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 G-proteins regulate several cellular processes and, when defective, have been associated with 

multiple endocrinal disorders. Heterotrimeric G-proteins are comprised of α, β, and γ subunits that are 
regulated through the binding of GDP (resting state) or GTP (active state) to the α-subunit, a process 

that is typically accelerated by membrane bound guanine nucleotide exchange factors (GEFs), such as 

G protein couple receptors (GPCRs). Ric-8A is a ∼60-kDa cytosolic protein that has been demonstrated 

to act not only as a GEF but as a molecular chaperone for the Gα i, q and 12/13 subunit families. Both 
Ric-8A GEF and chaperone activities are accelerated by phosphorylation at its C-terminus by casein 

kinase II. The structural mechanisms by which Ric-8A functions as a GEF and a molecular chaperone 
are poorly understood. We were able to isolate Ric-8A in complex with nucleotide-free Gα subunit for 

structural studies. We have determined a near atomic-resolution (~4 Å) structure of phosphorylated 
Ric-8A bound to nucleotide free Gαi1 using single-particle cryo-electron microscopy (cryo-EM). To 

facilitate Cryo-EM structure determination, the Ric-8A:Gαi1 complex was determined in accompany 
with four single-domain antibodies. The structure provides novel insights into elevated Ric-8A GEF 

activity from phosphorylation at the C-terminus along with mechanistic details of how Ric-8A 
moderates structural elements around the nucleotide binding sites of G proteins to promote GDP 

release. The work presented here provides a novel mechanism for G-protein activation. 
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1.1 A brief introduction to proteins. 

Proteins are the most versatile macromolecules that reside in living systems and are essential in almost 

all biological processes. Proteins can function as catalysts, transport molecules, store other molecules, 

provide mechanical support, and transmit nerve impulses. Each type of protein has a unique structure 

that allows for diversity in their function (1). Proteins contain grooves and bulges on their surfaces that 

are necessary for specific protein-DNA/RNA interactions and protein-protein interactions. These 

grooves and bulges of proteins occur from different combinations of α-helical and β-sheet polypeptide 

chains that form the secondary structure. Polypeptides are made up of different sequences from the 20 

types of amino acid molecules that ultimately define the properties of a protein. This dissertation will 

focus on protein to protein interaction and structure in regards to cell signaling mechanisms for G-

proteins. 

 

1.2 Introduction to cell signaling and G-Protein Coupled Receptors. 

Cells in a multicellular organism experience constant bombardment from a variety of extracellular 

signals that have to be interpreted and translated into the appropriate response for their environment. 

These signals can either be soluble factors that are generated locally such as in synaptic transmission, 

or distantly such as with hormones and growth factors. Cells have to maintain a diversity of receptors 

to respond appropriately to the individual stimuli that they may experience. As such, there are several 

major classes of receptors that include G-protein Coupled Receptors (GPCRs), ligand gated ion 

channels, integrins, receptor tyrosine kinases, and cytokine receptors (2). GPCRs are the largest family 

of receptors and can be found in many organisms from fungi to animals. GPCRs have seven 

transmembrane spanning segments where the N-terminus of the protein resides outside the cell, and C-

terminus in the inside of the cell. GPCRs bind a very diverse set of ligands ranging from proteins, small 

molecules, hormones and drugs that are recognized by the N-terminus of the protein and/or by a pocket 

formed by the extracellular and intracellular domains. The binding of an agonist to a GPCR initiates the 

G-Protein cycle transducing a signaling cascade and then acting to terminate the signal (3). Based on 

the characteristics of this project, the G-protein cycle will be discussed in further detail.   
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1.3.1 The G-Protein Cycle in cell signaling 

Heterotrimeric G-proteins are comprised of α, β, and γ subunits that reside in an inactive state when the 

α-subunit is bound to guanosine diphosphate (GDP) and are activated when GDP is exchanged for 

guanosine triphosphate (GTP) on the α-subunit. The binding of an agonist to a GPCR induces a 

conformational change that causes the GPCR to act as guanine nucleotide exchange factor (GEF) 

which accelerates the release of GDP from the α-subunit and allowing for binding of GTP (4). Binding 

of GTP to Gα causes the dissociation of the βγ subunits that then can act on downstream signaling 

effectors (5). GTP bound to the Gα subunit is then hydrolyzed to GDP, resulting in deactivation, a 

process accelerated by GTPase activating proteins (GAPS). This is depicted in Figure 1.1. 

 

Figure 1.1) Overview of the G-protein cycle. Figure obtained from reference (6).  

 

 

 



4 
 

1.3.2 Different Classifications of heterotrimeric G-protein alpha subunits 

Heterotrimeric G-proteins are classified based on the sequence and functional similarities of the Gα 

subunits. They are grouped into four different families: Gαs, Gαi, Gαq, and Gα12. The Gαs family 

contains two members that include Gαs and Gαolf where the s stands for stimulation and olf for 

olfactory. Gαs is expressed in most cells, while Gαolf is expressed only in olfactory sensory neurons 

(7). Members of the Gαs family interacts directly with adenylate cyclase to simulate the production of 

cyclic-adenosine monophosphate (cAMP) (8). Gαi is the largest and most diverse family consisting of 

Gαi1, Gαi2, Gαi3, Gαit, Gαo, Gαz, and Gαg which are present in most cells (7). Gαi (i representing 

inhibitory) inhibits production of cAMP by interacting directly with adenylate cyclase (9). In humans, 

the Gαq family is comprised of four different classes: Gα16, Gα11, Gα14 and Gαq. Gα16 and Gα14 are 

expressed in hematopoietic cells or in kidney cells, while Gαq and Gα11 are expressed ubiquitously 

(7). Gαq interacts with isoforms phospholipase Cβ (PLCβ) which results in an increase in intracellular 

Ca2+ and activation of protein kinase C (10, 11). The Gα12 family is comprised of Gα12 and Gα13 

which are expressed ubiquitously (7). Gα12 interacts with a small subset of RhoGEFs which includes 

p115 RhoGEF, LARG, and PDZ-RhoGEF, that activate the small GTPase Rho (12, 13, 14). 

 

1.3.3 Lipid modifications of Heterotrimeric G-protein alpha subunits 

Gα subunits are N-terminally modified by covalent attachment of the fatty acids myristate (14 carbon 

fatty acid chain) and/or palmitate (16 carbon fatty acid chain). N-myristoylation of Gαi occurs co-

translationally at a glycine at the N-terminus following removal of the initiator methionine (15). All Gα 

subunits, except Gαt, can undergo reversible palmitoylation to a cysteine near the N-terminus via a 

thioester bond (15). Lipid modification for Gα subunits is important for their proper membrane 

localization as palmitoylation results in the stable attachment of Gα to the cellular membrane (16). 

Myristoylation contributes to membrane localization, though interestingly, the expression of 

myristoylated Gαi/o results in a substantial portion in the cytosolic fraction, while palmitoylation still 

resulted in membrane retention (17,18,19). Palmitoylation and/or myristoylation of Gα subunits affects 

their interaction with their effectors and localization to specific cell membrane regions (20, 21, 22, 23). 
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1.3.4 Structure of heterotrimeric G-protein alpha subunits 

The alpha subunit of heterotrimeric G-proteins contains two domains: The Ras-like and the Helical 

domain. The Ras-like domain consists of a six-stranded β-sheet with five helices and contains switch I, 

II, and III regions that undergo differing conformational changes in the presence of GDP, GTP, and 

other nucleotide adducts with GDP and GTP stabilizing alternate conformations (24, 25, 26, 170). GTP 

binding restrains and stabilizes the Gα switch regions, especially switch II, that provides a stable 

surface for interactions with effectors and inhibiting interactions with Gβγ subunits. Upon GTP 

hydrolysis, the switch regions become flexible, especially switch II, which results in a conformation 

that allows for interaction with Gβγ subunit in an inactive state. In complex with Gβγ, the switch II 

region now becomes rigid (27). The helical domain is a six helical bundle with postulated roles as an 

effector recognition domain (28), increasing GTP binding (29), functioning as a tethered intrinsic 

GTPase activating protein (30, 31), regulating Gα oligomerization (28, 30), and participating in the 

inactive-active conformational transitions of Gα (32). 

 

Together, the helical and ras-like domains are held together by two flexible linkers that form a deep 

pocket for binding guanine nucleotides (33) where the nucleotide interacts with five conserved 

sequence motifs labeled G1-G5 (for G-binding) that show universally conserved structure and function 

(34). A diphosphate binding loop (P-loop or G1), containing the sequence GxxxxGK(S/T), contacts the 

α- and β-phosphates of the guanine nucleotide and connects the β1 strand to the α1 helix. G-proteins 

containing the P-loop motif are described as the “P-loop containing nucleotide triphosphate hydrolase 

superfamily”. The G3 loop, with the sequence of DXXG, located at the N-terminus of switch II links 

the sites required for binding the γ-phosphate of GTP and Mg2+. The guanine ring is recognized by the 

NKXD sequence of the G4 loop that links the β5 strand and the α4 helix. The G2 loop corresponds to 

the switch I, which connects the helical domain to the β2 strand, contains a conserved threonine residue 

that functions in Mg2+ coordination. The G5 loop located between the β6 and α5 helix and containing 

the consensus sequence (T/G)(C/S)A, supports the guanine recognition site (35). The structure of Gαi1 

bound to GTP is shown in Figure 1.2 and the nucleotide interactions are shown in Figure 1.3. 
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Figure 1.2) Crystal structure of Gαi1 bound to GTP from PDB (1GIA) made in pymol. The helical 
domain is shown in cyan and the Ras-like domain is shown in green. The switch regions are colored in 

red and are labeled with their corresponding numbers. The secondary elements are labeled, the 
magnesium ion is shown as a blue sphere and GTP is shown as a stick. The labeling of the secondary 

elements follows the convention that has been configured for the alpha subunit of heterotrimeric G-
proteins. Helices in the helical domain are labeled from a-f. In the Ras-like domain, helices are 

numbered 1-5 and the beta sheets are labeled 1-6 from the N-to-C terminus. Switch I and II become 
disordered when bound to GDP.   
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Figure 1.3) The Ras-like domain for Gαi1 from PDB (1GIA) made using pymol. The conserved motifs 
that make up the polypeptide loops interact with the guanine nucleotide are shown in cyan, while GTP 

is shown cyan, while GTP is shown as a stick model. The magnesium ion is shown as a green sphere in 
the model.  

 

1.4: Regulation of G-proteins by Receptor-independent GEFs   

As described above, the nucleotide-binding pocket of G-proteins are very conserved, where the binding 

of GDP and GTP proceeds through a conserved manner. This has generally been described as a 

“switch” mechanism, where loading and unloading of guanine nucleotides takes place in the Ras 

domain of G-proteins. The Ras domain essentially acts as a platform for nucleotide binding and also 

functions in intrinsic GTP hydrolysis (a slow process) (35). The G-protein nucleotide is tucked in 

between the switch I and switch II regions. The switch regions together with the P-loop or G1 interact 

with the phosphates of the nucleotide and coordinate with a magnesium ion. The magnesium ion and 
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phosphates are required for high affinity binding of the nucleotide to the G-protein (36). G-proteins 

have a high affinity for GDP, that in some cases can be in the picomolar range (high nanomolar range 

for Gα), which results in a very slow dissociation of GDP from the nucleotide binding pocket. GEFs 

function essentially to weaken the G-protein’s affinity for GDP (36, 37) resulting in the loss of GDP.  

Cellular GTP is present at much higher concentrations in a cell, and thus, is readily available to bind to 

the G-protein resulting in dissociation of the bound GEF and activation of the G-protein (38). A 

generalized reaction scheme for GEFs is shown in figure 1.4. 

 

The GEFs of Gα are typically membrane-bound GPCRs (171) that bind as far as 30Å away from the 

GDP binding region. This binding introduces a conformational change that triggers the release of GDP 

(4). The displacement of the α5 helix of Gα was shown to be 6Å toward the receptor breaking its 

contact with the α1 helix, while the helical domain separated away from the ras-like domain of Gα (4). 

The α1 helix of Gα contacts the N-terminal part of the α5 helix, helical domain, and GDP. Upon GPCR 

binding, α1-α5 contacts disintegrate disrupting the structural integrity of the α1 helix. As the α1 helix 

becomes flexible, contacts between α1, GDP, and the helical domain are lost, resulting in the loss of 

contacts with GDP resulting in decreased affinity for GDP (172).  

 

While canonical regulation of guanine nucleotide exchange for G-proteins is typically thought of in 

regards to G-protein coupled receptors, receptor independent GEFs have been described over the past 

two decades. In contrast to GPCR mediated nucleotide exchange, receptor independent GEFs reside in 

the cytosol instead of being at the cellular membrane (37).Several research groups have worked to 

elucidate the mechanisms of GEF activity toward small G-proteins of the Ras family, where work has 

primarily focused on static binary complexes between GEFs and G-proteins (39, 40, 41, 42, 43).  These 

studies have revealed that most of the catalytic domains of the various types of GEFs are structurally 

unrelated and interact very differently with the G-protein. For example, CDC25-HD of SOS was shown 

to contact the switch II region and pry open the G-protein nucleotide site using an α-helical wedge (39), 

while RCC1 used a β-turn on top of a β propeller for insertion into the nucleotide binding site (41). 

Despite the very different mechanisms between these GEFs, they follow a common theme of sterically 

impeding the magnesium binding site by changing the position of an alanine side chain in the DTAG 

motif of switch II or by inserting residues into the nucleotide binding site. Thus, the common action of 

GEFs has been proposed that they function to reconfigure the phosphate-binding site, while leaving the 
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base binding region mostly unperturbed, that ultimately results in the reduction G-protein’s affinity for 

GDP (38). 

 

Figure 1.4) The reaction scheme for a general GEF is shown. A G-protein bound to GDP interacts with 
a GEF to form a temporary complex comprised of the G-protein, GDP, and the GEF. The GEF induces 

conformational changes that results in the loss of GDP forming a binary nucleotide free complex 
comprised of G-protein and GEF. GTP, present at much higher concentrations in the cell, readily binds 

to the nucleotide free complex resulting in the dissociation of the GEF and activation of the G-protein.  

 

1.5.1: Discovery of Ric-8 and its involvement in G-protein signaling 

The Ric-8 (resistance to inhibitors of cholinesterase) gene was first identified in a Caenorhabiditis 

elegans ric genetic screen that was utilized to find mutants that exhibited reduced acetylcholine release. 

Acetylcholine is a neurotransmitter released by motor neurons of the nervous system to activate muscle 

contraction at the neuromuscular junction. C. elegans containing ric mutations are able to avoid the 

neurotoxic effects of the drug aldicarb, an inhibitor of acetylcholinesterase, that causes the toxic 

accumulation of synaptic acetylcholine (44). Later, it was determined in C. elegans that Ric-8 genes 

positively influenced synaptic neurotransmission and were found to include components of the G-

protein signaling pathway, where the components included Gαq/egl-30, RGS/egl-10, and unc-13, a 

protein that regulates synaptic vesicle priming in response to diacylglycerol. The Ric-8 gene was found 

to encode a ~ 60 kilodalton protein that is often referred to as synembryn to reflect the dual roles of the 

protein in synaptic transmission and in early embryogenesis. Interestingly, ric-8 mutants were epistatic 

with the egl-30 gene which indicated the potential to be either acting upstream or in a parallel pathway 

with Gαq (45). In conjunction with being epistatic toward the egl-30 gene, later studies demonstrated 

that Ric-8 was also epistatic with Gαo, Gαs and adenylyl cyclase genes in c.elegans (46, 47, 48). The 

work performed in C. elegans demonstrated that the Ric-8 gene was involved in positively regulating 

three different G-protein signaling pathways.   

 

1.5.2: Different Ric-8 isoforms interact directly with different classes of Gα subunits 

There is only a single Ric-8 gene copy present in fungi (except Saccharomyces cerevisiae), flies, 

worms, and slime molds, while two distinct genes of Ric-8 (Ric-8A and Ric-8B) are found in frogs, 
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mammals, and fish. Phylogenetic analysis between differing components of G-protein signaling 

pathways have suggested that Ric-8 mediated regulation of G-protein pathways appeared after GPCR 

signaling during eukaryotic evolution (49). The first real insights into Ric-8’s function in regulating G-

protein signaling pathways came from pull-down experiments and yeast two-hybrid screens, where 

Ric-8 was found to interact directly with Gα subunits (50, 51, 63). Interestingly, it was determined that 

Ric-8A and Ric-8B exhibited preference for differing Gα isoforms. Ric-8A shows a preference for 

interacting with Gαi, Gα12/13, and Gαq forms, while Ric-8B interacted with Gαs and Gαq. Ric-8A was 

demonstrated to interact with Gα bound to GDP relative to Gα bound to GTP (51). 

 

1.5.3:  Ric-8 acts as a molecular chaperone for Gα subunits in vivo 

One of the essential cellular functions of Ric-8 is to regulate the proper expression levels of Gα 

subunits by acting as a molecular chaperone ensuring proper folding of Gα subunits. Indeed, the first 

observations that Ric-8 may function as a molecular chaperone for Gα subunits came as a result of 

disrupting the Ric-8 gene and RNAi treatment in Drosophila cells which resulted in a decrease of Gα 

subunits localized at the plasma membrane (51, 52, 53).  These studies were further demonstrated again 

in multiple other model organisms ranging from filamentous fungi to mice and human cell lines (54, 

55, 56).  Most of these experiments have centered around genetic disturbances ranging from 

overexpression and reduction methods that include transgenic disruption, RNA interference, and 

isolation of hypomorphic alleles (57). 

 

Ric-8 chaperone activity has been shown to occur at a very early stage in G-protein biosynthesis. One 

possibility for Ric-8’s ability to regulate G-protein levels in a cell was at the transcriptional level. 

Though, this form of regulation by Ric-8 was discounted by a few studies, where it was observed that 

Ric-8A and Ric-8B knockouts in mice and Ric-8 knockouts in neurospora had no effect on the levels 

Gα transcript levels (58, 59). Studies in mouse Embryonic Stem cells (mES) containing Ric-8A 

knockouts indicated that newly synthesized Gαq and Gαi subunits were defective, where they were 

primarily located in the cytosol. Gα subunits residing the in the cytosol in the Ric-8A knockout mES 

cells were found to be degraded much more quickly than those of the wild-type mES cells (59). One 

study using a cell-free expression system containing endogenous Ric-8A or lacking endogenous Ric-8A 

showed that the Gα subunits were indeed misfolded and addition of Ric-8A to Ric-8A depleted extracts 

restored Gα function (60). Ric-8 was also found to inhibit polyubiquitination of Gα subunits (61, 62), 
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preventing degradation from the default ubiquitin proteasome pathway for misfolded proteins. Based 

on in vivo experiments performed for Ric-8, it is clear that the protein is required for proper regulation 

of G-protein levels and does so, by acting as a molecular chaperone for Gα subunits. Figure 1.5 

displays the potential mechanism of Ric-8 induced chaperone activity. 

 

1.5.4: Ric-8 functions as a cytosolic GEF toward Gα subunits in vitro 

Ric-8 has been demonstrated to function biochemically as a GEF toward Gα subunits in vitro. Ric-8 

binds to Gα:GDP and accelerates the release of GDP from Gα. Upon GDP release, Ric-8 acts to 

stabilize a nucleotide free intermediate of Gα. GTP binds to nucleotide free Gα that then results in the 

activation of Gα and the release of Ric-8. Thus, Ric-8 functions as expected for a GEF (38, 63, 64) 

(shown in Figure 1.5). Much work has been performed to understand the underlying mechanism of Ric-

8 induced GEF activity toward Gα subunits, especially in the way of kinetic studies. Ric-8A GEF 

activity follows standard Michaelis-Menten kinetics to promote GDP release from Gα along with 

observed GTPγS binding (57, 65). Interestingly, steady-state GTP hydrolysis assays have shown that 

excess Ric-8 to Gα substrate are required to achieve to maximal activity. Ric-8 exhibits high-affinity 

for Gα nucleotide free states and thus, very high GTP concentrations are required to drive the steady-

state GTPase assays in the forward direction, i.e. dissociation of Ric-8 from Gα. Due to the high 

concentrations of GTP required to drive the forward reaction, steady-state GTPase assays only provide 

a relative estimate of Ric-8’s GEF activity. Ric-8 also has a much-lower and measurable activity toward 

Gα bound to GTP (57, 64). While work has been done to elucidate the kinetics of Ric-8, the physical 

mechanism of Ric-8 induced GEF activity has remained poorly characterized largely in part due to the 

lack of structural information pertaining to Ric-8 and a nucleotide-free Ric-8:Gα complex (57). 

However, very recently work has been performed structurally for Ric-8 and this will be discussed in a 

later section. 
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Figure 1.5) Models showing the Gα subunit molecular chaperoning and GEF activities of Ric-8. The 
domains on Gα are labeled as Ras for Ras-like and AHD for alpha helical domain. This figure was 

obtained from reference (57).  

 

1.5.5: Casein Kinase II phosphorylation of Ric-8A enhances GEF and chaperone activity 

Protein Kinase CK2 (formerly referred to as casein kinase 2) is a highly conserved serine and threonine 

kinase that recognizes the consensus sequence, (Ser-Xaa-Xaa-Acidic where the acidic residue may 

either be glutamate, aspartic acid, pSer, or pTyr), for phosphorylation of its subsrate (66, 67). CK2 is 

ubiquitously expressed in a variety of eukaryotic cells and is located in multiple cellular compartments 

such as the nucleus, cytoplasm, endoplasmic reticulum, and the golgi apparatus (68). CK2 consists of 

two 44 kilodalton catalytic subunits (CK2α) and two 26 kilodalton regulatory subunits (CK2β) where 

the kinase may function as a monomeric kinase or as a tetrameric complex (69). CK2 phosphorylates 

numerous cellular targets (70, 71) and as a result, is involved in multiple cellular processes such as 

cancer (72, 73), DNA-damage and repair (74, 75, 76), the ER-stress response (77), apoptosis (78, 79, 

80), regulation of carbohydrate metabolism (81), and angiogenesis (82). 
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Ric-8A has been demonstrated to be phosphorylated by CK2 (83, 84). Using a collision-induced 

dissociation peptide analysis and mass fingerprinting software on CK2 treated E.coli produced Ric-8A 

indicated that Ser 435, Thr 440, Ser 522, Ser 523 and Ser 527 at the C-terminus were phosphorylated 

(84). Further, a flow cytometry interaction assay indicated that phosphorylated Ric-8A exhibited a 20-

fold higher affinity for Gαi1 relative to unphosphorylated Ric-8A (84). Steady state GTPase assays 

indicated that e.coli purified full-length Ric-8A exhibited more GEF activity relative to 

unphosphorylated and insect-cell purified Ric-8A, which showed that phosphorylation at CK2 

consensus sites activated Ric-8A (84). Interestingly, CK2 phosphorylated Ric-8A 1-493, truncated forty 

residues at the C-terminus containing only Ser 435 and Thr 440 present for phosphorylation, exhibited 

greater GEF activity relative to full-length Ric-8A (84). Unphosphorylated Ric-8A 1-493 was also 

shown to be more active than that of full-length Ric-8A (88). Phosphorylation of Ser 435 and Thr 440 

residues by CK2 were further determined to enhance chaperone activity of full-length Ric-8A toward 

Gα subunits in a wheat germ extract translation and folding system (84). In contrast, CK2 

phosphorylated Ric-8A 1-493 exhibited poorer chaperone activity relative to full-length Ric-8A (84). 

Together, this study indicated that CK2 phosphorylation may induce conformational changes that 

enhance Ric-8A induced GEF/chaperone activity. Potentially, Ric-8A enhanced GEF/chaperone activity 

could be a result of an electrostatic charge interaction between the phosphorylated C-terminus of Ric-

8A and Gα subunit that enhances their interaction that otherwise would not be present in 

unphosphorylated Ric-8A. 

 
 

1.5.6: Structural and functional characterization of Ric-8A and Ric-8A:Gα 

Ric-8A’s roles as a dual functioning protein acting as a GEF and a molecular chaperone has led to many 

questions regarding it’s true physical mechanism of activity. While evidence has been presented that 

demonstrates both of these functions, structural support would be truly indispensable. Initially, only 

structural computational models were present for Ric-8A (84, 85), where Ric-8A was predicted to take 

on an entirely helical structure comprised of Armadillo (ARM) repeats. This was further confirmed by 

a 2.2 Å X-ray crystal structure of purified phosphorylated Ric-8A comprised of residues 1-452 (86) 

(Figure 1.6). Ric-8A 1-452 was found to take on a entirely superhelical fold comprising of nine repeat 

units (86). The repeats were not uniform and found to be either a two-helix-bundle of HEAT motifs or 

three-helix ARM motifs with the middle helix serving as a linker between the anti-parallel first and last 

helices of the bundle (86). Among helical repeat proteins, Ric-8A differs as it is comprised of both 
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types of repeat units (86, 87). While Ric-8A was phosphorylated, the last 28 residues were disordered 

and thus, the phosphorylation sites were not observed in the final crystal structure, although ordered 

sulfate ions in the crystal structure enabled prediction of potential Ric-8A binding sites for 

phosphorylated serine and threonine residues (86). Nonetheless, the structure provided useful insights 

into the structure of Ric-8A. 

 

Structural and biochemical studies probing the interactions between Ric-8A and Gα has provided 

insights into the potential physical mechanisms of Ric-8A induced GEF/chaperone activity. The C-

terminus of Gα has been shown to be a binding determinant of Ric-8A (88), where truncation of the Gα 

C-terminus inhibited binding of Ric-8A, furthermore, the C-terminus was also shown to be responsible 

for the preference of different Ric-8 isoforms toward differing classes of Gα. Very recently, X-ray 

crystal structures were determined for the apo form of Ric-8A 1-492 and a complex of Ric-8A 1-426 

with a MBP-tagged C-terminal peptide of Gαt determined at 3.9 Å and 2.5 Å resolution, respectively 

(89) (Figure 1.6). The Ric8A 1-426:Gαt complex structure showed that the C-terminus of Gα binds 

along the concave surface of Ric-8A (89). Earlier hydrogen-deuterium Exchange-Mass Spectrometry 

(HDX-MS) analysis of Ric-8A and Gαi1, confirmed that Ric-8A interacted with the C-terminus of  

Gαi1 and identified switch I and switch II as potential binding sites (90). DEER (electron-electron 

double resonance) spectroscopy studies of the interaction of Ric-8A with Gαi1 indicated that the helical 

and Ras domain of Gai1 pivot as a far as 25Å apart upon Ric-8A binding (91).  While these studies 

have identified the structure of Ric-8A and potential binding sites, it is imperative that a full complex 

structure of Ric-8 and Gα is determined fully using electron microscopy to understand the roles of 

phosphorylation, and to provide insights into Ric-8 GEF/chaperone activity. 
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Figure 1.6) A) Crystal structures of Ric-8A 1-452. The N-terminus and C-terminus of the protein are 

labeled with an N and C. The cylinders represent α-helices. In red and labeled with A are the helices of 
the HEAT repeats or the second helix of an ARM triad. B helices of HEAT repeats or the third helix of 

an ARM repeat are colored yellow, and the first helices of ARM repeats are shown in green. Figure was 
obtained from reference (86). (PDB 6NMJ). B) The complex structure of Ric-8A 1-426 bound to a C-

terminal peptide of Gαt with an MBP tag (PDB 6N85). The cylinders again represent α-helices. Green 
represents the structure of Ric-8A, while yellow represent the MBP-tag, and in red is the C-terminal 

peptide. The C-terminus of Gα interacts in the concave surface of Ric-8A. The figure was prepared in 
pymol.  
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Figure 1.7.1) Single-particle cryo-EM workflow that leads to structure determination. 
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1.6: The aims and objectives of the study 

In order to fully understand the physical mechanism of Ric-8A GEF/chaperone activity, it is very 

important to determine the complete structure of the Ric-8A and Gα complex. Although the structure of 

apo Ric-8A and Ric-8A bound to a Gα C-terminal peptide have been reported, many questions still 

remain unclear. In particular, no structural evidence presented thus far provides any insights as to how 

CK2 phosphorylation of Ric-8A enhances its activity as a GEF and a chaperone, the conformational 

changes that the helical domain undergoes when Ric-8A interacts with Gα, and how Ric-8A affects the 

nucleotide binding pocket of Gα that facilitates the release of GDP.   

 

In this project, Ric-8A and Gαi1 proteins were purified from E.coli, mixed, and complexes were further 

purified for structural analysis by single-particle cryogenic electron microscopy (cryo-EM) while also 

being used in parallel for crystallographic studies. The complexes were stabilized using various 

combinations of nanobodies, small-camelid antibodies, that ultimately resulted in a high-resolution 

cryo-EM map. The EM map was further used for modeling and ultimately, provides insights into Ric-

8A phosphorylation and Ric-8A induced conformational changes of Gα that facilitates GDP release. 

 

1.7: Applicability of Cryogenic Electron microscopy in protein structure determination 

X-ray crystallography has been the most widely used method of choice for determining protein 

structures with over 112,000 protein structures in the protein data bank (PDB) (92). To this day, X-ray 

crystallography is still the preferred method of choice for structure determination (92). Though, cryo-

EM has recently undergone what was termed the “resolution revolution” as the method has improved 

enough to reach near-atomic resolution of macromolecular structures now rivaling that of X-ray 

crystallography (93, 94, 95). The recent progress of cryo-EM has largely been possible due to three 

significant improvements: direct electron detectors, improved sample preparation, and better data 

processing algorithm methods (96, 97, 98). These advancements have further resulted in the structure 

determination of high-resolution structures of very small proteins (less than 100 kilodaltons), which 

was previously not possible (99, 100, 101). Cryo-EM as an alternative method to X-ray 

crystallography, records digital micrographs of biological samples in fully hydrated and native states 

which provides many advantages over X-ray crystallography. A major bottleneck of X-ray 

crystallography lies in the necessity to crystallize the sample as proteins may be refractory toward 

crystallization, especially with membrane proteins and proteins that are inherently flexible (102, 103, 
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104). Cryo-EM circumvents the need to crystallize proteins, only requires a very small amount of 

protein (typically only a few μg), and conformational variability can be determined by computer 

processing (105, 106, 107). 

 

1.7.1: A brief overview of the single particle cryo-EM workflow 

Single-particle EM for a long period of time was typically performed using negative stain, though 

recently developed cryo-EM analytical techniques have become the main techniques for determining 

high resolution structures (107). Typically, the sample is purified to homogeneity at high concentrations 

and is immobilized onto a carbon film grid as a thin film solution, created by blotting. The sample is 

then vitrified using a refrigerant (liquid ethane) at -170oC (108). The immobilized sample is imaged on 

an electron microscope, where low-dose electron beams at low temperatures are passed through the 

sample to obtain images of the sample without causing radiation damage (107, 109). Software packages 

such as EMAN2, Relion, and Cryosparc are used for particle picking, particle alignment, 2D class 

averaging, defocus determination, contrast transfer function (CTF) correction, particle alignment and 

classification to generate an initial 3D model and a refinement process to create a high-resolution 3D 

map of the protein particles at the molecular level (107, 110, 111). Software, such as Phenix, is 

subsequently used to build a model from the 3D map (112). The workflow for Cryo-EM is shown 

below in Figure 1.7.1. 

 

1.7.2: Vitrification or freezing of samples in single-particle cryo-EM 

Sample preparation in cryo-EM involves applying a protein sample onto a glow-discharged carbon film 

grid, blotting, and plunge freezing the sample into a cryogenic liquid, such as liquid ethane, to freeze 

the sample rapidly (114, 115). This method ensures that water molecules surrounding the sample 

remain in place, such that the sample is ideally in its native or hydrated state. Due to how rapid the 

sample is frozen, the water molecules do not have time to form an ordered crystalline lattice, and thus, 

the ice is vitrified or glass-like (116). By vitrifying the sample, the original structure is protected and 

thus, the micrographs of the sample are more representative of the sample. Vitrification of the sample 

also prevents the ice from absorbing electrons allowing for direct observation of the sample (116). The 

sample is also observed using a low-dose range of electrons (10-25 e-/Å2) that minimizes the radiation 

damage caused to the sample (117). Ice-thickness in cryo-EM is an important factor when considering 
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to collect high-resolution data. When the ice is thin, the number of electrons that are scattered is 

reduced, thus they are available to aid in image formation. Though, if the ice is too thin, then the 

particles of interest may not be present. Thick ice introduces more inelastic scattering and thus can 

affect the contrast of the image, and the visualization of the particles in the micrograph, resulting in 

low-resolution. Thick ice also contains particles that are located at different focal heights if the ice is 

much thicker than the particle size, then merging the data leads to a poor envelope function (118). 

Achieving optimal ice-thickness is a crucial bottleneck in obtaining high-resolution data in cryo-EM 

(119). 

 

Another major bottleneck lies at the air-water interface during the vitrification step. As the sample on 

the grid is blotted, the protein sample is exposed to the atmosphere at a high surface-to-volume ratio. 

Macromolecules diffusing freely in such thin films have been proposed to collide with the air-water 

greater than 1000 times per second when the film is less than 100 nm thick (120, 121). This, in turn 

may cause the particles to adsorb to the air-water interface and become denatured immediately or for 

the particles to adopt a “preferred orientation”, where only one view is present in the micrographs (122, 

123). Many methods have been shown to reduce the deleterious effects of the air-water interface. The 

addition of detergents to the sample before vitrification has been shown to be very beneficial for 

sample stability. The detergents are proposed to form a monolayer at the air-water interface that 

interacts with the proteins before they may arrive at the air-water interface (120). Immobilizing the 

protein sample onto an affinity support through the use of antibodies, affinity tags, and polylysine has 

been widely adopted (120, 124, 125). Changing the carbon film to a graphene type of film has proved 

useful for stabilization of cryo-EM samples from the air-water interface by providing an adherent 

surface for the sample. Though, using graphene supports come at the cost of introducing background 

noise, increased movement during imaging, potential contamination, and uncontrolled specimen-

surface forces (126). Thus, overcoming the negative effects of the air-water interface is a major hurdle 

in achieving high-resolution data. 
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1.7.3: Principles of the transmission electron microscope 

Transmission electron microscopes (TEMs) utilize high energy electrons (100 keV or higher) to form 

an image of a very thin object (127). Electrons are scattered very strongly by matter which occurs as 

either inelastic or elastic scattering. Elastic scattering occurs when there is no loss of energy from the   

primary incident electron. Elastically scattered electrons can change their direction, though the 

wavelength of these electrons do not change, as there was no energy loss. Inelastic scattering occurs 

when there is an interaction between matter and the electron, which results in the loss of energy from 

the primary incident electron. The energy may end up being transferred to the sample, and this loss of 

energy from the electron results in the electron having a longer wavelength (128). 

 

The paths of the electrons in the microscope can be bent with magnetic lenses so that an image is 

created onto a viewing screen or on the detector. Electrons have a much shorter wavelength compared 

to visible light; thus, they are capable of achieving much higher resolution. The theoretical resolution 

achievable by an electron microscope is at 0.037 Å for electrons accelerated at 100 kV based on the de 

Broglie wavelength. Unfortunately, microscopes today have only been able to achieve resolutions in 

the range of 1-2 Å due to the aberrations in the lens of the microscopes (127). The microscopes are also 

kept in a vacuum to prevent the electrons from being scattered by air molecules. The issue with having 

to maintain a vacuum is the dehydration of the specimen, though this was solved recently. By keeping 

the sample frozen, at liquid nitrogen temperatures, the sample remains hydrated and the vapor pressure 

of water becomes negligible (127). The components of the microscope will now be discussed and are 

shown in Figure 1.7.2. 

 

Cathode- Electrons are emitted from the cathode, which is kept at a high-negative value, while the rest 

of the microscope is kept at ground potential. Two types of cathodes are primarily used in electron 

microscopy which are field-emission guns (FEGs) and thermionic cathode. The primary mode of action 

for a thermionic cathode involves heating, where sufficient heat will result in the emission of electrons. 

Thermionic cathodes are typically hairpin-shaped wire comprised of tungsten. Lanthanum hexaboride 

is often used as a cathode as it has a low work function and results in more electrons being released and 

leads to much higher brightness relative to tungsten. A FEG emits electrons by lowering a potential 

barrier and the direction of the electrons is controlled by a strong electric field generated from the 

cathode tip (127). 
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 Figure 1.7.2) Diagram of various components of an electron microscope 
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Wehnelt cylinder- Surrounding the cathode is a cup-shaped electrode, with a 1-mm bore, where the 

electrons can exit. The wehnelt cylinder is kept slightly more negative than the cathode and specifically 

has a shape that allows the electrons to travel down the optical axis. This creates a space charge to build 

up as an electron cloud and at the tip of this cloud, lies the true source of the electrons being emitted 

(127). 

 

Condensor lens- These lens function as part of the illumination system and control how the beam 

impacts the sample. The condensor lens primarily controls the spot size, the physical size of the beam 

on the specimen, and the angle of the beam required for convergence which also determines the 

coherence of the illumination. Most microscopes contain two condensor lens, such as the case with 

Talos Artica microscope, and some microscopes may contain three condensor lens as is the case with a 

Titan Krios microscope. (127, 129). Typically, the C1 lens is situated under the Wehnelt cylinder. The 

spot size of the image is primarily controlled by the current generated in the lens (127). 

 

Objective lens: The objective lens is the first image forming lens in the microscope and subsequently, 

determines the quality of the final image obtained. Parallel beams are focused on the back focal plane 

and beams are scattered at the same angle at the same point. This results in a diffraction plane being 

generated in that same plane. An objective lens aperture portion, that resides in the back focal plane, 

determines what portion of the scattered rays participate in image formation. Phase contrast in electron 

microscopy is an important in high-resolution cryo-EM and results from the interference of unscattered 

and elastically scattered electrons that have endured a phase shift due to defocusing and wave 

aberrations (127). There are multiple types of objective len spherical aberrations that can occur in the 

lens of the microscope which include third-order aberrations, chromatic aberration, and axial 

astigmatism. Beams experiencing third-order aberrations the focal length is less than for those parallel 

to the optical axis. Axial astigmatism is typically described as an unroundness of the lens magnetic 

field, and typically depends on the features of the specimen depends on their orientation in the 

specimen plane. Axial astigmatism is typically corrected for with special corrector elements located 

underneath the objective lens. Chromatic aberrations determine how the lens focuses electrons with 

different energies. The electrons may differ slightly in energies because of high voltage fluctuations or 

have differing energies due to scattering. Microscopes are stable and thus the first factor is negligible. 
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Luckily for the latter, a chromatic aberration constant ensures that electrons undergoing energy less are 

out of focus relative to zero-loss electrons (127). 

 

Intermediate Lens- These lenses are located between the objective and projector lens. The strength of 

these lens can be changed to produce magnifications in a wide range between 500 and 1 million. In 

structure determination, a typical range for magnification is from 35,000 to 60,000 (127). 

 

Projector Lens- These are the final lens that project the image onto the screen or detector of the 

microscope. Special magnetic shielding is used around the EM column between the projector lens and 

screen to prevent stray fields from distorting the image as the final image is typically quite large (127). 

 

Fluorescent screen- The fluorescent screen in the microscope is used for direct viewing of the 

specimen, when the screen is put directly into the image plane. The screen is a metal plane coated with 

a thin layer of fluorescent material that converts the electrons into bursts of light (127). 

 

Detectors: Two types of detectors are in used in cryo-EM, which include direct electron detectors and 

charge-coupled devices (CCD). Direct electron detectors will be discussed in detail in a later section. 

CCD cameras are comprised of photosensitive silicon diodes that are optically coupled with a 

scintillator. The optical coupling is usually achieved with fiber optics or sometimes with a glass lens 

with a large numerical aperture. The scintillator converts the energy from the electron into a local light 

signal. The signals that are received from the electrons are read out and integrated over a period of time 

to form a digital image that is stored on the computer (127). 

 

1.7.4: Direct electron detectors 

Cryo-EM greatly advanced in its resolution capabilities with the creation of direct electron detectors 

over the use of typical CCD cameras (130, 131). Two parameters are discussed when describing the 

performance of detectors which is the Detective Quantum Efficiency (DQE) and the Modulation 

Transfer Function (MTF) (131). The DQE is measured as a ratio of the signal to noise ratio that is 

output by the detector divided by the ratio of the signal to noise that is input into the detector. The DQE 

effectively measures how the physics of the mechanism for signal conversion in the detector degrades 

the original signal in the image (131). DQE can be plotted against the spatial frequency and a DQE of 
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unity indicates a perfect detector that does not add any noise. The pixel spacing in a detector fixes the 

maximum spatial frequency in an image that can be recorded by the detector, especially since 

the shortest wavelength has to be sampled at least twice (131). This effectively describes the Nyquist 

cut-off frequency as 1/(2*pixel_spacing). The MTF describes how strongly the various spatial 

frequencies in the image up to the Nyquist frequency are recorded. The MTF is set by the pixel size and 

other factors, such as the point spread function which describes how electrons are spread on the surface 

of the detector. The MTF is plotted against as a function of spatial frequency, where a value of unity 

implies that perfect retention of the relative amplitude of the spatial frequency (131). 

 

CCD cameras only record 2D projections of 3D objects in a micrograph in a given exposure (132). In 

contrast, direct electron detectors have the ability to collect to record high frame rate movies and also 

exhibit a much a much higher DQE relative to CCD cameras (131). The ability to record movies allows 

the effect of beam-induced specimen movement and image blurring to be reduced by the alignment of 

movie frames and the ability to appropriately weigh individual frames. This effectively increases the 

sharpness of the images maximizing the signal to noise ratio (133, 134, 135, 136, 137). The improved 

motion corrected images then make a more accurate determination of the position and orientation of the 

particle. This results in a 3D map at higher resolution, which provides a better target for orientation 

determination in an iterative manner (131). Thus, direct electron detectors were pivotal in the 

advancement of cryo-EM. This has resulted in an increase in popularity for cryo-EM and has made the 

method more competitive with X-ray crystallography.   

 

1.7.5: Single-particle reconstruction processing work-flow in cryo-EM 

To obtain enough detailed structural information, a large amount of data must be collected over several 

days. Furthermore, the processing of such data is also a very time-consuming process. Data collection 

have improved drastically recently and now researchers are capable of collecting data automatically 

using a range of computer software packages such as Leginon, SerialEM, and EPU (138, 139). Several 

software packages are also available for processing single-particle cryo-EM data (Relion, EMAN2, 

Cryosparc) where 3D models are reconstructed from 2D micrographs with the noise level reduced to 

the lowest possible level (140, 141, 142). In single-particle cryo-EM, the determination of 3D maps 

uses a single-particle reconstruction algorithm (143, 144, 145). The procedure begins with collecting 

raw movies from holes containing the particles of interest. The raw images are then corrected for 
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motion using the software Motioncor2 generating aligned images termed micrographs. The CTF of the 

micrographs are then corrected, using software such as CTFFIND4 and GCTF, which uncovers 

undistorted information that is buried in the noise (127, 146, 147). Single-particles are then selected 

from the micrographs using various software packages and extracted for further processing. The 

extracted particles are then classified into different groups based on similarities of their projections, and 

are representative of various angular views of a 3D object. These projections can then be used to 

estimate and iteratively reconstruct the 3D model of the object (145). Classification of particles based 

on this method is useful in detecting multiple conformations of chemically identical macromolecules or 

complexes and thus, multiple 3D models can be generated from one data set. Individual 3D classes can 

be subsequently refined to a higher-resolution using the auto refine procedure in various software 

packages. This procedure typically uses the so-called gold-standard Fourier Shell Correlation (FSC) 

calculation for a resolution estimate that avoids overfitting of the data (150). The FSC can be thought 

of as a function of consistency. The FSC is computed by splitting the particle data set in two sets, 

generating a reconstruction from each, and then computing the correlation coefficient between the 

Fourier transforms of each as a function of spatial frequency (151). The final refined density obtained 

is further filtered at the correct resolution with a mask around the density that removes the solvent 

noise to further increase the resolution of the map (152).  The density then is further sharpened to an 

automatically estimated B-factor (153). The B factor or also known as the temperature factor describes 

the attenuation of structure factors by the thermal mobility of the molecule atoms. Figure 1.7.3 displays 

a flow chart for processing single-particle cryo-EM with the software package Relion. 

 

1.7.6: CTF correction 

The contrast transfer function (CTF) is a Fourier-based description of the image parameters along with 

how the image of an electron microscope is affected by the lens system. The CTF is affected by 

adjustable parameters during operation of the microscope such as defocus, astigmatism, and the 

acceleration voltage. The CTF may also be affected by fixed parameters such as lens aberrations and 

beam coherence (148). The CTF is an oscillating function, and fluctuates around zero contrast, 

modulating the amplitude and reversing the phase for some frequency intervals. The CTF also contains 

an envelope that results in a weakening of the signal with increasing spatial frequency (149). For high- 
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Figure 1.7.3) Displays the typical single-particle processing workflow for the software Relion. 2D 
classifications and 3D classifications generated in the work-flow can be used as templates for 

particle picking. Individual 3D classifications can also be used for refinement to high-resolution. 

After “polishing particles” it is recommended to redo the 3D classification and/or refinement. 
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resolution cryo-EM, the CTF must be applied and this is why this is performed in single-particle cryo-

EM processing. For the work presented here, the CTF was applied using the CTFFIND4 program to   

determine the applied defocus and beam astigmatism. The CTF parameters are determined by 

computing the maximum cross-correlation between the averaged power spectrum of the image and a 

set of theoretical CTF spectra (146). 

 

1.7.7:  Particle polishing in the Relion Software 

During the processing of cryo-EM data, large movements on the level on the entire micrograph are 

corrected for. However, the individual particles in the micrographs will show some trajectory or 

individual motions that cannot be corrected for at the level of the micrograph. In the Relion software, 

there is a particle polishing algorithm that tracks the individual particle motion trajectories which are 

subsequently fitted to a linear trajectory (154). Furthermore, per-frame B-factors and linear intensity 

factors are estimated by comparing the reconstructed half-maps from individual frames to the full-

frame maps to account for accumulating radiation damage during data acquisition (133). This then 

generates what is termed “shiny” particles that have a much higher signal to noise ratio, which 

improves the accuracy of image alignment and typically results in higher resolution. These shiny 

particles are reconstructed with the spatial frequency contribution from each frame according to the 

radiation damage. It is typically recommended in the Relion software that the shiny particles are 

subjected for further 3D classification and refinement to obtain a higher resolution map. 

 

1.7.8: The use of antibodies in single-particle cryo-EM 

Monoclonal fragments antigen binding (Fabs) are useful tools in structural biology and have been used 

widely in protein X-ray crystallography to facilitate crystallization of proteins (155) by forming rigid, 

stable complexes and acting as a scaffold for crystal lattice contacts. Furthermore, Fabs have been 

widely used in single-particle cryo-EM to overcome size-limitations (156, 157) and to break symmetry 

or add features to the target protein facilitating image alignment during 2D and 3D classifications 

(158). Fabs are ~50 kilodalton antibody fragments composed of one constant domain and one variable 

from both heavy and light chains. The fragment retains full antigen binding capacity through its 

variable domain (156, 159, 160). In this project, nanobodies were employed to stabilize the Ric-8A:Gα 

complex to prevent dissociation during vitrification, provide features for image alignment and to 

stabilize flexible portions of the complex for single-particle cryo-EM structure determination. 
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Nanobodies are the small, stable 15 kilodalton single domain fragments that harbor the full antigen-

binding capacity of the original heavy chain-only antibodies that naturally occur in camelids (161, 162, 

163). 

 

Nanobodies exhibit many advantages over the traditional use of Fabs in structural biology. For 

example, nanobodies are encoded by single-gene fragments, and thus, do not require enzymatic 

cleavage to generate the fragment of interest (161, 164). Due to the small size of nanobodies, they have 

access to small clefts or cavities to proteins that are not accessible to traditional to antibodies. Unlike 

Fabs, nanobodies can also be expressed in the periplasmic space of bacteria making purifications much 

easier (165, 166, 167, 173). Using various combinations of these nanobodies, we were able to stabilize 

the Ric-8A:Gα to facilitate structural studies using single-particle cryo-EM.   
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Chapter 2. 

Materials and Methods. 
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All chemicals and reagents used in this study were supplied by Sigma-Aldrich, Fisher Scientific, 

Melford, and ForMedium. Buffers were filtered using using a .22-micron vacuum filter before use in 

FPLC (Fast Protein Liquid Chromatography) runs. 

 

2.1.1: Media Recipes 

Escherichia Coli strains were grown in standard laboratory media.  

Table 2.1.1: Media Recipes 

 Medium                                               Ingredients and Methods 

Luria Broth (LB)                                             

 

 

 
Luria Broth (LB) + Carbencillin 

(Carb) or Ampicillin (Amp)   
 

Terrific Broth (TB) 

 

 

Terrific Broth (TB) + Carb or Amp 

 

Terrific Broth + Kanamycin (Kan) 

 

Terrific broth + Amp/Carb + Kan 

 

Terrific broth + Amp + Glucose + 

MgCl2 

 

 

 

 

 

 

 

10 g tryptone, 5 g yeast extract, 10 g NaCl, in 1L of miliQ H2O. 
Approximately 2% w/v agar for Agar plates but not growth media. 

Autoclaved for sterility and stored at room temperature. Media was not 
stored for no longer then one week and plates were stored for up to one 

month.  

Ampicillin or Carbenicillin was added to autoclaved LB at 100 

µg/mL immediately prior to inoculation 

20 grams of tryptone, 24 grams of yeast extract, 4 mL of 100% 
glycerol, 2.31 g of KH2PO4, 12.54 g of KH2PO4 in 1L of miliQ 

H2O. The media was autoclaved and stored at room temperature. 

Media was stored for up to one week.  

Amp or Carb was added to autoclaved TB at 100 µg/mL 

immediately prior to inoculation.  

Kanamycin was added to autoclaved TB immediately at 50 

µg/mL prior to inoculation. 

Kan and Amp was added to autoclaved TB immediately at 50 µg/mL 

prior to inoculation.  

Amp was added to autoclaved TB immediately at 100 µg/mL prior to 
inoculation. Glucose was sterile filtered and added at 0.1% final 

concentration. MgCl2 was added to final concentration of 1 mM. 
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2.1.2: List of e.coli Strains 

Strain                        Genotype                                                                                          Source      

BL-21 (DE3) RIPL                                                                                                 Agilent Technologies 

 

BL-21 (DE3)                                                                                                           Agilent Technologies 

 

JM109                                                                                                                      Promega 

 

WK6                                                                                                                         Invitrogen 

TOP10                                                                                                                    Thermofisher Scientific 

 

 

DH5α                                                                                                                      Thermofisher Scientific 

 

 

 

 

E.coli strains (BL-21 (DE3) RIPL, BL-21 (DE3), JM109) were used as hosts for protein expression 

plasmid vectors. DH5α and TOP10 strains were used for plasmid amplification. 

 

2.1.3: E.coli  strain preservation 

E.coli competent cell strains were amplified from company stock using a chemical competency 

protocol. 10 µL of of company stock was added to 10 mL of LB media and grown overnight at 37oC. 

The following day, the 10 mL overnight culture was added directly to 100 mL of LB media and grown 

to optical density (OD) of 0.5, where the cells were kept on ice for 5-10 minutes. Cells were collected 

at 5,000 x g centrifugation and the supernatant was discarded. The cell pellets were resuspended with 

40 mL of TfbI buffer (refer to Table 2.1.3). Cells were incubated for 15 minutes on ice and collected at 

2,000 x g centrifugation. The supernatant was discarded and cells were suspended with 4 mL of TfbII 

buffer (refer to Table 2.1.3) for 15 minutes on ice. The cells were aliquoted in 50 µL aliquots and snap 

frozen in liquid nitrogen. The cells were stored at -800C. 

 E. coli B F– ompT hsdS(rB– mB–) dcm+Tetrgalλ(DE3) 

endA Hte [argU proLCamr] [argU ileY leuW Strep/Specr] 

 

 

 
E. coli B F– ompT hsdS(rB– mB–) dcm+Tetrgalλ(DE3) 

endA Hte  

  

 

endA1, recA1, gyrA96, thi, hsdR17 (rk–, mk+), relA1, 

supE44, Δ( lac-proAB), [F´ traD36, proAB, laqIqZΔM15 

 

 

 

F– mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 
ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK 

λ– rpsL(StrR) endA1 nupG  

 

 

 

Δ(lac-proAB), galE, strA, nal, F’[lacIqZΔM15, proAB] 

  

 F– φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 

hsdR17(rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1 
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2.1.3: TfbI and TfbII recipes for chemical transformation of E.coli 

                                                    TfbI (transformation buffer I)                                                  

                  Components                                                                                  Final Concentration      

    potassium acetate                                                                                        30 mM 

    RbCl2                                                                                                           100 mM             

    CaCl2 -2H2O                                                                                                10 mM 

    MnCl2                                                                                                          50 mM 

    Glycerol                                                                                                      15% v/v 

                                                     TfbII (transformation buffer II) 

                   Components                                                                                Final Concentration 

   MOPS                                                                                                         10 mM 

   CaCl2 -2H2O                                                                                                75 mM 

   RbCl2                                                                                                           10 mM 

   Glycerol                                                                                                      15% v/v 

TfbI is pH 5.8 with dilute Acetic Acid. TfbII is pH 6.5 with dilute NaOH. Buffers are sterile filtered and 

stored at 40C. 

 

 

 

2.2: Plasmid protein constructs 

Plasmid encoding containing the proteins of interest were made by others in the lab. Amplification of 

these constructs were first transformed (described later) into DH5α and Top10 competent cells. A single 

colony was isolated and inoculated into 5 mL of LB containing either Kan or Amp. The media and cells 

were incubated overnight at 370C in a shaking incubator at 180 rpm. Plasmids were extracted using the 

QIAprep Spin Miniprep Kit (Qiagen). The purification procedure was provided by the manufacturer. 

After purification, the concentration of the DNA was quantified using a NanoDrop 8000 (Thermo 

Scientific). The plasmids were sequenced using MW eurofins and stored at -200 C after confirmation of 

the correct sequence. Table 2.2 lists the name of the vectors used along with the gene and protein 

names of the insert in the vector. 
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2.2: Lists of Plasmid protein expression constructs 

Plasmid                        Protein                                      Gene/allele          Expression Tag         Cleaveable 

PDEST 15                   DeltaN31 Gαi1                          Gnai1                   N-terminal GST       yes 

pET-28a                       Ric-8A (1-491)                          Ric8a                   N-terminal His         yes 

PDEST15                    Gαi1 W258A                             Gnai1                   N-terminal GST       yes 

pMESy4                      Nanobodies                                N/A                     N-terminal His          no 

PQE60                         Gαi1W258A                              Gnai1                  N-terminal His          no 

pBB131                       N-myristoyl-transferase       M153_2200036954   N/A                        N/A   

PDEST15                    Ric-8A Full-length                    Ric8a                   N-terminal GST        yes 

 

2.2.1:  Transformation of e.coli 

50 µL aliquots of competent cells were pulled from the -800 C freezer and thawed on ice. 1-5 µL of 

plasmid at 60-100 µg/mL was added to the cells and incubated on ice for 30 minutes. The sample was 

then heated at 420C for 45 seconds in a water bath. The sample was then mixed with 400 µL of LB 

broth and was grown in a shaker at 370C shaking at 180 rpm for one hour. 150 µL of the sample was 

plated onto an LB agar plate containing the appropriate antibiotics. The plates containing the sample 

were allowed to grow overnight at 370C in an incubator and stored the next day at 40C for at most one 

month. 

 

2.3: Protein purification of each component 

2.3.1: Purification of pET28a Ric-8A 1-491 

Plasmid harboring Ric-8A 1-491 was transformed into BL-21 (DE3) RIPL competent cells and plated 

onto Kan plates. Single or multiple colonies from the plate were inoculated into LB media containing 

50 µg/mL of Kan and grown overnight at 37oC in a incubator shaking at 180 rpm. Cells were recovered 

by centrifugation at 8,000 rpm. The cells were resuspended in TB media containing 50 µg/mL of 

Kanamycin and was used to inoculate 1.0 L of media in 2.79 Liter shaker flasks. The growths were 

grown to an OD of 0.6-0.8 at 370C at 200 rpm. Once the OD was reached, the temperature was reduced 

to 200 C and the cells were induced with IPTG at a final concentration of 50 µM. The cells were 

harvested 16 hours’ post-induction by centrifugation at 5000 x g and pellets were stored at -800 C.   
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Pellets were removed from the -800 C and thawed on ice. The cell paste was resuspended in 75 mL of  

lysis buffer (refer to Table 2.3.1) per 12 g of cell paste and lysed using a cell disruptor. The suspension 

was centrifuged at 18,000 rpm in an SS34 rotor (Sorvall) for 30 minutes at 40 C. The supernatant was 

loaded onto an IMAC column at 2 mL of packed resin per 1L of growth. The column was washed with 

lysis buffer until a bradford assay indicated that contaminants were no longer washing off the column. 

Ric-8A was eluted with lysis buffer containing 300 mM imidazole. The eluted protein was subject to 

dialysis in a SnakeSkin pleated dialysis tubing (10K MWCO, ThermoScientific) to remove the 

imidazole and salt for anion exchange chromatography. TEV protease was added at a ratio of 1 mg to 

20 mg of Ric-8A overnight at 40 C to remove the his-tag and reverse IMAC chromatography was used 

to remove uncleaved Ric-8A and TEV protease. Cleaved Ric-8A was applied onto a Fast Flow Hi-Trap 

Q column on a AKTA FPLC system and eluted with a NaCl gradient of 0-500 mM over 50 mL. 

Fractions containing Ric-8A were collected, pooled and concentrated to 10 mg/mL (Milipore 

Centricon, 30K MWCO) for size-exclusion chromatography on a HiLoad Superdex 200 pg column. 

Ric-8A was aliquoted, snap frozen in liquid nitrogen, and stored at -800 C for further studies. Yields 

typically were in the range of 70-100 mg of protein per liter of cell growth. 

 

Table 2.3.1:Ric-8A 1-491 purification buffers 

Buffer                                                                Ingredient and methods 

Lysis/Wash 

 

Elution 

 

 

Dialysis/QA buffer 

 

QB buffer 

 

Size-Exclusion Buffer 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 250 mM NaCl, 5% Glycerol, 2 mM 

BME, 2 mM PMSF 

  

 

 

 

50 mM Tris, pH = 8.0 with HCL, 250 mM NaCl, 5% Glycerol, 2 mM 

BME, 2 mM PMSF, 300 mM Imidazole  

 

 

50 mM Tris, pH = 8.0 with HCL, 2 mM BME, 500 mM NaCl 

 

  

 

 

50 mM Tris, pH = 8.0 with HCL, 2 mM BME 

  

 

 

50 mM Hepes, pH = 8.0 with NaOH, 150 mM NaCl, 1 mM TCEP 
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2.3.2: Purification of PDEST15 Ric-8A Full-length 

Plasmids harboring Full-length Ric-8A were transformed into BL-21 (DE3)-RIPL competent cells onto 

LB Amp plates. Single or multiple colonies were inoculated into LB media containing 100 µg/mL of 

Amp and grown overnight at 370 C in an incubator shaking at 180 RPM. Overnight growth was 

centrifuged at 8,000 rpm and cells were resuspended in LB media containing 100 µg/mL of Ampicilin 

for inoculation into 2.79-liter shaker flask growths containing LB media. Cells were grown to an OD of 

0.6-0.8 at 370 C in an incubator shaking at 200 rpm. The temperature was reduced to 20oC and the cells 

were induced with 70 µM IPTG overnight. Cells were harvesting by centrifugation at 8,000 rpm and 

stored at -80o C. 

 

Cells were thawed on ice and resuspended in lysis buffer at 50 mL per liter of cells. The cells were 

lysed using a cell disruptor and the soluble fraction was obtained by centrifugation at 18,000 rpm at 40 

C. The supernatant was applied directly over 5 mL of packed GST beads overnight at 40 C using a 

peristaltic pump and were washed with lysis buffer until a bradford assay indicated that no more 

unbound protein was eluting off the column. Tev protease containing 150 mM NaCl was added to the 

GST beads at a ratio of 1:20 overnight for removal of the GST tag from Ric-8A. Digested Ric-8A was 

eluted with QA buffer and was subsequently purified using anion exchange (SourceQ 15 mL column 

from Resource) with a gradient of 100 mM NaCl to 500 mM NaCl over 30 mL. Fractions containing 

Ric-8A were pooled and further purified with size-exclusion to remove aggregates. Purified proteins 

were snap frozen in liquid nitrogen and stored at -800 C for further use. 

 

Table 2.3.2: Ric-8AFull-length purification buffers   

Buffers                                                              Ingredients and Methods 

Lysis/Wash 

 

QA buffer 

 

QB buffer 

 

Size-exclusion 

 

 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 250 mM NaCl, 5% Glycerol, 2 mM 

BME, 1x PTT/LL, 1 mM EDTA pH = 8.0 

 

50 mM Tris, pH = 8.0 with HCL, 100 mM NaCl, 2 mM BME, 1x 

PTT/LL, 1 mM EDTA pH = 8.0 

 

 

50 mM Tris, pH = 8.0 with HCL, 500 mM NaCl, 2 mM BME, 1x 

PTT/LL, 1 mM EDTA pH = 8.0  

 

 

 

50 mM Hepes pH =8.0 with NaOH, 150 mM NaCl, 1 mM TCEP 
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2.3.3: Purification of PDEST15 Gαi1W258A and DeltaN31 Giα1 

Plasmids harboring PDEST15 Gαi1W258A or DeltaN31 Gia1 were transformed into BL-21 (DE3) 

RIPL competent cells and were plated onto LB Amp plates in an incubator at 370 C overnight. Single or 

multiple colonies were inoculated into LB media containing 100 µg/mL AMP and were grown 

overnight in an incubator at 370C shaking at 200 rpm. Cells were isolated by centrifugation at 8,000 

rpm at 40C and resuspended in TB media containing 100 µg/mL Amp. Suspended cells were inoculated 

into 2.79 L shaker flasks containing 1.0 L of TB media with 100 µg/mL Amp. Cells were grown in a 

incubator at 370 C shaking at 200 rpm until an OD of 0.6-0.8 at which point, the temperature was 

reduced to 200 C and cells were induced with 50-70 µM IPTG. The cells were grown overnight and 

harvested by centrifugation at 8,000 rpm at 40 C and pellets were stored at -800 C. 

 

Cells were thawed and suspended in lysis buffer at 50 mL per Liter of cells. Suspended cells were lysed 

with a cell disruptor and the soluble fraction was obtained by centrifugation at 18,000 rpm at 4o C. The 

soluble fraction was applied onto 5 mL of packed GST beads and was incubated for 30 minutes to 

overnight with gentle shaking to enhance binding. The column was washed until a bradford assay 

indicated that all unbound protein was washed away. To remove the GST tag, TEV protease was added 

at a ratio of 1:20 to the GST beads overnight at 40 C. Cleaved Gα was eluted with QA buffer for further 

purification on an anion exchange column. Eluted Gα was purified using anion exchange 

chromatography with a gradient of 0 mM to 500 mM NaCl over 50 mL. Fractions containing Gα were 

pooled and purified using size-exclusion chromatography to remove aggregates. Purified Gα was stored 

in size-exclusion buffer containing 10% glycerol at -800 C for further use. 

 

Table 2.3.3: PDEST15 Gαi1W258A and DeltaN31 Gαi1 purification buffers 

Buffers                                                              Ingredients and Methods 

Lysis/Wash 

 

QA buffer     

 

QB buffer 

 

Size-Exclusion 

 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 250 mM NaCl, 2 mM DTT, 2 mM 

PMSF, 50 µM GDP 

 

 
50 mM Tris, pH = 8.0 with HCL, 2 mM DTT, 10 µM GDP 

 

 

 
50 mM Tris, pH = 8.0 with HCL, 500 mM NaCl, 2 mM DTT, 10 µM GDP 

 

 

 

 

50 mM Hepes pH =8.0 with NaOH, 150 mM NaCl, 1 mM TCEP, 10 µM 

GDP 
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2.3.4: Purification of myristoylated Gαi1 

Plasmids harboring N-methyltransferase (pBB131) and Giα1 (PQE60) were simultaneously 

transformed into JM109 competent cells. The cells were plated onto LB plates containing Amp at 50 

µg/mL and Kan at 50 µg/mL overnight in an incubator at 370C. Single or multiple colonies were 

inoculated into LB media containing Amp (50 µg/mL) and Kan (50 µg/mL) and grown overnight in a 

incubator shaking at 200 rpm. Cells were harvested by centrifugation at 8,000 rpm at 40C. The cells 

were resuspended in TB media containing Amp (50 µg/mL) and Kan (50 µg/mL) for inoculation into 

2.79L flasks containing TB media at the same antibiotic composition. The cells were then grown in a 

incubator at 370C shaking at 200 rpm until an OD of 0.4 was reached. At this point, the temperature 

was reduced to 300C and the cells were induced with 30 µM IPTG overnight. Cells were harvested by 

centrifugation at 8,000 rpm at 40C. The pelleted cells were stored at -800C for further use. 

 

Pelleted cells were thawed and resuspended in 300 mL of TBP. Resuspended cells were lysed using a 

cell disruptor and the soluble fraction was collected by centrifugation at 18,000 rpm at 40C. The soluble 

fraction was applied onto 5 mL of packed Ni-NTA beads and was allowed to mix gently overnight at  

40 C. The beads were then washed with Wash buffer until a bradford assay indicated that no more 

unbound protein was being eluted off. Myristoylated Gαi1 (mGαi1) was eluted with Elution buffer and 

was dialyzed in buffer C. Dialyzed mGαi1 was applied to a UNO-Q6 column for anion exchange was 

eluted with a gradient of 0 mM to 500 mM NaCl with Buffer C and D. Fractions containing mGαi1 

were pooled and collected for size-exclusion chromatography to remove aggregates. Pure protein was 

stored at -800 C for further use. 

 

Table 2.3.4: mGαi1 purification buffers 

Buffers                                                                         Ingredients and methods 

TBP Buffer        

 

Wash Buffer   

 

Elution Buffer 

 

Buffer C      

 

 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 100 mM NaCl, 5 mM BME, 1XPTT, 50 

µM GDP 

 

 
50 mM Tris, pH = 8.0 with HCL, 400 mM NaCl, 5 mM BME, 1XPTT, 50 

µM GDP, 10 mM Imidazole pH=8.0, 10% glycerol 

 

 
50 mM Tris, pH = 8.0 with HCL, 5 mM BME, 1XPTT, 50 µM GDP, 150 

mM Imidazole pH=8.0 

 

 
50 mM Tris, pH = 8.0 with HCL, 2 mM DTT, 10 µM GDP 
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Buffer D 

Size-exclusion buffer           

 

 

 

2.3.5: Nanobody purification       

Plasmids harboring nanobody were transformed into WK6 competent cells and plated onto LB plates 

containing 100 µg/mL of Amp. The cells were left to grow overnight in a incubator at 370C. Single or 

multiple colonies were inoculated into LB media containing 2% glucose, 1 mM MgCl2 and 100 µg/mL 

Amp. The cells were grown overnight in a incubator at 370C shaking at 200 rpm. Cells were harvested 

by centrifugation at 8,000 rpm at 40C. Pelleted cells were resuspended with TB media containing 1% 

glucose, 1 mM MgCl2, and 100 µg/mL Amp. The suspended cells were inoculated into 2.79 L shaker 

flasks containing 1.0 L of TB media, 1 mM MgCl2, 1% glucose, and 100 µg/mL Amp. The cells were 

grown in an incubator at 370C until an OD of 0.7-1.0 was reached at which point the temperature was 

reduced to 280C and the cells were induced with 300 µM IPTG. The cells were grown overnight and 

harvested by centrifugation at 8,000 rpm at 40C. Pelleted cells were stored at -800C for further use. 

 

Cells were thawed and resuspended with ice cold TES buffer at 100 mL per liter of cell growth. The 

cells were allowed to mix with a stir bar for an hour at 40C. The solution containing resuspending cells 

was slowly dripped into TES buffer diluted 1 to 4 to lyse and was allowed to stir 40C. The soluble 

fraction was isolated by centrifugation at 8,000 rpm for 30 minutes at 40 C and was applied to 5 mL per 

liter of packed Ni-NTA beads per liter of cells grown. The soluble fraction was mixed gently overnight 

with the beads to enhance binding at 40C.  The column was then washed with 5 column volumes of 

wash buffer I, 20 column volumes of wash buffer II, 10 column volumes of wash buffer III and finally, 

eluted with 3 column volumes of elution buffer. The nanobodies eluted were dialyzed against dialysis 

buffer and polished with size-exclusion buffer. Pure protein was stored at -800C for further use.   

 

 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 2 mM DTT, 10 µM GDP, 500 mM 

NaCl 

 50 mM Hepes pH =8.0 with NaOH, 150 mM NaCl, 1 mM TCEP, 10 µM 

GDP 
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Table 2.3.5: Nanobody purification buffers 

Buffers                                                                         Ingredients and methods 

TES                  

Wash Buffer I 

Wash Buffer II 

Wash Buffer III 

Elution Buffer 

Dialysis Buffer 

Size-exclusion buffer 

 

Table 2.3.6: Nanobodies purified for this study 

Nanobodies                                                                                                   Binding specificity 

NB 8431                                    Complex binder only, at interface between Ric-8A and Gα. 

 

 

NB 9156                                    Complex binder and Gα binder. Binds to the helical domain of Gα. 

 

NB 8117                                    Complex binder and Ric-8A binder. Binds to the N-terminus of Ric-8A. 

 

 

NB 8109                                    Complex binder and Ric-8A binder. Binds to the C-terminus of Ric-8A 

 

 

NB 8119                                    Complex binder and Ric-8A binder. Binds to the C-terminus of Ric-8A. 

 

 

2.4.1: Ric-8A phosphorylation by casein kinase 2 

Before CK2 treatment, Ric-8A was purified further by anion exchange chromatography using a salt 

gradient of 100 mM NaCl to 1M NaCl. Ric-8A-491 typically eluted at 16 mS/cm, while Ric-8A- 530 

eluted at a salt concentration of 25 mS/cm. After anion exchange chromatography, Ric-8A was purified 

using size-exclusion chromatography (HiLoad 16/600 Superdex, GE healthcare life sciences) to 

 

 
 

 

 

 

 

50 mM Tris, pH = 8.0 with HCL, 0.5 mM EDTA pH=8.0, 0.5M Sucrose  

 

 

50 mM Tris, pH = 8.0 with HCL, 1M NaCl 

  

 

 

50 mM MES, pH = 6.5 with HCL, 1M NaCl 

 

  

 

 

50 mM Tris, pH = 8.0 with HCL, 500 mM NaCl 

 

 

  

 

 

50 mM Tris, pH = 8.0 with HCL, 200 mM NaCl, 500 mM Imidazole pH 

=8.0  

 

 

 

  

 

 

50 mM Tris, pH = 8.0 with HCL, 200 mM NaCl 

 50 mM Hepes, pH = 8.0 with NaOH, 150 mM NaCl, 1 mM TCEP  
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separate aggregates and lower molecular weight bands. Ric-8A was then diluted in 1 X CK2 buffer at a 

concentration of 3.5-12 mg/mL. CK2 (New england biolabs) was added as described by the 

manufacturer. The mixture containing Ric-8A and CK2 was incubated overnight at room temperature. 

Phosphorylated Ric-8A was purified using a salt concentration of 100 mM NaCl to 1M NaCl. 

Typically, phosphorylated Ric-8A-491 eluted at 18 mS/cm while phosphorylated Ric-8A-530 eluted at 

30 mS/cm. 

 

Table 2.4: Buffers for Phosphorylating Ric-8A by CK2 

Buffers                                                                                                 Ingredients and Methods 

QA buffer       50 mM Hepes, pH = 8.0 with NaOH, 100 mM NaCl, 1 mM DTT, 1 mM EGTA pH = 8.0 

 

 

QB buffer       50 mM Hepes, pH = 8.0 with NaOH, 1M NaCl, 1 mM DTT, 1 mM EGTA pH = 8.0 

 

 

CK2 Buffer     

 

 

 

Size-Exclusion buffer 

 

2.4.2: Purification of Ric-8A:Gα:nb complexes 

Purification of Ric-8A:Gα:nb was proceeded with the following protocol. All proteins were stored at -

800C up to the following point. Each individual component was again further purified using size-

exclusion chromatography before mixing for complex formation. Purified Ric-8A was mixed with Gα 

and nb at a molar ratio of 1:2:3. The components were allowed to incubate from 1 hour to overnight, 

where no significant difference between complex formation was noticed from these time differences. 

The solution composed of these mixtures was then further purified with size-exclusion buffer (buffer 

comprised of Hepes pH=8.0, 150 mM NaCl, 1 mM TCEP) to separate Ric-8A:Gα:nb complex from 

excess free components of Gα and nanobody. Components comprised of Ric-8A:Gα:nb complex were 

pooled and collected for structural studies 

50 mM Hepes, pH = 8.0 with NaOH, 150 mM NaCl,1 mM TCEP 

 

50 mM Hepes, pH = 8.0 with NaOH, 20 mM MgCl2, 100 mM NaCl, 1 mM DTT, 2 

mM EGTA pH = 8.0, 3-5 mM ATP, 1X PTT/LL  
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2.5: SDS-PAGE 

Sodium dedocyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine the 

purity of the protein by fractionating protein molecules according to their mass. All gels used for this 

study were commercially purchased (Biorad, Mini-Protean Precast Gels) and were not made in the 

laboratory. To run SDS-PAGE for protein purity analysis, the gel was secured in a Biorad gel box with 

1 X SDS Running buffer filled in the cathode chamber and the anode chamber. Before loading protein 

samples into the gel, protein samples were mixed with 1 X SDS sample buffer and denatured with a 

heat block at 950 C for 5 minutes. The electrophoresis was performed at 200 V for 30 minutes. Gels 

were stained using coomassie brilliant blue to visualize protein bands. 

 

Table 2.5.1: SDS-PAGE Running Buffer Recipe/Gel staining and destaining recipe   

Solution                                                                                                Ingredients and Methods 

1.5 M Tris-HCL (pH = 8.8) 

 

 

1 M Tris-HCL (pH = 6.8) 

 

 

10% (w/v) SDS 

 

 

10 x SDS running buffer 

 

 

1 x SDS running buffer 

 

1 x SDS sample buffer 

 

Coomassie brillant blue stain 

 

 

 

121.1 g Tris base was dissolved in 500 mL of dH2O, HCL 

was added to adjust to pH= 8.8. Autoclaved and stored at 

RT. 

 

25 g SDS powder was dissolved in 250 mL of dH2O. Stored 

at room temperature 

 

 

 

 

 

 

181.7 g Tris base dissolved in 500 mL of dH2O, 
HCL was added to adjust pH to 8.8. Autoclaved 

and stored at RT. 

 

10 g SDS (1% w/v), 30.3 g Tris base (250 mM) and 144.1 
g glycine (2 M) were dissolved in 1 L of dH2O. Stored at 

RT 

 

100 mL of 10 X SDS running buffer plus 900 mL of 

dH2O. Stored at RT.  

 2% (w/v) SDS, 80 mM Tris-HCl (pH 6.8), 10% (v/v) glyc-
erol, 1.5% (w/v) dithiothreitol (DTT), 0.1 mg/ml bromo-

phenol blue. Stored at 4°C.  

 Methanol (50 % v/v), 1 gram of coomassie brillant blue 
stain (BioRad), Glacial acetic acid (10 % v/v), H2O (40 % 

v/v). Stored at RT. 
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Destaining solution 

 

2.6: Vitrification of Ric-8A:Gα:nb complexes 

To maintain the native form of proteins for high resolution reconstructions, hydrated protein samples 

were vitrified in a thin layer of ice by plunge freezing in liquid ethane cooled to liquid nitrogen 

temperatures. Protein vitrification was achieved using a FEI vitrobot. Copper meshed grids coated with 

carbon from Quantifoil (R2/1 μm hole, 200 mesh Cu) holey grids were negatively glow discharged at 

15 mA for 40 seconds and then placed on a pair of tweezers. The chamber temperature of the vitrobot 

was set to 40 C with 100 % humidity to avoid sample evaporation before blotting. 3 μL of 0.1-3 mg/mL 

of protein was loaded onto the grid for for 6 seconds to allow the protein to settle on the carbon grid. 

The grid was automatically blotted blotted using a time range of 3-6 seconds on the vitrobot to remove 

excess liquid and was plunge frozen into liquid ethane pre-cooled with liquid nitrogen. Frozen grids 

were stored in liquid nitrogen until further use.    

 

2.7: Operation of Talos Arctica and Titan Krios microscopes 

Protocol courtesy of Megan Mayer  

Grids containing the sample of interest were inserted into Talos microscopes for screening and into 

Titan Krios microscopes for high-resolution data collection. Data collection on the microscopes was 

performed using FEI EPU software. The following protocol was utilized for microscope operation. 

➢ Load grid cassette, perform inventory, insert a grid sample. 

○ After docking a cassette, In TemUI’s “Autoloader” Box, inventory your grids. Autoloader may have 

to be Initialized in the flapout if the cassette slots are not visible. 

○ Double click on a grid to load it to the stage. 

➢ Launch EPU. 

○ If EPU will not open: Must be in EFTEM mode in TEM-UI; Remote Gatan computer communication 

must be initiated (icon in bottom right hand of TEM-UI screen). 

➢ In EPU, check all magnification Preset parameters 

○ In EPU ‘preparation’ tab, go through each preset in the dropdown menu. 

■ Atlas Preset: ~135x, EF-CCD, binning 2, Readout Fill, Exp TIme 1s, Mode Linear, Nanoprobe, Spot 

Size ~6, no Slit. 

Methanol (66 % v/v), Glacial acetic acid (7.5 % 

v/v), H2O (26.5 % v/v). Stored at RT 
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■ Gridsquare Preset: ~580x-1000x, ~135x, ~-30-50 um defocus, EF-CCD, binning 2, Readout Full, 

Exp Time 1s, Mode Counting, Nanoprobe, Spot Size ~6, no Slit. 

■ Eucentric Height Preset: ~1700x, K2 Dose over an empty hole should be ~10-15 e/pixel/second on a 

K2 camera. EF-CCD, binning 1, Readout Full, Exp TIme 1s, Mode Counted, Nanoprobe, Spot Size ~6, 

20 nm slit. 

■ Data Acquisition Preset: >100x. K2 Dose over an empty hole should be ~7-10 e/pixel/second on a K2 

camera. EF-CCD, binning 1, Readout Full, Exp Time Xs (decide later), Mode Counted, Nanoprobe, 

Spot Size ~6, 20 nm slit. 

■ Autofocus preset: Same as Data Acquisition Preset, except: bin 2, exposure 1s. 

■ Drift Preset: Same as Data Acquisition Preset, except: bin 2, exposure 1s. 

■ Zero Loss: Same as Data Acquisition Preset, except: bin 2, exposure 1s. 

■ **These parameters are all estimations. Adjust each preset in DM so that the dose rate at the K2 is 

reasonable at the specific mode 

➢ In EPU, collect Atlas. 

○ In EPU “Atlas” tab: 

■ Create new session in ‘Session Setup’. MRC. Save to X drive, not C drive. 

■ In ‘Atlas Acquisition’, press Start. Make sure column valve is open and the beam is centered before 

walking away. 

➢ Align the beam over carbon in EPU’s “Data Acquisition” mag preset. These alignments are done in 

TEM-UI, over the flu-screen. 

○ If beam on flu screen is not round, Adjust condenser astigmatism. 

■ In TEM-UI stigmators box, click condenser. Adjust with mf-x and mf-y to make sure that the beam is 

round on the Flu-screen. 

○ Find eucentric height, 

■ Can be done either in EPU “AutoFunction” tab → Eucentric by beam tilt, or manually in TEM-UI 

“Stage” box using alpha wobbler in flapout. 

○ Normalize defocus by pressing eucentric focus on hand panel. 

○ In TEM-UI direct alignments: 

■ Beam Shift: Use mf-x and mf-y to shift beam and center to either K2 (small green circle) or ceta 

(large red circle). 

■ Center C2 aperture in direct alignments. The intensity will be wobbled on Titan, it will not wobble on 

Talos. Make sure the beam is centered on itself when intensity is increased/decreased. If manually 
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centering, check free-control and turn off C3 condenser. On talos, center beam using beam shift, 

increase intensity, and center beam using C2-aperture adjustments. 

■ NP Pivot Points Beam tilt, both x and y, in direct alignment. Make intensity/ illum. area as small a 

point as possible before crossover, with mf-x adjust until the two points merge. Only use mf-x for main 

adjustment of both, and mf-y for minor perpendicular adjustment. 

■ Rotation center adjust until the image no longer moves, while the beam may still rotate/spiral around 

the image. 

■ Coma Free Pivot Points Beam tilt, both x and y, in direct alignment. . Make intensity/ illum. area as 

small a point as possible before crossover, with mf-x adjust until the two points merge. Only use mf-x 

for main adjustment of both, and mf-y for minor perpendicular adjustment. 

○ Use Auto CTF for Automated objective astigmatism and auto coma correction. 

■ Measure at ~3 sec exposure, 2 binning, electron counting, -1 um defocus. Measure repeatedly until it 

passes. 

■ Auto stigmate. Using these parameters. 

■ Auto coma. Using these parameters. 

○ Move beam to over a hole and measure dose at the K2 camera. 

■ In DM, click View with data acquisition parameter beam. Dose will be a read out in X e-/pix/sec. 

Adjust the beam until the illumination area is ~1-1.3 um and the dose is ~7-10 e-/pix/sec on the K2. 

○ Save these beam settings in EPU “preparation” tab: click “GET” under “data acquisition” 

magnification pre-set. This will save your beam at this state and illumination area. Adjust your data 

acquisition exposure time so that the total electron dose is ~50 e-. Adjust your “Fractions” to be ~30-

50. “Fractions” refers to # frames in your exposure time. (EPU’s terminology is a bit confusing here). 

➢ Tune Energy Filter in Digital Micrograph at Data Acquisition parameters 

○ Move beam over an empty hole on grid. Increase spot size to ~ 2 (beam should 

be reading in counting mode) 

○ Make sure you are in power user mode. Help → user mode → power user 

○ Perform “Full tune” This also centers the ZLP. 

➢ Prepare Gain reference in Digital Micrograph at Data Acquisition Parameters 

○ This should be done over empty hole. Remaining at this higher spot size (about 2), go to Camera tab 

→ Prepare gain reference defualts usually good. The first gain reference is for linear mode want counts 

to be about 2000. Follow prompts (adust beam intensity), always adust beam over screen. Can adjust 

the beam dropping spot size and adjusting intensity knob. Reduce to lower spot size for counting 

reference (easiest way is to say “Set” in data acquisition parameter in EPU). 
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➢ Once the beam is aligned, align all the different magnification presets in EPU. 

○ First begin by finding a piece of dirt on your grid that you can see at data acquisition preset, and are 

still able to locate at lower mags. 

○ Make sure you are at eucentric height and ~-2 um defocus at your data acqusition mag preset. 

○ In preparation tab, on the left hand panel, go to “calibrate image shifts”. 

○ Click Start. This will take an image of the item at the highest preset magnification, Data Acquisition. 

Make sure the item is identifiable in the first image. 

○ Click proceed. This will take an image at the next step lower magnification preset called “eucentric 

height”. If this image is not centered properly, click on the item and “Re-Acquire” the image. Once the 

item is centered, click proceed. 

○ Repeat until all mags have been calibrated. 

○ Atlas may have to be re-acquired at this step, should only take ~5 mins on latest version of EPU. 

➢ In EPU, go to EPU tab and create a new session for setting up the automated data collection. 

○ Under Tasks, everything is in order. 

■ New Session SetUp: 

● Session Name: Sample_Date 

● Type: Manual 

● Acquisition Mode: Accurate Hole Centering (Updated EPU only) 

● MRC 

● Unnormalized Packed w/ Gain Ref files 

● Save to X:\DoseFractions (on DM) 

● Apply 

■ Square Selection: 

● Choose a square, right click, Add, move stage to square 

■ Hole Selection: 

● AutoEucentric finds the eucentric height in the Eucentric height mag preset. After eccentricity is 

found, acquire an image. This saves the height. 

● Measure hole size: yellow rings should be slightly larger than hole 

○ Note: you only need to measure hole size once, all 

preceding square hole templates will be based off this measurement. 
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● Find holes: patterns all holes based on measurement 

● Remove holes close to grid bar 

● Selection brush: remove any empty/trash 

■ Template Definition 

● Acquire 

● Add Acquisition Area, add defocus range -1.5 to -3.0 um 

● Add Autofocus Area, every 10 um, use objective lense, measure astigmatism 

● Add drift measurement, once per grid square 

● 5, 0.5, 0.5 

■ Automated Acquisition: Press start. Make sure everything is running. Press start on your sample in 

eLogbook, with the updated parameters, to launch motion correction. 

➢ PHASE PLATE SETUP. Check to see which phase plate was last used and choose a new one. 

○ TEM 1,2,4: Go to phase plate tab and hit active. Check MF-Y to find focal plane. 

■ If image becomes streaky, un-check MF-Y. Adjust stigmator of condenser. When streaks are 

removed, Click done on condenser adjustment, and return to MF-Y. 

■ Iterate between MF-Y of phase plate and condenser stigmator until you find the “Fish eye” view of 

the focal place and streaks are removed. 

■ Go to direct alignments → phase plate alignments. Follow steps to align. 

○ TEM 3: MUST BE IN PARALLEL BEAM CONDITION. Use intensity in FINE to find back focal 

plane. 

■ If image becomes streaky, Adjust stigmator of condenser. When streaks are removed, CLick done on 

condenser adjustment, and return to adjusting intensity. 

■ Iterate between changing intensity on back focal phase plate and condenser stigmator until you find 

the “Fish eye” view of the focal place and streaks are removed. Make note of the C2 % and values for 

condenser stigmation, as they will need to be kept consistent throughout data collection. 

○ Use auto-CTF to measure optimal activation time under your beam conditions, with a target phase 

shift of ~0.5. May need to activate with a larger aperture immediately before data collection, and use 

the same position for entire data collections. 
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2.8: Data processing 

The data was primarily processed using the Relion-3.1.0 software. In some cases, cryosparc was used 

for homogeneous refinement or heterogeneous refinement to achieve higher resolution. Furthermore, 

the software Topaz was used for particle picking to start with a initial cleaner particle set for 

processing, in cases where low resolution was observed. 

 

2.8.1: CTF Correction 

CTF correction for all data set was performed using the CTFFIND4.1 program. Typically, this was 

performed using mostly default values given from the program. The parameters were the following, 

FFT box size 512, minimum resolution 30 angstroms, maximum resolution 7.1 minimum defocus value 

5000 angstroms, maximum defocus value 500000 angstroms, and phase shifts were not estimated as no 

phase plates were used. After CTF correction, micrographs containing high astigmatism and low CTF 

resolution was removed before processing. 

 

2.8.2: Particle picking 

Particle picking for the data sets was performed using the template picking function in Cryosparc or the 

Topaz particle picking software located in Cryosparc. Template picking begins by either manually 

selecting particles by hand, or by automatically selected particles using a Gaussian based function with 

user inputs for particle diameter that is expected and the threshold of the relative pixel contrast to the 

background of the micrograph. The manually or automatically selected particles are then subjected to 

reference free 2D class averaging and the best 2D class averages are then selected by the user. The 

good 2D class averages are then used as templates to pick good particles from the micrographs 

typically with a low-pass filter of 20Å to prevent “Einstein from noise” artifacts. Furthermore, these 

particles can be used as training for the Topaz neural network training network to select for good 

particles for further processing. 

 

2.8.3: 2D class Averaging 

2D class averaging was performed in the Relion 3.1.0 software or with the Cryosparc software. A box 

size of 200 was used and a set mask diameter of 160 angstroms (set in Relion 3.1.0) was used to 

remove solvent noise surrounding the particles. Typically, the number of classes was set from 100-200 

and multiple rounds of 2D classifications were performed to remove poor 2D class averages. Most 
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settings for this parameter were performed under recommendations by the developer, or by using the 

default settings of the program. 

 

2.8.4: Generating Initial models 

To generate reliable and accurate initial models, the best 2D class averages (showing protein secondary 

structure) were selected. Typically, 3-12 models were generated initially to separate heterogeneity or 

poor particles from affecting the integrity of the maps. C1 symmetry was applied as the protein 

complex exhibits no symmetry. 

 

2.8.5: 3D classification and map refinement 

The best initial model generated in the previous step was Gaussian low pass filtered at 20 angstroms 

and used for 3D classification in Relion 3.1.0 or by the heterogeneous refinement program in 

Cryosparc. Multiple rounds of 3D classification or heterogeneous refinement were used to separate 

differing conformations and poor maps from the dataset. The best 3D classification map obtained was 

used for non-uniform refinement in Cryosparc. After refinement, local CTF refinement was performed 

for maps that were higher than 5 Å resolution, to better model the CTF. Furthermore, this was followed 

by another round of non-uniform refinement in Cryosparc to measure an FSC at higher resolution. For 

very noisy datasets, 3D refinement was not performed as it did not yield improvements in the map. 
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Chapter 3. 

Optimization of Ric-8A:Gα 

Complexes for Cryo-EM 
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3.1: Chapter Introduction 

To investigate the structure of the Ric-8A:Gα complex, by single-particle cryo-EM analysis, various 

combinations of nanobodies were used to stabilize the complex during vitrification. In addition, 

detergents were added, in some cases, before freezing to prevent complex dissociation and to reduce its 

interaction with the air-water interface. This chapter will discuss the purification of various Ric-8A:Gα 

complexes, and the results obtained from these complexes from single-particle cryo-EM analysis. 

Purification of the individual components used to make the complexes will not be discussed and rather 

the optimization of the complexes for single-particle cryo-EM will be discussed in detail. 

 

3.2: Purification of Ric-8A:Gαi1:nb complexes for cryo-EM analysis 

Individual protein components were purified from e.coli to high purity and homogeneity using affinity 

chromatography, ion exchange chromatography, and size-exclusion chromatography. To make 

phosphorylated Ric-8A for structural studies, purified Ric-8A was treated with CK2 overnight at room 

temperature. Separation of phosphorylated Ric-8A from unphosphorylated Ric-8A was achieved using 

anion exchange chromatography, where phosphorylated Ric-8A elutes at a higher salt concentration. 

Purified proteins were then mixed, and incubated on ice for at least one hour to overnight, before 

further purification on a size-exclusion chromatography to separate excess Gα and nanobody from the 

complex. Confirmation of protein purity and complex formation was confirmed from SDS-PAGE 

analysis. Representative chromatograms of anion exchange and size-exclusion are shown in Figure 3.1 

along with an SDS-PAGE showing complex purity. 

 

3.3: Cryo-EM analysis of Phosphorylated Full-Length Ric-8A bound to mGαi1 and Nb 9156 

3.3.1: Micrograph inspection 

Initial analysis of the Ric-8A:Gαi1 complex was performed using full-length phosphorylated Ric-8A 

bound to mGαi1 and nb 9156. Nb 9156 binds to the helical domain of Gαi1 and could potentially 

reduce the inherent flexibility of the domain facilitating structural determination. Myristoylated Gαi1 

was chosen to mimic physiological conditions and to investigate the effects that the lipid modification 

may induce the interaction between Gαi1 and Ric-8A. To obtain preliminary data, purified complex 

was vitrified and a data collection was performed with a total dose of 56.25 e/A2. Approximately 1,000 

micrographs were collected for cryo-EM processing using the software packages Relion and 

Cryosparc. The micrographs were very heterogeneous, with the presence of proteins that were smaller  
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Figure 3.1: Displays the typical purification method used to obtained pure and homogenous Ric-8A 

complexes for cryo-EM analysis. A) Anion exchange chromatogram displaying the shift of 
phosphorylated Ric-8A-491 (blue line) relative to unphosphorylated Ric-8A-491 (red line). B) A 

typical size-exclusion chromatogram for Ric-8A complexes. The SDS-PAGE shows the purity of the 
first complex peak comprised of all the individual components at an approximate 1:1 ratio to each 

other. Figure 3.1A was obtained from reference (168). 
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Figure 3.2.1: A) A representative microgaph of the data collected of the complex of full-length Ric-8A 
with mGαi1 and nb 9156. There is a high background present due to complex dissociation. B) 2D class 

averages generated from the data set in cryosparc. Most of the 2D class averages are very poor. Only 
the first class exhibits high resolution features. 
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then the expected size of 100 kilodaltons for Ric-8A:mGαi1:9156 complex. The proteins contributing 

to the background of the micrographs were unbound Ric-8A and mGαi1 that dissociated from exposure 

to the air-water interface during vitrification. A micrograph for the data collected is shown in Figure 

3.2.1 A. 

 

3.3.2: Particle picking, reference free 2D classification, and 3D classification 

Particle picking was performed using the laplacian of guassian function with a diameter of 80-110 on 

all micrographs and multiple rounds of 2D classification was performed to remove junk particles. Good 

2D classes were then used for template picking to select for more good particles. 2D classification and 

3D classification was done using either Relion or Cryosparc software packages. Both Relion processing 

and Cryosparc processing produced the same results, in this case, for 2D classifications and 3D 

classifications. The resulting reference free 2D classes were very noisy in the data set, with only the 

one class average exhibiting secondary features (Figure 3.2.1). For this data set, only 3D classifications 

were performed, instead of 3D refinements, as 3D refinements only resulted in noisier maps. The 3D 

model obtained exhibited features that corresponded to Ric-8A and mGαi1. The nanobody and the 

helical domain of this map could not be found, and the observed density for mGαi1 most likely 

corresponded to the Ras domain. The 3D model generated from the data set is shown in Figure 3.2.2. It 

was clear from the data that sample and vitrification optimization would be required to achieve a high-

resolution map of the complex. 

 

 

3.4: Cryo-EM analysis of pRic-8A-491:DeltaN31Gαi1:8117:8109 Complex 

3.4.1: Micrograph Analysis 

To increase the resolution of the maps obtained, truncated forms of Ric-8A (forty residues at the C-

terminus removed) and Gαi1 (31 residues at the N-terminus removed) were used to reduce the 

flexibility of the complex. Furthermore, two nanobodies (8117, 8109) were added to the complex to 

reduce the inherit flexibilty of the Ric-8A protein, where 8117 binds toward the N-terminus of Ric-8A 

and NB 8109 binds toward the C-terminus of Ric-8A. The nanobodies in this experiment would also 

act to facilitate image alignment during 2D classification and 3D classification. In addition to using 

nanobodies for complex stability, either 0.01% NP-40 or 0.01% OG detergents were added to the 

complex just prior to vitrification. 
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Figure 3.2.2) Preliminary 3D map generated from Full-length Ric-8A bound to mGαi1 and Nb 
9156 at 15 angstrom resolution. Ric-8A density and mGαi1 density is labeled in the figure with 

differing views of the map. 
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The detergents in this experiment would act to reduce complex dissociation during vitrification, ideally 

leaving more intact good particles to achieve higher resolution.   

 

The complex containing NP-40 was screened briefly on the Talos Arctica and approximately 1500 

micrographs were collected at a total dose of 52 e/A2. The addition of NP-40 greatly reduced the 

amount of background observed in the micrographs, indicating that complex dissociation was reduced, 

though the detergent did induce some protein aggregation. The complex containing OG was screened 

on the Talos Arctica and approximately 1300 micrographs were collected at a total dose of 50.4 e/A2. 

The sample was imaged and collected with a phase plate to enhance the contrast of the particles for 

better visualization. The addition of OG appeared to have also reduced the amount of background 

present, with clear intact particles. It was concluded that the addition of detergents to the sample before 

vitrification was indeed, reducing complex dissociation at the air-water interface. The micrographs are 

shown in Figure 3.3.1. 

 

3.4.2: Reference Free 2D classification and 3D classification 

Both datasets collected for the pRic-8A-491:DeltaN31Gαi1:8117:8109 complexes were processed 

using the Cryosparc software package. For the data set containing NP-40, 2.6 million particles were 

picked and extracted using the template picking function. Multiple rounds of 2D classification were 

performed to remove poor particles and approximately 26,865 particles were left ab-initio 

reconstruction and 3D classification. For the data set containing OG, 355,6882 particles were picked 

and extracted for multiple rounds of 2D classification until 90,685 particles were left for 3D 

classifications. Interestingly, 3D classification and refinement of the data set containing NP-40 only 

resulted in very low-resolution maps (15 angstroms), despite the appearance of better particles in the 

micrographs. The final 2D classes did not exhibit any high resolution features, even after filtering out 

most of the junk particles in the data set. The low resolution observed in the 2D classifications of the 

data set was most likely due to the lack of non-aggregated protein particles, and thus, not enough 

particles were present to achieve high-resolution. The final 3D map did have low resolution features 

that corresponded to Ric-8A, Gαi1, Nb 8117, and NB 8109. For the data set containing OG, the 2D 

classifications were even more featureless then the NP-40 data set, despite having much less 

aggregation and the presence of many individual particles. This was most likely caused by the phase 

plate used to enhance the of the particles, where there was a loss of high frequency information.
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Figure 3.3.1) Micrographs of the phosphorylated Ric-8A-491:DeltaN31Gαi1:8117:8109 complex. A) 

The complex vitrified containing 0.01% NP-40. B) The complex vitrified containing 0.01% OG with a 
phase plate used to enhance the contrast of the particles. 
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Figure 3.3.2) 2D class averages generated for PRic-8A-491:DeltaN31Gαi1:8117:8109 complex.  A) 

2D class averages of the complex vitrified containing 0.01% NP-40. B) 2D class averages of the 
complex vitrified containing 0.01% OG with a phase plate used to enhance the contrast of the particles. 
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Attempts of performing 3D classification and refinement of this data set ultimately did not yield any 

usable map. The 2D class averages are shown in Figure 3.3.2 while the 3D map of the OG sample is 

shown in Figure 3.3.3.  

 

3.5: Cryo-EM analysis of pRic-8A-491:DeltaN31Gαi1:8431:9156 Complex 

3.5.1: Micrograph Analysis 

The next attempt at increasing the resolution of the maps obtained was to use Nb 8431 and Nb 9156. 

Nb 8431 is a nanobody that only binds to the Ric-8A:Gαi1 complex, and does not bind to any of the 

protein components individually. It is thought that Nb 8431 binds at the interface between Ric-

8A:Gαi1, such that even the addition of GTP does not dissociate the complex. Of course, Nb 9156 was 

added to help stabilize the helical domain of Gαi1 to increase the resolution of the complex. The 

complexes used in this experiment continued with the truncated forms of Ric-8A and Gαi1 to further 

reduce the flexibility of the complex. To increase the stability of the complex during vitrification, OG, 

and CHAPS were added prior to vitrification of the samples to reduce their interaction with the air-

water interface. The addition of CHAPS before freezing resulted in a very heterogeneous micrograph 

(see Figure 3.4.1A), though some individual particles close to the predicted size of the complex could 

be seen. To further determine the state of the complex with CHAPS, approximately 1700 micrographs 

were collected on the Talos Artica microscope at a total dose of 60 e/A2 for data processing. The 

complex containing OG appeared very homogeneous (relative to the sample containing CHAPS), with 

clear and well distributed particles (see Figure 3.4.2A). Approximately 1500 micrographs were 

collected of the OG sample on a Talos Arctica microscope at a total dose of 54 e/A2 for data processing. 

 

3.5.2: Reference Free 2D classification and 3D classification 

Reference free 2D classifications and 3D classifications of the pRic-8A 491:DeltaN31Gαi1:8431:9156 

Complex data sets was performed in Cryosparc. For the CHAPS sample, approximately 2.4 million 

particles were initially picked and after multiple rounds of 2D classification about 28,000 particles 

were left. The 2D class averages were of very low resolution (see Figure 3.4.1B), exhibiting no 

secondary features. Furthermore, the protein complex appeared damaged in the 2D class averages, most 

likely caused by the addition of CHAPS and thus, no useful 3D model could be obtained from this data. 

For the OG sample, approximately 540,000 particles were picked and multiple rounds of 2D
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classification was performed, until a final set of 90,000 particles was obtained. The 2D class averages 

(see Figure 3.4.2B) appeared rather blurry, exhibiting no secondary features, despite having clear and 

distinguished particles in the micrographs. This may have been due to poor image alignment. 3D 

classification and refinement of the data resulted in a 13 angstrom map, with density that corresponds 

to Ric-8A and the ras domain of Gαi1 with some secondary features starting to show on the Ric-8A 

density (see Figure 3.4.3). 

 

3.6: Cryo-EM analysis of pRic-8A-491:DeltaN31Gαi1:8117:8109:8119 

Significant improvements were seen with the Ric-8A-491:DeltaN31Gαi1:8431:9156 complexes, and 

continued work on this complex may have eventually resulted in a high-resolution map. Though at this 

time, an approximately 4.0Å crystal structure of pRic-8A-491:DeltaN31Gαi1:8117:8119:8109 (hereon 

referred to as pR491:DeltaN31Gαi1:3nb) was obtained in the lab. To aid with model building, a high-

resolution cryo-EM map of the pR491:DeltaN31Gαi1:3nb was then pursued. 

 

3.6.1: Initial screening of pR491:DeltaN31Gαi1:3nbs on the Talos Arctica 

Screening trials for optimal grids of the pR491:DeltaN31Gαi1:3nbs complex was performed on the 

Talos Arctica microscope. The best vitrification condition for the sample was found to be at 0.3 mg/mL 

containing 0.01% NP-40 (Figure 3.5.1 A). To determine the quality of the grid, a small data collection 

was performed on the Arctica microscope. Approximately 1,146 movies were collected at a total dose 

of 54 e/Å2 followed by processing in Cryosparc. The 2D class averages generated from the collected 

data exhibited high-resolution features (protein secondary structure could be seen from 2D class 

averages) (Figure 3.5.1 B), indicating that the sample could go to high-resolution. Thus, the grid was 

saved and used for data collection on the Titan Krios to achieve the highest resolution possible for the 

sample. 

 

3.6.2: Data collection and processing of pR491:DeltaN31Gαi1:3nbs 

After screening, collecting data, and processing the data for the pR491:DeltaN31:Gαi1:3nbs grid 

sample from the Talos Arctica, the grid was placed onto a Titan Krios microscope for a high-resolution 

data collection. Approximately 7,240 movies were collected at a total dose of 48 e/Å2 , and were further 

processed using a combination of Relion and Cryosparc softwares packages (Figure 3.5.2 B). Movies 

were aligned using motionCor2 and dose-weighting was performed. CTF correction was performed  
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using CTFFIND 4.1 and micrographs with poorly modeled CTFs were manually removed, leaving 

7,186 micrographs. Approximately 4 million particles were automatically picked and manually 

supervised in Cryosparc using the template picking function. The particles were imported into Relion, 

where multiple rounds of 2D classification was performed resulting in a total of 627,356 particles. The 

2D class averages were generated until protein secondary structures appeared (Figure 3.5.2 A).   

 

An Ab-inito model was generated in Relion and two rounds of 3D classification was performed 

afterwards. The best 3D classes were selected, resulting in a total of 277,573 particles. Those were then 

imported into Cryosparc for multiple rounds of hetero-refinement. A total of 169,006 particles were 

subjected to local CTF refinement. A total of 169,006 particles were subjected to local CTF refinement 

in Cryosparc and finally, non-uniform refinement in Cryosparc, resulting in a 4.77Å map based on the 

0.143 FSC gold-standard curve (Figure 3.5.2 B). Finally, the map was sharpened to show high-

resolution features. The 3D map obtained showed clear density for helices along Ric-8A, and density 

corresponding to Nbs 8117, 8109, and 8119 that could be seen bound to Ric-8A. Density could be 

observed for the Ras domain of Gαi1, though the helical domain was not present in the map, due to its 

inherent flexibility (Figure 3.5.3). It is likely that these nanobodies reduced flexible regions on Ric-8A, 

which inherently increased the stability of the complex, and may have acted to facilitate accurate image 

alignment. 

 

3.7: Cryo-EM analysis of pR491:DeltaN31Gαi1:8117:8109:8119:9156 complex 

A 4.77Å map was obtained for the PR491:DeltaN31Gαi1:3nb complex, though the map lacked the 

helical domain, most likely due to it’s inherent flexibility. Due to the flexibility of the helical domain, 

resolutions higher then 4.77Å resolution for the complex could not be achieved. To increase the 

resolution of the complex, nanobody 9156 was added in addition to nanobodies 8119, 8109, and 8117. 

Nanobody 9156 binds to the helical domain of Gαi1 and thus, would act to reduce the flexibility of the 

helical domain in the Ric-8A:Gαi1 complex by acting as a sort of weight.  This section will discuss the 

results obtained by adding nanobody 9156 to the complex. 
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3.7.1: Screening of the pR491:DeltaN31Gαi1:8117:8119:8109:9156 complex 

Initial screening for optimal grids of the PR491:DeltaN31Gαi1:4nbs complex sample was performed 

on the Talos Arctica, similarly to the 3nb complex. The optimal grid condition was found to be at a 

protein concentration of 0.3 mg/mL containing 0.01% NP-40 (Figure 3.6.1 A). To confirm the quality 

of the sample, a small data collection was performed on the Talos Arctica microscope. Approximately 

1,215 micrographs were collected at a total dose of 69 e/Å2 and the micrographs were processed with 

Cryosparc to observe the resulting 2D class averages. The 2D class averages exhibited clear protein 

secondary structures, with little solvent noise surrounding the protein (Figure 3.6.1 B). The clear 2D 

class averages obtained from the small dataset collected on the Talos Arctica microscope indicated that 

the sample was of high quality and thus prompted for a high-resolution data collection on the Titan 

Krios microscope.  

 

3.7.2: Data collection and processing of the pR491:DeltaN31Gαi1:8117:8109:8119:9156 complex 

After screening the pR491:DeltaN31Gαi1:4nb complex on the Talos Arctica, the sample was placed 

onto the Titan Krios microscope for a high-resolution data collection. A very large data set was 

collected, comprising a total of 8,670 movie stacks at a total dose of 69 e/Å2. The movie stacks were 

aligned using the motionCor2 software and the resulting micrographs were dose-weighted. 

Micrographs containing poorly modeled CTFs were removed resulting in a final count of 8,456 

micrographs. Particles were picked from the micrographs using Topaz particle picking neural network 

software in Cryosparc, where 865,563 particles were picked. The particles were imported into Relion, 

where multiple rounds of 2D classification were performed to remove poor 2D class averages, which 

resulted in a total of 554,244 particles (Figure 3.6.2 A). An initial model was generated in Cryosparc 

using 49,921 particles, which yielded a model containing the helical domain. The initial model was low 

pass filtered at 20 Å and was used in Relion for 3D classification. Multiple rounds of 3D classification 

were performed in Relion yielding 167, 260 total particles. These particles were subjected to non-

uniform refinement in Cryosparc resulting in a map with a final resolution of 4.0Å. CTF refinement 

was then performed in Cryosparc followed by non-uniform refinement again resulting in a map of 3.82 

Å resolution based on the gold-standard FSC of 0.143 (Figure 3.6.2 B). The map exhibited high-

resolution features, displaying helices and potential side-chains in some regions (Figure 3.6.3 and 

Figure 3.6.4). The helical domain was resolved in this map, most likely due to the presence of the 

fourth nanobody bound to the helical domain of Gαi1, which restricted the flexibility of the domain. 
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Figure 3.5.3) The 4.77Å map of pR491:DeltaN31Gαi1:3nbs with differing views and each individual 
component labeled. The helical domain was not observed in the map, and thus, is not shown. 
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Figure 3.6.1) Representative micrograph and 2D class averages obtained from 
pR491:DeltaN31Gαi1:4nbs on the Talos Arctica. A) Micrograph of pR491:DeltaN31Gαi1:4nbs on the 

Talos. B) 2D class averages of   pR491:DeltaN31Gαi1:4nbs generated with Cryosparc. 
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Figure 3.6.2) 2D class averages and processing workflow from the pR491:DeltaN31Gαi1:4nb complex 

data collected on the Titan Krios. A) 2D class averages of the pR491:DeltaN31Gαi1:4nbs complex 
from the Titan Krios. B) Processing workflow of the pR491:DeltaN31Gαi1:4nb complex. 
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Figure 3.6.3) Differing views of the pR491:DeltaN31Gαi1:4nbs complex map at 3.82Å. The helical 

domain was observed in the map. 
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Figure 3.6.4) The 3.8Å map of the pRic8A1-491:DeltaN31Gαi1:4nb complex overlayed with the 

model generated from the map. Density corresponding to Ric-8A is shown in green, Gαi1 in cyan, Nb 
9156 in purple, Nb 8109 in red, Nb 8119 in orange, and Nb 8117 in blue. 
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3.7.3: Chapter summary and conclusions 

There was much optimization that was required to obtain a high-resolution map of the Ric-8A:Gα 

complex that involved sample preparation and differing vitrification conditions. In regards to sample 

preparation, multiple combinations of nanobodies were used, until the best combination was found that 

increased the stability of the complex and while aiding in image alignment. Furthermore, various 

different detergents had to be utilized that could reduce the deleterious effects of the air-water interface, 

while not inducing aggregation of the complex reducing the number of viable particles present for 

processing. It is important to note that the map shown in this thesis for pRic-8A:DeltaN31Gαi1:3nb 

complex was not used for the structure described in Chapter 4. 

 

 

 

 

 

 

 

 

 

 



74 
 

Chapter 4. 

Structure of the Ric-8A:Gα 

Complex 
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4.1: Chapter Introduction 

The work presented in this thesis has led to a 3.9 angstrom structure of the complex, and thus, this 

chapter will discuss the structure of the Ric-8A:Gαi1 complex and the insights that have been provided 

by the structure. In addition, very recent work has also been published by another group of the Full-

length phosphorylated Ric-8A:Gαi1 and Ric-8A:Gαq structures, using cryo-EM, without the use of 

nanobodies to stabilize the complexes (169). The similarities and differences between all of these 

structures will be discussed along with the differing interpretations obtained from the structures.   

 

4.2: Overall architecture of the cryo-EM Ric-8A:Gα structures 

For discussion of the Ric-8A:Gα complex structure, “A”, “B”, and “C” will be used to describe the 

ARM repeat elements of Ric-8A, while “a” and “b” will be used for the HEAT repeat elements of Ric-

8A (see Figure 4.1 for nomenclature). The four nanobody cryo-EM structure obtained from the work in 

this thesis, comprised of Ric-8A 1-491 and DeltaN31 Gαi1, reveals residues 2-487 of Ric-8A and the 

entirety of Gαi1 with the exception of the disordered linker (50-76) between the helical and the GTPase 

domain (168). The two structures determined by seven et al, using cryo-EM, was done with 

phosphorylated full-length Ric-8A bound to full-length Gαi1, and the other complex with the full-

length Gαq isoform. Their Ric-8A:Gαi1 structure had Ric-8A residues 1-482 and the ras-like domain of 

Gαi1 residues (32-54 and 193-354) that were well ordered and easily assigned. The Ric-8A:Gαq 

complex had residues 1-451 of Ric-8A and residues (217-359) of Gαq that were also well ordered. The 

final structures of these complexes lacked the entirety of the helical domain, due to its inherent 

flexibility. The last forty residues of full-length Ric-8A (490-530), predicted to include a coil/beta 

strand and alpha helix/coil structure, were very disordered but resided close to the weak disordered 

density observed for the helical domain that jutted away from nucleotide binding site in an average 

position that is rotated ∼90° from the nucleotide bound forms of Gαq and Gαi1. Of further note, the N-

terminus of Gα were also not observed in their structures from conformational heterogeneity (169).   

 

4.3: Ric-8A interactions with Gα 

There are three main interaction sites between Ric-8A and Gα and this is consistent between Gαi1 and 

Gαq isoform structures determined up to date (168, 169). The first interface of the interaction is formed 

by the C-terminal helix of Ric-8A (rα11) that contacts the switch II, P-loop, and the α3 helix of the Gα 

Ras-like domain (Figure 4.2A and D). The second interface is formed by the C-terminal helix (α5 helix) 
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Figure 4.1) Displays the structure of the Ric-8A:Gαi1 complex with the nanobodies omitted. Ric-8A is 
shown in wheat, while the Gα GTPase domain is colored green and the Ras domain colored cyan. The 

loop segments of the Gα GTPase domain is colored green and the beta sheets of Gαi1 are colored 
purple. The segments of Ric-8A that contact Gαi1 are shown in dark brown. Ric-8A residues 335-340 

are colored red which include the two phosphorylation sites. The figure was obtained from reference 
(168). 
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Figure 4.2) A) The major Ric-8A:Gα contact surfaces and phosphorylation sites are highlighted in 
green, yellow, pink, and blue overlays and these sites are enlarged in panels b-c. B) Interaction between 

the Gα and the Ric-8A C-terminal ARM/HEAT repeat helix rαbA9 and reverse turn r451–r457 (rRT). 
C) Acidic Ric-8A peptide with phosphorylated pS335 and pT440 bound to the positively charged 

surface of Ric-8A. D) Interaction of rα11 with gα3 and Switch II with hydrogen bonds shown as orange 
dashes. E) Contacts between gα5 and residues in successive ARM/HEAT repeats of Ric-8A. 

Polypeptide backbones are shown as tubes with carbon atoms of Ric-8A and Gα are shown in brown 
and green. Oxygen and nitrogen atoms are shown as red and blue. The figure was obtained from 

reference from (168). 
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of Gα which interacts with the concave surface of the ARM/HEAT repeats of Ric-8A (Figure 4.2A and 

E). The third contact region is formed from the Gα β4-β6 sheet with Ric-8A’s αb9 Heat repeat (r411–

r415) and its reverse turn r451–r457 (rRT) (Figure 4.2A and B). Together these three interactions take 

up a total of 3200 Å2 solvent accessible surface area as was determined from the Ric-8A:Gαi1 complex 

(168). 

 

4.4: Ric-8A interacts with the Gα C-terminus that facilitates GDP release 

Ric-8A αb9 interacts with and occupies the site of the gα5 helix resulting in a 900 degree rotation of the 

gα5 helix relative to that of Gα bound to a guanine nucleotide (Figure 4.3 A, D). Ric-8A residues Y412, 

A415, A416, and L418 of αb9 interact to substitute for the gα5 helix and act to stabilize a hydrophobic 

patch of the Gα β-sheet core (Figure 4.2 B). Near the hydrophobic patch, the αa9 helix of Ric-8A acts 

to lever the beta hairpin away from the GTPase core (Figure 4.3 A). The β1-β5 undergo a 5o counter-

clockwise when viewed from the concave surface of the Gα β-sheet. The conformational changes that 

occur with the β1-β3 induce partial disorder of Gα. The gα5 helix connects to the β6 strand by a loop 

that contains the TCAT motif, which is important for coordinating the guanine nucleotide base of GDP 

or GTP in the Ras-like domain of Gα. The displacement of the gα5 helix causes the TCAT motif to 

move away from its nucleotide coordination site (Figure 4.3 B). This structural change also perturbs the 

conserved NKKD motif, located between β4-αG of Gα, which is required for specificity of guanosine 

nucleotides. Together, these conformational changes trigger the separation of the helical and Ras-like 

domains (168, 169). 

 

4.5: Gα C-terminus binds to the Ric-8A ARM repeat trough 

The α5 helix of Gα binds along the concave surface of Ric-8A and interacts with helices αb2 through 

αB8. Highly conserved hydrophobic residues in the gα5 helix (F336, V339, I344, I343, and L348) 

mediate side-chain packing interactions with Ric-8A. Furthermore, the interaction of the α5 helix with 

Ric-8A is further driven by polar interactions that include hydrogen bonds from N346 in Gαi1 (N352 in 

Gαq) and H273 in Ric-8A. The last carboxyl group of Gα (F354 for Gαi1 and V359 for Gαq) interacts 

with Ric-8A residues R71, R75, and N123 (168, 169). These interactions are shown in Figure 4.2 E. 
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Figure 4.3) Conformational changes induced in Gα by Ric-8A. A) Conformational changes due to 

binding of Ric-8A αa9, αb9, and RT to Gαi1. B) Ric-8A-induced conformation changes dismantle the 
Gα nucleotide-binding site. GDP from 1GIT is included as a stick model for reference. C) 

Displacement of Switch II by rα11. The position of GDP bound to Gαi1•GDP is shown as a stick 
model. D) Ric-8A-induced rotation of the helical domain away from the GTPase domain of Gα: top, 

Gαi1•GDP (1GIT) rendered with helices as cylinders and β-strands as ribbons and the helical domain 
colored green; atoms of GDP are rendered as spheres. The figure was obtained from reference (168). 
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4.6: The role of Ric-8A phosphorylation with Ric-8A:Gα complexes                                       

Phosphorylation at residues S435 and T440 by CK2 act to facilitate GEF activity through a structural 

mechanism that was previously unresolved. These two phosphorylated residues reside on an extended  

C-terminal coil region of Ric-8A close to the ARM/HEAT domain. Ric-8A αb9 and RT (reverse turn), 

which interact with the beta sheet of Gα, are connected by an intrinsically disordered sequence 430-440 

which is followed by the Ric-8A α10 helix, respectively. Neither S435 or T440 interact directly with 

Gα though rather form multiple ionic interactions along an electropositive groove with conserved 

arginine and lysine residues (R348, R345, K349, K352, and R405) on Ric-8A (Figure 4.2 C). These 

ionic interactions help to immobilize the 430-450 connector of Ric-8A to stabilize the interaction of 

αb9 and RT with β4-β6 of Gα. Furthermore, it was shown that phosphorylation at S435 and T440 

increased the thermal stability of Ric-8A in the absence of Gα potentially suggesting that Ric-8A adopts 

a more stable and compact conformation (169). 

 

4.7: Ric-8A interacts with the Gα switch II and α3 regions 

The Ric-8A helix α11 (residues 471-491 of the Ric-8A-491 structure) packs between the Gα switch II 

and α3 region (Figure 4.3 C). These two elements form the effector protein binding sites of Gα bound 

to GTP. Interestingly, the α11 helix occupies the position of the switch II in the G-protein heterotrimer, 

Gαi1 bound to GTP analogs, and in the Gαi1•GDP•Pi product complex (Figure 4.3 C). Furthermore, 

mutations at residues E478 and L482 in the α11 helix reduced GEF activity (168). The interaction of 

the α11 helix of Ric-8A with the Gα switch II and α3 region was present in both the Gαi1 and Gαq 

complex structures (169). 

 

4.8: Ric-8A induces a conformational change to the Gα helical domain 

Ric-8A causes the displacement of the α5 helix of Gα and re-orients the β2-β3 sheets of Gα that 

effectively disrupts stabilization interactions required for nucleotide binding (Figure 4.3 A). These 

conformational changes result in a loss of contacts between the helical and ras-like domain of Gα. The 

helical domain, as obtained from the Ric-8A:DeltaN31Gαi1:4nb structure, displays an approximate 60o 

degree rotation of the helical domain around an axis aligned with αD of Gα (Figure 4.3 D). This 

conformational change results in the formation of a channel between the helical and Ras-like domain 

that allows the release of the nucleotide. The magnitude of this change was much lower then that 

observed for G-protein coupled receptor GEF activity, most likely due to steric hindrance from the 
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nanobody bound to the helical domain. Indeed, Ric-8A bound to Gαi1 or Gαq did not exhibit any 

density for the helical domain due to its conformational flexibility, though a little density in the early 

stages of processing were observed approximately 90o away relative to nucleotide bound Gαi1 or Gαq 

(168). 

 

4.9.1: Gα subtype selectivity by Ric-8A and Ric-8B 

The binding of the α5 helix of Gαi1 and Gαq to Ric-8A share very similar interfaces, though despite 

this, there are a few different contact residues as observed from the the cryo-EM structures of the Ric-

8A:Gαq and Ric-8A:Gαi1 complexes (169). Ric-8A accommodates these differences by reorientation 

of side chains, conformational changes that adjust the binding groove in the concave surface of the 

protein, and the formation of alternative backbone interactions. These variations result in differing 

surface contact surface areas between the last 23 terminal residues of Gαq and Ric-8A (2,780 Å2) or 

Gαi1 (2,201 Å2). The difference in contact regions between Gαq and Gαi1, suggests that Ric-8A is able 

to adjust the size of it’s concave groove to accommodate differing Gα isotypes (169). To understand 

Ric-8B selectivity, an homology model was generated of a Ric-8B:Gαs complex and was compared to 

the Ric-8A:Gαq and Ric-8A:Gαi1 complexes (169). Superposition of the Ric-8B:Gαs, generated with 

homology modeling, with the cryo-EM structures of Ric-8A:Gαq or Ric-8A:Gαi1 complexes showed 

that differences with the amino acid compositions of the α5 helix of Gαs is not compatible with Ric-8A 

(169). The differences in amino acid compositions of the Gαs α5 helix may create clashes and 

repulsions with that of Ric-8A which results in inhibition of complex formation. The major difference 

found was a swap of the side chains of N347 (Gαi1) and H273 (Ric-8A). In Gαs, N347 is replaced with 

residue H387, which creates a steric clash with residue H273 of Ric-8A. Ric-8B contains an asparagine  

(N280) at the corresponding position which may enable a polar interaction with H387 of Gαs. In 

addition, a second steric clash was proposed (169), between Q384 of Gαs and F232 of Ric-8A. Ric-8B 

possesses a smaller side chain (V239), at a homologous position, which would enable Ric-8B binding. 

Thus, it is likely that the interactions of the α5 helix of Gα with Ric-8 determines specificity between 

differing isoforms (88).   
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4.9.2: Ric-8 primes Gα for GTP binding 

There is an extensive interface formed between Ric-8A with Gα, which raises the question of how Gα 

is released from Ric-8A in response to GTP. The P-loop is slightly displaced by the α11 helix of Ric-

8A, though the conformation of the P-loop still remains largely the same (Figure 4.3 B). Due to a lack 

of a conformational change of the P-loop, the P-loop is still available for subsequent binding to GTP.  

The electrostatic repulsion between the C-terminus of the Ric-8A α11 helix and the γ phosphate of GTP 

could promote the release of the α11 helix. This would in turn, allow the switch II region to refold into 

it’s native GTP bound conformation. Indeed, GTP containing three phosphates relative to the two 

phosphates in GDP would exhibit higher affinity relative to the latter. The cell also contains 10-fold 

higher concentration of GTP relative to GDP, so it is likely that this has caused Ric-8A to develop into 

a GTP regulated chaperone for Gα subunits (169). Disruption of the switch II interactions with Ric-8A 

would restore the native structure of the Gα β2-β3 regions and would destabilize the interaction 

between Ric-8A and Gα. More work is required to understand the dynamics that accompany Ric-8A 

binding to Gα:GDP  and Ric-8’s release from Gα:GTP. 

 

4.9.3: Conclusions and future Directions 

In this study, a relatively high resolution structure of Ric-8A:Gαi1 was obtained at 3.85 Å. By 

combining various methods for sample optimization, such as trying various combinations of 

nanobodies and truncated forms of Ric-8A and Gαi1. Much work was done in finding the best 

vitrification conditions such that, complex dissociation would not occur at the air-water interface. This 

was done by either trying different nanobodies or different detergent types such as OG, CHAPS, and 

NP-40. The complex was on the small side for cryo-EM, at around 160 kilodaltons, though was still 

well-within the current range to obtain a high-resolution map. Due to the small size of the protein 

complex, it was very difficult to determine the quality of the grids just from visualization alone. To 

determine the quality of the grids, it was necessary to collect a small dataset and processing was 

required to assess the quality of the grids. While in some cases, direct visualization was sufficient, 

where high-background was present, i.e, small proteins corresponding to individual components of the 

complex. Interestingly, Ric-8A complex stabilization with NB 8431 and NB 9156 appeared rather 

homogeneous, with little to no background present, and thus, appeared very promising from direct 

visualization. Despite this, processing of the data resulted in a low-resolution map though improvement 

was seen relative to other datasets collected at the time. 
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The pRic-8A-491:DeltaN31Gαi1:3nb complex, frozen with 0.01% NP-40, resulted in a high resolution 

map at 4.8 Å resolution. It is likely that the nanobodies had three major factors for improving 

resolution in this structural analysis, which included providing features for facilitating image alignment 

during 2D or 3D classification, providing stability and reducing complex dissociation, and reducing 

overall inherent flexibility of the complex.  The Ric-8A-491:DeltaN31Gαi1:3nb map showed clear 

density for Ric-8A, with helices clearly showing, and density for the Ras-like domain of Gαi1 along 

with density showing the nbs bound. Despite the high-resolution map obtained, no clear density could 

be observed for the helical domain of Gαi1, indicating the conformational flexibility of the domain. To 

restrain the domain for structural analysis, a fourth nanobody which binds to the helical domain of 

Gαi1, was added to reduce the conformational flexibility of the helical domain. Indeed, this increased 

the resolution of the pRic-8A:DeltaN31Gαi1 complex from 4.8 Å to 3.85 Å and resolved the helical 

density of Gα, which was not resolved in cryo-EM structures without nanobodies (169). The nanobody 

9156, likely restrained the flexibility of the Gα helical domain, and thus, facilitating effective structural 

determination of the domain. 

 

The structure of the complex obtained from this study revealed many insights into the structural 

mechanism of Ric-8A GEF and chaperone activity. The structure showed that phosphorylation of Ric-

8A at residues S435 and T440 act as molecular staples bound by electrostatic interactions onto Ric-8A 

itself. Ric-8A disrupts the nucleotide binding region of Gα, which facilitates nucleotide release, and 

also primes Gα for binding to GTP resulting in its activation. While this study has provided much 

insights as to how Ric-8A functions as a GEF and a molecular chaperone for Gα subunits, more work is 

necessary to understand the dynamics of nucleotide release. Furthermore, it is not utterly clear how 

Ric-8A and Ric-8B exhibit specificity toward different Gα subunits, and thus, a clear direction would 

be to elucidate a high-resolution structure of the Ric-8B:Gαs complex. Also, noteworthy, is whether 

which of the three contacts of Ric-8A and Gα is responsible entirely for its GEF activity or as a 

molecular chaperone and thus, further work needs to be done to determine this. 
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