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Summary

 

T lymphocytes recirculate continually through the T cell areas of peripheral lymph nodes.
During each passage, the T cells survey the surface of large dendritic cells (DCs), also known as
interdigitating cells. However, these DCs have been difficult to release from the lymph node.
By emphasizing the use of calcium-free media, as shown by Vremec et al. (Vremec, D., M.
Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, and K. Shortman. 1992. 

 

J. Exp. Med.

 

176:47–58.), we have been able to release and enrich DCs from the T cell areas. The DCs ex-
press the CD11c leukocyte integrin, the DEC-205 multilectin receptor for antigen presenta-
tion, the intracellular granule antigens which are recognized by monoclonal antibodies M342,
2A1, and MIDC-8, very high levels of MHC I and MHC II, and abundant accessory mole-
cules such as CD40, CD54, and CD86. When examined with the Y-Ae monoclonal which
recognizes complexes formed between I-A

 

b

 

 and a peptide derived from I-E

 

a

 

, the T cell area
DCs expressed the highest levels. The enriched DCs also stimulated a T-T hybridoma specific
for this MHC II–peptide complex, and the hybridoma underwent apoptosis. Therefore DCs
within the T cell areas can be isolated. Because they present very high levels of self peptides,
these DCs should be considered in the regulation of self reactivity in the periphery.

 

L

 

ymph nodes, the sites where primary immune re-
sponses are generated, contain separate regions through

which B and T lymphocytes recirculate and gain access to
discrete antigen-presenting cells (APCs). In B cell areas,
follicular dendritic cells (DCs)

 

1

 

 retain antigens as immune
complexes (1, 2). In T cell areas, marrow-derived DCs are
thought to present processed antigens as peptides affixed to
MHC products (3–5). T cell area DCs are not readily iso-
lated from lymphoid tissue, particularly lymph nodes, thus
hampering efforts to characterize antigen-presenting and
costimulatory functions directly. We have succeeded in
isolating this major depot of DCs from lymph node T cell
areas, to directly assess expression of a specific MHC–pep-
tide complex formed between a self I-E

 

a

 

 peptide and I-A

 

b

 

.
We find that lymph node DCs express the highest levels of
MHC–peptide complexes, and efficiently induce the pro-
liferation and then apoptosis of reactive T cells. Therefore
DCs not only present foreign antigens, but are major reser-
voirs for self antigens as well.

 

Materials and Methods

 

Monoclonals.

 

Y-Ae antibody was provided by C. Janeway (Yale
University, New Haven, CT) and used as a purified Ig. The Y-Ae
mAb recognizes a complex formed between I-A

 

b

 

 and an I-E

 

a

 

 pep-
tide (6). Other mAbs were purchased from PharMingen (San Di-
ego, CA) or American Type Culture Collection (Rockville, MD).

 

Mice.

 

C57BL6 

 

3

 

 DBA/2 and BALB/c 

 

3

 

 C57BL/6 F1 mice
(6–10 wk, both sexes) express MHC–peptide complexes recog-
nized by the Y-Ae mAb, while C57BL/6 (I-A

 

b

 

 only) and BALB/c
(I-E

 

a

 

 peptide only) do not.

 

DC Enrichment.

 

Lymph nodes and spleens were dissociated
with collagenase (collagenase D; Boehringer Mannheim Bio-
chemicals, Indianapolis, IN) at 100 U/ml during the teasing apart
of the tissue and then at 400 U/ml for 30 min at 37

 

8

 

C. The sus-
pension was then immediately diluted 1:10 in Ca

 

2+

 

-free Hanks
solution, centrifuged, and suspended in dense BSA prepared as
described (7). A low density cell fraction, enriched in DCs, was
harvested after centrifugation at 900 

 

g

 

 for 30 min at 4ºC. The
cells were washed in Ca

 

2+

 

-free Hanks solution. DCs were also
prepared from bone marrow precursors and epidermis as de-
scribed (8, 9).

 

Two Color Immunolabeling of Tissue Sections.

 

10-

 

m

 

m cryostat
sections were applied to multiwell slides (No. 111006; Carlson
Scientific, Inc., Peotone, IL), air dried, and fixed in acetone for
10 min at room temperature. Biotinylated mAbs (CD8 for T
cells; DEC-205, 2A1, MIDC-8, and CD11c for DCs; and Y-Ae

 

1

 

Abbreviation used in this paper: 

 

DC, dendritic cell.
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for MHC peptide complexes) were applied at 1 

 

m

 

g/ml for 1 h,
the sections were washed in PBS, and alkaline phosphatase–cou-
pled, avidin biotin complexes (AK-5000 alkaline phosphatase
standard kit; Vector Labs Inc., Burlingame, CA) were applied for
30 min. The sections were washed and the blue alkaline phos-
phatase reaction product developed with a substrate kit (SK-5300;
Vector Labs). Rat mAb was then added as a culture supernatant
for 1 h. After washing, horseradish peroxidase–conjugated F(ab)

 

9

 

2

 

anti–rat Ig (No. 212-036-082; Jackson ImmunoResearch Labs
Inc., West Grove, PA) was reconstituted as recommended for ex-
tended storage, diluted 1:200, and applied for 1 h. DAB (Stable
DAB No. 750118; Research Genetics, Huntsville, AL) was then
used to develop a brown reaction product. The slides were
mounted in PBS glycerol, followed by a peroxidase avidin com-
plex and brown diaminobenzidine reaction product.

 

FACS

 



 

 Analyses.

 

Biotin-modified mAbs were prepared for
CD11c, Y-Ae, and MHC II (clone M5/114) and identified with
PE-streptavidin. Rat mAbs were used as hybridoma culture su-
pernatants and identified with FITC-mouse anti–rat Ig (Boeh-
ringer Mannheim). We purchased FITC-modified mAb to
CD40, CD4, CD8, CD54, and CD86 from PharMingen. In
most experiments, cells were fixed and permeabilized, since many
of the antigens were primarily intracellular in DCs (DEC-205,
MIDC-8, and 2A1). Cells were fixed in 4% paraformaldehyde
(Fisher Scientific Co., Pittsburgh, PA) for 30 min, washed twice
with PBS, permeabilized with 0.5% saponin (Sigma Chemical
Co., St. Louis, MO) in PBS with 1% FCS at 4

 

8

 

C for 10 min, and
then washed twice with staining medium.

 

FACS

 



 

 Purification of Lymph Node DCs and B Cells.

 

Starting
with a low density fraction from BSA columns (see above; 3–4%
of lymph node cells) CD11c

 

+

 

 B220

 

2

 

 DCs were sorted from
CD11c

 

2

 

 B220

 

+

 

 B cells on a FACStar

 

PLUS

 

 instrument and with
FITC-CD11c and PE-B220 mAbs from Endogen, Inc. (Boston,
MA) and PharMingen, respectively. The sorted fractions were
confirmed to be 

 

.

 

98% pure.

 

Antigen-presenting Function.

 

T-T hybrids, specific for a Y–Ae
complex, were provided by L. Ignatowitz (University of Colo-
rado, Denver, CO; reference 10). The response to APCs was as-
sessed by IL-2 release or apoptosis 18 h later. IL-2 release was
measured in a bioassay on conA activated T blasts and the CTLL
line. Apoptosis was measured as a decrease in 

 

3

 

H-TdR uptake,
and reduced or hypodiploid DNA staining with propidium io-
dide, 50 

 

m

 

g/ml in 0.1% sodium citrate and 0.1% Triton X-100.
The APCs were FACS

 



 

 purified DCs or B cells added in graded
doses to 10

 

5

 

 T-T hybridoma cells.

 

Results

 

T Cell Areas Contain Dendritic Profiles with Very High Lev-
els of an MHC II–Self Peptide Complex.

 

The Y-Ae mono-
clonal recognizes a complex of an I-E

 

a

 

 peptide presented
on I-A

 

b

 

 MHC class II molecules (6). Tissue sections of
C57BL6 

 

3

 

 DBA/2 (I-A

 

b

 

 x I-E

 

a

 

) lymph nodes which
were stained with Y-Ae showed stronger reactivity in T
cell areas relative to B cell follicles (Fig. 1). The strong Y-Ae
staining in T areas was likely on DCs, since mouse T cells
do not express MHC class II and since T cell areas have rel-
atively few macrophages and B cells (11, 12). Prior work
had shown strong staining with Y-Ae in thymic medulla
(13), but this site has numerous medullary epithelial cells in
addition to DCs (14).

 

Markers for DCs in the T Cell Areas.

 

To identify and iso-
late the cells which expressed high levels of MHC II–self
peptide complexes from lymph nodes, we first stained sec-
tions with a panel of monoclonals which react with isolated
mature DCs but not with T cells and thymocytes. T cell areas
contained many profiles which labeled for (

 

a

 

) a panel of
mAbs which react with antigens within intracellular gran-
ules of mature DCs and are termed 2A1 (8), M342 (15),
and MIDC-8 (16); (

 

b

 

) the CD11c integrin which is abun-
dant on DCs (17, 18), and (

 

c

 

) the DEC-205 multilectin re-
ceptor expressed by DCs (19–21). The expression of each
antigen was weaker (2A1) or not detected (CD11c, DEC-205,
M342, and MIDC-8) on B cells. Antigen-presenting (MHC
II, invariant chain) and costimulatory (CD54 and CD86)
molecules also were prominently displayed on dendritic
profiles in the T cell areas (not shown, but for reviews see
references 11 and 22).

Fig. 2 illustrates the distribution of the 2A1 staining. This
monoclonal stains granules within isolated mature DCs as
described (8), but the molecule expressing the 2A1 antigen
has yet to be identified. In sections, strong staining is seen
on many profiles in the T cell areas, with weaker staining
in the B cell areas. However, 2A1 staining is not seen on
most DCs which are isolated by earlier methods from
spleen and lymph node. Two other mAbs, M342 (15) and
MIDC-8 (16), also do not stain freshly isolated less mature
DCs but only stain after the cells have been cultured over-
night.

 

Isolation of Cells Carrying the Markers of T Cell Area
DCs.

 

By emphasizing the use of Ca

 

2

 

+

 

-free media (23),
we were able to release and enrich (on BSA columns) cells
with all the above markers of T cell area DCs from lymph
nodes. Standard dissociation procedures with collagenase
yielded very few cells that stained for DEC-205, CD11c,

Figure 1. Stronger staining for MHC–self peptide complexes in lymph
node T cell (T) vs. B cell areas (B). Double labeling for Y-Ae (blue) and
CD8+ T cells (brown).
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Table 1.

 

Calcium-free Media Increase Yields of Lymph Node DCs

 

Tissue/medium

 

n

 

Total cells (

 

3

 

10

 

7

 

) Percentage of low density Percentage of CD11c

 

1

 

*

 

Lymph node, Hanks 2 2.31 

 

6

 

 0.45 2.4 

 

6

 

 0.02 0.04 

 

6

 

 0.05
Lymph node, Ca-free 7 2.32 

 

6

 

 0.25 3.0 

 

6

 

 0.59 0.84 

 

6

 

 0.11
Spleen, Hanks 3 19.6 

 

6

 

 0.9 8.8 

 

6

 

 0.89 0.67 

 

6

 

 0.06 (10.6)
Spleen, Ca-free 7 20.0 

 

6

 

 1.5 4.3 

 

6

 

 0.78 0.95 

 

6

 

 0.19 (22.0)

 

*

 

In spleen, the percentages of T cell area DCs are in parentheses and correspond to the percentage of DEC-205 or CD8 positive cells in the CD11c

 

1

 

fraction.

Figure 3. Enrichment of lymph node cells (see Materials and Methods) with many markers of T cell area DCs: MHC II, DEC-205, M342+ and
MIDC-8+ granules, and B220+ B cells. Typical DCs (black arrowheads) and B cells (white arrowhead) are present.

Figure 2. Staining for the 2A1 antigen which is abundant in DCs in lymph node T areas. (a and b) Low and high power views for macrophages (sia-
loadhesin+) in the subcapsular sinus (arrows) and medulla (brown) and the 2A1 antigen in the deep cortex (T area) and to a less extent B cell follicles (blue).
(c) The deep cortex with several venules (*) is stained for the 2A1 antigen (brown) and counterstained with hematoxylin.
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or the 2A1, M342, and MIDC-8 granule antigens which
are found on T cell area DCs (Fig. 2). However Ca

 

2

 

+

 

-free
media increased the yield of CD11c

 

+

 

 cells 25-fold from
lymph node (Table 1). The large cells had all the markers of
T cell area DCs, including large cell size, irregular shape,
abundant MHC II, DEC-205, and granule antigens (Fig.
3). Most other low density cells were smaller, CD11c

 

2

 

B220

 

+

 

 B cells (Fig. 3, 

 

right

 

). Few macrophages were
present, by cytology or staining for SER-4 (24) and F4/80
(12) antigens.

The use of Ca

 

2+

 

-free media followed by flotation on
dense BSA allowed the isolation of cells which were B220

 

2

 

(not B cells) but had very high levels of Y-Ae MHC–peptide
complex, higher than the B220+ B cells (Fig. 4 A, compare

populations with black and white arrows). The Y-Ae+ cells
were only found in mice which expressed both I-Ab

(C57BL/6) and the I-Ea peptide (BALB/c)(Fig. 4 A). If the
low density cells from BALB/c 3 C57BL/6 F1 mice were
double labeled for B220 and either CD11c integrin or
Y-Ae, it was clear that CD11c high and Y-Ae high popula-
tions (Fig. 4 B, black arrow), were B2202. The B220+ cells
had little or no CD11c but intermediate levels of Y-Ae. By
sorting cells into CD11c+ B2202 and CD11c2 B220+ frac-
tions, we were able to obtain 98% pure populations of DCs
and B cells, respectively.

The CD11c+ cells were then labeled with a panel of
mAbs to ensure that they carried the markers of T cell area
DCs and to look for other cell-specific and costimulatory

Figure 4. Double labeling of lymph node, low density cells for CD11c integrin, B220 and Y-Ae. (A) In bulk lymph node suspensions, most of the
Y-Ae+ cells are B220+ and only found in the appropriate mouse strain, BALB/c 3 C57BL/6 (white arrow), but by enriching DCs in a fraction with a low
buoyant density, a B2202 population with very high levels of Y-Ae emerges (black arrow). (B) Double labeling with B220 and either CD11c or Y-Ae to
show the DCs (black arrowheads) and B cells (white arrows).

Figure 5. Double labeling of lymph node
and spleen for CD11c or Y-Ae on the y axis
and a panel of mAbs on the x axis. All cells
were fixed in formaldehyde and permeabi-
lized with saponin to reveal predominantly
intracellular antigens like DEC-205 and
2A1 (see Fig. 6). In lymph node, many
CD11c+ cells and the strongest Y-Ae+ cells
express the markers of T cell area DCs (black
arrows). In spleen, only a subset of CD11c+

cells, but all the strong Y-Ae+ cells, carry
markers of T cell area DCs (black arrows).
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molecules. CD11c+ lymph node cells carried the same
markers as DCs in sections of T cell areas (Fig. 5, top row,
black arrows). DEC-205, 2A1, and MIDC-8 (latter not
shown) were all abundant on most CD11c+ cells, as was
CD86, CD54, CD40, and MHC I (latter not shown). The
phagocyte markers, SER-4/sialoadhesin and RB6/GR-1,
were not expressed, and the T cell markers, CD8 and
CD4, were weak on most profiles (Fig. 5). In mesenteric
nodes, or in peripheral lymph nodes stimulated with in-
complete Freund’s adjuvant, most of the cells with T cell
markers had high levels of CD11c, whereas with unstimu-
lated peripheral lymph node (axillary, inguinal, and cervi-
cal), many of the DCs had intermediate levels of CD11c
(not shown).

In the spleen (Fig. 5), two populations of CD11c+ cells
were evident. About 50% expressed high levels of CD8 and
DEC-205, but only a fraction had high levels of 2A1. The
CD11c-rich cells had the highest levels of the CD86,
CD54, and CD40 accessory molecules (Fig. 5). We con-
clude that the majority of CD11c+ cells that were released
under Ca2+-free conditions from lymph node, and to a

lesser extent spleen, carried the DC markers which were
found in sections through the T cell areas.

Expression of the MHC II–Peptide Complex Recognized by
Y-Ae mAb. Semiquantitative FACS  data on the markers
of cells expressing the I-Ab/I-Ea, MHC II-peptide com-
plexes were then obtained. The cells with the highest label-
ing for Y-Ae in lymph node (Fig. 5, black arrows) carried all
the markers of T cell area DCs (CD11c, high MIDC-8,
DEC-205, and 2A1), as well as the highest levels of MHC
I, CD40, CD54, CD86, and heat stable antigen. This was
especially impressive in spleen where the cells with the
most abundant Y-Ae were exclusively those with the
DEC-205 and 2A1 DC markers (Fig. 5, black arrows).

To identify cells with strong staining for DEC-205,
granule antigens like 2A1 and MIDC-8, and the lysosomal
markers CD107a (LAMP-1) and CD68, it was necessary to
permeabilize the cells with saponin before staining. The
different staining results with fixed and fixed permeabilized
cells are illustrated in Fig. 6 (compare F with FP).

To rule out acquisition of I-Ea peptide from B cells, we
stained DC suspensions which lacked B cells, i.e., DCs
from epidermis (9) and from bone marrow–progenitors (8).
Both epidermal (Fig. 7 A) and bone marrow–derived (Fig.
7 B) DCs expressed high levels of Y-Ae and the CD86 co-
stimulator. Again only the cells from the appropriate mouse
strain (C57BL/6 3 DBA/2 F1 vs. C57BL/6) expressed the
Y-Ae epitope.

Presentation of the Y-Ae Epitope to T-T Hybridomas.
FACS -purified, CD11c+ B2202 DCs and CD11c2 B220+

B cells were used to present the Y-Ae epitope to two T-T
hybrids which recognize I-Ab/I-Ea peptide complexes
(10). The DCs were .30-fold more potent in inducing IL-2
release and inducing the hybridomas to stop synthesizing
DNA (Fig. 8 A), an indication of apoptosis (25). To verify
that apoptosis had taken place, the cells were stained with
propidium iodide and shown to have high levels of hypo-
diploid profiles 24 h after stimulation with DCs from the

Figure 6. Markers of T cell area DCs are identified after saponin per-
meabilization. Low density, lymph node cells, fixed with HCHO (F) or
fixed and permeabilized with saponin (FP), were stained with biotin Y-Ae
(y axis) and mAbs (x axis). DEC-205, CD107a (LAMP-1), and CD68 are
all found in the endocytic system.

Figure 7. DCs which have not been exposed to B cells express high levels of the Y–Ae, MHC–peptide complex. DCs were isolated from cultures
which lack B cells, epidermal cells (A) and bone marrow stimulated with GM-CSF (B). In each instance, the DCs have high levels of CD86 and MHC II
or MHC II–self peptide complexes.

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/186/5/665/968804/97-1016.pdf by R
ockefeller U

niversity user on 29 July 2020



670 High Levels of an MHC II–Self Peptide Complex on Dendritic Cells

appropriate strain of mice (Fig. 8 B, compare B6D2 with
B6 DCs).

Discussion

An obstacle to the study of antigen presentation in vivo
is the difficulty in isolating DCs from lymph nodes, the
major organs in which immune responses are generated.
This obstacle is paradoxical since sections of T cell areas
contain many cells with features of DCs (Fig. 1 and 2; for
reviews see references 3–5). In contrast, spleen yields many
DCs, yet T cell areas represent a much smaller proportion
of spleen than lymph node. Many of the DCs which are re-
leased from spleen emanate from the periphery of the white
pulp (17, 18) and must be cultured to develop the proper-
ties of T cell area DCs, such as high expression of MIDC-8,
2A1, and M342 positive granules, DEC-205, and MHC II
and CD86 (15, 22). A subset of spleen DCs which carries
CD8 and has a regulatory role, dampening T cell responses,
was identified using Ca2+-free media (23, 26, 27). By em-
phasizing Ca2+-free media, lymph node cells which have all
the properties of T cell area DCs can be isolated, although
CD8 expression is weak.

Functional assays with cells from different tissues have
shown that DCs are the main cell type which carries for-
eign (28–31) and self (32) antigens. However, strong APC
function may reflect either high levels of MHC–peptide
complexes (“signal one”) and/or an abundance of T cell
adhesion and costimulatory molecules (“signal two”), e.g.,
ICAM-1/CD54 and B7-2/CD86. Our data indicate that
both signal one and two are abundant on T cell area DCs.
The Y-Ae monoclonal directly shows that peripheral DCs
are presenting MHC II–self peptide complexes in high
amounts, and that these DCs can induce cell death in T-T
hybridomas which are specific for the MHC II–self peptide
complex. Death of T cell hybridomas occurs when DCs
present foreign antigens to T-T hybrids as well (our un-
published observation).

Kurts et al. (33) recently reported functional data that an
MHC I–self peptide complex from pancreatic islet b cells is
expressed on bone marrow–derived APCs in the draining
lymph node. They have since shown that these APCs me-
diate peripheral tolerance (34). DCs have long been con-
sidered as adjuvants for responses to foreign antigens, but it
is possible that some T cell area DCs can have a regulatory
or tolerizing role, perhaps by the expression of fas-ligand, as
suggested by the data from Suss and Shortman (26). The

Figure 8. Sorted lymph node DCs are potent APCs for IL-2 release
and death of Y-Ae-specific, T-T hybridomas. Function is shown for sorted
DCs and B cells from C57BL/6 and B6 3 D2 F1 mice. (A) The response
was measured as IL-2 release (bottom, proliferation of conA blasts) or 3H-
TdR uptake (top) by the T-T hybrid, the latter being reduced by apopto-
sis. j, C57BL/6 B cells; h, B6D2F1 B cells; --d--, C57BL/6 DCs; --s--
B6D2F1 DCs; s, None. (B) Apoptosis was measured by identifying hy-
podiploid profiles using propidium iodide staining. Extensive apoptosis
occurs when the DCs are from B6D2 mice which express the Y-Ae
epitope.
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immune responses when presented on DCs which have

been allowed to mature in vitro (35, 36), yet the same anti-
gens can be tolerogenic in vivo (37–39). Therefore DCs
should be assessed in the regulation of autoreactivity and
not just immunogenicity to foreign antigens.
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