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Transmission of simian immunodeficiency virus SIVmac239Dnef (Dnef) to macaques results in attenuated
replication of the virus in most animals and ultimately induces protection against challenge with some
pathogenic, wild-type SIV strains. It has been difficult, however, to identify a culture system in which the
replication of Dnef is severely reduced relative to that of the wild type. We have utilized a primary culture
system consisting of blood-derived dendritic cells (DCs) and autologous T cells. When the DCs were fully
differentiated or mature, the DC–CD41 T-cell mixtures supported replication of both the parental SIV strain,
239 (the wild type), and its mutant with nef deleted (Dnef), irrespective of virus dose and the cell type
introducing the virus to the coculture. In contrast, when immature DCs were exposed to Dnef and cocultured
with T cells, virus replication was significantly lower than that of the wild type. Activation of the cultures with
a superantigen allowed both Dnef and the wild type to replicate comparably in immature DC–T-cell cultures.
Immature DCs, which, it has been hypothesized, capture and transmit SIV in vivo, are deficient in supporting
replication of Dnef in vitro and may contribute to the reduced pathogenicity of Dnef in vivo.

The simian immunodeficiency virus (SIV) nef gene potenti-
ates viral load and pathogenicity of the virus in macaques (28,
55). Initial studies indicated that rhesus monkeys vaccinated
with SIVmac239Dnef (Dnef) were protected against challenge
by intravenous inoculation of pathogenic SIV (10, 11, 55).
Recent studies, however, have shown that the vaccine effect in
rhesus macaques is not fully protective (4, 51). Several indi-
viduals that were infected with forms of human immunodefi-
ciency virus type 1 (HIV-1) with nef deleted have maintained
low viral loads for more than a decade (12, 29), but recently it
has been reported that some HIV-1Dnef-infected humans are
showing signs of immune dysfunction (25).

The importance of nef in HIV replication in primary cells in
vitro has been demonstrated (1, 9, 14, 21, 34, 53, 59). HIV-
1Dnef replicates poorly in CD41 cells stimulated postinfection,
when the virus dose is low (53). Furthermore, the HIV nef gene
can replace the SIV nef gene to a large extent in vivo to
produce a pathogenic infection (2, 30). SIV nef has been shown
to confer a positive growth advantage to SIV in both hu-
man (34) and macaque peripheral blood mononuclear cells
(PBMCs) (50) that were activated either before or after virus
infection. nef also promotes virus growth in a macaque T-cell
line (3). However, a primary in vitro culture system that dem-
onstrates the deficient replication of Dnef in resting macaque
cells more akin to cellular environments encountered in vivo is
lacking.

We and others have used the dendritic cell (DC) system to
study HIV and SIV replication and showed that the DC–T-cell
environment promotes the growth of HIV and SIV in vitro (7,
22, 27, 40, 43–45, 47, 61). It has been hypothesized that DCs
are the initial targets for HIV infection (5, 31, 62, 63). Some
evidence exists that DCs in the mucosa are a site for HIV (18,

19, 36, 41) and SIV (26, 32, 33, 54) replication. However, more
recent work has shown that T cells are the major cells that can
be detected producing virus at the early stages of infection (56,
64). Interestingly, virus-positive cells are not detected in the
first day or two following infection. Therefore, even though it
is difficult to find virus-positive DCs, they could still be signal-
ing the T cells (and other cell types) and thereby be amplifying
virus replication in this milieu.

DCs at body surfaces, including the skin (Langerhans cells)
and several mucosal surfaces, as well as in the blood (35, 38,
61) are present in an immature state. A characteristic of im-
mature DCs is their ability to endocytose antigens. DCs ex-
press CD4 (24, 39) and chemokine receptors (13, 24, 48, 52). In
particular, immature DCs express CCR5 (24, 48, 52, 65) and
selectively capture and replicate macrophagetropic (R5)
strains of HIV-1 (22, 47), which predominate during early
stages after virus transmission in humans (16, 49, 60). When
the DCs mature and traffic to the lymph nodes, the infected
cells could efficiently spread virus to CD41 T cells, since it has
been shown that mature DCs initiate vigorous HIV-1 (8, 22, 23,
44, 46) and SIV (27, 45) replication with T cells in vitro.

We have investigated the requirements for the replication of
Dnef in cultures of DCs and T cells. The replication of Dnef
was dependent on the maturation status of the DCs. In mixtures
of immature DCs and T cells the level of replication of Dnef
was significantly lower than that of the wild type. In contrast,
in cultures of mature DCs and T cells, SIV wild-type and Dnef
replication rates were similar. A similar phenomenon could
take place in vivo, wherein during the initial stages of infection
immature DCs are present to capture virus and Dnef replica-
tion follows at low levels.

MATERIALS AND METHODS

Animals. Adult macaques (Macaca mulatta) were housed in the Tulane Re-
gional Primate Research Center. Prior to use, all animals used in this study tested
negative for antibodies to SIV, type D retroviruses, and simian T-cell leukemia
virus. Male and female adult macaques were used for this study.

* Corresponding author. Mailing address: Laboratory of Cellular
Physiology and Immunology, The Rockefeller University, 1230 York
Ave., New York, NY 10021. Phone: (212) 327-7794. Fax: (212) 327-
7764. E-mail: Popem@rockvax.rockefeller.edu.
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Culture medium. RPMI 1640 (Cellgro; Fisher Scientific, Springfield, N.J.) was
supplemented with 2 mM L-glutamine (GIBCO-BRL Life Technologies, Grand
Island, N.Y.), 50 mM 2-mercaptoethanol (Sigma Chemical Company, St. Louis,
Mo.), 10 mM HEPES (GIBCO-BRL Life Technologies), penicillin (100 U/ml)–
streptomycin (100 mg/ml) (GIBCO-BRL Life Technologies), and 1% human
plasma (heparinized).

Isolation of PBMCs and generation of DCs. DCs were generated from PBMCs
as previously described (37). In brief, peripheral blood was collected by standard
venipuncture from healthy SIV-seronegative rhesus macaques (M. mulatta). The
mononuclear cell fraction was isolated by Ficoll-Hypaque density gradient, and
PBMCs were plated at 12 3 106 to 15 3 106 cells in 3 ml of culture medium and
allowed to adhere for 60 min at 37°C. Nonadherent cells, which included a
greater relative number of T and B cells, were washed off with warm phosphate-
buffered saline (PBS) and cultured at a concentration of 0.5 3 107 to 1 3 107

cells/ml in medium. The adherent fraction of the PBMCs was then cultured in
the presence of 100 U of recombinant human interleukin 4 (IL-4) (R&D Sys-
tems, Minneapolis, Minn.) per ml and 1,000 U of recombinant human granulo-
cyte macrophage-colony-stimulating factor (GM-CSF) (Immunex, Seattle,
Wash.) per ml to generate DCs. The cells were fed every 2 days with 1,000 U of
GM-CSF per ml and 100 U of IL-4 per ml. After 7 to 9 days in culture, the
immature DCs were harvested for infection. To generate mature DCs 50% of the
medium was substituted with monocyte-condition medium for two additional
days in culture. Monocyte-conditioned medium was generated as previously
described (15).

DCs were further purified by magnetic separation. The cells were stained with
anti-human CD2 (Dako Corporation, Carpinteria, Calif.) and anti-human CD20
(Becton Dickinson Immunocytometry Systems, San Jose, Calif.) monoclonal
antibodies (mAbs). The T and B cells were removed by using three rounds of
goat anti-mouse immunoglobulin-coated magnetic bead (Dynal, A.S, Oslo, Nor-
way) depletion, following the manufacturer’s instructions. The phenotypes of
immature and mature DCs and their purity were monitored by flow cytometry in
each experiment. DCs (104) were resuspended in PBS–5% fetal calf serum–0.1%
sodium azide (staining buffer) containing conjugated mAbs. The cells were
incubated in v-bottomed 96-well plates with anti-HLA-DR–fluorescein isothio-
cyanate (Becton Dickinson [BD]) combined with phycoerythrin-conjugated (PE-
conjugated) anti-CD25–PE (BD), -CD86 (PharMingen), or -CD83 (Immuno-
tech) for 20 min at 4°C. Cells were then washed, fixed, and examined by flow
cytometry using a FACScan (BD). Immature DCs express moderate levels of
HLA-DR, little or no CD83 or CD25, and moderate levels of CD86 on their
surface. Mature DCs express high levels of HLA-DR and increased levels of

CD25, CD83, and CD86 (37). The maturation state and purity of each popula-
tion used in these experiments were confirmed in this manner.

Isolation of T cells. The nonadherent fraction was cultured at 0.5 3 107 to 1 3
107 cells/ml for 7 to 9 days, and cells were further purified by negative selection
with magnetic beads (Dynal, A.S.). The cells were incubated at 4°C for 30 min
with murine mAbs specific for CD8 and HLA-DR (Becton Dickinson Immuno-
cytometry Systems). The cells were washed and subjected to three rounds of goat
anti-mouse immunoglobulin-coated magnetic bead depletion at 4°C. The result-
ing cell preparations were at least 98% viable by trypan blue dye exclusion. The
purity of the cells was verified by direct staining flow cytometry for membrane
expression of CD8 and HLA-DR.

SIV isolates. The previously described (28) cloned viruses SIVmac239 (the
wild type) and Dnef were generously provided by Preston Marx. The viruses were
grown as previously described (45).

nef PCR. Sequences spanning the deleted region of nef were amplified by
nested PCR using a slight modification of a previously published protocol (10).
CEMx174 cells were infected with the wild type or Dnef, and genomic DNA was
extracted 5 days postinfection. Cell lysates were prepared by transferring the cells
into a 0.5-ml microcentrifuge tube (National Scientific, San Rafael, Calif.) and
centrifuged for 2 to 3 min at 3,000 rpm (MicroSpin 125 Sorvall instruments;
DuPONT). The supernatant was aspirated, and the cells were washed in cold
PBS by centrifugation for 2 to 3 min at 3,000 rpm. The supernatant was carefully
aspirated, and the pellet was resuspended in 50 ml of hypotonic lysis buffer (10
mM Tris [pH 8.0], 1 mM EDTA, 0.001% Triton-X 100–sodium dodecyl sulfate
in sterile double-distilled H2O) containing 600 mg of proteinase K (Boehringer
Mannheim, Mannheim, Germany) per ml, per 105 cells. The cells were then
incubated for 1 h at 56°C and then for 15 min at 95°C, to inactivate the protease.
After lysis, the DNA was stored at 220°C. DNA (equivalent to 4 3 103 cells)
was added to a PCR mixture containing (in a total volume of 50 ml) the follow-
ing: 20 pmol of each of the outer primers, 103 reaction buffer (Promega,
Madison, Wis.), 3 mM MgCl2, a 200 mM concentration of each deoxynucleoside
triphosphate, double-distilled H2O, and 2 U of Taq DNA polymerase (Promega).
Two drops of mineral oil were added to the samples, and amplification was
carried out in a DNA Thermal cycler (Perkin-Elmer Cetus, Norwalk, Conn.) for
35 cycles of the following program: 94°C for 1 min, 60°C for 30 s, and 72°C for
45 s. A 5-ml volume of the first-round product was transferred to a new reaction
mixture containing the inner primers. Amplification was carried out for 35
additional cycles under the same conditions as described above. PCR products
were separated on a 1% agarose gel and visualized by ethidium bromide staining.

FIG. 1. Analysis of virus stocks. (A) Replication of SIVmac239 wild type (solid squares) and Dnef (open squares) in 221 cells. 221 cells (106) were infected (5 3
102 TCID50 per 105 cells) with wild-type or Dnef virus and cultured in a 48-well plate in medium with or without 10% IL-2. To monitor virus replication, 50 ml of the
culture supernatants were collected every 2 days and the amount of p27 in the medium was analyzed using a p27 ELISA. Results shown are means 6 standard deviations
(error bars) of triplicate cultures. (B) PCR analysis of the nef gene. CEMx174 cells were infected (5 3 103 TCID50 per 105 cells) with SIVmac239 wild type (wt) or
Dnef (‚). The cells were harvested 5 days after infection. Proviral DNA was analyzed by nested PCR, using primers to amplify the nef gene product. The amplified
product of the nef gene from the Dnef virus stock is 472 bp and from the wild-type virus stock is 654 bp (shown, respectively, in the two rightmost lanes). The molecular
weight marker is shown in the leftmost lane.
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In vitro infection of DC–T-cell cultures. DCs, T cells, or cocultures of DCs
with T cells were infected with 5 3 103 50% tissue culture infective doses
(TCID50) per 105 cells of the wild type or Dnef for 1.5 h at 37°C. For coculture
infection, the cells were infected in 96-well round-bottomed trays. For the infec-
tion of pure DCs or T cells, the cells were pulsed in Eppendorf tubes as previ-
ously described (46). In most experiments CD41-enriched cells were used. They
were enriched by magnetic depletion of HLA-DR1 and CD81 cells from non-
adherent cells. After infection the cells were washed with medium to remove
excess virus and cultured at a ratio of 1 DC per 10 T cells in aliquots of 105 cells
per well in a 96-well round-bottomed well tray (ICN Biomedicals, Inc., Aurora,
Ohio) for up to 15 days. Every 2 days 50-ml aliquots were collected and analyzed
for the content of p27 using a p27 enzyme-linked immunosorbent assay (ELISA)
(Cellular Products Inc., Buffalo, N.Y.). The cutoff point of the ELISA is 0.5
ng/ml. For activation of the DC–T-cell cultures with superantigen, Staphylococ-
cus aureus enterotoxin B (SEB) was added at a concentration of 5 ng/ml and 10%
IL-2 (Boehringer Mannheim) was added every 3 days.

Analysis of viral phenotype using the 221 cell line. 221 cells, maintained as
described previously (3), were used to verify the defective replicative capacity of
our Dnef virus stocks. Cells (106 cells in a 1-ml volume) were infected with the
wild type and Dnef at a dose of 5 3 102 TCID50 per 105 cells in a 48-well tray and
cultured with and without the external addition of 10% IL-2. Virus replication
was monitored over 8 days by collecting cell culture supernatants and analyzing
the release of p27 by ELISA. Samples were collected every 2 days, and fresh
medium containing 5% FCS with or without 10% IL-2 was added.

Statistical analysis. The paired t test was applied to determine the statistical
significance between Dnef and wild-type replication in all 22 experiments per-
formed comparing Dnef and wild-type replication in immature DC–T-cell cul-
tures.

RESULTS

Analysis of virus stocks. To confirm the authenticity of the
virus stocks used in our experiments, the phenotype (Fig. 1A)
and genotype (Fig. 1B) were analyzed. For the phenotype, we
used the macaque T-cell line 221, which depends on IL-2 for
proliferation. It has been shown that, in the absence of IL-2,
Dnef replication in this cell line is reduced compared to that of
the wild type. Infection with the wild type leads to IL-2 syn-
thesis by 221 cells and increased levels of virus replication (3).
Stocks of wild-type virus replicated in the absence of IL-2, with
a peak virus production of 40 ng of p27/ml, whereas Dnef
showed no virus replication until day 8, then only reaching 5 ng
of p27/ml (Fig. 1A). In the presence of IL-2, both viruses
replicated well with increased kinetics, reaching concentrations
of around 90 ng of p27/ml at day 8. Dnef showed a slight delay
in virus replication. Our results confirm the published results
of Alexander et al., who also used this cell line (3).

To rule out the possibility that the stocks were contaminated
with trace amounts of wild-type virus, we analyzed the virus
genotype by PCR. The permissive cell line, CEMx174 (provid-
ed by the National Institutes of Health AIDS Research and
Reference Program), was infected with either the wild type or
Dnef, and 5 days later the cells were harvested for analysis of
proviral DNA by nested PCR, using primers to amplify the nef
gene product (Fig. 1B). The PCR product of the Dnef virus
stock, at 472 bp, was smaller than the amplified product of the
wild-type virus stock, which yielded a 654-bp fragment, corre-
lating with previously published results (51). This confirmed
that the nef gene in the Dnef stock had the expected 182-bp
deletion (28) and that contamination with wild-type virus was
undetectable.

SIV replication in mature DC–T-cell cultures. To investigate
the impact of nef gene expression on SIV replication in primary
DC–T-cell cocultures, we infected mature DC-T-cell cocul-
tures with Dnef or the wild type. Virus replication in DCs
cultured with resting T cells was compared to that in DCs
cultured with T cells that had been activated 2 days before
infection (Fig. 2A). The T-cell line CEMx174 was infected as a
control. Prior reports on HIV-1Dnef replication in CD41 cells
(53) and PBMCs (34) described a dramatic difference in virus
replication between HIV-1Dnef and the wild type at low virus

doses. Therefore, graded doses of Dnef or wild type were used
for infection. Both virus isolates replicated in these cultures,
even at the low virus dose of 5 3 102 TCID50 per 105 cells (Fig.
2A). In contrast to findings for human CD41 T cells (53) or
PBMCs (34), we found that replication of both viruses in cul-
tures of mature DCs with either resting or activated T cells was
similar. The wild-type replication was at most twofold higher in
the resting DC–T-cell coculture (DC plus T cells). The abso-
lute levels of replication in DC cultures with activated T cells
(DC plus T blasts) were comparable to those of the CEMx174
cells, whereas in cultures of DCs with resting T cells the level
of virus replication was lower.

FIG. 2. SIVmac239 and Dnef replication in mature DC–T-cell cultures. (A)
Cells of the cell line CEMx174, mature DC–T-cell cocultures, and mature DCs
cocultured with preactivated T cells (T blasts, activated with SEB [5 ng/ml for 48
h]) were infected with graded doses of virus, as follows: 5 3 104 (top row), 5 3
103 (middle row), or 5 3 102 (bottom row) TCID50 per 105 cells of SIVmac239
(solid squares) or Dnef (open squares). Every 2 days cell culture supernatants
were collected and assayed for p27 production. (B) Mature DC–CD41 T-cell
cocultures were infected with 5 3 103 or 5 3 102 TCID50 per 105 cells of
SIVmac239 (solid squares) or Dnef (open squares). The infection was monitored
by collecting supernatant samples every 2 days and analyzing them by p27
ELISA.
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The T cells used in these initial experiments were bulk T
cells, which contained CD81 T cells and some B cells. It has
been previously shown that it is the CD41 T cells that promote
HIV (8, 23, 44) and SIV (M. Pope, unpublished observations)
replication in culture with DCs. The presence of large numbers
of CD81 T cells in the bulk T-cell population could influence
and potentially impair virus replication, especially in the DC–
resting T-cell coculture infected with lower doses of virus. In
macaque blood around 50% of the bulk T-cell population can
be CD81 T cells (6). Therefore, we depleted the T-cell popu-
lation of CD81 and HLA-DR1 cells (activated T cells, B cells,
monocytes, and DCs) by magnetic beading. The purified CD41

T-cell population was mixed with mature DCs and infected
with 5 3 103 and 5 3 102 TCID50 per 105 cells (Fig. 2B). As a
consequence of CD81 cell depletion, virus replication was
enhanced in the DC–resting T-cell milieu, even when a low
virus dose was used. No difference between Dnef and wild-type
replication could be observed. CD8-depleted T-cell popula-
tions were used for all future experiments.

Dnef replication in DC–T-cell cultures is influenced by mat-
uration state of the DCs. To identify a deficit in the replicative
capacity of Dnef as has been described for virus replication in
vivo, we investigated the replication of Dnef in the presence of
immature DCs. It is postulated that immature DCs pick up SIV
and HIV at body surfaces and spread infection to surrounding
T cells in the lymph node. We compared the replication of the
wild type and Dnef in cultures of immature DCs or mature DCs
with CD41 T cells (Fig. 3). We also analyzed whether virus
replication was influenced by the cell type that introduced the
virus to the culture (Fig. 3A).

As shown in Fig. 3A immature and mature DCs from the
same blood were assayed for Dnef and wild-type replication in
cocultures with T cells. Due to the limitation of the amount of
blood that can be taken from the animals, the number of
generated DCs can be very low, and, therefore, comparison of
immature and mature DCs from the same animal is difficult.
Hence, many of the experiments were performed with either
immature or mature DCs (Fig. 3B).

FIG. 3. SIVmac239 and Dnef replication in immature and mature DC–T-cell cultures. (A) Either immature or mature DCs isolated from the same macaque blood
(DC-SIV) or the CD41 T cells (T-SIV) were infected with 5 3 103 TCID50 per 105 cells of the wild type (solid squares) or Dnef (open squares). After infection the
cells were washed and mixed with CD41 T cells (DC-SIV 1 T) or DCs (T-SIV 1 DC), respectively, at a ratio of 1 DC/10 T cells. Every 2 days, 50 ml of the supernatant
was collected and exchanged with fresh medium and the supernatant was assayed for p27 content. (B) Immature DCs from two different macaques or mature DCs from
two different macaques were mixed with autologous CD41 T cells and infected with 5 3 103 TCID50 per 105 cells of the wild type (solid squares) or Dnef (open squares).
These results are representative of experiments with cells isolated from four different monkeys. Infection was monitored as described for panel A.
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Virus replication of both the wild type and Dnef in autolo-
gous cocultures of mature DCs with resting T cells showed no
significant differences (Fig. 2 and 3B). The greatest observed
difference between wild-type and Dnef levels of replication in
mature DC–T-cell coculture was twofold and is shown in Fig.
3A. In other experiments with mature DC–T-cell cultures, two
examples of which are shown in Fig. 3B, Dnef and wild-type
replication levels were identical. SIV replication is indepen-
dent of whether DCs or T cells introduced the virus to the
culture (Fig. 3A).

In contrast, Dnef replication in cultures of immature DCs
with CD41 T cells was significantly impaired compared to that
of the wild type (Fig. 3A). Again, this did not depend on which
cell type introduced the virus to the culture. However, SIV
wild-type replication in the immature DC environment showed
a 2- to 4-day delay compared to mature DC–T-cell cultures but
eventually supported peak values of p27 production similar to
those found in the mature DC environment (Fig. 3A). In 22
experiments, with cells isolated from different macaques, rep-
lication of the SIV wild type was significantly greater than that
of Dnef in the immature DC–T-cell mixtures. The largest dif-
ference observed is shown in Fig. 3A, where Dnef replication
could not be detected in immature DC–T-cell cultures,
whereas wild-type replication peaked around 60 ng of p27/ml.
The variation between experiments using cells from different
monkeys is illustrated in Fig. 3B, which shows representative
results with two immature DC–T-cell cultures. In some exper-
iments, a sixfold increase in the peak level of SIV wild-type
replication compared to the level of Dnef replication in imma-
ture DC–T-cell cultures was seen (Fig. 3B). In other experi-
ments wild-type replication was low (10 ng of p27/ml) but Dnef
replication was undetectable (Fig. 3B). The p27 production at
the peak of virus replication in wild-type- and Dnef-infected
cultures in all 22 experiments is shown in Fig. 4. The difference
between wild-type and Dnef replication levels was calculated by
the difference in p27 production between the wild type and
Dnef in each experiment at the peak of virus replication using
the paired t test (P 5 0.0001). The difference between Dnef and
wild-type virus replication levels is highly statistically signifi-
cant.

To confirm that infectious virus was present in the immature
DC–T-cell mixtures, we activated the cocultures with the SEB
(Fig. 5). SEB activation augmented the replication of both

viruses and led to identical replication and kinetics of Dnef and
wild-type SIV.

DC and T-cell phenotypes are not modulated by wild-type
SIV. We investigated whether nef induced changes in the im-
mature DC or T-cell phenotype, which would help explain the
increased replication of the wild type. Infected cocultures were
monitored for various T-cell activation markers by fluores-
cence-activated cell sorter. The expression of the early activa-
tion marker CD69 (Fig. 6) shows that there was no significant
alteration of the T-cell phenotype in 6-day cocultures infected
with either Dnef or wild-type virus compared to that in nonin-
fected control cultures. This was true even at the earlier time
points of 6, 48, and 72 h, and for other T-cell activation mark-
ers like CD25 and HLA-DR (data not shown).

Alternatively, the increased replication levels of wild-type
virus in immature DC–T-cell mixtures could result from nef
inducing DC maturation. Immature DC–T-cell mixtures were

FIG. 4. p27 levels released in wild-type- and Dnef-infected immature DC–
T-cell cultures at the peak of virus replication. The p27 values at the peak of
wild-type (wt) and Dnef (‚) replication for all 22 experiments are shown. The
paired t test was used to analyze the statistical significance of the difference
between wild-type and Dnef replication levels and revealed a P value of 0.0001.

FIG. 5. SEB activation of SIV wild-type- and Dnef-infected immature DC–
T-cell cultures. Immature DC–CD41 T-cell cocultures were infected with 5 3
103 TCID50 per 105 cells of the wild type (solid squares) or Dnef (open squares).
After infection, the cells were washed and cultured in medium (DC-T) or 5 ng of
SEB per ml was added to the culture (DC-T 1 SEB). IL-2 (10%) was added
every 4 days to the SEB-containing cultures. Infection was monitored as de-
scribed for previous figures.

FIG. 6. SIV does not induce up-regulation of T-cell activation markers on
the cell surface. Immature DC–CD41 T-cell cultures were infected with either
the wild type or Dnef and compared to uninfected cultures (no virus) as a control.
Six days after infection the T cells were analyzed by staining with anti-CD3–FITC
and, for activation, PE-conjugated anti-CD69.

2410 MESSMER ET AL. J. VIROL.
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cultured alone or in the presence of the wild type or Dnef.
Three days after infection the cultures were monitored for
standard DC maturation markers by FACS, as follows:
HLA-DR versus CD25, CD86, and CD83 (Fig. 7). The samples
were analyzed after 3 days because of the 2- to 4-day delay in
replication of wild-type virus in immature DC–T-cell cultures
and since DCs typically require at least 2 days to mature fol-
lowing exposure to maturation stimuli. Wild-type virus did not
induce maturation of DCs. Therefore, it appears that the dif-
ference in virus replication was not due to changes in the DC
or T-cell phenotype.

DISCUSSION

This work has demonstrated deficient replication of Dnef in
immature DC–CD41 T-cell cultures, which were used as a
potentially biologically relevant system for the replication of
SIV and the induction of antiviral immune responses in vivo.
We analyzed the replication of SIVmac239 and Dnef, the latter
having been used as a vaccine strain in macaques and shown to
induce protection in a majority of monkeys (10, 11, 55). We
found a primary culture system of DCs and T cells in which
replication of Dnef is dependent on the maturation state of the
DCs. Replication of both viruses in cocultures of mature DCs
and T cells was comparable, whereas immature DC–T-cell
cultures showed restricted Dnef replication. The severely com-
promised replication of Dnef occurred irrespective of which
cell type delivered the virus to the coculture. The low levels of
Dnef replication in our immature DC–T-cell cultures correlate

with published results for wild-type and nef-mutated HIV-1
isolates of NL4-3, which demonstrated a significant reduction
in growth rates and maximal titers of nef-mutated viruses com-
pared to those of wild-type virus in resting CD41 cells and
CD41 T cells activated after infection (53). Furthermore, it
has been shown that in preactivated human PBMCs (34) and
PBMCs activated after infection, the replication levels of nef-
mutated HXB2 were considerably lower than those of the wild
type (14, 34). Similar observations have been made in activated
macaque PBMCs (50). Also, YU2Dnef replication in alveolar
macrophages was low compared to that of the wild type (34).
Immature DC–T-cell cultures resemble PBMCs in that the
DCs present in freshly isolated PBMCs are primarily immature
(38, 39, 61). The difference between wild-type and Dnef repli-
cation in immature DC-T cell cultures, therefore, might resem-
ble the findings for nonactivated PBMCs.

When immature DC–T-cell cultures were polyclonally acti-
vated with the superantigen SEB after infection, both viruses
replicated with identical levels and kinetics. In contrast, in
PBMCs (34) or CD41 T cells (53) activated pre- and postin-
fection, Dnef showed reduced levels of replication. The differ-
ence in our finding could be due to the presence of the larger
numbers of DCs in our cultures (i.e., DC/T-cell ratio 5 1:10,
which is 10% compared to ,1% in PBMCs), suggesting that
higher numbers of DCs, even though immature, might provide
additional signals to compensate for the nef defect in the set-
ting of T-cell activation. On the other hand, the type of acti-
vation could play a role. We used SEB, whereas the other
studies were carried out with phorbol myristate acetate–IL-2.

As described previously (27), members of our group were
unable to detect virus production in isolated SIV-infected ma-
ture DC or T-cell populations. In addition, we were also unable
to detect infection in immature DC suspensions with SIVmac239
wild type or Dnef (data not shown). This is in contrast to
observations made for the human system in which virus rep-
lication has been demonstrated in immature human DCs
infected with a macrophagetropic (R5) HIV-1 (22, 47). This
discrepancy could be due to inherent differences between hu-
man and monkey immature DCs or to the virus strain used.

We propose that, in the macaque system, the interaction of
an immature DC with a T cell is insufficient to support vigorous
replication in the absence of nef and that the presence of nef is
required for cell signaling and virus replication. Since exoge-
nous activation of the cultures with SEB enables Dnef replica-
tion, this suggests that the necessary signals were not triggered
in the immature DC–T-cell milieu alone. SEB also cross-links
the DCs and T cells together via major histocompatibility com-
plex and the T-cell receptor. This would allow tight contact,
which itself could increase the cell-to-cell spread of virus as
well as possibly signaling the cells to amplify virus replication.
In contrast, mature DCs override the need for nef seen with the
immature DCs and signal sufficiently to promote Dnef replica-
tion. Mature DCs express higher levels of costimulatory and
adhesion molecules (17, 20, 42), which could facilitate binding
between the DCs and T cells without the need for nef or SEB
in this setting. nef has been shown to have superantigenlike
qualities (57, 58), and it could be acting in a similar way to SEB
in our cultures to drive virus replication. The possibility of
activation of intracellular pathways by nef in the minor fraction
of infected cells in our DC–T-cell mixtures, even in the absence
of phenotypic changes in the total population (Fig. 6 and 7), is
under investigation.

The immature DC–T-cell coculture system allows us to study
the requirements for virus replication in a biologically relevant
environment without the need for exogenous activation. It is
important to understand the factors that are activated or

FIG. 7. FACS analysis of SIV-infected immature DC–CD41 T-cell cultures.
Cocultures of immature DCs with T cells were infected with the wild type or
Dnef. Noninfected cultures were used as a control. After 1.5 h, the cocultured
cells were washed and fresh medium was added. Three days after infection, the
DCs were assayed for maturation by staining with FITC-conjugated anti-
HLA-DR and PE-conjugated anti-CD25, -CD86, and -CD83. T and B leukocytes
were excluded by gating only on the large cells.
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changed in the mature DC–T-cell cultures where nef is not
required for virus replication. A better understanding of the
mechanism involved in virus replication in the immature DC–
T-cell and mature DC–T-cell environments could reveal fac-
tors critical for virus replication and/or spread. We are cur-
rently investigating those requirements.

Our hypothesis is that, in vivo, immature DCs are one type
of leukocyte likely to encounter virus, especially at mucosal
surfaces. In the presence of wild-type virus, efficient transmis-
sion of infection and high levels of virus replication would
ensue when the DCs encounter CD41 T cells, whereas Dnef
carried by immature DCs would replicate and spread much less
efficiently in this environment. However, the restricted repli-
cation of Dnef might provide sufficient antigen for the induc-
tion of immune responses, while not overwhelming the im-
mune system, and thereby afford some protective capacity to
the animal. DCs and T cells contribute two important but
opposing aspects to pathogenesis, providing not only a site in
which robust replication can occur but also the environment in
which protection against virus infection can be induced.
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