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Commentary 

The Endoeytie Activity of Dendritic Cells 
By Ralph M. Steinman* and Joel Swanson~ 

From the *Laboratory of Cellular Physiology and Immunology, The Rockefeller University, 
New York 10021; and CHarvard Medical School, Boston, Massachusetts 02114 

I n this issue, Sallusto et al. (1) report that dendritic cells 
. can vigorously internalize solutes by macropinocytosis, 

delivering these to MHC class II-rich vesicles (MIIVs). In 
the most familiar form of endocytosis, clathrin-coated pits 
invaginate to form small (<0.1/~m in diameter) coated resides 
(Fig. 1). Ligands adsorb to receptors in the coated pit and 
are subsequently delivered to lysosomes, where the ligands 
are degraded down to the level of amino acids. During mac- 
ropinocytosis, which occurs at sites of membrane ruffling, 
larger droplets of fluid enter the cell, and an actin-based 
cytoskeleton rather than clathrin seems to be required (Fig. 
1). Sallusto et al. (1) describe solutes that rapidly enter den- 
dritic cells within macropinosomes, both in the fluid phase 
or attached to the membrane. In both cases, the solutes are 
delivered to MIIVs, where they presumably can be converted 
to peptides and recycled to the cell surface as MHC II-pep- 
tide complexes. This set of events would explain a previous 
report from these same authors on the efficiency with which 
dendritic cells present protein antigens (2). In that study, the 
presentation by dendritic cells of antigens, apparently from 
the fluid phase, was as effective as presentation by B cell lines 
that adsorb the same antigen via surface Ig receptors. 

These new observations represent a striking turn of events. 
In most previous studies of dendritic cells, little or no uptake 

Figure 1. Possible pathways for the uptake of soluble proteins into den- 
dritic cells. (A) Coated pit pathway. Soluble proteins enter in small coated 
vesicles, either in the fluid phase or more efficiently if adsorbed to receptors 
in the pit. (B) Macropinosome pathway. Soluble proteins and small parti- 
cles enter in the fluid phase or adsorbed to the membrane of large vesicles 
that form at "ruffles" that are subtended by actin. (C) Birbeck granule 
pathway. This can occur in Langerhans cells, the dendritic cells of stratified 
squamous epithelia. The Birbeck granule, which may fuse features of 
pathways A and B, has a distinct "tennis racket" appearance consisting 
of a handle that is formed by juxtaposed membranes that can connect to 
the cell surface, as well as a large electron-lucent vesicle that can be coated. 

could be detected. Here we comment on this apparent dis- 
crepancy, and we consider the capacity of macropinocytosis 
to enhance the presentation of fluid phase or nonbinding an- 
tigens. Our emphasis is on the uptake and cycling of endo- 
cytic vesicles rather than on the subsequent steps in presen- 
tation. 

Historical Aspects. The lack of endocytic activity in den- 
dritic cells was one of the cardinal traits that initially allowed 
their identification as a distinct lineage. At that time, the 
early 1970s, the antibody response by mouse spleen cells was 
the prototype immune response to antigens in culture. MisheU 
and Dutton had pioneered this system (3). Then it was found 
that the antibody response required the cooperation of two 
populations. These were distinguished on the basis of differ- 
ences in buoyant density or in the capacity to adhere to glass, 
plastic, or Sephadex G10. The high density nonadherent cells 
were primarily lymphocytes, while the low density adherent 
cells were considered to be macrophages that had to interact 
with antigen. 

When the adherent cells were examined for the traits that 
were available to identify macrophages, both macrophage and 
nonmacrophage populations were apparent (4, 5). The mac- 
rophages had numerous lysosomes (by electron microscopy 
and by staining for lysosomal acid phosphatase) and actively 
internalized particles and smaller tracers (microorganisms, 
antibody-coated particles, soluble horseradish peroxidase 
[HRP], and colloidal carbon). The other stellate population, 
named "dendritic cells" had distinct features that included 
a paucity of lysosomes and an inability to accumulate a va- 
riety of particulate and fluid phase offerings. The distinctions 
were apparent in vivo as well. If colloidal carbon or HRP 
was administered intravenously to mice, the macrophages iso- 
lated from the spleen were heavily labeled (5). Little or no 
labeling was evident in the dendritic cells isolated from the 
same mice. If colloidal thorium was given and spleen sec- 
tions were examined by electron microscopy, the macrophages 
showed labeling of numerous lysosomes, while the dendritic 
cells had few lysosomes and were unlabeled (6). Multivesic- 
ular vacuoles were evident in all these early descriptions of 
dendritic cells (4, 5, 7, 8), and recent evidence indicates that 
the vacuoles are MIIVs, i.e., rich in MHC II products (9, 10). 

A lack of endocytic activity was reported in all of the ini- 
tial descriptions of dendritic cells. Klinkert et al. (11) isolated 
these cells from several tissues of the rat and noted their in- 
ability to accumulate colloidal carbon. In studies of dendritic 
cells from afferent lymph of rabbits (12) and rats (13), Kelly 
et al. described a lack of uptake of colloidal carbon and im- 
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mune complexes (12), while Pugh et al. observed a lack of 
uptake of ferritin-, latex-, and antibody-coated red cells (13). 
Wolff examined uptake of HRP into guinea pig epidermal 
Langerhans cells and found some uptake, but it was lower 
than the adjacent weakly endocytic keratinocytes (14). Schuler 
and Steinman, in their identification of epidermal Langerhans 
cells as dendritic cells, described a lack of uptake of HRP 
and particulates in vitro (8). Van Voorhis et al. could not 
detect uptake of HRP or latex and zymosan particles by den- 
dritic cells from human blood (15). Hart et al. came to similar 
conclusions on a lack of latex uptake by dendritic cells from 
human tonsil (16). Eikelenboom (17) and Dijkstra (18) reported 
limited staining for lysosomal acid phosphatase and little up- 
take of colloidal carbon for dendritic cells in the T cell regions 
of spleen in situ. 

After methods were developed to separate dendritic cells 
from macrophages, several laboratories found that dendritic 
cells exhibited two features that had not been encountered 
previously (reviewed in reference 19). These were very high 
levels of MHC II products and unusual stimulatory capacity 
for several T cell-dependent responses. In situ, dendritic cells 
were the principal cell in spleen and lymph that could cap- 
ture antigen in a form that was presented to MHC II-re- 
stricted T cells. Dendritic cells could also prime MHC II-re- 
stricted T cells in mice in the absence of any adjuvant other 
than the APCs themselves. 

The paucity of lysosomes and weak endocytic activity of 
dendritic cells, coupled with strong APC function, soon be- 
came enigmatic to many. Several developments indicated that 
endocytosis followed by digestion to form peptides was the 
principal pathway in which antigens came to be presented 
on MHC II molecules. What are some of the ways that one 
might reconcile these two contrasting sets of data, i.e., the 
need for endocytosis to process internalized antigens for 
binding to MHC II and the potent APC function of weakly 
endocytic dendritic cells? We comment on five possibilities 
(Table 1). 

Table 1. Some Attempts to Reconcile the Weak Endocytic and 
Strong Antigen-presenting Activities of Dendritic Cells 

Processing takes place extracellularly. 

Presentation, unlike clearance and scavenging, requires only 
small amounts of uptake. 

Dendritic cells are like B cells in that they use adsorptive 
mechanisms to target small amounts of antigen for presen- 
tation rather than scavenging. 

Substantial rates of uptake are followed by recycling, not 
delivery to lysosomes. 

Endocytosis is regulated to defined periods in the life history 
of dendritic cells or after specific stimuli. 

Could Processing Take Place "Extracellularly'? Perhaps den- 
dritic cells do not require endocytosis, and they either de- 
grade antigens at the cell surface or they acquire peptides from 
other cells (20, 21). There still is no direct evidence for ex- 
tracellular processing by dendritic cells, and efforts to detect 
transfer of peptides from other cells have failed. In the latter 
situation, the response of MHC-restricted T cells was moni- 
tored with a mixture of APCs, e.g., dendritic cells of the 
appropriate MHC that had not been pulsed with antigen, 
together with macrophages of the inappropriate MHC that 
had been pulsed with antigen. No regurgitation of immuno- 
genic MHC II-binding peptides from macrophages to den- 
dritic cells was detected (22, 23). 

Might Antigen Presentation by Dendritic Cells, in Contrast to 
Scavenging by Macrophages, only Require Low Levels of Endocy- 
tosis? The criteria that were used to detect endocytosis in 
dendritic cells were those used to monitor the bulk scavenging 
function of macrophages, particularly the accumulation of 
a broad spectrum of substrates in digestive lysosomes. Scav- 
enging is a high capacity form of endocytosis that is used 
to clear substrates, such as damaged cells and immune com- 
plexes, and it typically leads to complete digestion. When 
a fluid phase solute is applied to macrophages at 1 mg/ml 
(a dose that is often used in studies of antigen presentation), 
the cells on average accumulate 10 s soluble protein molecules 
per hour, and these are digested down to the level of amino 
acids (24). Adsorptive uptake via Fc receptors increases the 
clearance and scavenging properties of macrophages by roughly 
1,000-fold (25). In contrast, antigen presentation requires very 
small numbers of MHC-associated peptides. MHC II-re- 
stricted T:F hybrids can respond to APCs that present a few 
hundred specific MHC-peptide complexes (26, 27). For naive 
T cells that are stimulated with dendritic cells, only a few 
hundred complexes of MHC II and superantigen are needed 
(28). APCs are unlikely to have higher levels of a particular 
MHC peptide since most APCs express <100,000 copies of 
a given MHC II locus (29) and the array of different peptides 
that are presented is >1,000 (30). 

Therefore, low amounts of MHC-associated ligands are 
presented, so low levels of solute uptake may suffice. Inaba 
et al. made this suggestion when they observed relatively low 
levels of rhodamine-OVA uptake by dendritic cells, which 
nevertheless were capable of priming mice to rhodamine- 
associated antigens in situ (31). However, the efficacy with 
which internalized antigens are processed into MHC-bind- 
ing peptides remains unknown. APCs conceivably have 
to take in 10s-106 molecules to successfully present 10-100 
peptides. 

Are Dendritic Cells Similar to B Cells, Using Adsorptive En- 
docytosis to Target Antigens for Presentation Rather Than Scav- 
enging? It is difficult to observe bulk uptake of solutes or 
particles in primary B cells, which like dendritic cells, are 
potent APCs with few lysosomes. Yet antigens that bind to 
surface Ig receptors are known to be internalized and processed 
onto MHC II molecules (32-34). Might dendritic cells also 
have receptors that mediate adsorptive uptake, in an analo- 
gous fashion to surface Ig, and deliver these as peptides to 

284 Commentary 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/182/2/283/497191/283.pdf by R
ockefeller U

niversity user on 29 July 2020



MHC products, rather than end-stage lysosomes? Dendritic 
cells can present small amounts of self immunoglobulins (35) 
and immune complexes (2) by Fc 3, receptors. The Birbeck 
granules that are found in epidermal Langerhans cells (Fig. 
1) can be coated and can mediate adsorptive uptake (36-38). 
Sallusto et al. (1) report that dendritic cells can take in both 
HKP and FITC-dextran by adsorption to mannosyl-fucosyl 
C-type lectin receptors (1). The NLDC-145 antigen on den- 
dritic cells has recently been cloned and shown to have 10 
C-type lectin domains and to mediate adsorptive uptake in 
coated pits and antigen presentation (39). 

Might Dendritic Cells Have High Rates of Endocytosis but Recycle 
Contents to the Cell Surface Rather Than Deliver Them to Lyso- 
somes? A general feature of endocytosis is the rapid recy- 
cling of much of the internalized membrane and contents 
to the cell surface (reviewed in reference 40). When dendritic 
cells internalize solutes, might only small amounts be retained 
as peptides and the majority recycled back out of the cell? 
Levine and Chain described a substantial traffic of endocytic 
vesicles through endosomes, but not lysosomes, in dendritic 
cells. They used fluorescent solutes and cytofluorography to 
monitor endocytic activity. They concluded that after inter- 
nalization, much of the solute is discharged by recycling (41). 
Rapid (tt/2 of 5 min) and slow (tl/2 Of 100 min) recycling 
compartments were observed, corresponding to 80 and 20% 
of the internalized solute. These results differ from those of 
Sallusto et al. (1), who show that dendritic cells accumulate 
significant amounts of fluorescent solutes for long periods. 
Their cell populations had more abundant intracellular MIIVs, 
relative to the cells studied by Levine and Chain. Perhaps, 
for purposes of presentation, MIIVs trap internalized solutes 
for longer periods. 

Is Endocytosis Regulated and~or Confined to Stages in the Life 
History of Dendritic Cells? Dendritic cells may endocytose 
readily detectable amounts of bulk substrates (solutes and par- 
ticles), but this may be limited to discrete stages of their life 
history or to responses to specific stimuli. Komani et al. (42) 
and Streilein and Grammer (43) described the fact that upon 
isolation from skin, dendritic cells efficiently present protein 
antigens. Within 12 h, this capacity is lost. Then the cells 
develop strong binding and stimulatory activity for T cells, 
upregulating a number of accessory molecules such as ICAM-1, 
B7-1 and B7-2, LFA-3, and CD40. Splenic dendritic cells also 
capture antigens in vivo (22) and upon isolation from spleen 
(31), but they lose this capacity after overnight culture. Den- 
dritic cells in effect seem to be able to segregate in time two 
broad functions of accessory cells. Antigens are captured at 
one point in their life history, e.g., as sentinels in a tissue 
like the skin, and then the captured antigens are presented 
at a later phase of their life history when the cells are rich 
in adhesion and costimulatory molecules (42). 

What specific steps in antigen presentation might be regu- 
lated? Biosynthesis of MHC products is actually not consti- 
tutive in MHC-rich dendritic cells. In vivo (9) and after iso- 
lation (44, 45), epidermal dendritic cells actively synthesize 
MHC II and invariant chain. Within 12 h, at least 106 (8) 
cycloheximide-sensitive (46), I-A molecules are expressed on 

the cell surface. Then biosynthesis diminishes dramatically. 
Sallusto et al. indicate that regulation also can lie at the up- 
take step, the formation of macropinosomes. This also was 
suggested by St/Sssd et al. (47), who noted large numbers 
of acidic endosomes in freshly isolated Langerhans cells, but 
not in cultured cells. Regulation at the endocytosis level is 
also evident with particulates. Proliferating progenitors to 
dendritic cells in the bone marrow can phagocytose some latex 
BaciUe Calmette-Gu~rin particles and BCG microrganisms, 
whereas the progeny are weak or inactive (48). Freshly iso- 
lated epidermal dendritic ceils can phagocytose certain parti- 
cles such as yeast and leishmania, whereas cultured cells are 
inactive (49). 

The regulation that is considered in the paper of Sallusto 
et al. (1) may be mediated by cytokines. In their experiments, 
ceils from human blood were cultured for long periods in 
GM-CSF and IL-4 (2). Sallusto et al. (1) reason that exposure 
to cytokines may freeze the state in which dendritic ceils can 
capture antigen in bulk, a state that is otherwise short-lived 
in the case of cultured skin and spleen dendritic cells. In- 
terestingly, the antigen capture mode can be reversed by sev- 
eral ligands: TNF-ot, LPS, IL-1, and CD40 ligand. A loss 
of intracellular MIIVs occurs simultaneously with an increase 
in cell surface MHC II. 

Macropinocytosis as a Mechanism of Solute Capture The pro- 
posal that cytokines increase macropinocytosis in dendritic 
cells is consistent with earlier findings that growth factors 
induce macropinocytosis in other cells (50-52). The pino- 
cytic response to growth factors is large and quick (minutes), 
but it is followed by a lower but sustained level of pinocy- 
tosis as long as the stimulus remains (53). Sallusto et al. (1) 
observed active macropinocytosis even after the removal of 
GM-CSF and IL-4, suggesting that the dendritic cells had 
differentiated. An alternative explanation is that sufficient 
cytokine remains in the system, even within recycling vacuoles. 
Fibroblasts transformed with oncogenic ras have high con- 
stitutive rates of pinocytosis (54). Salmonella enter epithelial 
cells and macrophages (55-57) in macropinocytic vesicles that 
are induced immediately and at a local site upon addition 
of the organism. 

Macropinosomes form from surface ruffles that fold back 
against the cell or against each other to enclose a vesicle up 
to 5 #m in diameter (58). Kuffling uses the actin cytoskeleton, 
and macropinocytosis can be selectively inhibited by cyto- 
chalasins (51). Dendritic cells exhibit many cell surface ex- 
tensions or veils. While it has always been assumed that these 
projections are used to survey and contact T cells, they could 
act as ruffles for making macropinosomes as well. 

Macropinocytosis may provide an efficient sampling mech- 
anism for fluid phase or nonbinding antigens. Since macro- 
pinosomes have lower surface/volume ratios than small vesicles, 
more extracellular fluid is sampled per unit of membrane in- 
ternalized. Sallusto et al. (1) calculated that individual den- 
dritic cells internalized ~2,400 fl/h, the equivalent of the 
cell volume. If this sampling were carried out by coated vesicles, 
whose internal volume is ~0,001 fl, each dendritic cell would 
have to internalize >40,000 vesicles per minute. Estimates 
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of the rate of coated vesicle formation in cells are 40 times 
lower (59). Spherical macropinosomes that are 1.6 #m in di- 
ameter carry '~2 ft. An uptake rate of 20 such vesicles each 
minute (vs 40,000 coated vesicles) would explain the observed 
rate of solute uptake. 

Inside cells, macropinosomes may interact with other or- 
ganelles such as endosomes, lysosomes (60), or MHC II-rich 
vesicles. Yet, at some point, the large volume of internalized 
fluid must be disposed. This could occur in either of two 
ways. If the macropinosomes themselves recycle to the plasma 
membrane, most of the internalized membrane and fluid would 
reflux. Solute would not accumulate, consistent with the rapid 
recycling observations of Levine and Chain (41), but small 
amounts of peptide would have to be captured via MHC prod- 
ucts. Alternatively and more likely we feel, macropinosomes 
would shrink inside the cell, with membrane recycling to 
the cell surface via smaller vesicles or shrunken multivesic- 
ular bodies, and water leaving by diffusion across membranes 
(61). In this case, internalized solutes might remain trapped 
inside the shrinking macropinosome for longer periods. This 
model would better fit the findings of Sallusto et al. (1) in 
two respects: (a) significant amounts of solute would accumu- 
late in the cells; and (b) one would have a greater opportu- 
nity to carry out all the critical steps required for presenta- 
tion, i.e., limited proteolysis of the antigen, fusion with vesicles 
carrying newly synthesized MHC II and invariant chain pro- 

teins, proteolysis of the invariant chain, and peptide binding 
to MHC II products. 

Evidence for both kinds of macropinosome disposal, i.e., 
direct recycling vs diffusion of internalized fluid, have been 
obtained. In cultured fibroblasts and epithelial cells, macro- 
pinosomes interact little with other endocytic compartments 
and eventually return to the cell surface (62). In macrophages, 
macropinosomes fuse readily, including with lysosomes, and 
most of the internalized solute remains in the cell (60). Solute 
retention clearly takes place in the GM-CSF + Ib4-stimu- 
lated dendritic cell, and at the same time, fully formed MHC 
II-peptide complexes cycle to the cell surface for presentation. 

Conclusion. We comment on the enigma that dendritic 
cells are potent APCs but do not readily accumulate solutes 
and particles in lysosomes. Mechanisms are now emerging 
whereby dendritic cells do endocytose and link uptake to an- 
tigen presentation. One such mechanism, as shown by Sal- 
lusto et al. (1), is bulk uptake by macropinocytosis after stim- 
ulation by the combination of GM-CSF and IL-4. This is 
followed by the delivery of solutes to vacuoles that are rich 
in MHC II products (MIIVs). Unlike macrophages, dendritic 
cells lack a well-developed scavenging pathway for complete 
digestion of substrates to amino acids in lysosomes. Instead, 
endocytosis appears to be regulated and relegated to present 
peptides via MIIVs. 

Address correspondence to Dr. Ralph M. Steinman, Laboratory of Cellular Physiology/Immunology, The 
Rockefeller University, 1230 York Avenue, New York, NY 10021. 

Received for publication on 24 March 1994. 
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