific fre-
quency of 1 in 600 to 10,000 PBMCs. We prepared DCs and
monocytes from each of these individuals, infected them with
can-HIV or can-ctl, and cocultured them with autologous T
cells. The development of HIV-specific CD81 T-cell responses

FIG. 1—Continued.
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was assessed by (i) cytolysis by chromium release assay, (ii)
RANTES secretion by ELISA, and (iii) IFN-g production by
ELISPOT assay.

Induction of CTL. We first evaluated CTL responses in an
HLA Ap02011 patient (HVR) with known specificity to the
pol-encoded epitope ILKEPVHGV (35). Mature DCs from
this individual were either untreated or infected with can-ctl or
can-HIV and then added to freshly isolated T cells for 7 days,
during which no exogenous cytokines were added. The re-
sponses were compared to those elicited by DCs pulsed with
specific peptide or vaccinia virus vectors. Effector CTLs were
assessed by their cytolytic activity on 51Cr-labeled autologous
BLCLs or T2 targets. These were infected with vaccinia virus
vectors or pulsed with HLA Ap0201-restricted peptides, re-
spectively. DCs infected with can-HIV stimulated peptide-spe-
cific responses that were comparable to those stimulated by
DCs pulsed with peptide (28 versus 42% HIV-specific lysis,
respectively, at an E:T ratio of 30:1 [Fig. 2A, top half). In both
cases, the CTLs recognized endogenously presented antigens,
as they lysed BLCL targets infected with vaccinia virus vectors
encoding Pol antigens (26 versus 35% HIV-specific lysis for
peptide versus can-HIV-pulsed DCs, respectively, at an E:T
ratio of 30:1 [Fig. 2A, bottom half]). Surprisingly, the re-
sponses elicited by can-HIV-infected DCs were similar in mag-
nitude to those induced by vac-pol-infected DCs, at least at the
higher E:T ratio of 30:1 (Fig. 2B). The vac-pol vector was
expected to be superior to canarypox virus as it infects .40%
of DCs and contains the entire pol gene, while can-HIV con-
tains only specific domains of pol (see Materials and Methods).
In two additional individuals tested, can-HIV-infected DCs
elicited CTL responses that were comparable to those induced
by DCs infected with vaccinia virus vectors (data not shown).

Using can-HIV-infected DCs, it was possible to detect sig-
nificant HIV-specific CTL responses in five of seven patients
tested by this assay, and in a reproducible fashion (Table 2). In
these five patients, cytolytic activity was directed against one or
more HIV antigens. In two patients (HVJ and HVW) who had
demonstrable HIV-directed responses by ELISPOT assay, spe-
cific CTL activity was not detected, possibly due to high back-
ground responses to can-ctl. Notably, HIV-1-specific responses
were not seen in seronegative volunteers (data not shown).

We next compared the immunostimulatory effect of DCs
with a T-cell-depleted fraction of PBMCs consisting primarily
of monocytes. DCs stimulated strong HIV-specific responses in
individual HVR (62% specific lysis at an E:T ratio of 30:1 [Fig.

3, top]). These responses were maintained even at E:T ratios as
low as 3:1 (data not shown). Furthermore, significant CTL
responses could be elicited with even few DCs. For example, at
DC:T ratios of 1:100, up to 56% specific lysis for Pol-derived
antigens was obtained (Fig. 3, upper right). In contrast, mono-
cytes were capable of inducing HIV-specific CTL responses
only at an APC:T ratio of 1:10 and only at E:T ratios of 30:1 or
greater (Fig. 3, bottom). Similar results were obtained with two
additional subjects. Overall, these results show that DCs are
substantially more potent than monocyte-enriched populations
for the stimulation of anti-HIV-1 CTLs.

RANTES secretion. The b-chemokines RANTES, MIP-1a,
and MIP-1b are the principal anti-HIV molecules secreted by
CD81 T cells. These chemokines may inhibit viral entry into
CD41 cells by binding to CCR5, the coreceptor of macrophage-
tropic HIV-1 (12, 57, 60). We measured the concentration of
RANTES in supernatants from 7-day cocultures of T cells and
can-HIV-infected DCs by ELISA. The results shown are from
patient HVC, who was tested on two different occasions (Fig.
4). CD81 T cells stimulated with can-HIV-infected DCs pro-
duced significant levels of RANTES and also lysed vac-gag-
infected BLCLs (Table 2). In contrast, can-ctl-infected DCs
failed to induce significant levels of RANTES or HIV-specific
CTL activity. Similar data were obtained with two other pa-
tients (not shown). These data suggest that b-chemokine se-
cretion correlates with the induction of HIV-specific CD81

T-cell responses by canarypox virus-infected mature DCs.
IFN-g production. IFN-g is a key antiviral cytokine pro-

duced by CD81 effector cells. We determined whether can-
HIV-infected DCs could elicit IFN-g-producing CD81 T cells
from freshly isolated T cells of chronically infected individuals.
In all of five subjects tested by ELISPOT assay, DCs induced
significant levels of HIV-specific, IFN-g-producing SFC within
24 h (range, 190 to 1,210 SFC/106 T cells at a DC:T ratio of
1:10 [Fig. 5A]). The responses were up to sixfold greater in
magnitude than those induced by can-HIV-infected PBMCs,
where primarily monocytes comprise the APCs (up to 30% of
the PBMC fraction [35]).

Importantly, can-HIV-infected DCs also successfully ex-
panded HIV-specific IFN-g-producing T cells over several
days of culture without the addition of exogenous cytokines. A
representative example of seven experiments is shown in Fig.
5B. T cells from individual HVR were cocultured with can-
HIV-infected DCs and tested for specificity on day 7 by
ELISPOT assay. Specificity for HIV-1 antigens was assessed by
restimulating the T cells for 24 h with autologous monocytes
infected with can-ctl or can-HIV. One-day restimulation by
poxvirus-infected APCs induces IFN-g production from CD81

T cells and not CD41 T cells (35). At least a two- to threefold
increase in HIV-specific SFC number was evident by this recall
assay (compare HVR data in Fig. 5A and B). Although can-
ctl-infected DCs induced significant numbers of SFCs com-
pared to uninfected DCs, no HIV-specific responses were elic-
ited by these cells. In contrast to DCs, monocytes failed to
expand HIV-specific IFN-g-producing CD81 T cells over 7
days (Fig. 5B).

We next applied the recall ELISPOT assay to identify HIV-
specific responses in individuals in whom CTL responses were
not detected. For example, subject HVJ had a previously char-
acterized Pol-specific CD81 T-cell response by overnight

TABLE 1. p24 expression in DCs infected with poxvirus vectorsa

Vector

Immature DC 1 MCM Mature DC

% p241 cells
mean 6 SD

No. of
expts

% p241 cells
mean 6 SD

No. of
expts

vac-ctl 0 6 0 7 0 6 0 6
vac-gag 67 6 21 8 44 6 20 8
can-ctl 0 6 0 5 0 6 0 4
can-HIV 15 6 11 11 7 6 6 11

a DCs were infected with vaccinia virus and canarypox virus vectors at MOIs
of 2 to 5 and 5 to 10, respectively. In the case of immature DC, the cells were
immature at the time of infection and MCM was added directly after the infec-
tion. One day later, cells were permeabilized, stained with anti-p24 antibody, and
analyzed by FACS.

2146 ENGELMAYER ET AL. J. VIROL.



ELISPOT assay, but we could not elicit HIV-specific cytolytic
activity when his T cells were stimulated with can-HIV-in-
fected DCs (Table 2). However, when recall ELISPOT assays
were used, we were easily able to visualize the expansion of
HIV-specific CD8 effectors from this individual. The respond-
ing cells also included Pol-specific effectors since they could be
stimulated with vac-pol-infected monocytes (Fig. 5C). Thus,
this assay allows one to detect specific responses that may be
obscured in CTL assays. This disparity between different assays
may be due to high cytolytic backgrounds from nonspecific NK
cell responses. Alternatively, this subject may have HIV-spe-
cific CD81 T cells that produce antiviral cytokines but are
impaired in cytolytic function (2).

In summary, can-HIV-infected mature DCs have the capac-
ity to elicit strong anti-HIV CD81 effector cells which are
characterized by their production of IFN-g, b chemokines, and
cytolytic activity.

Expansion of CD81 effectors by canarypox virus requires
CD41 T-cell help. We next assessed whether CD41 T cells
were required for expanding HIV-specific CD81 effector cells
by canarypox virus. We chose to study individual HVP, who
was previously shown to have Gag-specific CD41 and CD81 T
cells (Table 2). Bulk or CD4-depleted T cells were cocultured
with canarypox virus-infected DCs for 7 days. The expansion of
Gag-specific CD81 effector cells was monitored by ELISPOT
assay after restimulation with vac-gag-infected monocytes (Fig.
6A) and by cytolytic assay (Fig. 6B). As expected, bulk T cells
developed into IFN-g-secreting and cytotoxic cells. In contrast,

FIG. 2. DCs infected with can-HIV antigens induce CTL re-
sponses. (A) DCs generated from an HLA Ap02011 individual (HVR)
were either uninfected, pulsed with the HLA Ap0201-restricted Pol
peptide (ILKEPVHGV), or infected with can-ctl or can-HIV. DCs
were coincubated with autologous T cells for 7 days at DC:T ratios of
10:1, after which effectors were tested for cytolytic activity. Targets
were T2 cells pulsed with an irrelevant influenza virus matrix peptide
(T2 matrix peptide) or with the Pol peptide (T2 Pol peptide), and
autologous BLCLs were infected with vac-ctl (BLCL vac-ctl) or vac-pol
(BLCL vac-pol). E:T ratios of 30:1, 10:1 and 3:1, were tested. (B) DCs
from the same individual were infected with vac-ctl or vac-pol at a
MOI of 2 and cocultured with T cells. Cytolytic activity was measured
after 7 days at E:T ratios of 30:1 to 7:1. Targets were autologous
BLCLs infected with vac-ctl or vac-pol.

TABLE 2. Canarypox virus-infected DCs elicit CD81 CTL
responses in chronically infected patientsa

Patient Age (yr) No. of assays with HIV
specific response/total

% HIV-specific
lysis

Antigen
specificity

HVRb 38 3/3 35–62 Pol
HVPb 49 2/2 28–58 Gag
HVM 44 1/1 20–63 Gag, Pol
HVC 46 2/2 12–20 Gag, Env, Nef
HVGb 44 3/3 13–17 Pol
HVJ 41 0/2 ND NA
HVW 42 0/1 ND NA

a Responder cells were T cells stimulated for 7 days with DCs and analyzed for
cytotoxicity against 51Cr-labeled autologous BLCLs infected with vaccinia virus
vectors encoding HIV antigens. HIV-specific lysis was obtained after subtracting
both lysis against vaccinia virus antigens and lysis stimulated by canarypox virus
antigens. Lysis above 10% was considered significant. NA, not applicable; ND,
not done.

b HLA Ap0201 positive.
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CD4-depleted T cells had substantially reduced HIV-specific
CD81 T-cell responses (Fig. 6 A and B, middle). Adding ex-
ogenous cytokines in the form of lymphocult to the CD81 T
cells did not restore the HIV-specific expansion observed with
the bulk T-cell populations. Taken together, these results sug-
gest that mature DCs infected with can-HIV require the pres-
ence of CD41 T cells to induce strong HIV-specific CD81

effector responses. The results are representative of three sub-
jects studied.

Based on the above data, we surmised that can-HIV-in-
fected DCs must expand HIV-specific CD41 T cells in addition
to CD81 T cells. To test this possibility, bulk or CD4-depleted
T cells from the Gag responder HVP were cocultured with
DCs infected with either can-ctl or can-HIV for 7 days (Fig.
6C). The T cells were then restimulated for 24 h with autolo-
gous monocytes that had been pulsed with either recombinant
p24 or control proteins. By using whole protein preparations in
the place of poxvirus vectors, we stimulated CD41 rather than
CD81 T cells. Responding IFN-g-producing T cells were enu-
merated by ELISPOT assay. Importantly, p24-specific T cells

were detectable only in bulk T-cell populations. As expected,
depletion of CD41 T cells before stimulation with can-HIV-
infected DCs abrogated the response to p24 antigen. Addition
of cytokines to the CD4-depleted T-cell population restored
some, albeit low, p24-specific responses, possibly by expanding
the few contaminating CD41 T cells. Altogether, these results
suggest that can-HIV has the capacity to expand antigen-spe-
cific CD41 T cells while it is simultaneously expanding CD81

T cells, and that this expansion is essential for the development
of the CD8 effector response.

Canarypox virus-infected DCs directly stimulate and ex-
pand HIV-specific CD41 T cells. To formally prove that CD41

T cells could be directly expanded by canarypox virus, we puri-
fied CD41 T cells from selected subjects and cocultured them
with can-HIV-infected DCs. Bulk and purified CD81 T cells
were compared alongside. At day 0, we detected significant re-
sponses in bulk and purified CD81 T-cell populations by ELI-
SPOT assay (50 and 220 SFC/106 cells, respectively). In contrast,
no significant responses were detected in the CD41 T-cell popu-
lation (10 SFC/106 T cells) (Fig. 7A). This is because canarypox vi-
rus, like vaccinia virus, induces IFN-g production primarily from
CD81 T cells in the first 24 h of T cell-APC cocultures (35).

However, after 7 days of stimulation with can-HIV-infected
DCs, high numbers of HIV-specific CD41 cells could be ex-
panded from both bulk and CD41 T-cell fractions (2,200 and
5,750 SFC/106 T cells). The expansion was measured by
restimulating the T cells with p24-pulsed monocytes in an
ELISPOT assay; as expected, p24-pulsed monocytes failed to
stimulate IFN-g production from purified CD81 T cells (Fig.
7B). Poxvirus-pulsed monocytes (either can-HIV or vac-pol)
induced responses only from bulk cultures of T cells, not pu-
rified CD41 and CD81 T cells. This is consistent with the
interpretation that CD81 T cells require CD41 T cells to
expand and develop into effector cells. Data are representative
of three experiments.

In summary, our results confirm that canarypox virus directly
stimulates HIV-specific CD41 T cells in addition to CTL pre-
cursors. To our knowledge, this is the first illustration of this
vector’s ability to stimulate CD41 helper cell responses. Our

FIG. 3. DCs are more potent than monocytes in inducing anti-
HIV-CTLs. DCs or monocytes from individual HVR were infected
with can-ctl or can-HIV and cocultured with autologous T cells at
various APC:T ratios. Cytolytic activity was measured on day 7 using
autologous BLCLs infected with vac-ctl or vac-pol as targets at E:T
ratios of 30:1 and 10:1.

FIG. 4. Can-HIV-infected DCs elicit RANTES secretion. DCs
from individual HVC were infected with can-ctl or can-HIV and cocul-
tured with autologous T cells at an APC:T ratio of 1:30. After 6 to 7
days, HIV-specific cytolytic responses were obtained (Table 2), and the
supernatants of such cultures were tested for the presence of the
b-chemokine RANTES using an ELISA kit (R&D).
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results also demonstrate that the activation of antigen-specific
CD41 T cells, unlike that of CD81 T cells, requires more than
24 h of exposure to canarypox virus-derived antigens.

DISCUSSION

In this study we describe the interaction between DCs and
canarypox virus, and we evaluate the ability of canarypox virus-

infected DCs to elicit antigen-specific T-cell responses from
chronically infected HIV-11 individuals with known CD81

T-cell reactivity to HIV-1 antigens. We chose to study mature
DCs rather than immature DCs, since they resisted the cyto-
pathic outcome of infection, expressed HIV-1 antigens for
sustained periods, and maintained their mature phenotype and

FIG. 5. Can-HIV-infected DCs elicit and expand IFN-g-secreting
cells. (A) Mature DCs from four HIV-11 individuals were infected
with can-ctl or can-HIV and added to freshly sampled autologous T
cells at DC:T of 10:1. IFN-g SFC were enumerated after 24 h by
ELISPOT assay. (B) Cocultures of T cells and canarypox virus-infected
DCs or monocytes from individual HVR were allowed to expand for 7
days. IFN-g was then induced in the responding T cells by exposure to
autologous monocytes uninfected or infected with can-ctl or can-HIV.
uninf, uninfected. (C) T cells and canarypox virus-infected DCs from
individual HVJ were cultured for 7 days. IFN-g was then induced in
the responding T cells by exposure to autologous monocytes unin-
fected or infected with can-ctl, can-HIV, vac-ctl, or vac-pol. In panels
B and C, monocytes or T cells alone were additional controls, and
these values were subtracted from experimental values.

FIG. 6. CD4 helper cells are necessary to induce HIV-specific
CD81 T-cell responses. Bulk and CD4-depleted T cells (.98% pure
CD81 T cells by FACS analysis) from individual HVP were cocultured
with DCs infected with can-ctl or can-HIV. Exogenous cytokines in the
form of lymphocult was added to some of the cocultures of CD81 T
cells and DCs. After 7 days, IFN-g-producing cells were elicited by
restimulation with vaccinia virus-infected monocytes. T-cell cultures
from panel A were also tested for cytolytic activity on autologous
BLCLs infected with vac-ctl or vac-gag (B) or for p24 reactivity by
reexposure to monocytes pulsed with p24 or control protein (C).
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function. In all of the HIV-11 individuals studied here, we
successfully elicited CD81 effector responses using DCs in-
fected with canarypox virus encoding HIV antigens. These
reproducible responses consisted of IFN-g production within
16 h of stimulation, release of antiviral chemokines (RANTES),
and/or cytotoxic activity against targets expressing HIV anti-
gens. There was a clear correlation between (i) antigenic spec-
ificity between IFN-g production by vaccinia virus-infected
PBMCs and (ii) cytokine secretion and cytolytic activity of T
cells stimulated by canarypox-infected DCs. For example, pa-

tients HVR, HVP, and HVC showed strong responses to Pol,
Gag, and Nef, respectively, in all assays (Table 2; Fig. 2 and 4).

Despite the low frequency of canarypox virus infection, ma-
ture DCs presented HIV antigens derived from can-HIV com-
parably to HLA-restricted peptides and, where tested, even
antigens derived from vaccinia virus vectors. This ability of
mature DCs to stimulate strong CTL responses with small
amounts of foreign protein has been observed with heat-inac-
tivated influenza virus and inactivated Epstein-Barr virus (6,
53). Moreover, when DCs cross-present antigens from apopto-
tic cells, as few as 1 to 10 apoptotic cells charge 100 DCs
efficiently (1). Mature DCs infected with canarypox virus were
up to 30 times more potent than monocyte-enriched cells in
stimulating anti-HIV CD81 CTL responses, suggesting that
mature DCs are far superior APCs to be targeted in a vaccine
formulation. The low levels of stimulatory capacity seen with
monocytes may have been dependent on residual DCs in the
monocyte preparations. We have found that monocytes, when
used at high APC:T ratios, have the capacity to stimulate
antigen-specific IFN-g production from CD81 T cells in short-
term ELISPOT assays using bulk T cells. However, unlike
mature DCs, they fail to induce the expansion and full differ-
entiation of CD81 T cells into cytokine-secreting and cytolytic
effector cells (Fig. 3 and reference 36).

HIV-specific cytolytic responses were detected in five of
seven individuals studied by this assay. In the remaining two
subjects, we were unable to detect specific cytolysis. However,
in recall ELISPOT assays, can-HIV-infected DCs readily ex-
panded antigen-specific CD81 effector cells from these indi-
viduals. It is possible that these individuals have HIV-specific
CD81 T cells which lack cytolytic activity secondary to dimin-
ished perforin responses (2). As all patients in the cohort were
more than 30 years old, they were likely to have been vacci-
nated against smallpox, and it is known that responses to vac-
cinia virus are long lived even in HIV-infected individuals (13).
In prior canarypox vaccine studies, control vectors were not
used at the stimulation level to monitor responses in vitro (5,
11, 17, 19, 21, 22, 48). Our study emphasizes that it is critical to
use control vectors to establish the specificity of HIV-specific
responses.

An important finding was the requirement for CD4 help to
expand antigen-specific CD81 T cells in response to can-HIV-
infected DCs. As canarypox virus induces relatively low protein
expression in DCs, there may be insufficient quantities of pro-
cessed peptide antigens to directly expand CD81 T cells. CD4
help, in the form of CD40-CD40L interactions which prolong
DC viability and induce IL-12 production, would ensure acti-
vation of the antiviral CTL response (3, 8, 27, 45, 50, 52).
Additional help could come from TRANCE-RANK interac-
tions, which are known to be critical for antiviral responses in
animal models (3, 27). The source of help was likely to be
HIV-specific CD41 T cells expanded by canarypox virus-in-
fected DCs, as the addition of nonspecific help in the form of
exogenous cytokines failed to restore anti-HIV responses in
purified CD81 T cell populations.

The requirement for antigen-specific CD41 T cells to ex-
pand CD81 T cells was verified by demonstrating that canary-
pox virus-infected DCs directly activated p24-specific re-
sponses from purified CD41 T cells. This activation was not
evident at early time points in either bulk or CD41 T-cell

FIG. 7. DCs infected with canarypox virus expand CD41 T cells.
Bulk, CD41 and CD81 T cells from individual VHK were cocultured
with DCs that were infected with can-ctl or ctl-HIV. IFN-g-producing
cells were enumerated after 16 h by ELISPOT assay (A) or 7 days after
restimulation with monocytes pulsed with p24 protein, control protein,
can-ctl or can-HIV (B). HIV-specific values were determined after
deducting values for control protein or control vectors.
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populations (i.e., in 24-h ELISPOT assays) but could be de-
tected with 7 days of stimulation. As antigens from canarypox
virus are endogenously derived, early on following infection
antigens may be more accessible to the MHC class I than the
class II pathway. We have previously shown that PBMCs pre-
pared from chronically infected HIV1 individuals produce
IFN-g within 16 to 24 h following infection with canarypox
virus, and the response is almost entirely mediated by CD81 T
cells (35). Therefore, rapid effector function induced by ca-
narypox virus (as reflected by IFN-g production) is likely to be
CD4 independent, but the expansion of cytokine-producing
and cytotoxic CD81 T cells, perhaps from true memory T cells,
is critically dependent on antigen-specific CD4 helper cells. To
our knowledge these experiments provide the first evidence
that avipox virus vectors, when targeted to DCs, can simulta-
neously stimulate and expand antigen-specific CD41 and
CD81 T cells. CD41 T cells are critical for the maintenance of
antiviral CD81 T-cell immunity, and data are now emerging to
support a correlation between strong helper cell and CD81

T-cell function in HIV-1-infected individuals (46). Therefore,
our observations further validate the use of canarypox virus as
a vaccine vector for HIV-1 infection.

Two additional important observations were made in this
study. We found that mature DCs could induce IFN-g-produc-
ing CD81 T cells and recall CTL responses in the absence of
repetitive stimulation or cytokines, which are traditionally used
to expand HIV-specific CD81 effector cells in vitro. Prior stud-
ies have shown that canarypox virus-infected PBMCs can ac-
tivate anti-HIV-1 cytolytic effectors (21). However, the canary-
pox virus activation of CTLs was strictly dependent on
cytokines such as IL-2 and IL-7. We also showed that peptide-
pulsed DCs were directly able to elicit CTLs that recognized
endogenously processed HIV antigens. Mature DCs pulsed
with the influenza virus MP peptide can elicit influenza virus
CTLs from bulk or purified CD81 T-cell populations in vitro
(36) and can dramatically boost MP-specific effector function
when delivered in vivo to healthy volunteers (16). These find-
ings, while consistent with the concept that mature DCs can
bypass antigen-specific CD4 help because of increased co-
stimulation and enhanced viability and cytokine production,
are harder to reconcile with the requirement for CD4 help by
canarypox virus. Pulsing the mature DCs exogenously with a
high concentration of peptide may charge sufficient numbers
of MHC class I molecules to directly stimulate CD81 CTL
responses. Alternatively, help in the form of nonspecific
CD4-DC interactions in our cocultures may have contributed
to the development of peptide-specific CD81 effector cells.
Notably, in the absence of MHC class II, DCs are unable to
prime CTLs to strong antigen in mice (38). Further studies will
be required to determine whether activation of HIV-specific
CD81 T cells by peptide-pulsed DCs requires CD41 T cells.

Our results using poxviruses and DCs to stimulate CD81

T-cell responses are in contrast to a previous study in which
DCs were unable to stimulate CTL responses from T cells of
patients with low CD4 counts (20). One possible explanation
for this discrepancy is the use of immature preparations of DCs
in that study. Alternatively, since most of the individuals stud-
ied here were on therapy and had low to undetectable levels of
plasma viremia, CD4 function may have been relatively intact
or partially restored. Indeed, many of our patients had demon-

strable p24-specific responses by ELISPOT assay. Our results
suggest that mature DCs presenting antigen from a canarypox
virus vector will successfully expose anti-HIV CTL responses,
provided that some HIV-specific CD41 T cells exist.

Recombinant canarypox viruses administered intramuscu-
larly have an excellent safety profile in humans, but their im-
munogenicity has been disappointing. Seronegative individuals
who have been vaccinated with ALVAC constructs expressing
HIV-1 genes demonstrate intermittent responses of variable
magnitude (48). This may be because the vectors fail to be
acquired by potent APCs such as DCs. Recently we demon-
strated that a subcutaneous injection of antigen-pulsed mature
DCs elicited in healthy volunteers broad T-cell immunity that
was sustained for several months (15). Therefore, mature DCs
infected with recombinant canarypox virus vectors expressing
HIV genes could constitute effective anti-HIV vaccines, given
that they elicit both CD41 and CD81 HIV-specific responses.
They may be of greatest therapeutic value if delivered to indi-
viduals initiated on HAART. While acutely infected HIV-1
patients treated early with HAART can regain HIV-specific
CD41 T-helper responses (46), CD41 and CD81 T-cell re-
sponses decline with prolonged treatment (41, 44). By target-
ing canarypox virus vectors to DCs, one could prime or boost
immune responses against HIV which involve helper cells,
cytolytic responses, and release of antiviral factors.
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