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Day, Nicholas, Ph.D, June 2020  Cellular, Molecular, and Microbial Biology 

Dynein Light Chain 1 Functions as a Cofactor for Post-Transcriptional mRNA 
Regulation and RNA Granule Assembly 
 
Chairperson: Jesse Hay 

Gene regulation is essential for ensuring maintenance, proliferation, and proper 
development of a cell. RNA binding proteins (RBPs) regulate gene expression by 
targeting and binding mRNAs to control their translation and often localize to 
cytoplasmic assemblies of protein and RNA called RNA granules to facilitate post-
transcriptional mRNA regulation. Using C. elegans as a model organism, we report on 
the function of dynein light chain 1 (DLC-1), a subunit of the dynein motor complex, in 
post-transcriptional mRNA regulation in the gonad. Previous work suggests that DLC-1 
is an RBP cofactor that functions independent of the dynein motor. It is unknown how 
widespread this regulatory role for DLC-1 may be or what direct interactions between 
DLC-1 and RBPs make mRNA regulation possible. The work presented in this 
dissertation suggests that DLC-1 is an important contributor to post-transcriptional 
mRNA regulation as well as RNA granule assembly. First, we used RNA 
immunoprecipitation coupled with high throughput sequencing (RIP-seq) to identify the 
mRNAs associated with DLC-1 through its interaction with RBPs. We found that DLC-1 
is involved in post-transcriptional regulation of the oogenic transcriptome and 
demonstrated that DLC-1-associated transcripts depend on DLC-1 for regulation of their 
expression in the germline. From this work we identified the RBP OMA-1 as a new 
interactor of DLC-1 by an in vitro pulldown. Furthermore, we developed a protocol for 
application of in situ Proximity Ligation Assay (PLA) for use in C. elegans to probe for 
protein-protein interactions across developmental stages. This allowed us to detect 
formation of DLC-1/OMA-1 complexes in the gonad. Finally, we used a bioinformatic 
scan to find additional C. elegans RBPs that might interact with DLC-1. Using in vitro 
pulldowns, we verified predicted direct interactions between DLC-1 and 4 core RBP 
components of P granules, which are a subtype of RNA granule. Knockdown or knockout 
of dlc-1 disrupts embryonic P granule assembly, suggesting that DLC-1 has an important 
role in this process. As a whole, this work expands upon the alternate and emerging 
functions of dynein light chains and suggests that cofactors like DLC-1 play critical roles 
in promoting mRNA regulation. 
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Chapter 1 

Introduction 

An Elaborate Regulatory Network for Regulating Simple Messages 

 

1.1: Post-Transcriptional Control of Gene Expression 

 Regulation of gene expression is a fundamental process that gives rise to different 

cell types, controls cell function, and ensures that genes are properly expressed during 

development. In order for a variety of cell types to be made from the same DNA 

blueprint, several regulatory steps dictate when and where genes are expressed. These 

regulatory mechanisms include those that govern RNA metabolism, starting with the 

initiation of transcription through to its decay after translation. RNA binding proteins 

(RBPs) directly interact with RNAs and are involved in post-transcriptional regulation 

(PTR) of RNA metabolism. There are several connected post-transcriptional steps that 

modify and prepare RNA for translation, including: splicing, capping, polyadenylation, 

and transport [1]. Following these processing steps, RBPs further regulate the storage and 

translation of mRNAs, which affects cell function [2,3]. Many RBPs coordinately work 

together to promote PTR in assemblies that include multiple proteins, and their target 

mRNAs. Mutations that compromise the function of RBPs can lead to cancer and 

neurodegenerative diseases [4-6]. Therefore, studies of RBP function in PTR illuminate 

broader biological processes and how deregulation results in disease. This chapter will 

describe approaches that are used to characterize RBPs and their target mRNAs, as well 

as the properties that allow RBPs to assemble into complexes associated with PTR. C. 

elegans, the model organism used in this dissertation research, will also be introduced 
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and how it can be applied to studies that examine RBP function and assembly. Finally, 

dynein light chain 1 (DLC-1), initially described as a subunit of the dynein motor 

complex, will be discussed as an emerging cofactor for RBPs, which is the focus of the 

research in this dissertation. 

  

1.1.1: Protein-RNA Interactions 

RBPs typically interact with the 5’ or 3’ untranslated regions (UTRs) of their 

target mRNAs [7-11]. Through these interactions with UTRs, RBPs exert post-

transcriptional control over their target mRNAs [12]. Conventional RBP-RNA 

interactions are facilitated either by structured domains in the RBP called RNA-binding 

domains (RBDs), or by disordered RNA-binding regions [13,14]. Many RBPs are 

recognized based on the presence of a characterized RBD in the protein sequence and 

some RBPs contain multiple RBDs [15,16]. Amino acid residues of RBDs facilitate 

molecular interactions with RNA nucleotides allowing RBPs to interact with their target 

mRNAs [15]. RBP activity and mRNA binding capability is subject to regulation by 

cofactor binding, which can modulate RBP function [13,17]. For example, several 

DEAD-box family RNA helicases are known to associate with cofactors that promote 

their function or specificity for target mRNAs [18,19]. Many RBP-associated cofactors 

remain to be identified and the extent to which RBPs depend on cofactors also remains to 

be determined. Nevertheless, the findings to date suggest that cofactors are critical for 

RBPs to function as post-transcriptional regulators. 

To identify what target mRNAs are associated with an RBP of interest, many 

studies have used protein-centric approaches such as RNA immunoprecipitation and 
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sequencing (RIP-seq) or cross-linking immunoprecipitation and sequencing (CLIP-seq) 

[20]. These approaches are informative for discovery of transcripts that are targeted by a 

single RBP and provide insight into what biological processes are regulated by the RBP. 

Sequencing data derived from CLIP-seq experiments can provide information on the 

binding elements that are recognized by RBPs. For example, PUF family RNA binding 

proteins, which contain the conserved Pumilio RBD, are extensively studied in several 

model systems, including C. elegans, S. cerevisiae, D. melanogaster, and humans. A 

study using CLIP-seq examined target mRNAs of C. elegans PUF proteins FBF-1 and 

FBF-2, which typically interact with target mRNAs in the 3’ UTR, and found that target 

mRNAs contained a UGU triplet in the recognition site [11]. The core UGU interaction 

motif is conserved among target mRNAs of PUF family RBPs in other model organisms 

as well [21], suggesting that conserved RBDs can interact with similar recognition 

elements. This could prove to be useful for prediction of target mRNAs for RBPs that 

have not yet been documented or vice versa. As target mRNAs continue to be 

characterized for more and more RBPs, the power to predict potential protein-RNA 

interactions by comparison of homologous RBDs will improve.  

 

1.1.2: Biochemical and Computational Approaches to Identify RBPs 

As the number of documented RBPs continues to grow, the demand for broader 

identification of RBPs in a model system is increasing. While much of what is known 

about protein-RNA interactions has been based predominantly on protein-centric studies 

that look at RBPs individually, this approach is insufficient for broader identification of 

RBPs. As an alternative, in silico prediction software using databases of annotated RBDs 
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that scan and compare against proteomes can identify putative RBPs. This approach has 

expanded the landscape of what proteins binds RNAs in different model systems [22,23]. 

A caveat of this approach is that detection of additional RBPs is limited to comparisons 

made against characterized RBDs and may exclude RBPs with unknown or intrinsically 

disordered RBDs. As knowledge of protein sequences for novel RBDs become more 

available, algorithms that incorporate these RBDs continue to improve their sensitivity to 

predict RBPs [24,25]. These in silico approaches are useful as tools for prediction, 

however they may not accurately represent all instances of RBPs in a model system. 

RNA-centric approaches have recently emerged as an alternate approach to 

broaden identification of RBPs on a larger scale. RNA interactome capture (RIC) uses 

mass spectrometry to identify RBPs in complex with polyadenylated mRNAs that are 

captured in a pulldown with oligo(dT)-coupled beads [26,27]. These studies have found 

that many proteins in complex with RNAs do not contain canonical RBDs [13,28,29], 

suggesting that the types of protein-RNA interactions are much broader than was 

previously known. Some RIC studies have found that proteins that were not previously 

known to interact with RNA, such as metabolic enzymes, have the capacity to bind RNAs 

[29-31]. To identify the specific peptide sequences in novel RBPs that interact with 

mRNAs, modified RIC approaches include additional steps that fragment crosslinked 

protein-RNA complexes by proteolysis to allow isolation of peptides in contact with 

RNA [32]. Following RNase treatment, these isolated peptides that interacted with 

mRNAs can be identified by mass spectrometry. RIC studies indicate that intrinsically 

disordered regions (IDRs) of proteins, which lack a stable structural conformation in 

isolation, also interact with RNA [13,14,33-35]. Taken together, these studies continue to 
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expand our understanding of what determinants define protein-RNA interactions as well 

as what is the scope of proteins that are involved in PTR. 

 

1.1.3: Assembly of RNA Granules and Their Role in PTR  

Coordination of cellular processes and signaling pathways in eukaryotes often 

involves compartmentalization of proteins into membrane-bound organelles. RNA 

regulation follows a similar principle of compartmentalization, where RBPs and RNA are 

sequestered into biomolecular condensates that are known as RNA granules. These 

condensates appear as foci in eukaryotic cells but are in fact membraneless organelles 

[36-38]. Previous research on C. elegans P granules, a type of RNA granule, has provided 

insight into how these condensates can form in the cell. The physical nature of P granules 

was revealed by several key observations, where P granules: had a spherical morphology, 

fused with one another upon contact, and exchanged contents with the cytoplasm [39]. 

These findings led to the proposal that P granules exist as dynamic, liquid droplets that 

form through phase transitions. This provided a foundation for current models that 

suggest RNA granule assembly occurs by way of a process called liquid-liquid phase 

separation (LLPS), where proteins are concentrated into a condensate that appears as a 

granule or a droplet in the cell [37,38,40,41]. LLPS occurs when proteins in a bulk, 

diffuse phase de-mix, resulting in the formation of a condensed, proteinaceous liquid 

phase that appears as a droplet and is suspended within the bulk phase, similar to de-

mixing of oil and water [42]. This process causes certain proteins to become enriched in 

these liquid droplets while excluding others, thereby organizing proteins for coordinated 

function in a pathway [40]. Protein-protein interactions are important for LLPS, as they 
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can help nucleate the assembly of the core that promotes condensation of additional 

proteins into the liquid phase. LLPS-mediated RNA granule assembly is made possible 

by an array of types of protein-protein or protein-RNA interactions as described below. 

At the molecular level, formation of RNA granules results from specific 

properties of granule-associated proteins that promote LLPS. RNA granule-associated 

proteins that possess oligomerization domains can locally concentrate proteins to promote 

LLPS and form a condensate [43,44]. IDRs, which are domains found in many RBPs, are 

also drivers of LLPS-mediated RNA granule assembly [41,45-47]. Disordered domains 

can interact with similar regions in other proteins that promote assembly and recruitment 

of additional proteins to RNA granules [45,48-50]. Short linear motifs (SLiMs) are often 

found in IDRs and serve as docking sites for other proteins that can promote LLPS-

mediated RNA granule assembly [48]. Beyond protein-protein interactions, RNA can 

influence assembly of these condensates. RNA-RNA interactions may form scaffolds or 

seeds that recruit RBPs [51] and RNA also has the capacity to phase separate on its own 

without proteins [52,53], which is thought to help stabilize formation of RNA granules 

under certain conditions. Cofactors of RNA granule-associated proteins, including RBPs, 

can contribute to RNA granule assembly as well. Inclusion of cofactors can modulate 

LLPS-mediated assembly of RNA granule components and maintain stability of the 

condensates [54]. The variety of cofactors involved in this process and how they might 

contribute to RNA granule assembly is not yet known; however, research presented in 

this dissertation suggests that RBP cofactors may be integral to RNA granule assembly 

(see chapter 4). Through the array of different protein-protein, protein-RNA, or even 

RNA-RNA interactions described above, LLPS-mediated condensation and formation of 
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RNA granules is made possible. Studies in a number of model systems have documented 

multiple subtypes of RNA granules, which are differentiated based on their constituent 

proteins and mRNAs. These include stress granules, processing bodies, neuronal 

granules, and germ granules, each of which are briefly described next. 

Cells adapt to stresses such as oxidation or heat by globally silencing translation 

through formation of stress granules (SGs) [55]. These granules contain stalled 

preinitiation complexes and RBPs, as well as proteins that nucleate SG assembly in the 

presence of stress. Translational arrest in SGs results from polysome disassembly and 

aggregation of RBPs with their target mRNAs [36,56]. Once a stress is removed and the 

cell recovers, SGs dissociate and translation can resume, suggesting that these types of 

RNA granules are only short-lived and temporarily store mRNAs in a translationally 

inactive state.  

Processing bodies (PBs) are another type of RNA granule that share some 

components with SGs, such as the eIF4e translation initiation factor and several RBPs 

[56,57]. PBs are present under normal conditions in the cell, as opposed to SGs, which 

form under stressed conditions [58]. PBs contain mRNA decay machinery such as 

decapping enzymes and deadenylases [59,60], suggesting that PBs might be involved in 

mRNA degradation. However, recent evidence suggests that PBs may also function like 

SGs to stabilize mRNAs during stress [61]. Studies have identified interactions between 

PBs and SGs [62,63], suggesting that certain components such as mRNAs or proteins 

could be shuttled between the granules to facilitate either storage or decay of mRNAs.  

 Neuronal RNA granules (NGs), are transported by motor proteins that move 

along the cytoskeletal network to deliver NGs to different compartments of the neuron 
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[64,65]. Formation and transport of NGs to neuronal processes are implicated in 

remodeling the proteome in neuronal subcompartments like axons or dendrites [66,67]. 

RBPs localized to NGs target mRNAs to ensure their transport to specific regions of the 

neuron for local translation [65,68]. As a result, localized synthesis of proteins can create 

functional domains to promote localization of receptors in dendrites or ion channels in 

terminal regions of axons. 

 Germ granules are a type of RNA granule found in germ cells and they 

contribute to a wide range of germ cell functions including retaining totipotency of the 

germ cell, preventing aberrant differentiation of germ cells into somatic cells, and 

facilitating germ cell survival that is needed to transmit genetic information to the next 

generation. Germ granules are found in all animals; however, their distributions across 

developmental stages vary. C. elegans or Drosophila germ granules are present 

throughout development and are maternally loaded into progeny, while in other animals 

such as mammals, formation of germ granules is induced de novo in germ cells during 

embryo development [69,70]. Germ granules are required for germ cell function and 

fertility, but are not involved in specifying germ cells [69]. Germ granules contain RBPs 

that target and prevent translation of mRNAs encoding factors associated with 

reprogramming to a somatic cell-like fate [70,71]. Like NGs, germ granules store 

mRNAs that become translationally active in response to specific cues such as 

developmental stage [72,73].  

Taken together, different subtypes of RNA granules facilitate post-transcriptional 

regulation through approaches involving transport, storage, or degradation of mRNAs. 

Findings that define how one subtype assembles or disassembles may prove to be 
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informative for other subtypes. Since RNA granules are important for regulating mRNA 

expression, mutations in proteins that are constituents of any of these granule subtypes 

can have detrimental effects on the function of a cell or animal development. Defects in 

RNA granule assembly are implicated in protein aggregation-related diseases, such as 

those associated with neurodegeneration, including amyotrophic lateral sclerosis [74] and 

Alzheimer’s disease [75]. In addition, loss-of-function mutations in core germ granule 

components of male mammals affects sperm development and leads to defects in fertility 

[76]. This suggests that RNA granules play important roles in numerous pathways and 

necessitates further study to understand how they form and what functions they serve 

under both normal and diseased states. 

 

1.2: Using C. elegans as a Model Organism to Study RBPs and PTR 

The nematode Caenorhabditis elegans has been used as a model organism for 

biological studies for nearly 50 years. Many aspects of this nematode make it appealing 

for research, including a short developmental timeline from embryo to adult (~3 days), 

completely sequenced genome, and a hermaphrodite life cycle, with every individual 

capable of producing nearly 300 offspring within several days [77]. There is also a male 

sex of C. elegans, which can mate with hermaphrodites and allow exchange of genetic 

material to create worms with different genetic backgrounds. The nematode possesses a 

simple body plan that is comprised of: a gut, gonad, muscles, nervous system, and a 

transparent cuticle that allows observation of internal organs in an intact animal. More 

than 30% of human genes are orthologous to C. elegans, making it an ideal model 

organism for studying human diseases [78]. With the advent of CRISPR/Cas9 genome 
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editing in the recent decade, C. elegans genes can be mutated to alter and study their 

function or to include a fluorescent protein tag for the purpose of studying protein 

localization. In addition to genome editing, RNA interference (RNAi) is another facile 

tool that is used to study the function of genes, which is easily accomplished by directly 

feeding the nematode double-stranded RNA to knockdown a gene. As a result, RNAi is 

advantageous for experiments that involve screening many genes. These aspects and 

many others make C. elegans ideal to use as a model organism to study many 

fundamental biological processes, including PTR. 

 

1.2.1: mRNA Regulatory Pathways that Govern Germ Cell Development 

Among the several internal organs of the nematode, the gonad (also referred to as 

the germline) makes up roughly one third to one half the volume of the nematode [79]. 

The germline is formed by two U-shaped arms connecting to the uterus, from which 

hundreds of progeny are produced (marked in orange in the adult stage, Figure 1.1A). 

The organization of the germline resembles an assembly line, where stem cells undergo a 

differentiation program as they progress through the germline to produce gametes. The 

distal tip region of the germline contains a pool of self-renewing, mitotically dividing 

cells, which is referred to here as the germline stem and progenitor cell (SPC) zone (SPC 

zone; Figure 1.1B). These cells have features in common with stem cells found in other 

animals, such as self-renewal, differentiation, and multipotency [80], making C. elegans 

an ideal model system for studying stem cells and how their development is regulated. 

The distal tip region is capped by a somatic niche cell, which activates NOTCH signaling 

in SPCs to promote stem cell fate and maintenance and prevent expression of meiotic 
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entry proteins in the SPC zone [80,81]. As germ cells exit the SPC zone and enter the 

transition zone, they undergo a switch from mitotic to meiotic developmental program 

(Figure 1.1B). This transition and other stages of germ cell development are under 

control of a coordinated PTR network that ensures germ cells develop properly. 

In the C. elegans germline, RBPs integrate into a post-transcriptional regulatory 

network that controls germ cell development [82,83]. In the SPC zone, a number of RBPs 

such as FBF-1, FBF-2, and PUF-8 regulate expression of their target mRNAs to promote 

maintenance of stem cells [84,85]. Identification of mRNAs that are targeted by these 

RBPs has provided insight into how the RBPs regulate this process [11,86]. FBF target 

mRNAs include cell cycle regulators, suggesting that FBFs regulate these genes to 

control maintenance of stem cells. Interestingly, FBFs also regulate mRNAs that encode 

other RBPs, such as gld-1 and gld-3 [87,88], which are important for promoting meiosis 

in germ cells that exit the SPC zone. As a result, FBF function is bipartite: 1) promote 

stem cell maintenance in the SPC zone and 2) prevent expression of factors associated 

with differentiation, such as GLD-1 and GLD-3. In contrast, the pachytene region of the 

germline requires RBPs that promote meiosis and differentiation and prevent mitosis and 

self-renewal. These include 3 GLD proteins and NOS-3, which form two pathways that 

promote meiosis and prevent mitosis [81,83]. Interestingly, in gld-1 mutant germlines, 

germ cells that enter the pachytene revert back to mitotic divisions, resulting in formation 

of a tumor [89]. This emphasizes the importance of GLD-1 in regulating mRNA 

expression to prevent reentry into mitosis. Following meiosis, additional mRNA 

regulation is necessary for pathways controlling differentiation of meiotic cells into 

gametes. 
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A C. elegans hermaphrodite produces both male and female gametes from the 

same germline, which requires sequential activity of distinct regulatory pathways to 

ensure that the fates of the cells are properly specified. Spermatogenesis occurs during 

the L4 stage of nematode development (L4 stage; Figure 1.1A) and the RBP FOG-1 is 

required for differentiation of meiotic germ cells into sperm [90,91]. FOG-1 interacts 

with another sperm fate regulator, FOG-3 [92], which forms a multimer that binds 

mRNAs [93]. Identification of target mRNAs for both FOG-3 multimers and FOG-1 

show that most are related to oogenesis, suggesting that both FOGs repress the oogenic 

program [92,93]. This is in agreement with the phenotypes of fog-1 and/or fog-3 mutant 

nematodes, where germ cells only differentiate into oocytes [91,94]. Like the 

spermatogenic program, the oogenic program also has its own distinct regulators.  

During the adult stage of nematode development, the germlines switch from 

spermatogenesis to oogenesis (Adult stage; Figure 1.1A). RNP-8 is an RBP that forms a 

complex with GLD-2 to promote specification of oocyte fate and the stability of mRNAs 

associated with oogenesis [95,96]. Oocyte maturation is promoted by the RBPs OMA-1 

and OMA-2 [97,98], which are also required for early embryonic development [99]. The 

RBP LIN-41 interacts and works antagonistically with OMAs to regulate expression of 

mRNAs that promote oocyte maturation [100,101]. Some RBPs that are important for the 

early stages of embryogenesis are expressed in the oocytes, such as the MEX and MEG 

proteins [102-104]. In particular, MEG-3 and its paralog MEG-4 are RBPs that are 

critical for promoting asymmetry of germ granules in early embryos [35,105].  

 Taken together, the C. elegans germline uses an elaborate post-transcriptional 

regulatory network to control germ cell development. Germline RBPs coordinately work 
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together to regulate different stages of development, forming regulatory units, also 

known as regulons [106,107]. These regulons govern critical steps in germ cell 

development such as: whether to continue proliferation or initiate meiosis, or whether to 

become a sperm or an oocyte. Through this regulatory network, RBPs facilitate a 

stereotypical program of development that has made the germline a useful resource for 

studying PTR. Beyond germline, RBPs are also involved in germ granule assembly in 

embryos, which also follow a stereotyped pattern of development. 
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Figure 1.1: C. elegans Germline Development  

A) A schematic showing the development of the hermaphroditic germline. The 

germline is shaded in orange and P granules (i.e. germ granules, a subtype of 

RNA granules) are shown in green. As nematodes progress through larval stages 

L1-L3, the germline continues to proliferate and grow. During the L3 stage, some 

proliferating germ cells transition to meiotic divisions and initiate a differentiation 

program to produce sperm at the L4 stage. Adult stage germlines switch to 

oogenesis to produce oocytes that are self-fertilized by the previously made 

sperm. A more detailed view of the germline is provided below in panel B. 

During embryo development, the germ cell is recognized by asymmetric 

segregation of P granules into posterior region of the zygote. At the 2-cell stage, P 

granules are enriched in the P cell that serves as the germline precursor during 

further embryo development. This cell will asymmetrically divide 4 times during 

embryo development (stages P2-P4), as P granules continue to condense and 

become perinuclear. At approximately the 100-cell stage, the P4 cell 

symmetrically divides once to produce the Z2/Z3 cells, thereby establishing the 

primordial germ cells (PGCs) that remain quiescent until the L1 stage. L1-4 

denotes larval stages. Figure is from [108]. 

B) Detailed schematic of the adult, hermaphroditic germline. The distal tip cell 

activates GLP-1/Notch signaling in the germline to promote proliferation of cells 

in the stem and progenitor cell (SPC) zone. Progenitor cells that enter the 

transition zone switch to meiotic development and initiate a differentiation 
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program in preparation for becoming gametes (oocytes). P granules are shown in 

green and P bodies are in blue. Figure is adapted from [82]. 

 

1.2.2: Germ Granules in C. elegans Development  

C. elegans germ cells contain germ granules, also known as P granules, which are 

present throughout the lifetime of the worm in the germline and embryos (Figure 1.1A) 

[109] and are required for fertility. In the germline, simultaneous depletion of multiple 

core P granule components leads to sterile worms with germ cells that express somatic-

cell associated proteins and undergo defective oogenesis [71,110]. P granules protect 

germ cells by post-transcriptionally repressing expression of mRNAs that would drive 

them to differentiate into a somatic cell [70,71]. While P granules prevent abnormal 

differentiation of germ cells, they are not required for specification of germ cells during 

embryogenesis. Loss of components that promote P granule assembly or the disruption of 

P granule localization in early embryos still results in fertile and viable adult worms 

[103,111]. This suggests that P granules are not the main determinants needed to specify 

the germline in embryos, but are more important for PTR in the germline. Despite P 

granules being dispensable for germ cell specification in the embryo, their mechanism of 

assembly continues to be of interest during this stage of development as it provides 

insight into the mechanisms of cellular asymmetry. 

Embryonic C. elegans P granules are a useful model system to study RNA 

granule assembly as the principles of their assembly and function may be similar to germ 

granules or even other types of RNA granules present in other animals. There are more 

than 40 known P granule proteins [108] and some of these proteins are homologous to 
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those found in other animals, such as the DEAD-box RNA helicases [112]. Conservation 

of germ granule components suggests that the mechanisms that drive germ granule 

assembly may also be conserved [113]. This supports the importance of understanding 

the principles of RNA granule assembly in model systems that can be applied to other 

animals. Identification of proteins involved in stepwise assembly of P granules (see 

introduction of chapter 4) or types of protein interactions that promote LLPS (as 

described in section 1.1.3) has provided insight into the determinants of RNA granule 

assembly. Research presented in chapter 4 highlights the importance of an RBP cofactor 

DLC-1 in promoting P granule assembly during the early stages of embryogenesis. DLC-

1 was previously identified as a subunit of the dynein motor complex and as such, the 

remainder of this introduction chapter will describe the origin of DLC-1 and its homologs 

and how they came to be characterized as protein complex assembly cofactors. 

 

1.3: Dynein Motor Complex 

Molecular motors that move along cytoskeletal networks in eukaryotic cells are 

important for executing a number of different processes. Transport of proteins, vesicles, 

and organelles, as well as segregation of chromosomes in eukaryotic cells is facilitated by 

type 1 cytoplasmic dynein motor complexes [114,115]. In addition, type 2 cytoplasmic 

dynein is associated with intraflagellar transport of cargo that is important for formation 

and maintenance of cilia and flagella [116,117]. The axonemal class of dynein is 

involved in generation of force in flagella or cilia, which are required for motility 

[116,118]. Minus-end directed movement of the dynein motors along microtubules is 
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powered by ATP hydrolysis [116,119]. For clarity, only cytoplasmic dynein will continue 

to be discussed within the scope of this dissertation.  

 In addition to the functions described above, dynein motor complexes are also 

associated with RNA granules. The dynein motor localizes to and affects formation of 

stress granules in various cell types, including neurons and fibroblasts [120,121]. 

Through RNAi experiments, these reports demonstrated that knockdown of different 

subunits of the dynein motor impaired assembly of stress granules. As an alternate 

approach, additional studies have shown that destabilization of microtubules by 

nocodazole also prevents formation of stress granules [122,123]. In contrast, 

destabilization of microtubules induced formation of processing bodies [124,125], 

suggesting that dynein plays a dynamic role in promoting or impeding formation of 

different RNA granules. In zebrafish germ cells, dynein controls the size and distribution 

of germ granules [126]. This was based on observation that inhibition of dynein function 

led to fewer, but larger germ granules in the germ cell and also results in a significant 

reduction in the number of germ cells. These studies show that dynein contributes to the 

regulation of multiple types of RNA granules. Dynein motor complexes are comprised of 

multiple components that are crucial for motor function and will be briefly introduced 

below. 

 As a whole, the dynein motor is a multi-protein complex that is over 1 

megadalton in size [127]. Heavy, intermediate, and light chain subunits of the dynein 

motor are defined based on their mass and mobility in SDS-PAGE gels [128]. Heavy 

chain subunits of the motor complex form dimers and bind ATP that powers their 

movement along microtubules [114,116,127]. An additional complex called dynactin 



 19 

associates with the dynein motor as a cofactor, which promotes cargo binding as well as 

the movement of the dynein motor complex along microtubules [129,130]. The heavy 

chains contain long N-terminal tail domains that are recognized by the intermediate and 

light chains that promote assembly of the motor complex and docking of cargo [116,127]. 

These associated subunits also assemble as dimers on the motor complex and have 

important roles in maintaining the integrity of the motor complex dimers [116]. Absence 

of a light chain subunit results in defective function of the motor complex, where it 

aggregates, has reduced velocity and processivity, or becomes immobilized, as 

demonstrated in yeast [131]. Further, in vitro reconstitution of human dynein complexes 

found that the heavy chains aggregate without the presence of associated subunits, 

however inclusion of the intermediate and light chains promotes the assembly of the 

complex [132]. While these subunits are critical to the assembly, function, and 

recruitment of cargo, some serve additional functions beyond and independent of the 

dynein motor, making them important contributors to other cell functions. 

 

1.4: Dynein Light Chain in Protein Complex Assembly and mRNA Regulation 

1.4.1: Dynein Light Chains in Protein Complex Assembly 

 Dynein motor complexes contain three different classes of light chains known as: 

TCTEX, Roadblock, and LC8 [116,128]. Among these, the LC8 class of light chains are 

of particular interest as these subunits serve additional roles beyond the dynein motor, 

including post-transcriptional regulation (discussed below in section 1.4.2). LC8 family 

light chains were initially described as a subunit of the axonemal dynein motors present 

in single-celled algae [133], however they are also associated with cytoplasmic dynein 
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motor complexes [134,135]. Comparative analysis of LC8 genes shows that they are 

highly conserved across eukaryotes [118], and knockdown or knockout of LC8 is lethal 

in model systems such as C. elegans [136], D. melanogaster [137], and mouse [138]. 

This suggests that LC8 plays an essential role in these model organisms, however it may 

accomplish this through different mechanisms. 

LC8 proteins have a wide array of protein interaction partners besides the dynein 

intermediate chain subunits [139]. These observations led to the initial proposal that LC8 

functions as a cargo adapter for the dynein motor complex [140,141]. However, some 

LC8 partner proteins are not associated with the dynein motor [139,142]; these include 

but are not limited to: the pro-apoptotic factor Bim [143], the transcription factor of LC8 

itself, ASCIZ [144], and Nup159 nucleoporin [145]. In addition, observation of cytosolic 

LC8 that is not bound to the dynein motor supports LC8’s function independent of motor 

complex [146,147]. As a result, these observations led LC8 to be characterized as a 

motor-independent hub protein that is essential for a variety of different pathways, such 

as transcriptional regulation, tumor suppression, and apoptosis [139,142,148]. Research 

on the molecular interactions between LC8 and its binding partners has provided insight 

into how LC8 can serve a hub-like role. LC8 proteins assemble as homodimers that form 

2 symmetrical binding grooves where binding partners interact [149]. With these 2 

binding sites, LC8 can promote homo- or hetero-dimerization of its interaction partners 

and facilitate changes in their structural conformation or function [139,150]. For 

example, the interaction partner Swallow, contains disordered regions that form alpha 

helices upon binding to LC8 [151,152]. Through these types of interactions, LC8 can 

function as a bivalent scaffold that recruits additional proteins to form larger complexes 
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[139,150]. To better understand LC8’s role as a hub, identification of interaction 

sequences that LC8 recognizes has been important for the field. 

Studies of LC8 binding sites in a variety of proteins revealed that they are short, 

linear motifs (SLiMs), similar to other SLiMs in that they often confer binding between 

LC8 and different disordered proteins (recall SLiMs from section 1.1.3) [139,142,153]. 

Additionally, many LC8 interacting proteins and individual binding sites were identified 

by high throughput approaches including pepscanning [154,155], yeast-two hybrid [156], 

and phage display [146,157]. Together, these studies generated a consensus interaction 

motif that represents how often residues are observed at a specific position. In general, 

LC8 interaction sequences are at least 8 amino acids long and contain a conserved 

Threonine-Glutamine-Threonine (TQT) triplet [139,158,159], also known as the TQT 

motif anchor [160]. LC8 interaction sequences do diverge from the TQT motif and may 

contain resides such as Glutamine-Valine-Aspartate (QVD) [139,154], suggesting that 

the LC8 interaction interface has some plasticity for a variety of different binding 

sequences. Interestingly, the residues in LC8 that confer plastic binding with different 

interaction sequences are actually well conserved across animals [146]. Together, 

conservation of LC8 and the large volume of documented LC8 interaction sequences 

have enabled prediction of additional interaction partners through in silico analysis of 

different model system proteomes [157,161] (also see chapter 4). As a result, these 

approaches have expanded the interactome of LC8 and provided insight into other 

potential pathways that are regulated by LC8. Since LC8 interacts with many proteins 

and promotes their function, it is likely an important component for a variety of pathways 
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in the cell. In particular, the research presented in this dissertation is focused on LC8’s 

role in post-transcriptional regulation, through interaction with RBPs. 

 

1.4.2: Dynein Light Chain in mRNA Regulation 

 LC8 can contribute to PTR either through supporting dynein motor function or in 

a dynein-independent fashion. Transport of mRNAs by the dynein motor has been 

observed in different model systems [162] and LC8 may contribute to this process by 

promoting motor function [131]. LC8 has also been proposed to link cargoes such as 

RBPs with their target mRNAs to the dynein motor complex for transport. This is 

suggested based on observations where LC8 interacts with RBPs that are transported by 

the dynein motor. One example is the male mouse germ cell-expressed protein Dazl, 

which is a member of the DAZ family RBPs that are important for fertility [163]. Dazl 

binds with LC8, which leads to transport of Dazl and its associated mRNAs by the dynein 

motor in the cell [164]. However, recent mounting evidence suggests that LC8 functions 

with RBPs independent of the motor. 

 The dynein motor-independent role of LC8 is supported by findings that highlight 

LC8’s incompatibility with its proposed role as a cargo adapter. When LC8 dimers 

associate with dynein-motor subunits, both binding sites are occupied by the interaction 

with dimeric dynein intermediate chains [165,166]. As a result, cargo is unable to be 

linked to the dynein motor via LC8 and suggests that only the cytoplasmic, dynein-free 

LC8 is able to interact with its partners [147,167]. This argues against LC8’s cargo 

adapter function suggesting that LC8 supports interactions between RBPs and the dynein 

motor through a different mechanism. If LC8 does not link cargoes such as RBPs to the 
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dynein motor, then the question becomes: what is the role of LC8 in post-transcriptional 

mRNA regulation in the cell? Studies on the Drosophila RBP Egalitarian and its 

associated protein Bicaudal-D may provide insight into alternate functions of LC8. Both 

Egalitarian and Bicaudal-D function together to link mRNA to the dynein motor so that it 

is transported in oocytes and embryos [168]. LC8 interacts with Egalitarian [169], which 

in turn promotes Egalitarian dimerization and RNA binding [170]. This allows 

Egalitarian to then bind to Bicaudal-D that also interacts with dynactin, thereby 

promoting association of Egalitarian with the dynein motor [170]. This suggests that LC8 

serves as a cofactor to promote dimerization and/or function of its diverse network of 

interacting partners, including those associated with the dynein motor.  

Previous research in the Voronina lab has concluded that LC8 functions as a 

cofactor for RBPs that facilitate post-transcriptional regulation of development in the C. 

elegans germline. Dynein light chain 1 (DLC-1) is the representative homolog of the 

LC8 protein family in C. elegans. DLC-1 was previously found to directly interact with 

and promote the function and localization of the stem cell maintenance RBP FBF-2 

[171]. By genetic interaction, dlc-1 is important for FBF-2 function and promotes FBF-2 

activity independent of the dynein motor. Additionally, the RBP GLD-1, which is 

important for transition of germ cells to meiosis, also was found to directly interact with 

DLC-1 [172]. Like FBF-2, GLD-1 requires DLC-1 as a cofactor for its function as a post-

transcriptional regulator in the germline. These findings led to the proposal that DLC-l 

has an alternate function as a germline RBP cofactor independent of the dynein motor. 

Both FBF-2 and GLD-1 function as translational repressors of their target mRNAs and 

loss of dlc-1 results in de-repression of target mRNAs for both RBPs. Since FBF-2 and 
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GLD-1 serve opposing roles in the germline, it is possible that DLC-1’s function is not 

limited to a single regulatory circuit, and DLC-1 may facilitate other germline mRNA 

regulatory pathways. The prevalence of DLC-1’s role as a germline RBP cofactor 

remains unknown and raises additional questions about how it may facilitate germline 

mRNA regulation. In this study, we hypothesized that DLC-1 interacts with many 

RBPs and promotes their mRNA regulatory role in C. elegans germline 

development. The research in this dissertation aims to address several major questions 

about DLC-1 as an RBP cofactor. 1) What mRNAs are associated with DLC-1/RBP 

complexes? 2) Do these associated mRNAs depend on DLC-1 for regulation of their 

expression? 3) What are the RBPs beyond FBF-2 and GLD-1 that associate with and 

require DLC-1 for their function?  
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Chapter 2 

C. elegans DLC-1 Associates with Ribonucleoprotein Complexes to Promote mRNA 

Regulation 

(The following chapter is a modified version of the manuscript that was published in 
FEBS Letters 2018. https://febs.onlinelibrary.wiley.com/doi/full/10.1002/1873-
3468.13259) 
 

Abstract 

Ribonucleoprotein complexes, which contain mRNAs and their regulator proteins, 

carry out post-transcriptional control of gene expression. The function of many RNA-

binding proteins depends on their association with cofactors. Here we use a genomic 

approach to identify transcripts associated with DLC-1, a protein previously identified as 

a cofactor of two unrelated RNA-binding proteins that act in the C. elegans germline. 

Among the 2732 potential DLC-1 targets, most are germline mRNAs associated with 

oogenesis. Removal of DLC-1 affects expression of its targets expressed in the oocytes, 

meg-1 and meg-3. We propose that DLC-1 acts as a cofactor for multiple 

ribonucleoprotein complexes, including the ones regulating gene expression during 

oogenesis. 
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Introduction 

Post-transcriptional mRNA regulation is crucial for gene expression control [1]. RNA-

binding proteins (RBPs) carry out this regulation by forming complexes with messenger 

RNAs (mRNAs), and each RBP associates with multiple mRNA species. The mRNAs 

associated with a specific RBP are thought to be coordinately regulated to govern a 

specific biological function and form a “post-transcriptional RNA operon” [106,107,173]. 

The development of the Caenorhabditis elegans germline is a prime example of a process 

extensively regulated at the post-transcriptional level [174]. C. elegans germ cells follow 

a defined developmental pathway aimed at the production of gametes [175]. Stem cell 

proliferation and self-renewal takes place at the distal region of the gonad supported by 

activation of GLP-1/Notch signaling [81]. At the post-transcriptional level, stem and 

progenitor cell proliferation is supported by PUF-domain RBPs FBF-1, FBF-2, and PUF-

8 [84,85,176,177]. As germ cells exit the proliferative zone, they enter meiosis. This 

switch from proliferation to differentiation is mediated by the activities of diverse post-

transcriptional regulators including a KH/STAR domain RBP GLD-1 and cytoplasmic 

poly(A) polymerase GLD-2 [88,178,179].  

 

After completion of the pachytene stage of meiosis, the germ cells undergo sex-specific 

differentiation to produce mature gametes. Formation of oocytes in the hermaphrodite 

germline depends on the activity of GLD-2 in complex with the RRM-motif RBP RNP-8 

[95,96] and the translational repressor TRIM-NHL RNA-binding protein LIN-

41[100,101,180]. During differentiation, the oocytes accumulate a number of proteins 

required for embryogenesis. One such protein family is a set of MEG intrinsically 
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disordered proteins regulating RNA/protein condensate formation in embryos 

[102,103,181]. Finally, oocyte maturation requires the activity of redundant TIS11 zinc-

finger RBPs OMA-1 and OMA-2 [98]. High-throughput approaches have characterized 

the targets of many RNA regulators mentioned above including FBF-1 and FBF-2 [11], 

PUF-8 [86], GLD-1 [182,183], RNP-8 and GLD-2 [96], LIN-41 [100], and OMA-1 

[184].  

 

One widespread mechanism regulating the activity of RNA-binding proteins is their 

association with co-regulators or cofactors. Previous research in our lab found that the 

activities of two C. elegans germline RBPs, FBF-2 and GLD-1, are promoted by 

association with a small protein, DLC-1 ([171,172]). DLC-1 is an LC8-family protein 

that was originally identified as a component of the dynein motor complex [134,135]. 

Recent studies suggested that in addition to the dynein motor complex, LC8 proteins 

contribute to a large number of protein complexes, and function as general cofactors 

facilitating numerous cellular functions [139]. Supporting this model, we found that the 

cooperation between DLC-1 and both FBF-2 and GLD-1 is independent of the dynein 

motor activity. FBF-2 and GLD-1 are dissimilar proteins with opposing biological 

functions. The fact that DLC-1 cooperates with both, as well as the widespread 

expression of DLC-1, led us to hypothesize that DLC-1 may facilitate the function of 

additional RNA-binding proteins.  

 

Here, we performed immunoprecipitation followed by RNA sequencing to determine the 

transcripts found in association with DLC-1. We found a large number of functionally 
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diverse transcripts associated with DLC-1, supporting broad input by DLC-1 in post-

transcriptional regulation. Although DLC-1 might bind RNA directly [185,186], we 

expect that the majority of transcripts were recovered through indirect association of 

DLC-1 with RNA-binding proteins. A large number of DLC-1-associated transcripts 

contribute to oogenesis, a process disrupted in dlc-1 mutants. We report that two oocyte 

genes, meg-1 and meg-3, depend on DLC-1 for regulation of their expression in the 

germline and maturing oocytes, which suggests that DLC-1 contributes to regulation of 

gene expression at this developmental stage.  

 

Materials and Methods 

Nematode Strains and Culture  

C. elegans strains (Table 2.1) were cultured as per standard protocols [187] at 20°C or 

24°C (if expressing GFP-tagged genes). The 3xFLAG::dlc-1(mntSi13); dlc-1(tm3153) 

rescued strain UMT290 was generated by first crossing UMT281 with him-8(tm611) and 

then with dlc-1(tm3153)/qC1 III. The UMT376 strain expressing both 3xFLAG::DLC-1 

and OMA-1::GFP was generated by crossing UMT281 and TX189. 

Table 2.1 
Nematode strains used in this study 

Genotype Description Strain Reference 
Transgene 
mntSi13[pME4.1] II; 
unc-119(ed3)III 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’UTR  

UMT281 [171] 

unc-119(ed3) III; teIs1 oma-1 prom::oma-1::GFP TX189 [99] 
mntSi13[pME4.1] II; 
unc-119(ed3) III; teIs1 
[pRL475] 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’UTR; oma-1 
prom::oma-1::GFP 

UMT376 This study 

Mutant strains + Transgene 
mntSi13 [pME4.1] II; 
dlc-1(tm3153)III 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’UTR 

UMT290 This study 
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Mutant strains 
meg-1(tn1722) GFP::3xFLAG::MEG-1 DG4213 [100] 
meg-3(ax3054) MEG-3::meGFP JH3503 [35] 
meg-3(ax3051); meg-
4(ax2080) 

MEG-3::OLLAS; MEG-
4::3xFLAG 

JH3374 [35] 

dlc-1(tm3153)/qC1 III  UMT222 [171] 

 

RNA Interference Assays  

RNAi was performed by feeding synchronized L1 larvae with HT115(DE3) E. coli 

transformed with the relevant plasmids for 3 days at 24oC as described before [188]. The 

identity of all plasmids used for RNAi was confirmed by sequencing. 

Immunostaining and Imaging 

The fixation and immunostaining procedure has been previously described in [171]. Prior 

to application of primary anti-FLAG antibody, dissected gonads were pre-blocked with 

PBS/0.1%BSA/0.1%Tween-20/10% normal goat serum (PBS-T/NGS) for 1 hour at room 

temp. Descriptions of the antibodies and relevant dilutions are listed in Supplemental 

Table 1 (available online with article). Gonads were incubated in primary antibody 

solution overnight at 4oC followed by 3 washes with PBS-T and then with secondary 

antibody for 2 hours at room temperature and washed 3 times with PBS-T. Coverslips 

were mounted to immunostained gonads with Vectashield with DAPI (Vector Labs). 

Epifluorescence images were captured using a Leica DFC3000G camera attached to a 

Leica DM5500B microscope using LAS-X software (Leica). Confocal images were 

obtained using a Zeiss LSM 880 confocal microscope. Image processing including 

assembly of full-length germlines from several fields of view was performed in Adobe 

Photoshop CS3. 
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Immunoprecipitation 

Immunoprecipitation of 3xFLAG::DLC-1 was performed with a protocol adapted from 

[189] using mouse anti-FLAG antibody (Sigma) or mouse non-specific IgGs as controls, 

see supplemental file S1 (available online with article) for details. RNA was extracted 

from the eluents and input samples suspended in TRIzol using the Direct-zol RNA 

MiniPrep kit (ZymoResearch) and quantified by Qubit 3.0 fluorometer RNA HS assay kit 

(ThermoFisher). Immunoprecipitated RNA derived from anti-FLAG pulldowns averaged 

8 ng/µL across five replicates, while IgG-associated RNA was undetectable by Qubit. 

Immunoprecipitation of 3xFLAG::DLC-1 from the UMT376 strain followed the same 

procedure, except the RNA extraction procedure was omitted. 

GST Pulldowns 

Full-length proteins were amplified from Bristol N2 cDNA and cloned into pDEST17 

(Thermo Fisher Scientific) to generate 6xHis-tagged proteins. GST-tagged full length 

DLC-1 has been previously described [171]. All constructs were sequenced and 

transformed into E. coli strain BL21(DE3) for expression. Expression of 6xHis-tagged 

proteins was induced with 0.1 mM IPTG at 15°C for 16-18 hrs. Expression of GST-

tagged DLC-1 was induced with 1 mM IPTG at 37°C for 4 hrs. The GST pulldown assay 

was performed as described in [171].  

Western Blots 

Western blots were used to evaluate nematode gene expression, immunoprecipitation of 

3xFLAG::DLC-1, and to determine the outcome of GST::DLC-1 pulldowns, as 

previously described [171]. Detailed information for the antibodies is in Supplemental 

Table 1 (available online with article). Blots were developed using Luminata Western 
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HRP reagent (EMD Millipore) and imaged using ChemiDoc MP Imaging System (Bio-

Rad).  

RNA Sequencing and Bioinformatics 

 Library preparation and sequencing of the total and immunoprecipitated RNA was 

performed at the Washington State University Spokane Genomics Core. Total RNA was 

oligo-dT primed to generate the input libraries while immunoprecipitated RNA was 

processed without enrichment. Total RNA and IP RNA (5 replicates each) libraries were 

pooled together to run on two Illumina HiSeq2500 lanes for a total of 439.61 million 

reads with a length of 100bp. Reads were almost equally distributed among these 

samples, 93.4% reads have a quality score higher than Q30. RNA-seq data is deposited in 

NCBI Gene Expression Omnibus database (GSE 115281). 

 Details of RNA-seq data analysis are in Supplemental File S1 (available online 

with article). Briefly, sequenced reads were trimmed with Trim Galore! [190] to remove 

Illumina adapter sequences (v 0.4.2) and filtered for rRNA sequences using Bowtie2 

(2.3.0) [191]. Reads that did not map to the rRNA sequences were then applied to the 

workflow adapted from a previous report [100]. The reads were mapped to 

WBcel235/ce11 genome using RNA Star (v 2.5.2b-0) [192]. Normalization and 

enrichment calculations for the RIP experiments were performed using DESeq2 (version 

1.12.3) [193]. Genes were considered enriched when they had a log2foldchange > 1 and 

Padj < 0.01. Genes that did not correspond to the annotated features of the current 

reference genome were removed from the list of enriched genes. The finalized list of 

2732 genes enriched in the 3xFLAG::DLC-1 RIP is reported in File S2 (available online 

with article).  
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For 3’UTR motif analysis, all available 3’UTRs for the genes enriched in the 

3xFLAG::DLC-1 RIP were obtained through Wormbase 

(http://parasite.wormbase.org/biomart/martview/) and analyzed using Discriminative 

Regular Expression Motif Analysis (DREME) tool available on MEMEsuite.org [194]. A 

library of 3’ UTRs for all other genes not enriched in 3xFLAG::DLC-1 RIP was used as a 

control to evaluate the number of motif occurrences using the Find Individual Motif 

Occurrences (FIMO) tool available on MEMEsuite.org [195].  

 

Results 

RIPseq of FLAG::DLC-1 from the intact animal 

Using a single-copy insertion technique, we generated a transgene encoding 3x-FLAG 

tagged DLC-1 under the control of its endogenous promoter and 3’UTR [171]. This 

transgene was used to complement the dlc-1(tm3153) deletion, which renders the mutant 

animals sterile (at 24oC) or causes maternal-effect embryonic lethality (at 15oC). The 

3xFLAG::DLC-1 transgene largely rescued dlc-1 deletion hermaphrodite fertility and 

embryonic viability at 24oC (99% embryonic viability, N=797; 100% fertility, N=794). 

We concluded that the transgenic 3xFLAG-tagged DLC-1 is fully functional in vivo. 

3xFLAG-tagged DLC-1 was expressed throughout the germline, from the distal stem 

cells and progenitors to the oocytes [171], consistent with the previously reported 

endogenous expression pattern [196]. To test whether 3xFLAG::DLC-1 was also 

expressed in somatic tissues, we disrupted germline tissue formation in 3xFLAG::DLC-1 

animal by double RNAi against sygl-1 and lst-1 [197]. Loss of germ cells was confirmed 

by a decrease in the levels of germline-specific protein FBF-1 (Figure 2.1A). Western 
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blotting detected expression of 3xFLAG::DLC-1 in sterile worms following double sygl-

1/lst-1(RNAi), suggesting that 3xFLAG::DLC-1 is also abundant in somatic tissues 

(Figure 2.1A), consistent with a previous report [198]. 

 

Figure 2.1: Expression and immunopurification of 3xFLAG::DLC-1 

A) Western blot of 3xFLAG::DLC-1 worms treated with control RNAi or sygl-1/lst-

1(RNAi) that prevents germ cell proliferation. Sterility was visually confirmed in 

sygl-1/lst-1(RNAi) treatment. 50 worms per treatment were collected and boiled in 

2x loading buffer for 30 min before loading onto gel. Loss of germline tissue is 

followed through decreased abundance of FBF-1 protein. 3xFLAG::DLC-1 does 

not decrease in the background of sygl-1/lst-1(RNAi). Somatic myosin MYO-3 is 



 34 

used as loading control. Asterisk denotes the 210 kD myosin A heavy chain. 

Molecular weight of the protein bands is denoted by the numbers on the left side 

of western blot images. 

B) 3xFLAG::DLC-1 is specifically immunoprecipitated with anti-FLAG antibody 

(FLAG Elution), but not in the IgG control. The anti-FLAG immunoprecipitation 

reduces the amount of tagged protein in the lysate (FLAG Unbound), 

demonstrating an efficient IP. Tubulin is not recovered in either the IgG control or 

FLAG eluents. 

 

We expect that the transgenic 3xFLAG::DLC-1 is able to enter all relevant protein 

complexes, including complexes with RNA-binding proteins, and allow for isolation of 

target mRNAs. For 3xFLAG::DLC-1 immunoprecipitation, we used the rescued strain 

where the transgene is the sole source of DLC-1. We immunoprecipitated 

3xFLAG::DLC-1 from replicate lysates of young adult nematodes (24 hrs post-L4 stage; 

Figure 2.1B). The immunoprecipitation of 3xFLAG::DLC-1 was specific, and not 

observed in the control with non-specific IgGs. The anti-FLAG antibodies were also 

selective as no immunoprecipitation of tubulin was observed (Figure 2.1B). In agreement 

with our hypothesis, we detected RNA in the 3xFLAG::DLC-1 immunoprecipitate (108-

432 ng/300 mg input tissue), but not in the non-specific IgG immunoprecipitate.  

 

Total RNA associated with DLC-1-containing RNPs was purified and sequenced in five 

independent biological replicates. In parallel, we sequenced the mRNAs in five replicates 

of the corresponding input lysates after enriching them with oligo(dT) selection. We did 
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not sequence the material isolated with non-immune IgG since an undetectable amount of 

isolated RNA was expected to result in amplification artifacts during sequencing library 

preparation. We mapped the sequencing reads from all replicates to the WBcel235/ce11 

version of the C. elegans genome and excluded the reads mapping to the ribosomal RNA 

genes from further analysis. We used principal component analysis (PCA) to evaluate the 

variability of our replicates. The PCA analysis indicated that the 3xFLAG::DLC-1 IP 

replicates tightly clustered together (Figure 2.2A) suggesting their similarity and 

reproducibility. The input samples were clearly segregated from the immunoprecipitated 

mRNAs (Figure 2.2A). We observed only a weak correlation between average fragment 

abundance of transcripts in 3xFLAG::DLC-1 IP and in the input RNAseq (R2 ~ 0.4) 

suggesting that the procedure didn’t simply return the most abundant mRNAs in the 

samples (Figure 2.2B). 
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Figure 2.2: Identification and characterization of DLC-1-associated RNAs 

A) Principal component analysis of five 3xFLAG::DLC-1 replicate RNA 

immunoprecipitations (RIPs; FLAGrep1-5) compared against five inputs 

(InputRep1-5). PC, Principal Component. PC1 explains 94% of variance, and PC2 

explains 5% of variance. 
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B) RNA-seq enrichment heatmap showing the distribution of average RIP FPKM 

versus average Input FPKM. Overall, the correlation is low (R2=0.393). 

C) Volcano plot of 3xFLAG::DLC-1 RIPseq. Inverse of the adjusted statistical 

significance (-log10(Padj); y-axis) is plotted against the average fold change (anti-

FLAG/Input) for five samples (x-axis). Points have been colored by enrichment, 

red are enriched in 3xFLAG::DLC-1 RIP (Padj < 0.01 and log2FoldChange > 1; 

2732 genes; File S2 (available with article online)). The FBF-2 or GLD-1 target 

mRNAs cye-1, gld-1, and mes-3 are enriched in 3xFLAG::DLC-1 RIP. The GLD-

1 target mRNAs puf-5 and spn-4 were not enriched in the RIP. 

D) DLC-1-associated mRNAs are enriched for genes in the oogenic transcriptome. 

Comparison of DLC-1-associated genes against genes associated with a specific 

spermatogenic or oogenic program as defined in [92]. Genes termed “Somatic or 

Ubiquitous” did not fall under the other 3 specified categories. 

E) Gene ontology analysis reveals that DLC-1 associated genes are involved in 

reproduction, development, and neurogenesis. The categories associated with 

germline expression (reproduction, development) are colored green, while 

neurogenesis associated with somatic expression is colored red. Analysis was 

performed using the Gene Enrichment Analysis (GEA) tool available on 

https://wormbase.org/tools/enrichment/tea/tea.cgi [199]. Fold change is expressed 

as the ratio of the enriched genes observed for the category over the number of 

genes expected to be recovered. 
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To identify transcripts enriched in the DLC-1 immunoprecipitations, we used DESeq2 to 

calculate log2 fold change [193] of the RNAs in the DLC-1 eluates relative to their 

abundance in the oligo(dT)-enriched inputs. While RNAs in DLC-1-containing RNPs 

appeared enriched several fold, the majority of RNAs in the lysate were moderately 

depleted compared to the IP sample (Figure 2.2C). We identified 2732 RNAs exhibiting a 

statistically significant (adjusted P<0.01) enrichment of two-fold or greater in the DLC-1 

immunoprecipitation (highlighted in red in Figure 2.2C; Supplemental File S2 (available 

online with article)). This number of transcripts is ~2.3-fold greater than typically 

recovered by isolation of a single RBP. These transcripts included 2206 protein-coding 

mRNAs, 346 long non-coding RNAs (lincRNAs, ncRNAs, antisense RNAs), and 87 

small non-coding RNAs including snoRNAs and snRNAs (Table 2.2). We concluded that 

DLC-1 predominantly associates with mRNA-containing RNPs, and the non-coding 

RNAs might appear enriched in DLC-1 IP since the RNAs were not oligo(dT) selected 

for library preparation. 

 

Table 2.2 

DLC-1 predominantly associates with protein-coding mRNAs 

Biotype* # of Enriched Genes with Biotype % of Enriched Genes 

mRNA 2206 81% 

long noncoding 346 13% 

short noncoding 87 3% 

pseudogene 86 3% 
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Biotype analysis of DLC-1 associated genes based on assigned biotype from C. 

elegans genome annotation WS236 performed with Wormbase Parasite. “mRNA” 

represents “protein coding” category. Long noncoding is comprised of lincRNA, 

antisense, ncRNA. Short noncoding includes snRNA and snoRNA. * 7 DLC-1-

associated RNAs have no biotype annotation. 

 

The mRNAs in DLC-1-containing complexes included mes-3, cye-1, and gld-1 

(previously-characterized targets of FBF-2 and GLD-1 that depend on DLC-1 for their 

regulation [171,172]), but not puf-5 or spn-4 (GLD-1 targets that were not affected by 

dlc-1 loss; Figure 2.2C). We conclude that the mRNAs identified in the DLC-1-

containing RNPs (DLC-1-associated mRNAs) are likely relevant to DLC-1 biological 

activity. 

 

Many DLC-1-associated transcripts (1756 of 2732 transcripts; Table 2.3) belong to the 

general oogenic mRNA program as defined in [92]. This overlap was statistically 

significant by the hypergeometric distribution test (P<1E-90). DLC-1-associated mRNAs 

were depleted of spermatogenesis transcripts, reflecting preparation of IP samples from 

young adult (oogenic) hermaphrodites (Table 2.3). We also compared overlap of our 

transcripts with a different dataset of transcripts that increase in abundance over twofold 

in the oogenic germlines as compared to spermatogenesis [200] and similarly recovered a 

significant overlap (321 of 2732; P<1E-53; Table 2.3). Based on analysis of overlap with 

the two distinct datasets, a large number of DLC-1-associated mRNAs are related to 

oogenesis. Despite the enrichment of germline transcripts, a sizeable fraction of somatic 
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or ubiquitous mRNAs were also present (828 of 2732; Figure 2.2D) in agreement with 

DLC-1 expression in somatic tissues. Analysis of the DLC-1 targets by Gene Ontology 

functional annotation clustering [199] identified the expected enrichment of transcripts 

associated with development and reproduction (Figure 2.2E). Enriched transcripts were 

also related to neurogenesis (Figure 2.2E), a process similarly associated with extensive 

post-transcriptional regulation and RNA transport [201-203]. We concluded that despite 

broad expression of 3xFLAG::DLC-1, it enters into mRNP complexes predominantly in 

the germline and neuronal tissues. 

 

Table 2.3  

DLC-1-associated mRNAs are enriched in oogenesis-related transcripts 

DLC-1-associated mRNAs were compared against oogenic or spermatogenic 

transcriptomes. Representation factor and significance of overlap was evaluated 

by hypergeometric distribution test using the gene list comparison tool available 

at nemates.org/MA/progs/overlap_stats.html. Representation factor above 1.0 

indicates more overlap than expected between independent groups, and below 1.0 

indicates less overlap than expected. 

Transcriptome # of 
Overlapped 
Genes 

% 
Overlap 

Representation  
Factor 

P value 

Oogenic Transcriptome [92]  1756 19% 1.4 6.82E-91 

Spermatogenic Transcriptome [92] 533 8% 0.6 3.23E-63 

Enriched in Oogenesis [200]  321 32% 2.4 5.3E-54 

Enriched in Spermatogenesis 

[200]  

115 13% 1 0.403 
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Binding motifs in the 3’UTRs of mRNAs isolated with DLC-1 

To test whether the mRNAs isolated with DLC-1 contain RBP binding motifs, we 

searched for sequences enriched in the 3’UTRs of this gene set. Using DREME [194], we 

identified the enriched motifs in the 3’UTR set compared to shuffled sequences (Figure 

2.3A-C; Supplemental File S3 (available with online article)). Based on previously 

discovered DLC-1 association with FBF-2, we expected to recover motifs consistent with 

the presence of FBF targets. Indeed, within the ten most significant recovered motifs, we 

found two motifs similar to those recognized by PUF family RNA-binding proteins that 

includes FBF-2 (Figure 2.3B, C; [11,204]). The top-scoring motif is a low-affinity OMA-

1 binding site (UA[a/u]-rich repeats, Figure 2.3A; [97]); the remaining high ranking 

motifs were not among the previously characterized targets of C. elegans RBPs. Since the 

DREME analysis estimates motif enrichment in comparison to shuffled 3’UTR 

sequences, it might return motifs that are highly represented across C. elegans 3’UTRs. 

To evaluate this possibility, we compared the prevalence of the motifs uncovered in the 

3’UTRs of RIPseq mRNA set to their frequency across the 3’UTRs of the transcripts not 

associated with DLC-1. We find that all motifs were significantly enriched in the DLC-1-

associated 3’UTR set with P values calculated by chi-square test smaller than 10-4 

(Figure 2.3D).  
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Figure 2.3: 3’UTR motifs in mRNAs associated with DLC-1 

A-C) Motifs identified by DREME [194] analysis of the annotated 3’ UTRs of the DLC-

1 associated mRNAs; WebLogo, rank and P-value (Fisher’s Exact test) are 

shown. 

A) Top overrepresented motif similar to OMA-1-binding element [97].  

B,C)  Short motifs similar to the FBF-binding element (UGUNNNAU, [204]) were 

recovered from the top 10 most enriched motifs. The top 20 most represented 

motifs in the 3xFLAG::DLC-1 RIP are reported in File S3 (available online with 

article). 

D)  Motifs in A-C are significantly enriched in the DLC-1 associated 3’UTRs 

compared to the control set of C. elegans 3’UTRs. Motifs in A-C were used as 
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input for FIMO [195] to scan DLC-1 associated UTRs or all other C. elegans 

3’UTRs (at P value < 0.001). The graph plots percentage of genes containing a 

specific motif as the ratio of observed motif occurrences (with a P < 0.001) 

against the size of the input library for enriched in 3xFLAG::DLC-1 RIP (black) 

or control 3’UTRs (grey). Differences in motif prevalence between sets of 

3’UTRs were evaluated by chi-square test; *** P<0.0001. 

 

Identification of candidate DLC-1-containing RNPs through overlap in mRNAs  

If DLC-1 is an integral component of regulatory RNPs, we expect to recover a significant 

overlap between mRNAs recovered in the DLC-1 IP and the documented targets of 

regulatory RNA-binding proteins. Initially, we compared DLC-1-associated mRNAs to 

those recovered in complex with FBF-2 [11] and GLD-1 [183]. We found that the set of 

DLC-1-associated mRNAs significantly overlapped with both FBF-2 targets (412 

overlapped genes; hypergeometric distribution P<10-60) and GLD-1 targets (44 

overlapped genes; hypergeometric distribution P<10-3; Table 2.4) in agreement with the 

known molecular and genetic interaction of DLC-1 with these RBPs ([171,172]). We 

concluded that overlap comparison has the potential to identify the mRNAs regulated 

with involvement of DLC-1. 

 

We then compared the mRNAs isolated with DLC-1 to the previously published targets 

of several germline RNA-binding proteins including FBF-1 [11], GLD-2 [96], RNP-8 

[96], LIN-41 [100], OMA-1 [184], FOG-3 and FOG-1 [92], and PUF-8 [86]. We 

observed significant (hypergeometric distribution P<0.05) overlap of DLC-1-associated 
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mRNAs with the targets of FBF-1 (P<10-59), GLD-2 (P<10-7), LIN-41 (P<0.01), and 

OMA-1 (P=0.02; Table 2.4). The significant overlap with FBF-1 targets was expected 

since the targets of FBF-1 and FBF-2 are highly similar [11].  

 

Table 2.4 

DLC-1-associated mRNAs are shared with several germline RBPs 

RBP 
Transcriptome 

# of Overlapped 
Genes 

% of RBP targets 
in overlap 

Representation 
Factor 

P value 

FBF-2 [11]  412 30% 2.2 5E-61 

FBF-1 [11] 547 26% 1.9 1.23E-60 

GLD-2 [96]  119 22% 1.6 7.48E-08 

GLD-1 [183]* 44 23% 1.7 2.9E-04 

LIN-41 [100] 188 17% 1.2 0.001 

OMA-1 [184] 173 16% 1.2 0.02 

RNP-8 [96] 129 15% 1.1 0.194 

FOG-3 [92] 94 13% 1 0.328 

FOG-1 [92] 6 7% 0.5 0.062 

PUF-8 [86] 6 4% 0.3 2.5E-05 

The 2732 RNAs enriched in DLC-1 RIP were compared for overlap with known 

RBP mRNA targets. # of overlapped genes is the number of DLC-1 associated 

RNAs that overlap with the mRNA targets for a specified RBP. Representation 

and P values were derived as in Table 2.3. * Similar overlap was observed using 

alternate GLD-1 target mRNA datasets from T. Schedl, personal communication, 

19% overlap, P = 7.47E-07 and from [182], 16% overlap, P = 0.009. 
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DLC-1 contributes to several mechanisms of germline translational control 

As we hypothesized that DLC-1 has the potential to contribute to the regulatory activity 

of multiple germline RNA-binding proteins, we sought to test if DLC-1 might affect the 

expression of its other associated mRNA targets, beyond the previously identified targets 

of FBF-2 and GLD-1. We focused on a set of MEG proteins that are only expressed in 

the oocytes and early embryos. We chose meg-3 since its regulation has not been 

previously studied, and used meg-1 and meg-4 for comparison and contrast. 

Endogenously tagged GFP::FLAG::MEG-1, MEG-3::meGFP, and MEG-4::FLAG are 

expressed in the -1 to -3 oocytes in the wild type background [100,103]. Despite similar 

protein expression patterns and related function, mRNAs encoding the MEG proteins 

might be differentially regulated as they have been recovered in association with distinct 

RNA-binding proteins. meg-1 mRNA was found in complexes with GLD-1, GLD-2, 

LIN-41, RNP-8, and FBF-1 [11,96,100] and its expression is regulated by LIN-41, OMA-

1, and OMA-2 [100]. meg-3 mRNA has not been identified in complex with germline 

RBPs so far, and meg-4 mRNA was recovered with GLD-2 and RNP-8 [96]. All three 

meg mRNAs are among the DLC-1-associated transcripts.  

 

Following depletion of DLC-1 by RNAi, we assessed the expression of MEG proteins in 

the resulting sterile germlines. Similar to dlc-1(tm3153) mutant, dlc-1(RNAi) at 24oC 

resulted in initiation of oocyte differentiation followed by deterioration of gametes and 

formation of an “oocyte mass” at the proximal end of the gonad. The expression of 

GFP::FLAG::MEG-1 was lost in 52% of dlc-1(RNAi) sterile germlines (Figure 2.4A,C; n 

= 39), suggesting that DLC-1 contributes to the activation of GFP::FLAG::MEG-1 
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expression. A decrease in GFP::FLAG::MEG-1 expression was also observed by western 

blot (Figure 2.4B). By contrast, in dlc-1(RNAi) background expression of MEG-

3::meGFP was expanded in the proximal region of the gonad and extended into the late 

pachytene region in 51% of germlines (Figure 2.4D,E; n = 49). Finally, the expression of 

MEG-4::FLAG was not affected by dlc-1(RNAi) (Figure 2.4F,G; n = 35), although 

western blot suggested that MEG-4::FLAG post-translational modifications were altered 

compared to the control (Figure 2.4G). We conclude that DLC-1 might contribute to the 

function of the proteins activating MEG-1 expression as well as translational repressors 

of MEG-3.  
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Figure 2.4: DLC-1 promotes expression control of its targets  

A, E-F) The expression of CRISPR-tagged GFP::3xFLAG::MEG-1, MEG-3::meGFP, or 

MEG-4::3xFLAG was evaluated in dissected, fixed, and immunostained gonads 

of worms treated with control or dlc-1(RNAi). DNA was stained by DAPI; arrows 

point to nuclei in diplotene characteristic of the oocytes. In the immunostained 

panels, gonads are outlined with dashed lines, while the oocytes (control 

treatment) or oocyte masses following dlc-1(RNAi) are identified with dotted 

lines. Enlarged regions in the insets of MEG-3::meGFP germlines are marked by 

yellow dashed boxes. Ovals in MEG-3::meGFP and MEG-4::FLAG control 

panels outline embryos. Images in panels A and F were obtained using an 

epifluorescent microscope, while images in panel E were obtained using a 

confocal microscope. Scale bars: 50 µM. 

B, G)  Representative Western blots of GFP::FLAG::MEG-1 (B) and MEG-4::FLAG 

(G) adult worms treated with dlc-1(RNAi) or control RNAi (MEG-1, 50 

worms/lane; MEG-4, 100 worms/lane). Sterility was visually confirmed in dlc-

1(RNAi) treatment.  Band density was quantified using Bio-Rad Image Lab v5.1 

software from the Bio-Rad ChemiDoc MP. The intensity of FLAG-tagged 

transgene band was normalized to the intensity of somatic myosin MYO-3 for 

loading control and then scaled to 1 in control RNAi (reported below the anti-

FLAG Western blot for each protein). GFP::FLAG::MEG-1 is depleted after dlc-

1(RNAi)  treatment, while MEG-4::FLAG levels are largely unchanged following 

the same RNAi treatment. Molecular weight of the protein bands is denoted by 
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the numbers on the left side of Western blot images. Asterisk marks the 210 kD 

myosin A heavy chain. 

C, D)  Bar plots showing the percentage of germlines exhibiting abnormal repression or 

expression of GFP::FLAG::MEG-1 or MEG-3::meGFP respectively after control 

or dlc-1(RNAi). N, number of germlines scored (below the bars). Expression of 

MEG-4::FLAG did not change following dlc-1(RNAi), N = 35. Effectiveness of 

dlc-1(RNAi) was confirmed as 100% of treated nematodes became sterile. 

 

DLC-1 interacts with OMA-1 in vitro 

DLC-1 might facilitate activation of MEG-1 expression by interacting with its regulators. 

Activation of MEG-1 expression in the oocyte requires the activities of OMA-1, OMA-2, 

and GLD-2 [100], and the overlaps between the mRNAs in complex with DLC-1 and 

GLD-2 and OMA-1 targets were significant. Based on these results, we tested OMA-1, 

OMA-2, and GLD-2 for direct interaction with DLC-1. GST pulldown assays performed 

with bacterially-expressed proteins indicated that DLC-1 could directly interact with 

OMA-1, but not with GLD-2 or OMA-2 (Figure 2.5A). Selective interaction of DLC-1 

with OMA-1, but not OMA-2 was surprising since OMA-1 and OMA-2 are highly 

similar (64% identity in the coding sequences) and largely functionally redundant [98]. 

The absence of detectable interactions between DLC-1 and GLD-2 or OMA-2 in vitro 

might result from the lack of other cofactors or post-translational modifications that may 

facilitate DLC-1 binding or indicate that the interactions are indirect. To explore DLC-

1/OMA-1 interaction in vivo, we performed FLAG::DLC-1 immunoprecipitation from a 

strain that was also expressing GFP-tagged OMA-1. We find that OMA-1 did not co-
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immunoprecipitate with FLAG::DLC-1 (Figure 2.5B) suggesting that the protein 

interaction might be unstable, occurs only in a subset of OMA-1 RNP complexes, or is an 

artifact of an in vitro experiment. A transient interaction of DLC-1 with OMA-1 provides 

one possible mechanism for DLC-1 input in RNA regulation during oogenesis.  

 

Figure 2.5: DLC-1 binds OMA-1 in vitro 

A)  Full length 6x-His-tagged OMA-1, OMA-2, and GLD-2 (detected by Western 

blotting) were tested for binding to GST-tagged DLC-1 (Coomassie). GST alone 

was used as a control. 

B)  3xFLAG::DLC-1 is specifically immunoprecipitated from 3xFLAG::DLC-1; 

OMA-1::GFP worms with anti-FLAG antibody (FLAG Elution), but not in the 

IgG control. Tubulin is not recovered in either the IgG control or FLAG eluents. 

OMA-1::GFP is not recovered in the FLAG::DLC-1 eluents. 
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Discussion 

In this study, we report that the LC8 family protein DLC-1 enters multiple RNP 

complexes that collectively contain thousands of mRNAs. Our findings identify new 

requirements for DLC-1 in the control of both translational activation and repression 

during oocyte differentiation (Figure 2.6).  

 

Figure 2.6: Model of DLC-1 involvement in different modes of post-transcriptional 

RNA regulation  

A)  A subset of DLC-1-associated transcripts including meg-1 requires DLC-1 for 

their activation in the oocytes. DLC-1 associates with these transcripts through the 

activator proteins, “A” in the schematic. Both GLD-2 and OMA-1/2 contribute to 

meg-1 activation [100],  and DLC-1 may play a role in the transient recruitment of 

OMA-1 required for this process.  
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B)  Other DLC-1-associated transcripts such as meg-3 require DLC-1 for their 

repression. These mRNA targets that also include gld-1, cye-1 and mes-3 are 

derepressed upon inactivation of DLC-1. DLC-1 associates with these transcripts 

through translational repressors, denoted “R”. DLC-1 is required for function of 

these translational repressors including FBF-2, GLD-1, and likely others. The 

model does not indicate the actual location of proteins on the transcript nor does it 

represent all components of regulatory RNP complexes. 

 

We find that DLC-1 is incorporated in multiple RNP complexes expanding upon our 

previous results of DLC-1’s role in RNA regulation by two C. elegans RBPs, FBF-2 and 

GLD-1 ([171,172]). The number of DLC-1-associated transcripts (2732) is greater than 

the typical number recovered with single RBPs, which is 1000-2000. This may suggest 

that DLC-1 acts as a cofactor for many RNP complexes. The mRNAs associated with 

DLC-1 are related to development and reproduction as well as neurogenesis, reflecting 

previously reported sites of DLC-1 expression and function. DLC-1 and other dynein 

motor components are required for the function of C. elegans ciliated neurons [205], but 

a role for DLC-1 in neuronal post-transcriptional gene expression control has not been 

previously reported. Many DLC-1-associated mRNAs belong to the oogenic 

transcriptome, which is consistent with DLC-1 expression in germlines undergoing 

oogenesis in young adult nematodes used for sample preparation and with disruption of 

oogenesis observed in dlc-1 mutant. 
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Among the recovered mRNAs are previously identified transcripts that require DLC-1 for 

regulation of their expression in the germline ([171,172]). In addition, we identified new 

DLC-1 contributions to translational repression at the end of meiotic pachytene and 

translational activation in the oocytes (Figure 2.6). Loss of DLC-1 causes derepression of 

MEG-3 in pachytene cells. Since the regulators that affect MEG-3 expression are 

unknown, we hypothesize that DLC-1 might contribute to the function of additional 

translational repressors beyond FBF-2 and GLD-1. By contrast, oocyte expression of 

MEG-1 was lost after dlc-1 knockdown. Activation of MEG-1 expression in the oocytes 

requires the activities of GLD-2 and OMA-1/OMA-2 [100]. We found direct interaction 

of DLC-1 with OMA-1 using an in vitro system, which might be relevant to activation of 

MEG-1 expression. However, we were unable to detect co-immunoprecipitation of 

OMA-1 with DLC-1 in vivo, thus the interaction might be transient or only reflect a small 

subset of OMA-1 regulatory RNP complexes. Alternatively, there is a possibility that the 

interaction is absent in vivo. Expression of MEG-4, another member of MEG protein 

family, was not affected by the depletion of DLC-1, although MEG-4 post-translational 

modifications were altered in the sterile dlc-1(RNAi) germlines. Further studies are 

needed to determine whether this differential protein modification is due to disrupted 

oogenesis or is caused specifically by the absence of DLC-1.     

 

We scanned the 3’UTRs of meg-1, meg-3, and meg-4 for the presence of motifs enriched 

in DLC-1-associated mRNAs and found that each 3’UTR contained several instances of 

the enriched motif shown in Figure 2.3B, while meg-1 and meg-4 3’UTRs additionally 

contained the motif shown in Figure 2.3C. Therefore, simple presence or absence of these 
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enriched motifs is unlikely to account for differential contribution of DLC-1 to the 

regulation of meg transcripts. Future experiments will test the importance of these motifs 

for regulation of meg-1 and meg-3 expression. Diverse contributions of DLC-1 to post-

transcriptional control are enabled by its incorporation in a variety of regulatory 

complexes (Figure 2.6). Binding to DLC-1 causes structural changes and/or facilitates 

higher-order complex assembly of its partner proteins [139,206], likely relevant to DLC-

1 function in RNP complexes. Future work will determine DLC-1’s contribution to 

OMA-1 function as well as identify other components of DLC-1-containing RNP 

complexes. 
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Chapter 3 

In Situ Detection of Ribonucleoprotein Complex Assembly in the C. elegans 

Germline using Proximity Ligation Assay 

 

(The following chapter is a modified version of the manuscript that was published in 
JoVE 2020. https://www.jove.com/video/60982/in-situ-detection-ribonucleoprotein-
complex-assembly-c-elegans) 
 

Abstract 

Understanding when and where protein-protein interactions (PPIs) occur is critical to 

understanding protein function in the cell and how broader processes such as 

development are affected. The Caenorhabditis elegans germline is a great model system 

for studying PPIs that are related to the regulation of stem cells, meiosis, and 

development. There are a variety of well-developed techniques that allow proteins of 

interest to be tagged for recognition by standard antibodies, making this system 

advantageous for proximity ligation assay (PLA) reactions. As a result, the PLA is able to 

show where PPIs occur in a spatial and temporal manner in germlines more effectively 

than alternative approaches. Described here is a protocol for the application and 

quantification of this technology to probe PPIs in the C. elegans germline. 
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Introduction 

Over 80% of proteins are estimated to have interactions with other molecules [207], 

which emphasizes how important PPIs are to the execution of specific biological 

functions in the cell [208]. Some proteins function as hubs facilitating assembly of larger 

complexes that are necessary for cell survival [207]. These hubs mediate multiple PPIs 

and help organize proteins into a network that facilitates specific functions in a cell [209]. 

Formation of protein complexes is also affected by biological context, such as the 

presence or absence of specific interacting partners [210], cell signaling events, and 

developmental stage of a cell. 

 

C. elegans is commonly used as a model organism for a variety of studies, including 

development. The simple anatomy of this animal is comprised of several organs, 

including the gonad, gut, and transparent cuticle, which facilitates the analysis of worm 

development. The germline residing in the gonad is a great tool to study how germline 

stem cells mature into gametes [175] that develop into embryos and eventually the next 

generation of progeny. The distal tip region of the germline contains a pool of self-

renewing stem cells (Figure 3.1). As stem cells leave the niche, they progress into the 

meiotic pachytene and eventually develop into oocytes in the young adult stage (Figure 

3.1). This program of development in the germline is tightly regulated through different 

mechanisms, including a post-transcriptional regulatory network facilitated by RNA-

binding proteins (RBPs) [174]. PPIs are important for this regulatory activity, as RBPs 

associate with other cofactors to exert their functions. 
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Figure 3.1: Schematic of C. elegans germline  

The distal tip region contains the stem cell pool, which is followed by meiotic 

pachytene, where cells have switched from mitosis to meiosis. Cells that exit the 

meiotic pachytene develop into oocytes, with the most mature oocyte at the 

proximal end. The region shaded in green, which spans from the late meiotic 

pachytene through all the oocytes, represents the OMA-1 pattern of expression. 

 

There are several approaches that can be used to probe for PPIs in the worm, but each has 

unique limitations. In vivo immunoprecipitation (IP) can be used to isolate protein-protein 

complexes from whole worm extracts; however, this approach does not indicate where 

the PPI occurs in the worm. In addition, protein complexes that are transient and only 

form during a specific stage of development or in a limited number of cells can be 

difficult to recover by co-immunoprecipitation. Finally, IP experiments need to address 

the concerns of protein complex reassortment after lysis and non-specific retention of 

proteins on the affinity matrix.  
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Alternative approaches for in situ detection of PPIs are co-immunostaining, Förster 

resonance energy transfer (FRET), and bimolecular fluorescence complementation 

(BiFC). Co-immunostaining relies on simultaneous detection of two proteins of interest 

in fixed worm tissue and measurement of the extent of signal colocalization. Use of 

super-resolution microscopy, which offers greater detail than standard microscopy [211], 

helps to more stringently test protein colocalization beyond the diffraction-limited barrier 

of 200–300 nm [212]. However, co-immunostaining using both conventional and super-

resolution microscopy works best for proteins with well-defined localization patterns. By 

contrast, it becomes much less informative for diffusely distributed interacting partners. 

Measuring for co-localization of signals based on overlap does not provide accurate 

information about whether the proteins are in complex with each other [213,214].  

 

Furthermore, co-immunoprecipitation and co-immunostaining of protein-protein 

complexes are not quantitative, making it challenging to determine if such interactions 

are significant. FRET and BiFC are both fluorescent-based techniques. FRET relies on 

tagging proteins of interest with fluorescent proteins (FPs) that have spectral overlap at 

which energy from one FP (donor) is transferred to another FP (acceptor) [215]. This 

nonradiative transfer of energy results in fluorescence of the acceptor FP that can be 

detected at its respective wavelength of emission. BiFC is based on reconstitution of a 

fluorescent protein in vivo. It entails splitting GFP into two complementary fragments, 

such as helices 1–10 and helix 11 [216], which are then fused to two proteins of interest. 

If these two proteins interact, the complementary fragments of GFP become close enough 
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in proximity to fold and assemble, reconstituting the GFP fluorophore. Reconstituted 

GFP is then directly observed as fluorescence and indicates where a PPI has occurred.  

 

As such, both FRET and BiFC depend on large fluorescent tags that can disrupt the 

function of the tagged protein. In addition, FRET and BiFC require abundant and 

comparable expression of the tagged proteins to obtain accurate data. FRET may not be 

suitable for experiments where one partner is in excess of the other, which can lead to 

high background [217]. Overexpression in BiFC experiments should also be avoided, as 

this can induce nonspecific assembly [218] that results in increased background. Both 

techniques require optimization of expression and imaging conditions of the tagged 

proteins, which may prolong the time required to complete experiments. 

 

The proximity ligation assay (PLA) is an alternative approach that can address the 

limitations of the techniques mentioned above. PLA takes advantage of primary 

antibodies that recognize the proteins of interest (or their tags). These primary antibodies 

are then bound by secondary antibodies containing oligonucleotide probes that can 

hybridize with one another when within a 40 nm (or shorter) distance [219]. The resulting 

hybridized DNA is amplified through a PCR reaction, which is detected by probes that 

complement the DNA. This results in foci that are visualized by a microscope. This 

technology can detect PPIs in situ in complex tissues (i.e., the worm gonad), which is 

organized as an assembly line containing cells at various stages of development and 

differentiation. With PLA, PPIs can be directly visualized in a fixed worm gonad, which 

is advantageous for investigating whether PPIs occur during a specific stage of 
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development. PLA offers greater resolution of PPIs as opposed to co-localization-based 

assays, which is ideal for making precise measurements. If used, super-resolution 

microscopy has the potential to provide finer detail about the location of PLA foci within 

a cell. Another advantage is that the foci resulting from PLA reactions can be counted by 

an ImageJ-based analysis workflow, making this technique quantitative. 

 

The LC8 family of dynein light chains was first described as a subunit of the dynein 

motor complex [135] and hypothesized to serve as a cargo adapter. Since its initial 

discovery, LC8 has been found in multiple protein complexes in addition to the dynein 

motor complex [139,156,157,161]. Scanning for protein sequences that contain the LC8 

interaction motif [139] suggests that LC8 may have many interactions with a wide array 

of different proteins [139,146,150,156,157,161]. As a result, LC8 family proteins are now 

considered hubs that help promote the assembly of larger protein complexes [139,146], 

such as assemblies of intrinsically disordered proteins [150].  

 

One C. elegans LC8-family protein, dynein light chain-1 (DLC-1), is widely expressed 

across many tissues and not enriched in specific subcellular structures [171,196].  

Consequently, identification of biologically relevant in vivo partners of DLC-1 in C. 

elegans is challenging for a number of reasons: 1) co-immunoprecipitation does not 

indicate the tissue source where the interaction occurs; 2) limited expression of particular 

partners or transient interactions may hinder the ability to detect an interaction by co-

immunoprecipitation; and 3) diffuse distribution of DLC-1 leads to non-specific overlap 
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with potential partner proteins by co-immunostaining. Based on these challenges, PLA is 

an ideal approach for testing in vivo interactions with DLC-1. 

 

It has been previously reported that DLC-1 directly interacts with and serves as a cofactor 

for the RNA-binding proteins (RBPs) FBF-2 [171] and GLD-1 [172]. Our work supports 

the model of DLC-1 serving as a hub protein and suggests that DLC-1 facilitates an 

interaction network that spans beyond dynein [139,146]. Using a GST pulldown assay, a 

new DLC-1-interacting RBP named OMA-1 has been identified [220]. OMA-1 is 

important for oocyte growth and meiotic maturation [98] and functions in conjunction 

with a number of translational repressors and activators [184]. While FBF-2 and GLD-1 

are expressed in the stem cells and meiotic pachytene regions, respectively, OMA-1 is 

diffusely expressed in the germline from the meiotic pachytene through the oocytes [98] 

(Figure 3.1). This suggests that DLC-1 forms complexes with RBPs in different regions 

of the gonad. It has also been found that the direct interaction between DLC-1 and OMA-

1 observed in vitro is not recovered by an in vivo IP. The PLA has been successfully used 

as an alternate approach to further study this interaction in the C. elegans germline, and 

results suggest that PLA can be used to probe many other PPIs in the worm. 

 

Materials and Methods 

*The protocol with extensive details describing materials, step by step sample 

preparation, and image analysis is provided with the article online. 
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NOTE: This protocol uses C. elegans strains in which potential interacting partners are 

both tagged. It is strongly recommended that a negative control strain be used, in which 

one tagged protein is not expected to interact with another tagged candidate interaction 

partner. Here, GFP alone was used as a negative control to assess background, as DLC-1 

is not expected to interact with GFP in the worm. GFP-tagged OMA-1 was used as the 

experimental strain, as preliminary data suggest an interaction with DLC-1. Nematode 

strains co-expressing control and test proteins with 3xFLAG-tagged DLC-1 are referred 

to in this text as 3xFLAG::DLC-1; GFP and 3xFLAG::DLC-1; OMA-1::GFP (strains 

available upon request; more information in Table of Materials (available online with 

article)), respectively. Here, the 3xFLAG and GFP tags are used; however, other tags 

may be substituted as long as their antibodies are compatible with the PLA kit reagents.  
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Figure 3.2: Representative images of workflow for germline PLA quantification  

The germline used in this figure is a representative 3xFLAG::DLC-1; GFP 

germline from Figure 3.3C. Images are snapshots from FIJI/Image J: Plugins | 

Utilities | Capture Image. Scale bars = 10 µM. 

A) Image of merged PLA and DAPI channels opened in FIJI/ImageJ.  
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B) The polygon tool in FIJI is used to outline and define the region of interest (ROI) 

in the germline (yellow line with white boxes) that is quantified, and the area of 

the ROI (µM2) is measured (inset of B).  

C) A single image of the PLA channel is obtained by duplicating or splitting the 

original image in (A, B).  

D) The threshold is carefully set to distinctly highlight all PLA foci in the PLA 

image. The same threshold must be applied to all experimental and control images 

that will be analyzed together.  

E) With the ROI selected in the threshold image, the Analyze Particles function will 

return a table of results that includes the total count of foci included inside the 

ROI (inset of E).  

 

Representative Results 

Co-immunostaining of both 3xFLAG::DLC-1; GFP and 3xFLAG::DLC-1; OMA-1::GFP 

germlines with FLAG and GFP antibodies revealed their patterns of expression in the 

germline (Figure 3.3Aii-iii, 3-3Bii-iii). While GFP was expressed throughout the 

germline (Figure 3.3Aiii), OMA-1::GFP expression was restricted to the late pachytene 

and oocytes (Figure 3.3Biii) [98]. FLAG immunostaining shows that 3xFLAG::DLC-1 

was expressed throughout the germline in both strains (Figure 3.3Aii, 3.3Bii). By co-

immunostaining, the overlap between 3xFLAG::DLC-1 and OMA-1::GFP is 

indistinguishable from that between 3xFLAG::DLC-1 and GFP (negative control).  
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Figure 3.3: Representative images of germlines following co-immunostaining or 

PLA  

A, B)  The expression patterns of tagged proteins in 3xFLAG::DLC-1; GFP (Ai-iv) and 

3xFLAG::DLC-1; OMA-1::GFP (Bi-iv) were evaluated in dissected, fixed, and 

immunostained gonads. Anti-FLAG antibody was used at a 1:1000 dilution, while 

anti-GFP antibody was used at a 1:200 dilution, which is optimal for 

immunofluorescence images. DNA was stained by DAPI, and the individual 

channel is shown in grayscale for better contrast (Aiv, Biv). In each image, the 

stem cells and meiotic pachytene are outlined with dashed lines, while the oocytes 

are outlined with dotted lines. Images were acquired with an epifluorescent 

microscope. Scale bars = 10 µM.  

C,D)  PLA in extruded 3xFLAG::DLC-1; GFP (C) and 3xFLAG::DLC-1; OMA-1::GFP 

(D) gonads. Anti-FLAG antibody was used at a 1:1000 dilution, while anti-GFP 

antibody was used at a 1:4000 dilution. DNA was stained by DAPI, and both the 

individual DAPI (Cii, Dii) and PLA channels (Ciii, iv, Diii, iv) are shown in 

grayscale for better contrast. The green, dashed box (Ciii, Diii) denotes the 

location of the zoomed-in PLA images (Civ, Div). In each image, the stem cells 

and meiotic pachytene are outlined with dashed lines, while the oocytes are 

outlined with dotted lines. Images were acquired with a confocal microscope. 

Scale bars = 10 µM. (A, B, C, D) were all assembled with image processing 

software (see Table of Materials). 
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Since these experiments tested for interactions between DLC-1 and OMA-1, the region of 

interest for PLA quantification in the germline encompassed the late pachytene through 

the oocytes in all germlines examined (Figure 3.2B), as this is the region of OMA-1 

expression (Figure 3.1, Figure 3.3Biii). 3xFLAG::DLC-1; OMA-1::GFP germlines 

appeared to have a greater quantity of PLA foci within this region compared to the 

3xFLAG::DLC-1; GFP germlines (Figure 3.3Ciii-iv, 3.3Diii-iv). Quantification of PLA 

revealed that the number of PLA foci present in 3xFLAG::DLC-1; OMA-1::GFP 

germlines was significantly greater than 3xFLAG::DLC-1; GFP (Figure 3.3Ciii-iv, 

3.3Diii-iv; Table 3.1). Further, even with 10x higher dilution of GFP and FLAG 

antibodies, the difference between the control and experimental PLA was still 

significantly different; however, the overall density and average size of foci were reduced 

(Table 3.1).  

 

Table 3.1: Summary of PLA results 

Antibody Dilution Strain Tested 
 
N Average PLA Density 

(foci/µM2) X 10-2 T test 
Average Size 
of PLA Foci 
(µM2) 

T test 

⍺FLAG (1:1000), 
⍺GFP (1:4000) 

3xFLAG::DLC-1; 
GFP 11 4±1 

P=1.917E-05 
0.5±0.1 

P=0.057 3xFLAG::DLC-1; 
OMA-1::GFP 11 9±3 2±2 

⍺FLAG (1:10,000), 
⍺GFP (1:40,000) 

3xFLAG::DLC-1; 
GFP 13 3±2 

P=3.395E-04 
0.5±0.1 

P=0.019 3xFLAG::DLC-1; 
OMA-1::GFP 12 8±3 0.7±0.2 

Table reporting a summary of PLA quantification at two dilutions of primary 

antibody. The differences in average PLA density or average size of PLA foci for 

OMA-1::GFP between both antibody titrations were not significant (p-value not 

shown). The same comparison was also applied to GFP, which also resulted in no 
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significant difference (p-value not shown). The N values denote the number of 

germlines observed for analysis of PLA density and average foci size. The p-

values were determined using a two-tailed/equal variance t-test. 

 

Discussion 

When studying PPIs in the C. elegans germline, the higher resolution offered by PLA 

compared to co-immunostaining allows visualization and quantification of locations 

where interactions occur in the germline. It was previously reported that DLC-1 directly 

interacts with OMA-1 using an in vitro GST pulldown assay [220]; however, this 

interaction was not recovered by an in vivo pulldown. The fluorescent co-immunostaining 

of 3xFLAG::DLC-1; OMA-1::GFP germlines shows an overlap in the expression patterns 

for DLC-1 and OMA-1; however, there is no indication of where their interactions occur 

in the germline, and the overlap itself is not greater than that between 3xFLAG::DLC-1 

and GFP that is not fused to any protein (negative control). Using in situ PLA, it was 

found that DLC-1 does interact with OMA-1 in the germline, which suggests that PLA 

may be more sensitive for detection of PPIs compared to other approaches. Through this 

approach we continue to expand upon the emerging role of DLC-1 as an RBP cofactor. 

This work demonstrates the capability of PLA to detect PPIs in the germline and 

establishes a reference for future users exploring the interactions between proteins of 

their own interest.  

 

PLA offers users the ability to test for PPIs with comparable sensitivity without the 

drawbacks associated with other techniques such as FRET and BiFC. Biologically 
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relevant levels of protein expression may not be optimal for FRET and BiFC. Also, the 

function of potential interaction partners may be affected by the large tags used in both 

approaches. Furthermore, FRET assays require a specialized microscopy set-up that may 

not be readily available. PLA may also be a cost-effective approach to study PPIs 

compared to other techniques. Users only need to obtain PLA reagents and access to a 

confocal microscope for imaging in addition to the reagents needed for immunostaining. 

Image analysis is performed using the open-source program FIJI/ImageJ, which is 

available to any user at no cost. Users that have no experience with FRET or BiFC may 

find PLA to be a suitable alternative. The protocol presented here only contains several 

additional steps beyond a typical immunostaining procedure, making this technique 

virtually accessible to any user with immunostaining experience. 

 

Extrusion of the gonad by dissection is important for PLA to work successfully. Tissues 

that are retained inside of the worm cuticle are not labeled by PLA using this protocol. It 

has been further found that extruded embryos are effectively labeled by this PLA 

protocol. This suggests that other tissues that are released during dissection, such as the 

gut, are also likely to be compatible with PLA. It has been found that PLA produces 

robust signals on gonad as well as embryo samples prepared with two fixation protocols 

that are often used for immunostaining. This suggests that additional fixation procedures 

used in the field may be compatible with PLA but will need to be individually evaluated 

by the user.  
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Determining the optimal dilution of primary antibodies is critical for successful PLA. It is 

best to start with the dilution that has been optimized for immunofluorescence. This is 

typically achieved by titrating the primary antibody in an immunofluorescence 

experiment to find the optimal dilution where there is low background and a high, 

specific signal. Once the optimal dilutions for immunofluorescence have been 

established, these same dilutions can be tested in a PLA assay that compares the signal 

produced by a pair of potential interactors to the signal produced by a control pair of non-

interacting proteins.  

 

In the case in which abundant signal is observed in the control sample, further dilution of 

primary antibodies is required. It has been found that the optimal primary antibody 

dilutions for PLA are at least the same or even more dilute than what is used for 

immunofluorescence. For example, immunofluorescence images in Figure 3.3A, B are 

representative of a 1:1000 dilution of anti-FLAG and a 1:200 dilution of anti-GFP. 

However, the antibody dilutions in PLA images in Figure 3.3C, D were 1:1000 of anti-

FLAG and 1:4000 of anti-GFP. The dilution of anti-GFP antibody used in PLA is greater 

than what was used for immunofluorescence, suggesting that PLA is much more 

sensitive. It was found that diluting antibodies 10-fold further resulted in a reduction of 

PLA density as well as the size of DLC-1/OMA-1 foci (Table 3.1). Despite this 

reduction, the difference in PLA density between the negative control and DLC-1/OMA-

1 was still significantly different. This suggests that PLA is still very sensitive with 

higher dilutions of primary antibody; however, the prevalence of detectable interactions 

will be underestimated.  
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By contrast, too low of an antibody dilution might have two kinds of detrimental 

consequences. First, it may produce significant background signal in the negative control. 

Second, PLA foci produced by the interacting partner proteins might merge and overlap, 

making them difficult to resolve in a max projection image. This leads to an 

underestimation of PLA foci number and density during image analysis. PLA signal is a 

balance of detecting spurious proximity between non-interacting partners and detecting 

every instance of real PPIs that occur in the sample. As a result, incorporation of a 

negative control where two proteins do not interact is essential for determining the level 

of background in PLA experiments. Omission of a primary antibody in a PLA experiment 

has been used as a negative control in other reports [213,214]; however, this approach 

cannot account for nonspecific interactions or nonspecific antibody binding that may 

impact the result in the experimental PLA. GFP was used here as a negative control, 

since no direct interaction between DLC-1 and GFP was expected. It was found that the 

negative control did have some background signal. This further supports the importance 

of a negative control for a PLA assay when evaluating the experimental data.  

 

Once PLA-optimized dilutions are established, these dilutions can be used to test across 

an array of different worm strains that contain different pairs of interaction partners 

tagged with the same affinity tags. It is important to use the same pair of primary 

antibodies to ensure a fair comparison of resulting PLA signals, as variation in antibody 

affinity can affect the outcome of a PLA experiment. Another report on PLA suggests 

optimizing dilution of the PLA secondary antibodies [214]; however, this is not 
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recommended. Higher dilutions of secondary antibodies may reduce the efficacy of the 

other downstream PLA steps that depend on recognition of PLUS and MINUS probes 

that are conjugated to the secondary antibodies.  
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Chapter 4 

P Granule Components Interact with and Require DLC-1 for their Subcellular 

Localization 

Abstract 

Germ granules are cytoplasmic assemblies of RNA binding proteins (RBPs) that execute 

post-transcriptional regulation to ensure germ cells remain totipotent and maintain their 

identity from generation to generation. Compartmentalization of proteins and RNAs into 

germ granules is critical for their function in germ cells. Localization and formation of 

Caenorhabditis elegans germ granules, also known as P granules, in zygotes depends on 

ordered assembly of several core proteins in vivo. Here we investigate the role of the RBP 

cofactor and hub protein, DLC-1, as an additional determinant of P granule assembly. We 

find that DLC-1 directly interacts with several core P granule proteins, predominantly 

during embryogenesis. Additionally, we show that loss of dlc-1 disrupts assembly of 

multiple P granule components, regardless of whether or not DLC-1 directly interacts 

with these proteins. Our findings highlight the importance of the RBP cofactor DLC-1 for 

P granule assembly.  
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Introduction 

  Membraneless organelles, such as RNA granules, are linked to regulatory 

pathways in the cell and are also implicated in diseases [40,45]. These condensates 

sequester different proteins and RNAs in the cell to carry out specific functions. Protein 

constituents of RNA granules have different types of domains that promote protein-

protein interactions and can contribute to granule assembly (see section 1.1.3). The 

molecular interactions of RNA granule constituents are under intense investigation to 

elucidate the principles behind RNA granule assembly. Using P granules in C. elegans 1-

cell stage embryo as a model system for RNA granule assembly, the field has begun to 

reveal the factors that drive this process. 

In C. elegans, localization and assembly of P granules are most dynamic in 

zygotes, prior to the first cell division. During this time, P granules transition from a 

uniform distribution throughout the zygote to localization in the posterior region, leading 

to an asymmetric distribution of P granules (Figure 4.1A). This results in segregation of P 

granules into the cell designated for the germline lineage (see orange cells in P0-P1 

embryos in Figure 1.1A). Previous studies proposed conflicting mechanisms explaining 

dynamic P granule localization. Initial analysis suggested directed cytoplasmic flow of 

granules to the posterior region [221,222]. A later study found that the fluxes of P granule 

components in the anterior and posterior regions of a 1-cell stage embryo were similar, 

suggesting that cytoplasmic flow is not involved [39]. By contrast, the asymmetry is 

established through regulated dissolution and condensation of P granule components in 

the anterior and posterior, respectively [39]. In turn, P granule condensation in the 
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posterior was postulated to proceed by liquid-liquid phase separation (LLPS; described in 

1.1.3) [39], giving rise to the cell lineage that will become the germline. 

Current models explaining selective LLPS of P granules in the posterior describe 

sequential asymmetric segregation of cytoplasmic RBPs (Figure 4.1A). First, RBPs 

MEX-5 and MEX-6 form a cytoplasmic gradient during the first cell division as a 

consequence of localized phosphorylation and dephosphorylation. Phosphorylation of 

MEX-5/6 by the posteriorly-localized PAR-1 kinase increases their diffusivity in the 

posterior of the zygote [104,223,224]. By contrast, dephosphorylation of MEX-5/6 

proteins by phosphatases in the anterior results in their slower diffusivity, leading to an 

anterior-rich concentration gradient of MEX-5/6 proteins (Figure 4.1A)[104,224]. The 

cytoplasmic gradient of MEX-5/6 proteins in turn controls the segregation of several 

other RBPs by promoting their redistribution from the anterior to the posterior [225]. This 

mechanism ensures posterior localization of paralogous RBPs MEG-3 and MEG-4 

[35,226], as depletion of mex-5/6 by RNAi result in MEGs becoming dispersed 

throughout the embryo (Figure 4.1B)[35]. In the anterior region, MEX-5/6 proteins bind 

and sequester mRNAs, reducing availability of RNA for MEG-3/4 [35]. This in turn 

inhibits MEG-3/4’s ability to phase separate [35]. By contrast, MEG-3/4 still interact 

with mRNAs in the posterior, where the MEX-5/6 concentration is low. This allows the 

MEG proteins to concentrate and phase-separate in the posterior where they nucleate 

assembly of P granules [35]. Phase separation of MEG-3 involves both interactions 

mediated by IDRs and binding to mRNAs [34,35]. Posterior-localized MEG proteins 

promote localization of other P granule components to this region, including PGL-1 and 

its paralog PGL-3 (Figure 4.1A)[103,105]. In meg-3/meg-4 mutant embryos, PGLs are 
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scattered throughout the embryo and fail to enrich in the germ cell during later stages of 

development (Figure 4.1C) [103]. On the contrary, mutation or depletion of both pgl-1 

and pgl-3 does not disrupt posterior localization of MEGs (Figure 4.1D)[35,103]. This 

suggests that MEG proteins are important for establishing PGL asymmetry perhaps 

through facilitating P granule assembly in the posterior.  

 
Figure 4.1: P granule asymmetry in 1-cell embryos 

A)  Schematic showing distribution of different proteins involved in P granule 

asymmetry before (pronuclear formation) and after (when pronuclei meet) 

polarization has occurred. Shaded regions denote presence of diffuse protein, 

while puncta represent formation of P granules. The bracket points to an embryo 

showing that MEG and PGL proteins condense together, where MEGs form a 
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shell around a core of PGL proteins [103,105]. ’A’ and ‘P’ labels denote the 

orientation of the anterior and posterior regions, respectively, of all embryos in 

schematic. 

B-D)  Distribution of proteins when polarization occurs in embryos mutant or knocked 

down by RNAi for: B) mex-5/6 [35]; C) meg-3/4 [35,103]; D) pgl-1/3 [35,103] 

(noted above each embryo).  

 

Additional proteins required for P granule assembly include the GLH family of 

RNA helicases. GLH-1 and its paralog GLH-4, which are also P granule constituents, are 

critical for PGLs to assemble with P granules. Upstream of GLH-1 is DEPS-1, which 

promotes GLH-1 protein expression and subsequent assembly of P granules [227]. glh-1 

mutant worms exhibit sterility at high temperatures (26°C) and PGL-1 does not localize 

to P granules in germlines and embryos [228]. Further, a double mutant of glh-1 and its 

paralog, glh-4, enhances sterility and has a similar effect on PGL-1 localization to P 

granules in the germline [229,230]. In addition, co-depletion of glh-1 and glh-4 by RNAi 

results in loss of PGL-3 localization to embryonic P granules [231]. These findings 

support the role of GLHs in functioning upstream of PGL proteins to promote their 

localization to P granules. Like glh-1 mutants, pgl-1 null single mutants exhibit sterility 

at high temperature [228], while pgl-3 null single mutants show no significant sterility at 

any temperature (16°, 20°, or 26°C) [232]. pgl-1; pgl-3 double mutants exhibit significant 

sterility at all temperatures, suggesting that PGL-3 functions redundantly with PGL-1 to 

promote fertility. In pgl-1; pgl-3 mutants, GLH-1 shows no defect in localization to 

germline P granules [232], however knockdown of pgl-1 and pgl-3 by RNAi revealed 
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that GLH-1 protein requires PGLs to localize to embryonic P granules [231]. In addition, 

this knockdown also led to a reduction in localization of other proteins to P granules, 

such as: IFE-1 [233], MEX-3 [231], and POS-1 [231], suggesting that PGLs are 

important for recruiting other P granule components. Assembly of these P granule 

components is important for overall function of P granules in both the germline and 

embryos. Simultaneous depletion of both pgl-1/3 and glh-1/4 genes by RNAi has 

detrimental effects on the germline, where absence of assembled P granules causes germ 

cells to differentiate into somatic cells [71]. Together, these genetic approaches highlight 

GLH and PGL proteins as core components that are important for both P granule 

assembly and fertility. These studies point to a pathway of embryonic P granule 

assembly, where MEGs assemble with and promote localization of PGLs (and likely 

GLHs) to the posterior, which leads to recruitment of additional proteins to P granules. 

Beyond the core P granule components, genetic approaches identified additional 

genes that are required for formation of P granules [234,235]. Many of these genes are 

involved in diverse cellular processes such as: cell cycle regulation, protein degradation, 

RNA splicing, and nuclear-cytoplasmic transport. These findings suggest that P granule 

localization and assembly are not based only on core constituents, but are also influenced 

by other genes and cellular processes. To this point, cofactors could also have a role in P 

granule assembly as they affect localization and function of RBPs in the cell. We 

previously identified a light chain subunit of the dynein motor complex, dynein light 

chain 1 (DLC-1), as a cofactor for the germline RBPs FBF-2 [171] and GLD-1 [172]. 

These findings demonstrated that DLC-1 promoted the function of these RBPs and the 

localization of FBF-2 to P granules. Through RIP-seq, we found that DLC-1 associates 
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with more than 2700 mRNAs, suggesting that DLC-1 is a cofactor for many RBPs [220]. 

DLC-1 is member of the LC8 family proteins that serve as hubs to promote assembly of 

larger protein complexes (see section 1.4 of Introduction), suggesting that DLC-1 could 

be in complex with many RBPs. As a result, we hypothesized that DLC-1 interacts with 

multiple RBPs and affects their subcellular localization. In this report, we use an in silico 

interaction motif scanning approach to predict what other RBPs interact with DLC-1. We 

find that DLC-1 directly interacts with several P granule component RBPs and is 

important for their localization in embryos. Our findings suggest that DLC-1 is integral 

for P granule assembly and highlights the importance of cofactors in promoting 

subcellular localization of RBPs.  

 

Materials and Methods 

Nematode Strains and Culture 

C. elegans strains (Table 4.1) were cultured as described in Chapter 2. The 3xFLAG::dlc-

1(mntSi13); gfp::pgl-3(mntIs9) strain (UMT420) was generated by crossing UMT282 

males with JH2469. The 3xFLAG::dlc-1(mntSi13); pgl-1::gfp(ax3122) strain (UMT432) 

was generated by crossing UMT282 males with JH3269. The meg-3::ollas (ax3051); 

meg-4::3xFLAG; dlc-1(tm315)//hT2 strain (UMT398) was generated by crossing 

UMT351 males with JH3374. 

Bioinformatics 

Biochemically verified LC8 binding sites (Table 4.3) were analyzed by the motif 

discovery tool Multiple EM for Motif Elicitation (MEME) [236] to generate consensus 

motifs. The best represented consensus motif was then used by the Find Individual Motif 
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Occurrences (FIMO) [195] program to scan the C. elegans proteome (Ensembl Release 

96, WBcel235). Proteins that contained at least one instance of the motif and met the 

threshold for a significant match of P<0.0001 were sorted to the output. To identify 

RBPs, the output was compared against comprehensive lists of C. elegans RBPs [22,26] 

and is represented in Figure 4.2D and Supplemental Table 1. 

In vitro pulldowns 

Cloning and bacterial overexpression of proteins was performed as described in Chapter 

2. Additionally, full length MEG-3, MEG-4, and DAZ-1 were each cloned into the 

pMALc2 vector to generate Maltose Binding Protein (MBP)-tagged proteins to improve 

solubility. Expression of MBP tagged proteins followed the similar protocol as described 

in Chapter 2 for 6xHis-tagged proteins. 

RNAi 

The procedure for RNAi is described in Chapter 2, with the exception of incubation 

temperature for growing synchronized L1 nematodes, which were grown at 20°C. This 

temperature was still permissible for GFP::PGL-3 expression and also ensured that dlc-1 

(RNAi) worms were able to produce embryos. 

Western Blotting 

The protocol for Western blotting of in vitro pulldowns is described in Chapter 2. 

Additionally, anti-Maltose Binding Protein antibody (DSHB-MBP-3D7) [237] was used 

at 1:800 to determine the outcome of pulldowns using MBP-tagged proteins. 

Nematode Dissection, Immunostaining, and Imaging 

The procedure for dissection, immunostaining, and imaging of germlines is described in 

Chapter 2. Immunostaining of embryos followed the same procedure as for germlines; 
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however, worms were dissected in half at the vulva to release embryos. The primary and 

secondary antibodies and their dilution factors used for immunostaining 3xFLAG::DLC-

1, GFP-tagged proteins, and endogenous P granule proteins are described in Table 4.2.  

Colocalization analysis was performed in FIJI/ImageJ using the Just Another 

Colocalization Plugin (JACoP) program [238]. 

Proximity Ligation Assay, Imaging, and Quantification 

The protocol for proximity ligation assay of germlines and embryos is described in 

Chapter 3 and antibody dilutions are reported in Table 4.2. All PLA-treated germlines 

and embryos were imaged using a Zeiss 880 confocal microscope and their PLA densities 

were quantified using the FIJI/Image-based workflow described in Chapter 3. To quantify 

the PLA density, the germlines were split into three standardized regions of interest 

(ROIs) corresponding to distinct developmental stages for all strains analyzed (see Figure 

4.3Div, Eiv, Fiv). Zone 1 encompassed the distal tip region through the early pachytene. 

Zone 2 is comprised of the proximal half of the pachytene, where the mid-pachytene 

region was defined as starting at the 16th cell row back from the last cell row of the 

pachytene before individual oocytes are observed, based on the pattern of expression for 

GFP::PGL-3 in the germline. Finally, zone 3 encompassed all oocytes. To measure PLA 

density in embryos, the ellipse tool in FIJI/ImageJ was used to encompass the whole 

embryo to define the ROI. The anti-PGL-1 antibody was used to co-immunostain for 

PGL-1 to mark P granules in the germ cell during embryo PLA experiments, using the 

same dilution as with the immunostaining of embryos. The antibody was incorporated 

into the primary antibody solution along with the anti-FLAG and anti-GFP antibodies and 

incubated for the same time and temperature (overnight, 4°C). When the PLA probes 
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were added to the sample the next day, the anti-Mouse IgM Alexa 633 was also included 

in the mix using the same dilution as with the immunostaining of embryos and incubated 

at the same time and temperature (1hr, 37°C). For quantification of relative area of PLA 

at P granules, a single focal plane where the PGL-1 immunostain signal is best visible 

was chosen. An ROI that encompassed the germ cell and P granules was drawn using the 

ellipse tool. This germ cell ROI was duplicated and placed on a somatic cell (ideally on a 

cell on the opposite side of the embryo) containing PLA foci, to ensure that the same area 

of measurement is used. The image was then subjected to the same particle threshold as 

was used to quantify whole embryo PLA. Quantification of relative area of PLA within 

each ROI was obtained using the same workflow described in Chapter 3. For embryos 

where PLA was only observed at the P granule but not in the somatic cell, the relative 

area for the somatic cell was substituted with the minimum value observed among 

somatic cells in the dataset. 

 

Table 4.1: Nematode strains used in this study 
Genotype Description Strain Reference 
Transgene 
unc-119(ed3); 
mntIs9 [pEV6.02] 

pie-1 prom::lap::pgl-3::pgl-3 
3’UTR + unc-119 (+) 

JH 2469 This study 

mntSi13[pME4.1]; 
him-8(tm611) IV; 
unc-199 (ed3) 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’ UTR 

UMT 282 [171] 

mntSi13[pME4.1] II; 
mntSi21 (pXW6.22; 
ceGFP); unc-
119(ed3) III 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’ UTR; gld-1 
prom::ceGFP::fbf-1 3’ UTR 
+ unc-119 (+) 

UMT 422 [239] 

mntSi13[pME4.1] II; 
unc-119 (ed3) III; 
mntIs9 [pEV 6.02] 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’ UTR; pie-1 
prom::lap::pgl-3::pgl-3 
3’UTR + unc-119 (+) 

UMT 420 This study 

mntSi13[pME4.1] II; 
unc-119 (ed3) III; 

dlc-1 prom::3xFLAG::dlc-
1::dlc-1 3’ UTR; pgl-1 prom 

UMT 432 This study 
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pgl-1(ax3122[pgl-
1::gfp]) IV 

::pgl-1::GFP::pgl-1 3’UTR+ 
unc-119(+) 

Mutant Strains 
meg-3(ax3051); 
meg-4(ax2080) 

MEG-3::OLLAS; MEG-
4::3xFLAG 

JH 3374 [35] 

dlc-1(tm3153)/hT2 
(III); him-8(tm611) 
IV 

 UMT 351 [172] 

dlc-1(tm3153)/hT2 
[bli-4(e937) let-
?(q782) qIs48] (III); 
meg-3(ax3051); 
meg-4 (ax2080) X 

MEG-3::OLLAS; MEG-
4::3xFLAG 

UMT 398 This Study 

pgl-1(ax3122[pgl-
1::gfp]) IV 

pgl-1 prom ::pgl-
1::GFP::pgl-1 3’UTR 

JH 3269 [105] 

 
Table 4.2: Antibodies used in this study for immunostaining 
  
Primary 
Antibody 

Host Manufacturer Dilution Secondary 
Antibody 

Host Manufacturer Dilution 

Antibodies used to immunostain embryos and germlines to demonstrate 
DLC-1 and PGL-1/3 patterns of expression 

Anti-
FLAG 

Mouse Sigma-
Aldrich 

1:1000 Anti-
Mouse 
IgG Alexa 
594 

Goat Jackson 
Immuno 

1:200 

Anti-GFP Rabbit Life 
technologies 

1:200 Anti-
Rabbit 
IgG Alexa 
488 

Goat Jackson 
Immuno 

1:200 

Antibodies used for PLA 
Anti-
FLAG 

Mouse Sigma-
Aldrich 

1:1000 Anti-
Mouse 
MINUS 

Donkey Sigma-
Aldrich 

1:5 

Anti-GFP Rabbit Life 
technologies 

1:4000 Anti-
Rabbit 
PLUS 

Donkey Sigma-
Aldrich 

1:5 

Antibodies used for immunostaining wild type or dlc-1 mutant embryos 
Anti-
OLLAS 

Rat Novus Bio 1:200 Anti-Rat 
IgG Alexa 
594 

Goat Jackson 
Immuno 

1:200 

Anti-
FLAG 

Mouse Sigma-
Aldrich 

1:1000 Anti-
Mouse 
IgG1 
Alexa 488 

Goat Jackson 
Immuno 

1:700 



 84 

Anti-
PGL-1 
(K76) 

Mouse DSHB 1:125 Anti-
Mouse 
IgM Alexa 
633 

Goat Thermo-
Fisher 

1:200 

Antibodies used for immunostaining embryos treated by control or dlc-1 RNAi 
Anti-
PGL-1 
(K76) 

Mouse DSHB 1:125 Anti-
Mouse 
IgM Alexa 
594 

Goat Jackson 
Immuno 

1:200 

Anti-GFP Rabbit Life 
technologies 

1:200 Anti-
Rabbit 
IgG Alexa 
488 

Goat Jackson 
Immuno 

1:200 

 
 
 
Results 

In Silico and In Vitro Identification of RBPs that Bind DLC-1 

Given the high number of DLC-1-associated mRNAs that were identified using RIP-seq 

(Chapter 2), we hypothesized that DLC-1 interacts with multiple RBPs. In order to 

predict what these other RBPs might be, a bioinformatic scan was used to identify RBPs 

that contained the LC8 interaction motif. Using previously published LC8-interacting 

peptides [139] together with DLC-1 interaction sites on the RBPs FBF-2 [171] and GLD-

1 [172] confirmed in our lab (Table 4.3), we used the bioinformatic MEME tool [194] to 

create an interaction motif that represents all of these determined and verified LC8 

interaction sequences. This interaction motif contains the conserved ‘TQT’ residues and 

resembles the canonical LC8 interaction motif [139] (referred to as Motif A; Figure 

4.2A). This motif best represents the peptides containing ‘TQT’ residues present in more 

than half of input sequences, but does not represent the peptides without the ‘TQT’ 

residues. In an effort to better represent the diversity of LC8-interacting sequences, we 

generated additional motifs by varying the peptides used as input for MEME. Two 
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selections of divergent interaction sequences sourced from different model organisms in 

the initial dataset were used as input for the MEME tool to generate more diverse binding 

motifs (Motifs B and C, Figure 4.2B-C). The DLC-1 interaction sites on the RBPs FBF-2 

[171] and GLD-1 [172] were included in a group of input sequences that generated motif 

B, the ‘DRSSQT’ motif (Figure 4.2B). Alternatively, the low-complexity and serine-rich 

FBF-2 interaction sites were replaced with sequences containing the representative 

‘QVD’ residues reported in [154] to avoid creating a degenerate motif that recovers non-

specific, false-positive interactors. This selection of input sequences produced motif C, 

the ‘PASSAY motif (Figure 4.2C). Together, motifs B and C share less resemblance with 

the overrepresented ‘TQT’ residues in motif A and reflect greater diversity of LC8 

interaction sites. Motifs A-C were then used to scan the C. elegans proteome to identify 

proteins that contained at least one instance of one of these interaction motifs. To identify 

RBPs, the output from these proteome scans was compared against comprehensive lists 

of C. elegans RBPs [22,26]. Together, scans with each of the three motifs yielded a total 

of 108 RBPs predicted to interact with DLC-1 by a single motif scan and an additional 18 

RBPs that were identified by more than one motif scan (Figure 4.2D; Supplemental Table 

1). Motif scans were able to identify known DLC-1 RBP interactors including GLD-

1[172] (by all three scans) and FBF-2 [171] (by the Motif B scan). Furthermore, several 

predicted DLC-1 interactors have been previously recovered by high-throughput yeast 

two-hybrid screens including CEH-100 (Motif A) [240], F26F4.5 (Motif A) [240], 

SPAT-1 (Motif B) [240], R07B7.2 (Motif B) [240], SAS-7 (Motifs A and B) [240], and 

PGL-3 (Motif C) [241] (Figure 4.2D). We conclude that motif scans are capable of 

retrieving DLC-1 interaction partners. Surprisingly, all three motif scans identified 
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putative RBP interactors that are also components of P granules, which include: GLD-1 

[242], PGL-1 [228], PGL-3 [232], GLH-4 [230], MEG-4 [103], GLD-2 [243], and POS-1 

[244]. P granules are required for fertility and post-transcriptional mRNA regulation; 

however, the mechanism of their assembly is not fully understood. The emerging role of 

DLC-1 as a hub for protein complex assembly in other studies led us to test whether it 

directly interacts with these RBPs, which could support its role in P granule assembly. 

Table 4.3 LC8 interaction sites used for MEME analysis 
Motif A  Motif A Cont. Motif B Motif C 
CITLVKSTQTV IPVKHNSTQTV CITLVKSTQTV CITLVKSTQTV 
KRMLDAQVQTD VGMHSKGTQTA VKLVDAESQTL VKLVDAESQTL 
LESLDIETQTD AEMKDTGIQVD TEVETREIGVG TEVETREIGVG 
VTTQNTASQTM SASADFDVQTS LNAWDNASQAY LNAWDNASQAY 
PTTANYGSQTE DNYAESGIQTD TPTRDVATSPI TPTRDVATSPI 
SPMVAQGTQTP VETCNFSVQTF DSISDRHIQTM DSISDRHIQTM 
RATAEFSTQTP KEAVDNGLQTE QPKDDKNTMTD QPKDDKNTMTD 
PMSCDKSTQTP PSQNNIGIQTM SPISSAYSQTP SPISSAYSQTP 
TSQEDKATQTL ETVVSAATQTI IDRSKSYGSSK RDTGVQVDR 
PRMLHRSTQTT TPTRDVATSPI SSVSVKFSSSG LSIGIQVDD 
TLVYTKQTQTT RSSEDKSTQTT 
VVSYSKETQTP KSTEDKSTQTP 
IVTYTKETQTP LGVCKYTVQDE 
LVLKDLGIQVD RATTSQATQTE 
VKLVDAESQTL TILVSRSTQTG 
PSLVSRGTQTE LGHFTRSTQTS 
KQTEDKGVQCE GVQMAKSTQTF 
NRCLSIGIQVD QDVLRRTVQTR 
SKFQSVGVQVE SATSAKATQTD 
TEVETREIGVG SCMQERAIQTD 
DHHQDKQTQTP TEKVDRSTQDE 
TTIPTKQTQTF DSISDRHIQTM 
SHRTTKSTQTQ PKTRNSQTQTD 
SRSGSKSTQTV SPISSAYSQTP 
VVAYPKRSQTS IDRSKSYGSSK 
LNAWDNASQAY SSVSVKFSSSG 
QPKDDKNTMTD 
 
Table reporting the LC8 interaction peptides used for generating each consensus motif 
shown in Figure 4.2D. 
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To determine whether DLC-1 might directly interact with predicted RBP partners, DLC-1 

and six putative interacting RBPs were expressed in bacteria and tested for direct 

interaction using in vitro GST pulldowns. Tested RBPs included PGL-1, PGL-3, GLH-4, 

MEG-4, IFG-1, and DAZ-1. Four of these (PGL-1, PGL-3, GLH-4, MEG-4) directly 

interacted with DLC-1 (Figure 4.2E). Interaction between DLC-1 and PGL-3 was 

previously observed in a high-throughput yeast two hybrid screen [241]. DAZ-1 did not 

directly interact with DLC-1 despite a report that the mouse ortholog of DAZ-1, Dazl, 

interacted with LC8 [164], and neither did IFG-1. PGL, GLH, and MEG proteins are 

members of protein families containing several paralogous proteins, so we investigated 

whether the remaining paralogs not recovered by motif scans were able to interact with 

DLC-1. MEG-3, a paralog of MEG-4 with 71% identity [103], weakly interacted with 

DLC-1 compared to MEG-4. By contrast, PGL-2 and GLH-1 did not interact with DLC-1 

at all. We conclude that the bioinformatic analysis has successfully enriched DLC-1-

interacting proteins within the list of putative interaction candidates.  
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Figure 4.2: Motif scans identify C. elegans LC8-interacting proteins 

A) MEME analysis of published LC8 binding sites (Table 4.3) generates the 

canonical binding motif A similar to one reported in [139]. 

B) MEME analysis of less-represented LC8 binding sites that include binding sites 

from GLD-1 [172] and the FBF-2 [171] (Table 4.3) generates an alternative motif 

B. 
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C) MEME analysis of less-represented LC8 binding sites, GLD-1, and additional 

atypical LC8 binding sites from [154] (Table 4.3) generates an alternative motif 

C. 

D) Scanning the C. elegans proteome with motifs shown in A-C identifies 126 RBPs 

as defined by ([26] and [22]). The red, black, and blue circles represent the results 

from each respective motif scan (A-C). Examples of RBPs found exclusively by 

each motif scan are presented in each circle. Examples of RBPs found by more 

than 1 scan are shown in regions where circles overlap. The numbers in green 

circles represent how many RBPs were identified in each exclusive group or 

overlap between groups. Bold text indicates RBPs that have been tested for 

interaction in vitro in this report. Both * and # denotes that the protein has been 

tested for interaction in prior work. * indicates an interaction with DLC-1, while # 

indicates no interaction with DLC-1. 

E) Representative western blots of in vitro GST pulldowns between GST::DLC-1 

and RBPs identified by the proteome scan. All RBPs tested were 6xHis-tagged 

with the exception of MEG-3, MEG-4, and DAZ-1, which were MBP-tagged. 

PGL-2, GLH-1, and MEG-3 were included for comparison against their paralogs 

PGL-1, PGL-3, GLH-4, and MEG-4, which were recovered with the motif scan. 

 
 

DLC-1 is Incorporated into PGL-1-Containing Complexes in the Germline 

To test whether DLC-1-RBP interactions identified in vitro are observed in vivo, we used 

an in situ approach to observe and quantify these interactions. For these experiments, we 

focused on core P granule components PGL-1 and PGL-3 [231]. We first examined 
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whether DLC-1 is co-expressed with PGL-1 and PGL-3 in the germline, as overlapping 

regions of expression may indicate where these proteins interact. Using co-

immunostaining, we observed their patterns of expression in 3xFLAG::DLC-1; GFP, 

3xFLAG::DLC-1; PGL-1::GFP, and 3xFLAG::DLC-1; GFP::PGL-3 germlines (Figure 

4.3A-C). Anti-FLAG immunostaining of germlines expressing 3xFLAG::DLC-1 revealed 

uniform expression throughout the germline, as also observed in Chapter 3 and previous 

reports [171,196] (Figure 4.3Aii, Bii, Cii). Anti-GFP immunostaining of GFP control 

germlines found GFP uniformly distributed throughout the germline, similar to a previous 

observation made in Chapter 3 (Figure 4.3Aiii). Expression patterns of GFP-tagged PGL-

1 and PGL-3 in the germline (Figure 4.3Biii, Ciii) showed both proteins localized to P 

granules in germ cells and oocytes, however PGL-1 is expressed throughout the germline 

while PGL-3 expression begins in the mid-pachytene region, as previously observed 

[232]. Based on these observations, we concluded that both PGL-1 and PGL-3 are co-

expressed with DLC-1, suggesting that they could interact in the germline.  
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Figure 4.3: Proximity ligation detects formation of DLC-1/PGL complexes in the 

germline 

A-C)  The expression patterns of tagged proteins in 3xFLAG::DLC-1; GFP (Ai-iv), 

3xFLAG::DLC-1; PGL-1::GFP (Bi-iv), and 3xFLAG::DLC-1; GFP::PGL-3 (Ci-

iv) immunostained gonads. 3xFLAG::DLC-1 is in red, GFP or GFP-tagged 

proteins are in green, and DNA is labeled by DAPI (blue in the merged image and 

the individual channel in grayscale; Aiv, Biv, Civ). In each image, the stem cells 

and meiotic pachytene are outlined with dashed lines, while the oocytes are 

outlined with dotted lines. Images were acquired with an epifluorescent 

microscope. Scale bars = 10 µM. 

D-F)  Representative images of PLA (red) in 3xFLAG::DLC-1; GFP (Di-iv), 

3xFLAG::DLC-1; PGL-1::GFP (Ei-iv), and 3xFLAG::DLC-1; GFP::PGL-3 (Fi-

iv) extruded germlines. DAPI was used to label DNA (blue) and both the 

individual DAPI (Dii, Eii, Fii) and PLA channels (Diii, Eiii, Fiii) are shown in 

grayscale for better contrast. For quantification, the PLA foci in the grayscale 

PLA channels were subjected to the particle thresholding procedure. PLA foci 

that met the threshold for each respective germline are shown (Div, Eiv, Fiv). Red 

lines separate the 3 zones used for quantification below in G. In each image, the 

stem cells and meiotic pachytene are outlined with dashed lines, while the oocytes 

are outlined with dotted lines. Images were acquired with a confocal microscope. 

Scale bars = 10 µM. 

G)  The average PLA density (number of PLA foci per µM2)x10-2 was measured for 

germlines co-expressing 3xFLAG::DLC-1 with: GFP (- control), or PGL-1::GFP, 
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or GFP::PGL-3. For quantification, the germline was segmented into 3 zones (see 

Materials/Methods) as denoted by the red lines shown in each threshold image 

(Div, Eiv, Fiv). Zone 1 extends from the distal tip to the first line, while zone 2 is 

comprised of the pachytene area in between the 2 lines. Zone 3 begins at the 

second red line and encompasses all oocytes. The number of germlines analyzed 

(N) for each strain in each zone is shown below the graph. Differences in average 

PLA density for each protein analyzed in each zone were evaluated by one-way 

ANOVA followed by t-test with Bonferroni correction post-test. Cross-zone 

comparisons of PLA density that are significantly different are shown with dashed 

brackets. Asterisks denote statistical significance (***, P<0.0001; **, P<0.001; *, 

P<0.0167; n.s.=not significant, P>0.0167). Data is representative of 3 biological 

replicates and error bars represent standard deviation from the mean. 

 

To visualize and quantify interactions between DLC-1 and PGL-1 or PGL-3 in vivo, we 

implemented an in situ proximity ligation assay using the same anti-FLAG and anti-GFP 

antibodies that were used for immunofluorescence. This assay was used on extruded and 

fixed germlines (Figure 4.3D-F) to determine whether DLC-1 is incorporated into PGL-1 

or PGL-3-containing complexes in the germline. For quantification of PLA, we 

implemented the workflow described in Chapter 3 and used 3xFLAG::DLC-1; GFP as a 

negative control, as DLC-1 and GFP are not expected to interact. The PLA density was 

quantified in 3 different zones in the germline, where zone 1 included the distal tip to 

early pachytene, zone 2 included mid to late pachytene, and zone 3 included all oocytes 

(demarcated by red lines in panel iv of Figure 4.3D-F). Among the 3 types of interactions 
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tested, 3xFLAG::DLC-1; PGL-1::GFP germlines had the highest mean PLA density in 

zone 1 (Figure 4.3G). In contrast, we found that the PLA density in 3xFLAG::DLC-1; 

GFP::PGL-3 germlines was less than the background in zone 1, but showed a moderate 

yet statistically significant increase in PLA density in zone 2 compared to the GFP 

control (Figure 4.3G). This may be explained by the expression pattern of PGL-3, which 

starts at the mid-pachytene (Figure 4.3Ciii). Despite the increase in PLA density for 

PGL-3 at zone 2, PGL-1’s PLA density in this zone was still significantly higher 

compared to PGL-3’s, suggesting that DLC-1 predominantly interacts with PGL-1 in this 

zone. PLA density was also quantified in the oocytes (Zone 3, Figure 4.3G), as P 

granules start to change their localization during oogenesis and oocyte maturation [245]. 

While the mean PLA densities for 3xFLAG::DLC-1; PGL-1::GFP were similar in zones 

1 and 2, we observed more than a 30% decrease in oocytes of zone 3 (Figure 4.3G). 

3xFLAG::DLC-1; GFP::PGL-3 also exhibited a 30% reduction in mean PLA density for 

this zone compared to zone 2 that resulted in background PLA density. Based on this 

data, we conclude that DLC-1 preferentially interacts with PGL-1 over PGL-3 in the 

germline. Further, the reduction of DLC-1/PGL PLA density in the oocytes suggests that 

continual co-expression of partners does not necessarily suggest maintenance of protein-

protein interactions in the germline. 

 

DLC-1 Remains in Complex with PGL-Containing RNPs in Embryos  

Both PGL-1 and PGL-3 are expressed in germ cells during every phase of C. elegans 

development with the exception of spermatogenesis [232] and DLC-1 is ubiquitously 

expressed in both somatic and germ cell cells throughout development [196,220]. To test 
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whether DLC-1 is in complex with these RBPs during embryo development, we 

continued to investigate potential interactions between DLC-1 and PGL-1 or PGL-3 in 

developing embryos using the same in situ approach that was used for the germlines. Co-

immunostaining of embryos expressing 3xFLAG::DLC-1; GFP, 3xFLAG::DLC-1; PGL-

1::GFP, and 3xFLAG::DLC-1; GFP::PGL-3 with anti-FLAG antibody revealed that 

3xFLAG::DLC-1 is expressed throughout the embryo in both somatic and germ cells 

during all stages of development (column ii, Figure 4.4A-L). Interestingly, anti-FLAG 

immunostaining in embryos beyond 50-cell stage shows that 3xFLAG::DLC-1 is 

enriched in primordial germ cells (yellow asterisk, Figure 4.4D, H, L), which were 

identified by the location of PGL-1 or PGL-3 in the embryo. Much like DLC-1, the GFP 

control is expressed throughout the embryo during all stages of development (column iii, 

Figure 4.4A-D). Anti-GFP immunostaining of PGL-1 and PGL-3 also recapitulated their 

specific subcellular localization with P granules throughout during embryo development 

as previously reported [232](column iii, Figure 4.4E-L). Together, the overlapping 

patterns of expression of DLC-1 in somatic and germ cells and PGL-1 and PGL-3 in 

germ cells suggests that DLC-1 could interact with these RBPs in developing embryos. 
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Figure 4.4: DLC-1 is co-expressed with PGL proteins throughout early 

embryogenesis  

A-L)  The expression patterns of tagged proteins in 3xFLAG::DLC-1; GFP (A-D), 

3xFLAG::DLC-1; PGL-1::GFP (E-H), and 3xFLAG::DLC-1; GFP::PGL-3 (I-L) 

were evaluated in extruded, fixed, and immunostained embryos. For each strain, 
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images in rows 1 (A, E, and I) and 2 (B, F, and J) represent early stage embryos, 

where cytoplasmic P granules segregate to the germ cell. Images in row 3 (C, G, 

and K) represent embryos where P granules condense and become perinuclear in 

the germ cell. Row 4 (D, H, and L) contains later stage embryos where PGL 

proteins are degraded by autophagy in somatic cells, while the germ cell has 

undergone a symmetric division forming two primordial germ cells with 

perinuclear P granules. Embryos in this and following Figures are oriented with 

Anterior to the left. Yellow asterisk denotes enriched DLC-1 signal in germ cells 

identified by PGL-1 and PGL-3 localization. In rows D, H, and L, insets v-vii are 

zoomed in images of i-iii showing enrichment of DLC-1 in germ cells. DNA is 

labeled with DAPI (blue), and the individual channel is shown in grayscale for 

better contrast (iv for each row). Images were acquired using an epifluorescent 

microscope. Scale bars = 10 µM. 

 

Using PLA, we quantified interactions between DLC-1 and PGL-1 or PGL-3 in embryos 

across several different stages of development binned based on changes in subcellular 

localization of P granules as shown in Figure 4.4. Overall, the average PLA densities 

observed in 3xFLAG::DLC-1; PGL-1::GFP and 3xFLAG::DLC-1; GFP::PGL-3 embryos 

throughout embryo development were significantly higher than the negative control 

(Figure 4.5P). Interestingly, both PGL-1 and PGL-3 average PLA density values in the 

embryo were higher than those observed in germlines (Figure 4.3G). This suggests that 

incorporation of DLC-1 into PGL-1 or PGL-3 RNPs is more prevalent in embryos than in 

the germlines or oocytes. PGL-1 interacts with DLC-1 most prominently at the 30-49-cell 
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stages, where P granules have completed their transition to a perinuclear localization in 

the germ cell (Figure 4.5P). In contrast, PGL-3 interactions with DLC-1 peak at the 16-

29-cell stage, when P granules condense and start to become perinuclear in the germ cell. 

Surprisingly, PLA foci in 3xFLAG::DLC-1; PGL-1::GFP and 3xFLAG::DLC-1; 

GFP::PGL-3 embryos appeared throughout the embryo, including both somatic and germ 

cells (Figure 4.5F-O) as opposed to PGL-1 and PGL-3 that are enriched at P granules in 

the germ cells of the embryo (column iii, Figure 4.4E-L). This suggests that DLC-1 might 

be a part of PGL-1 and PGL-3 RNP complexes not only in germ cells, but also in somatic 

cells [246]. As embryos continue to develop beyond the 50-cell stage, the average PLA 

density for both PGL-1 and PGL-3 decreases, which may result from clearance of PGL-1 

and PGL-3 in somatic cells through autophagy [247]. While PLA was observed in both 

somatic and germ cells of embryos, 3xFLAG::DLC-1; GFP::PGL-3 embryos showed 

enrichment of PLA around the germ cell in later stage embryos (yellow asterisk, Figure 

4.5N-O). In contrast to PGL-3, 3xFLAG::DLC-1; PGL-1::GFP embryos did not show a 

robust pattern of enrichment (Figure 4.5I-J). This result led us to further investigate the 

enrichment of PLA at P granules in the germ cell. 
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Figure 4.5: Proximity ligation assay detects formation of DLC-1/PGL complexes in 

early embryos  

A-O)  Representative images of PLA (red) in 3xFLAG::DLC-1; GFP (A-E), 

3xFLAG::DLC-1; PGL-1::GFP (F-J), and 3xFLAG::DLC-1; GFP::PGL-3 (K-O) 

extruded embryos. Panels in row 1 (A, F, and K) and row 2 (B, G, and L) 

represent 2- and 4-cell stage embryos that belong to the 1-15 cell stage group, 

where cytoplasmic P granules segregate with the germ cell. Panels in row 3 (C, H, 

and M) represent embryos in the 16-29 cell stage, when P granules condense in 

the germ cell. Panels in row 4 (D, I, and N) represent embryos at the 30-49 cell 

stage, when P granules complete their perinuclear localization in the germ cell. 

Finally, panels in row 5 (E, J, and O) represent embryos at the 50 cell and above 

stage, when autophagy of PGL proteins takes place in somatic cells. DNA is 

labeled with DAPI (blue in the merged images). The PLA channels are also 

shown in grayscale for better contrast. Images were acquired using a confocal 

microscope. Yellow asterisk denotes PLA signal enriched at germ cells. Scale 

bars = 10 µM. 

P)  The average PLA density (number of PLA foci per µM2) x10-2 was measured 

within each whole embryo co-expressing 3xFLAG::DLC-1 with: GFP (- control), 

or PGL-1::GFP, or GFP::PGL-3. The total number of embryos observed (N) for 

each strain is shown under the bar graphs in the ‘All stages’ category. These total 

observations were subsequently binned into different groups based on 

developmental stage of the embryo and plotted as separate bar graphs (N values 

indicated under each respective bar). These stages represent different timepoints 
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in development as in A-O. Differences in average PLA density for each protein 

pair analyzed at each stage were evaluated by one-way ANOVA followed by t-

test with Bonferroni correction post-test. Cross-stage comparisons of PLA density 

that are significantly different are shown with dashed brackets. Asterisks denote 

statistical significance (***, P<0.0001; **, P<0.001; *, P<0.0167; n.s.=not 

significant, P>0.0167). Data is representative of 4 biological replicates and error 

bars represent standard deviation from the mean. 

 

DLC-1/PGL-3 RNPs are Enriched at P Granules 

Observing PLA foci at germ cell P granules of 3xFLAG::DLC-1; GFP::PGL-3 embryos 

(Figure 4.5N-O) led us to hypothesize that PGL-3/DLC-1 complexes are more enriched 

at P granules than PGL-1/DLC-1 complexes. Using PLA in tandem with a PGL-1 

immunostaining to mark P granules in the germ cell (Figure 4.6A-C), we first scored 

embryos based on whether PLA foci were observed at P granules at all (Figure 4.6D). 

Both 3xFLAG::DLC-1; GFP::PGL-3 and 3xFLAG::DLC-1; PGL-1::GFP embryos had a 

significantly high prevalence of PLA at P granules (85% and 65% of all embryos 

observed, respectively). In contrast, only 55% of 3xFLAG::DLC-1; GFP embryos had 

PLA at P granules, which was not statistically significant (Figure 4.6D). We conclude 

that PGL-3/DLC-1 and PGL-1/DLC-1 complexes are often observed at P granules. To 

evaluate whether the PGL-3/DLC complexes were more restricted to P granules than 

PGL-1/DLC-1 complexes, we sought to quantitatively compare PLA signal at P granules 

to that observed in the somatic cells. 
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Figure 4.6: DLC-1/PGL complexes are enriched within P granules  

A-C)  Representative images of PLA (red) in 3xFLAG::DLC-1; GFP (A), 

3xFLAG::DLC-1; PGL-1::GFP (B), and 3xFLAG::DLC-1; GFP::PGL-3 (C) cross 

sections of extruded embryos at approximately the 40-cell stage. DNA is labeled 

with DAPI (blue). P granules (green) are immunostained by anti-PGL-1. The PLA 

channels are also shown in grayscale (Aii, Bii, Cii) for better contrast. For 

quantification, the PLA foci in the grayscale PLA channels of each embryo image 

are subject to the particle thresholding procedure described in Chapter 3 (Aiii, 

Biii, Ciii). The light blue circle designates the germ cell region of interest (ROI), 

while the orange circle designates the somatic cell. The area that the PLA foci 

occupy in the germ cell or somatic cell ROIs (% Area) is measured using the 

FIJI/ImageJ analysis workflow. Images were acquired using a confocal 

microscope. Scale bars = 10 µM. 

D-F)  Quantitative analysis of PLA results. PLA signal in test and control strains was 

evaluated using three different metrics. The same embryo images were used for 

all analyses. PGL-1::GFP and GFP::PGL-3 data are representative of 3 biological 

replicates, while GFP represents 1 replicate. 

D)  DLC-1/PGL complexes are frequently observed at P granules. Pie charts represent 

proportions of embryos that had PLA foci present in germ cells. The number of 

observations (N) for each group are shown next to each pie chart legend. The 

distribution of embryonic germ cells where PLA signal was present versus those 

without PLA was analyzed by a Chi-square test. (***, P<0.0005; **, P<0.005; 

n.s.= not significant, P>0.05). 
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E) The relative area occupied by PLA signal of DLC-1/PGL complexes is greater in 

the germ cells than in the somatic cells. Dot plots representing % Area of PLA 

measurements in somatic or germ cells. The average of each dot plot column is 

represented by the horizontal bar. The embryos with no signal in the germ cells 

were excluded from this data set. Comparison of PLA area observed in somatic 

versus germ cells for each strain was performed using a paired, students t-test. 

(***, P<0.0005; n.s.=not significant, P>0.05). 

F) The germ cell enrichment of DLC-1/PGL-3 complex is greater than that of DLC-

1/PGL-1 complex. Bar graphs represent average ratios of % Area of PLA 

observed in germ cell relative to that observed in somatic cell. Data derived from 

(E) are an aggregate of embryos across all stages of development, starting with 

the 13-cell stage when PLA is first observed at condensed P granules. The total 

number of embryos observed (N) for each strain is shown under the bar graphs. 

Differences in average germ cell/somatic cell relative PLA ratio for each protein 

analyzed were evaluated by one-way ANOVA followed by t-test with Bonferroni 

correction post-test. Asterisks denote statistical significance (***, P<0.0001; **, 

P<0.001; n.s.= not significant, P>0.0167). Error bars represent standard deviation 

from the mean. 

 

To quantify PLA at P granules, we measured the relative area (% Area) that PLA 

occupies in germ (light blue circle, Figure 4.6A-C) and somatic (orange circle, Figure 

4.6A-C) cells of the same embryo. This metric better represented the differences among 

each strain as opposed to PLA density, which does not account for changes in the size of 
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PLA foci. These measurements were only performed on embryos where PLA was present 

in the germ cells (Figure 4.6D). The average % Area of PLA in somatic versus germ cells 

were not significantly different in the GFP control (Figure 4.6E). By contrast, in both 

PGL-1 and PGL-3 embryos, the difference in mean relative PLA between somatic and 

germ cells was significantly different. These observations suggest that germ cells are 

enriched in DLC-1/PGL-containing RNPs, confirming initial observations that DLC-1 

interacts with PGLs at P granules. To determine whether specific DLC-1/PGL complexes 

might be more enriched in germ cells, we calculated the ratios (Figure 4.6F) for relative 

area of PLA between the germ and somatic cell for each embryo as plotted in Figure 

4.6E. Using this metric, we determined the PLA signal enrichment in P granules of each 

embryo individually. Quantification of PLA enrichment showed that 3xFLAG::DLC-1; 

GFP::PGL-3 had significantly higher germline/soma PLA enrichment compared to the 

3xFLAG::DLC-1; GFP negative control and 3xFLAG::DLC-1; PGL-1::GFP (Figure 

4.6F). Based on this comparison, we conclude that PGL-3/DLC-1 complexes are 

significantly more enriched in the germ cells than PGL-1/DLC-1 complexes.  

 

Loss of DLC-1 Disrupts P Granule Assembly in the Embryo 

Previous work has proposed a role for DLC-1 in assembly of P granules, based on an 

observation that knockdown of dlc-1 disrupted localization or expression of PGL-1 

transgene [234]. Based on the GST pulldown results (Figure 4.2E), DLC-1 interacts with 

multiple core P granule components. Additionally, we confirmed incorporation of DLC-1 

into RNP complexes with PGL-1 and PGL-3 at P granules in embryos using in situ PLA. 

Since DLC-1 directly interacts with several core P granule components, we hypothesized 
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that loss of DLC-1 might disrupt P granule assembly rather than simply interfere with 

expression or localization of PGL-1. To test this hypothesis, we monitored assembly and 

localization of several P granule components that interact with DLC-1. Using a strain that 

expresses GFP-tagged PGL-3 in conjunction with immunostaining of endogenous PGL-1, 

the localization and assembly of PGL-1 and PGL-3 into P granules in embryos was 

analyzed. Knocking down dlc-1 with RNAi yields a similar effect as the dlc-1 mutant, 

where worms are sterile at 24°C, but embryonic lethal at 20°C. Analysis of control 

RNAi-treated embryos (Figure 4.7A, C) showed that PGL-1/PGL-3-containing P 

granules segregate to the germ cell precursor at the 2-cell stage and become perinuclear 

by the 20-cell stage. In dlc-1(RNAi) treated embryos, the segregation of PGL-1/PGL-3-

containing P granules in similar, early cell stage embryos was disrupted (Figure 4.7B). At 

approximately the 20-cell stage, P granules are still not perinuclear at the germ cell and 

remain dispersed in dlc-1(RNAi) embryos (Figure 4.7D). Higher magnification images 

reveal that formation of PGL-1-PGL-3-containing P granules is disrupted in dlc-1(RNAi) 

embryos (rows v-vii, Figure 4.7B, D) compared to control RNAi embryos (rows v-vii, 

Figure 4.7A, C). The P granules that do form in dlc-1(RNAi) are reduced in size 

compared to control RNAi embryos and in some instances contain only one of the PGL 

proteins. Colocalization of PGL-1 with PGL-3 was evaluated by Pearson Correlation 

using Costes Automatic threshold using the JACoP plugin in FIJI [238]. Colocalization 

analysis revealed that the average PGL-1/PGL-3 correlation coefficient was significantly 

reduced in dlc-1(RNAi) embryos compared to the control (Figure 4.7E). The reduction in 

PGL-1/PGL-3 colocalization upon loss of dlc-1 was intriguing, given that these proteins 
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directly interact in vitro [232]. These findings suggest that DLC-1 promotes P granule 

assembly and localization of PGL-1 and PGL-3 in developing embryos. 
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Figure 4.7: dlc-1 is required for PGL-1 and PGL-3 assembly into embryonic P 

granules  

A-D)  Representative maximum projection images of extruded control or dlc-1(RNAi) 

embryos co-immunostained for the P granule components PGL-1 (red) and 

GFP::PGL-3 (green). A-B: 2-4-cell stage embryos. C-D: 21-24-cell stage 

embryos. DNA is labeled with DAPI (blue). Rows v-vii are zoomed in regions 

(boxed magenta outline) of images in row iv that are split into single channels to 

highlight differences in P granule assembly and size between control RNAi or 

dlc-1(RNAi)-treated embryos. Images were acquired using a confocal microscope. 

Scale bars: 10 µM (i-iv); 2 µM (v-vii). 

E)  Bar plot representing the average colocalization (Pearson Correlation) coefficient 

between PGL-1 and GFP::PGL-3 in wild type and dlc-1(RNAi) embryos. The 

difference between the control and dlc-1(RNAi) was significantly different. The 

P-values were determined using a two-tailed/equal variance t-test where *** = 

P<0.0005. Error bars represent the standard deviation from the mean. The number 

of embryos observed (N) in each RNAi experiment are denoted in the bar plot 

legend. Images and data are representative of one replicate.  

 

To test whether loss of DLC-1 disrupts the localization and assembly of additional P 

granule components, we used a strain of worm that expresses CRISPR-tagged MEG-

3::OLLAS and MEG-4::3xFLAG. By GST pulldown, MEG-3 weakly interacted with 

DLC-1 (Figure 4.2E), therefore it was not clear whether its localization and assembly 

with P granules might be disrupted by loss of DLC-1. Both MEG proteins along with the 
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endogenous PGL-1 were examined in wild type or embryonic lethal dlc-1 deletion loss of 

function mutant embryos at 20°C (dlc-1 mutants are sterile at 24°C, but embryonic lethal 

at 20°C). In wild type embryos, P granules containing MEG-4, MEG-3, and PGL-1 

segregate to the posterior cell at the 2-cell stage (Figure 4.8A) and become perinuclear by 

the 20-cell stage (Figure 4.8C). In contrast, segregation and perinuclear localization of P 

granules containing MEG-4, MEG-3, and PGL-1 in dlc-1 mutants are disrupted in both 

early and 20-cell stage embryos (Figure 4.8B, D). Close up images of these P granule 

proteins in both wild type and dlc-1 mutants highlights the differences in their 

localization and assembly (images vi-ix, Figure 4.8A-D). While large P granules in wild 

type embryos contain all three core P granule components (row ix, Figure 4.8A, C), P 

granules that form in dlc-1 mutants appear smaller in size and occasionally lack some 

components (rows vi-ix, Figure 4.8B, D), suggesting that P granule components fail to 

assemble into the normal complex. For each pair of P granule proteins tested, there was a 

significant decrease in the colocalization coefficient between the wild type and dlc-1 

mutant (Figure 4.8E) in agreement with this observation. Interestingly, colocalization of 

MEG-3 and MEG-4 with PGL-1 was affected in dlc-1 mutant embryos, even though 

these proteins directly interact in vitro [103]. Taken together, these data suggest that 

DLC-1 serves an important role in both assembly and localization of multiple P granule 

components in developing embryos, including those that do not directly interact with 

DLC-1. 
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Figure 4.8: dlc-1 is required for embryonic P granule integrity 

A-D)  Representative maximum projection images of wild type or dlc-1 mutant extruded 

embryos co-immunostained for P granule components MEG-4::3xFLAG (red), 

MEG-3::OLLAS (green), and PGL-1 (cyan), respectively. DNA was labeled with 

DAPI (blue). A-B: 2-4-cell stage embryos. C-D: 23-24-cell stage embryos. Rows 

vi-ix are zoomed-in regions (boxed magenta outline) of images in row v split into 

single channels for clarity. Images were acquired using a confocal microscope. 

Scale bars: 10 µM (i-v); 2 µM (vi-ix). 

E)  Bar plot representing the average colocalization (Pearson Correlation) coefficient 

for each specified pair of P granule proteins in wild type and dlc-1 mutant 

embryos. For each pair of P granule proteins examined, the difference between 

the wild type and mutant was significantly different. The P-values were 

determined using a two-tailed/equal variance t-test where *** = P<0.0005. Error 

bars represent standard deviation from the mean. The number of wild type or dlc-

1 mutant embryos observed (N) are denoted in the bar plot legend. Images and 

data are representative of 3 biological replicates. 

 

Discussion 

In this study, we report discovery of interactions between several P granule components 

and DLC-1. Data from both PLA and analysis of embryos with dlc-1 knockdown or 

knockout emphasizes that DLC-1 interacts with these P granule components 

predominantly in the embryo. Loss of DLC-1 disrupts the assembly and localization of 

multiple P granule proteins essential for assembly of large P granules. Taken together, 
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our findings suggest that DLC-1 is a critical component in P granule assembly in C. 

elegans embryos. 

 

Bioinformatics Identifies New DLC-1 Binding Partners 

The interaction motif scan identified a number of RBPs that could putatively interact with 

DLC-1, including several P granule components. Using GST pulldowns, we confirmed 

direct interaction between DLC-1 and PGL-1, PGL-3, GLH-4, and MEG-4 (Figure 4.2E). 

This provides insight into the sensitivity of the motif scanning approach, where we 

confirmed 4 out of 6 potential interactors, suggesting the set of putative interacting 

proteins is in enriched with real interactors. These true interactors were recovered using a 

combination of three different interaction motifs to scan the proteome, suggesting there is 

diversity in the protein sequences recognized by DLC-1, which cannot be captured in a 

single degenerate motif. Diversity of DLC-1 or other types of interaction sites is 

important to consider in future scan experiments as the overrepresented interaction motif 

may not accurately reflect the variety of potential binding sites. 

 

To assess the selectivity of interactor predictions, paralogs of the direct interactors that 

were not recovered from the motif scan (PGL-2, GLH-1, MEG-3), were also tested for 

direct interaction with DLC-1; however, only MEG-3 weakly interacted with DLC-1 

(Figure 4.2E). This demonstrates the sensitivity and specificity of bioinformatic 

approaches to generate biologically relevant information and discover new interaction 

networks. While there are more than 40 known P granule proteins in C. elegans [108], 

our motif scan identified several specific RBPs as putative interactors that were later 
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confirmed experimentally. Further work is needed to identify the binding sites as this 

information can direct mutagenesis of these RBPs to prevent DLC-1 binding in order to 

observe how loss of DLC-1 binding affects P granules in vivo. 

 

Preferential Interaction of DLC-1 with PGL-1 in the Germline 

While DLC-1 is to a large extent co-expressed with its interaction partners, PLA data 

highlights where specific interactions occur in the germline. Quantification of PLA in 

germlines shows that DLC-1 predominantly interacts with PGL-1 throughout the 

germline and moderately with PGL-3 in the mid to late pachytene region of the germline. 

Previous reports found that dlc-1(RNAi) had no effect on localization or stability of PGL-

1 in the germline [171,234], suggesting that the interactions detected by PLA may 

indicate a different role for DLC-1. Since DLC-1 may serve a hub-like role, it could be 

involved in recruiting client proteins to P granules in the germline. Indeed, DLC-1 was 

required for localization of the RBP FBF-2 to PGL-1 (used to mark P granules) in the 

distal region of the germline to facilitate its function as a translational repressor [171]. 

Future work is needed to test whether recruitment occurs through direct interaction 

between DLC-1 with PGL-1 and FBF-2. 

 

DLC-1 is Found in Complex with PGLs in the Embryo 

The interactions of PGL-1 and PGL-3 with DLC-1 are more prevalent in embryos than in 

the germlines, which points towards DLC-1’s potential importance during this stage of 

worm development. Quantification of PLA in embryos revealed that PLA densities for 

PGLs were higher than their respective densities in germlines (compare Figure 4.3G with 
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Figure 4.5P). The higher prevalence of interactions implies that formation of DLC-1/PGL 

RNP complexes serves a more prominent role during embryo development. Notably, the 

presence of PLA signal in embryonic somatic cells suggests that DLC-1 is interacting 

with PGL-1 and to a lesser extent, PGL-3, that remain in the somatic cell after the first 

asymmetric cell division. Somatic PGL-1/3 proteins are concentrated by LLPS to 

facilitate their degradation by autophagy [248] and DLC-1 could play a role in this 

process. Future work is needed to understand the interaction between DLC-1 and somatic 

PGL-1/3 and whether it relates to degradation of PGL proteins. 

 

Are DLC-1 Interactions with its Partners Subject to Regulation? 

Overall, PLA in germlines and embryos suggests that interactions between DLC-1 and 

PGLs could be subject to temporal and spatial regulation. The drop in PLA density 

observed for both PGL-1/DLC-1 and PGL-3/DLC-1 in the oocytes compared to the mid 

to late pachytene is an example of temporal regulation. Oogenesis and oocyte maturation 

are a timepoint in development where P granules lose their perinuclear localization and 

become cytoplasmic. This remodeling of P granules could influence the interaction 

between DLC-1 and either PGL protein. In the embryo, DLC-1 appears to interact more 

with PGL-3 over PGL-1 at P granules (Figure 4.6F). It will be interesting to look at this 

result over time during embryo development as P granules condense and become 

perinuclear, to see if enrichment of DLC-1/PGL complexes correlates with these changes 

in P granules. Additional work will also be needed to understand whether the distinction 

between PGL-1 and PGL-3 is an artefact resulting from differences in the rate of 

autophagy of PGL-1 versus PGL-3 in somatic cells, that could affect calculation of the 



 116 

relative PLA ratios. It also remains to be determined how enrichment of DLC-1/PGL-3 

complexes might be involved in assembly and localization of P granules in germ cells. It 

will be interesting to analyze embryonic P granule assembly in PGL-3 mutants that 

cannot bind DLC-1, as this may provide insight into the role that DLC-1/PGL-3 

complexes play in this process. 

 

Does DLC-1 Have a Role in P Granule Assembly? 

Previous reports have demonstrated that core P granule proteins can form P 

granule-like condensates in the absence of other proteins, which conflicts with the model 

of hierarchical assembly (see Introduction of this chapter). In vitro liquid droplet assays 

using only MEG-3 [35,105] or PGL-3 [249] demonstrate that these proteins can phase 

separate on their own to reconstitute condensates similar to P granules. Ectopic 

expression of PGL-3 in both mammalian cells and somatic C. elegans cells also results in 

formation of condensates in the absence of other P granule components [231]. Despite 

these observations, glh mutants compromise assembly of PGL-containing P granules 

[229] in vivo. Interestingly, knockdown of pgl-1 and pgl-3 by RNAi revealed that GLH-1 

protein requires PGLs to localize to embryonic P granules [231] and ectopic expression 

of GLH-1 alone in C. elegans somatic cells does not result in formation of P granule-like 

condensates [250], suggesting mutual dependence of these proteins to properly localize to 

P granules. These findings suggest that depending on what model system and proteins are 

used, reductionist-based in vitro approaches can mimic P granule assembly. However, 

these approaches do not fully recapitulate the complexity of P granule assembly in vivo.  
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As previously mentioned above, dlc-1 was identified by an RNAi screen as a gene 

that disrupted localization of transgenic PGL-1 in embryos [234]. Our results provide a 

more robust analysis of dlc-1’s contribution to P granule assembly than was previously 

reported. First, we used a dlc-1 mutant strain, which has a consistent phenotype and 

eliminates concern over ineffective knockdown of dlc-1 by RNAi. Second, with the 

exception of transgenic GFP-tagged PGL-3, our analysis focused on the localization and 

assembly of CRISPR-tagged or endogenous MEG-3/4 and PGL-1 proteins, which 

eliminates concern that transgenic strains may not accurately reflect their endogenous 

counterparts. We observed that these proteins fail to condense and form large P granules 

upon loss of dlc-1, suggesting that DLC-1 has an important, biologically relevant role in 

P granule assembly. Finally, we provide quantitative data to support our finding that loss 

of dlc-1 disrupts assembly of 4 P granule proteins as opposed to a previous, qualitative 

observation made for a single protein. Through colocalization analysis, the correlation 

between different pairs of P granule proteins analyzed was found to significantly decrease 

in embryos lacking dlc-1, compared to the control/wild type. Surprisingly, loss of dlc-1 

affected the colocalization of MEG-3 with other P granule proteins, even though MEG-3 

and DLC-1 do not directly interact. Together, these results suggested complete failure of 

P granule assembly and phase separation rather than selective loss of DLC-1-interacting 

components from a stable resilient structure. Furthermore, in vitro experiments have 

demonstrated direct interaction between MEG-3 and PGL-1 [103], MEG-4 and PGL-1 

[103], PGL-1 and PGL-3 [232], and MEG-4 and PGL-3 (N.D., unpublished). While 

several P granule proteins can interact without intermediaries in vitro, our data implies 
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that P granule assembly in vivo requires additional factors such as dlc-1. This suggests 

that assembly of P granules in vivo is not driven by association of core components alone. 

Based on our findings, we propose that dlc-1 has an important role in promoting 

efficient phase-separation of core P granule components. There are several mechanisms 

through which DLC-1 could contribute to this process. Like other LC8-family hub 

proteins, DLC-1 interacts with proteins through their IDRs, which are found in many 

RBPs that are associated with P granules, including those identified in this study as direct 

interactors with DLC-1. Therefore, DLC-1 could serve a scaffold-like role that promotes 

and/or stabilizes complex formation among different disordered P granule components 

that is necessary for their assembly in vivo. Another possibility is that this scaffold can 

promote recruitment of additional proteins to P granules. DLC-1 was also speculated to 

serve as a linker that promotes perinuclear localization of P granules based on 

observation that its yeast homolog Dyn2, an LC8 protein, binds to the yeast Nup159 

nucleoporin and promotes assembly of the nuclear pore complex [145]. It remains to be 

determined whether DLC-1 exhibits a punctate pattern of localization at the nuclear 

envelope as does Dyn2, which would suggest that DLC-1 could have a similar role in 

nuclear pore complex assembly. On a related note, DLC-1 interacts with GLH-4, which 

contains phenylalanine-glycine (FG) repeats [230] that are necessary for interaction with 

nucleoporins [251]. DLC-1 binding to GLH-4 could promote GLH-4’s association with 

nucleoporins and establish a link where DLC-1 can contribute to perinuclear localization 

of P granules. Finally, dlc-1’s genetic requirement for P granule assembly could be 

related to the motor function of dynein, since DLC-1 protein associates with the dynein 

motor complex and is required for the motor function. Total loss of function dynein 
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heavy chain (dhc-1) mutants are unable to produce embryos, therefore we have been 

unable to determine whether the dynein motor is involved in P granule assembly. A 

previous study found that embryos treated with nocodazole or colcemid, which disrupt 

microtubule assembly, resulted in no effect on coalescence or asymmetry of P granules 

[252]. Despite these findings, it still remains to be determined whether loss of dynein 

motor complex has an effect on P granule assembly. Additional work is needed to test 

which of these potential molecular mechanisms is behind dlc-1’s role in P granule 

assembly and localization; these approaches are described further in the Future Directions 

section of Chapter 5. 
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Chapter 5 

Conclusions and Future Directions 

 LC8 family dynein light chains are emerging as hubs that interact with other 

proteins beyond the originally characterized dynein motor complex. Among the diverse 

group of LC8-interacting proteins, are RBPs that facilitate post-transcriptional regulation 

of gene expression. Using the C. elegans germline as a model system, our lab previously 

found that the LC8 homolog DLC-1 interacted with 2 dissimilar RBPs and promoted 

their function and localization independent of the dynein motor [171,172]. This led to the 

proposal that DLC-1 functions as an RBP cofactor that may facilitate the function of 

multiple germline RBPs. Cofactor binding can affect the stability and localization of an 

RBP, therefore it is important to study their impact on RBP function. Little is known 

about how widespread LC8’s RBP cofactor function may be or how DLC-1 and its LC8 

homologs contribute to mRNA regulation in any organism. The goal of this dissertation 

was to investigate DLC-1’s role in post-transcriptional mRNA regulation through its 

interactions with RBPs in C. elegans. To address this goal, the dissertation research 

focused on 2 areas: identification of mRNAs regulated by DLC-1 and identification of 

RBPs that interact with DLC-1. Findings from this dissertation show that DLC-1 is 

important for both the mRNA regulatory role and assembly of ribonucleoprotein (RNP) 

complexes, which might suggest a similar function for LC8 in other organisms, including 

humans. 
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DLC-1 Contributes to Post-Transcriptional mRNA Regulation 

 Research presented in chapter 2 has provided further insight into DLC-1’s 

incorporation into RNP complexes through the use of a RIPseq approach to identify what 

mRNAs are potentially regulated by DLC-1. Based on the recovery of a large number of 

DLC-1-associated mRNAs, we inferred that DLC-1 contributes to the regulatory activity 

of many RBPs. Furthermore, we found that DLC-1-associated mRNAs depend on DLC-1 

for regulation of their expression, suggesting DLC-1 has a role as an RBP cofactor. Most 

mRNAs are predominantly associated with regulating the oogenic transcriptome, which 

further expands upon DLC-1’s previously reported roles in regulation of stem cell 

maintenance and initiation of meiosis. 

 

DLC-1 Might Function as a Cofactor of OMA-1 RBPs 

 Since DLC-1 has many associated mRNAs and regulates their expression in the 

germline, we were also interested in identifying what other RBPs are in complex with 

DLC-1. OMA-1 was among the several RBPs that had significant target mRNA overlap 

with DLC-1. Additionally, oma-1;oma-2 double mutant germlines fail to activate 

expression of meg-1 in oocytes [100], which is similar to the decrease in MEG-1 

expression in dlc-1(RNAi) germlines (chapter 2). The similarity in these phenotypes 

suggested that DLC-1 may associate with OMA-1 to promote its activity. Indeed, OMA-1 

directly interacted with DLC-1 in vitro, however an in vivo pulldown of OMA-1/DLC-1 

complexes was not successful and could be the result of weak or transient interactions in 

vivo. The overlapping patterns of expression for both OMA-1 and DLC-1 suggest that 

they might interact, so we developed a protocol that uses PLA to probe for protein-
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protein interactions in situ in the germline (chapter 3). This powerful tool allowed us to 

quantify and visualize OMA-1/DLC-1 interactions in the germline and may prove to be 

useful for future protein-protein interaction experiments, especially to uncover 

developmentally-regulated interactions. PLA detected a significant number of 

interactions between DLC-1 and OMA-1 in the oocytes where OMA-1 is expressed 

(chapter 3), suggesting that these proteins are in complex in vivo. In the future, to test 

whether DLC-1 binding promotes OMA-1’s function, we will create a strain of worm that 

expresses an OMA-1 mutant protein that does not bind to DLC-1. We will cross this into 

an oma-1; oma-2 double mutant strain that expresses GFP-tagged MEG-1 and use 

fluorescence microscopy to determine whether loss of DLC-1 binding affects OMA-1-

mediated activation of MEG-1 expression. If we observe loss of MEG-1 expression in 

OMA-1 mutant oocytes, then this would suggest that DLC-1 is a cofactor that promotes 

OMA-1’s function. In contrast, no change in MEG-1 expression in the oocytes would 

suggest that DLC-1 does not contribute to OMA-1-mediated activation of its targets and 

may serve a different role. 

 Since RIPseq identified DLC-1 associated mRNAs, we expected to recover 

multiple RBPs by analysis of target mRNA overlap. However, OMA-1 was the only new 

RBP identified in this study to interact with and require DLC-1 for mRNA regulation. 

This analysis was constrained by the limited number of existing datasets that have 

documented what mRNAs are targeted by C. elegans RBPs. While there are estimated to 

be at least 594 C. elegans RBPs [26], we were only able to compare target mRNAs from 

10 RBPs, which limited our ability to detect new interactors. As a result, identification of 
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RBPs that interact with DLC-1 still remained unresolved, therefore we sought to use an 

alternate bioinformatic method to identify other RBPs that interact with DLC-1.  

 

DLC-1-Binding Sites in P Granule Components 

In chapter 4, we implemented an in silico motif scanning approach to predict what 

RBPs interact with DLC-1 as this approach has been effective in identifying new 

interaction partners [161]. By scanning the C. elegans proteome for RBPs that contain 

LC8 interaction sequences, we identified more than 100 candidate interactors. 

Remarkably, many of the RBPs that directly interacted with DLC-1 are also core 

components of P granules, which are subcellular protein-RNA complexes that are 

important for post-transcriptional regulation. P granule assembly in one cell-staged 

embryos has been under intensive investigation (see chapter 4 introduction) and we 

speculated that DLC-1’s function as a hub protein could be involved in this process. 

While we have found that several core P granule components directly interact with DLC-

1, the specific interaction sites on the binding partners remain unknown. The 

bioinformatic scan in chapter 4 denoted the putative interaction sequences in these 

interacting partners, however initial attempts to mutate these sites to ablate binding in 

vitro were not successful. As an alternate approach to identify the actual binding sites, 

future work will generate truncations of DLC-1 binding partners to isolate the regions 

that interact with DLC-1 using in vitro GST pulldowns. If DLC-1 interacts with these 

truncations, we can further test for the specific binding site in the truncated protein by 

site-directed mutagenesis of amino acids that resemble putative binding motifs. After 

swapping putative binding sequences with alanines, binding can be tested using the same 
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assay to determine if the interaction is ablated. If we observe that more than one 

truncation of the same protein binds to DLC-1, then this interacting partner has more than 

one DLC-1 binding site. If no truncations for a specific protein bind, then we have 

disrupted a protein conformation that is recognized by DLC-1. If some truncations are 

unable to express, then we will focus on other interactors identified in chapter 4. 

Determination of DLC-1 interaction sequences on these binding partners will be critical 

for additional downstream experiments described below that aim to characterize 

phenotypes that result from loss of DLC-1 binding. 

 

PGL/DLC-1 Interaction in Somatic Cells 

PLA data in chapter 4 suggests that DLC-1 predominantly interacts with PGL-1/3 

proteins during embryogenesis. While PGL proteins are more abundant in the germ cell, 

numerous PLA foci were observed in somatic cells, suggesting that DLC-1 interacts with 

PGLs that remain in the somatic cells. The function of DLC-1/PGL interactions in 

somatic cells is still unclear, however it might be of relevance that PGLs in somatic cells 

form granules that are removed by autophagy as the embryo continues to develop [247]. 

PGL clearance is facilitated by a pathway that involves several autophagy-related 

proteins. The receptor protein SEPA-1 is necessary for both formation and degradation of 

PGL granules through its interaction with PGL-3, while LGG-1, the C. elegans Atg8 

ortholog, is important for forming the autophagosome [247]. Recent work has determined 

that SEPA-1 and post-translational modifications (PTMs) of PGLs, including 

phosphorylation and arginine methylation, modulate LLPS-mediated assembly of somatic 

PGL granules [253]. This LLPS-mediated assembly is necessary for subsequent 



 125 

degradation of PGL granules by autophagy. Since IDRs are important drivers of LLPS 

and both PGL-1/3 contain IDRs, it is possible that DLC-1 binding to SLiMs in IDRs may 

have a role in LLPS-mediated assembly of somatic PGL granules. To test whether DLC-1 

has a role in LLPS of somatic PGL granules, future experiments will determine if loss of 

DLC-1 binding has an effect on this process. By generating strains of worms that express 

fluorescently tagged mutant PGL-1 and PGL-3 proteins that are unable to bind DLC-1, 

we can observe any effects that may arise from the absence of DLC-1 binding to PGLs in 

vivo. To induce formation of somatic PGL granules in the embryo, we will knock down 

lgg-1 by RNAi [247] in worms expressing these PGL mutants and look for presence of 

PGL granules in somatic cells by fluorescence microscopy. If we do not observe mutant 

PGL granules in somatic cells, then this would suggest that DLC-1 is important for LLPS 

of PGLs in vivo. On the other hand, if we observe persistence of somatic mutant PGL 

granules, then this would suggest that DLC-1 is not important for their LLPS-mediated 

assembly. 

If DLC-1 is important for formation of somatic PGL granules, we can perform 

additional experiments to further probe its role in this process. To test whether DLC-1 is 

important for directly promoting phase separation of PGL-1/3, we will use phase 

separation assays, which are often used to test whether proteins undergo LLPS in vitro. 

These assays monitor formation of visible condensates that appear as liquid droplets and 

resemble in vivo P granules. The size and/or quantity per given area of droplets can be 

quantified and are used as metrics to interpret changes when conditions are modified, 

such as the inclusion of a cofactor or substrate. Previous work has shown that PGL-1 and 

PGL-3 are capable of phase separating and forming liquid droplets in vitro [248,249]. 
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Using bacterially expressed and purified PGL-1, PGL-3, and DLC-1, we will test whether 

inclusion of DLC-1 enhances phase separation of PGL-1 and PGL-3 individually as well 

as co-condensates of PGL-1/3. As a control, we will compare these condensates to those 

that form without DLC-1. If we observe an increase in size or number of PGL 

condensates with the inclusion of DLC-1, then this would suggest that DLC-1 promotes 

phase separation of PGLs. If no change in size or number of PGL condensates is 

observed, then DLC-1 does not directly promote phase separation of PGLs in somatic 

cells. 

Another potential role for DLC-1 in promoting LLPS could be through 

modulation PTMs of PGLs. PTMs can control how proteins condense through LLPS 

[40,254] and recent work has shown that arginine methylation of PGLs prevents LLPS, 

while heat stress causes elevated mTORC1-mediated phosphorylation that induces PGL 

condensation into autophagy-resistant somatic PGL granules [248]. Loss of DLC-1 

binding could cause PGLs to have an altered state of PTMs, where DLC-1 binding might 

prevent methylation of PGLs to promote their LLPS. We will use in vitro phase 

separation assays as described above to test whether DLC-1 binding affects methylation 

of PGL proteins in vitro. Methylation results in reduced number and size of droplets, 

compared to PGL droplets that form in the absence of the EPG-11 methyltransferase 

[248]. Therefore, we will test whether inclusion of DLC-1 affects EPG-11-mediated 

methylation of PGLs by measuring the size and number of PGL condensates that form. 

We can further isolate these condensates by phase sedimentation and probe for 

methylated arginines by Western blot to determine whether these droplets contain 

methylated PGLs as in [248]. If we observe that inclusion of DLC-1 leads to an increase 
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in the number or size of PGL condensates that are not methylated, then this would 

suggest that DLC-1 binding promotes LLPS of PGLs by preventing their methylation. If 

no change is observed, then DLC-1 is not involved in modulating methylation of PGLs 

and may be involved with a different PTM of PGLs. Since phosphorylation promotes 

LLPS of PGLs, we can also test whether DLC-1 binding affects this PTM. We will use 

the same in vitro phase separation assay, however the C. elegans MTOR ortholog LET-

363 will be used to phosphorylate PGLs in vitro. We will test whether inclusion of DLC-

1 enhances LLPS and phosphorylation of PGL condensates. These condensates will be 

isolated by sedimentation and phosphorylation of PGLs will be evaluated by Western blot 

using an antibody against phosphorylated PGL-1 as in [248]. If we observe that inclusion 

of DLC-1 results in an increase in the number or size of phosphorylated PGL 

condensates, then we will conclude that DLC-1 promotes LLPS of PGLs through 

modulation of PTMs. In contrast, if we observe no change in these condensates, then 

DLC-1 binding to somatic PGLs serves a different role that remains to be determined. 

 

DLC-1 Function in Embryonic P Granule Assembly 

In the embryonic germ cells, P granules failed to assemble into large condensates 

when dlc-1 was knocked down or knocked out in vivo. This was a striking finding given 

that some of these core P granule components directly interact with each other in the 

absence of DLC-1, in vitro (see chapter 4 discussion). These findings underlie the 

importance of DLC-1 and likely other LC8 family orthologs in promoting assembly of 

large protein and protein-RNA complexes, such as RNA granules. During the 1-cell stage 

of C. elegans embryogenesis, P granules re-assemble in the posterior region through 
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LLPS and hierarchical assembly of core proteins (see chapter 4 introduction). MEG-3 

and its redundant paralog MEG-4 are phosphoproteins that are important for nucleating 

the assembly of P granules. meg-3 or meg-4 single mutants have no effect on P granule 

assembly, however P granules in meg-3 meg-4 double mutants fail to assemble [103]. We 

found that DLC-1 directly interacted with MEG-4 (Figure 4.2E) and MEG-4 migrates as 

a higher molecular weight protein in dlc-1(RNAi)-treated worms (Figure 2.4G), which 

might indicate a different splice isoform of MEG-4 or an alteration of its PTMs. If DLC-1 

binding does affect the PTMs of MEG-4, it could affect MEG-4’s ability to facilitate P 

granule assembly. Previous work has shown that phosphorylation of MEG-3 destabilizes 

P granule assembly [103], which may also be relevant for MEG-4. To test whether loss of 

DLC-1 binding on MEG-4 has an effect on P granule assembly, future work will create a 

transgenic strain of worm that expresses a 3xFLAG tagged MEG-4 mutant that is unable 

to bind DLC-1 and cross it into a meg-3 meg-4 double mutant. Using this strain, we can 

test whether loss of DLC-1 binding to MEG-4 has an effect on P granule assembly by 

immunostaining for endogenous PGL-1 as a marker of P granules. If P granules fail to 

assemble or condense in the P cell, this would suggest that DLC-1 is an important 

cofactor for MEG-4-mediated P granule assembly. If we find by western blot that this 

MEG-4 mutant has an altered state of PTMs similar to the wild type MEG-4 in the 

absence of dlc-1, we will further characterize these PTMs. Using mass spectrometry, we 

will analyze what PTMs are present on mutant MEG-4 proteins that do not bind DLC-1. 

This may provide insight into how the presence or absence of DLC-1 binding affects 

MEG-4’s PTMs, which may in turn modulate MEG-4’s function. However, if P granules 
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do assemble, this would suggest that DLC-1 is not important for promoting MEG-4’s 

function in P granule assembly and may serve a different role for MEG-4.  

An alternate hypothesis is that DLC-1 promotes MEG-4’s interaction with 

different P granule proteins. To test this, we will use in vitro GST pulldowns to test 

whether inclusion of DLC-1 promotes the interaction between MEG-4 and another P 

granule protein such as GLH-4 that does not normally bind to MEG-4. If we observe that 

DLC-1 promotes the interaction between these proteins, then this would support the 

hypothesis. We can also test whether DLC-1 affects proteins that can interact with their 

partners independent of DLC-1. While MEG-4 binds with PGL-1 in vitro, we observed a 

reduction in the colocalization of these proteins in vivo when dlc-1 was knocked down or 

knocked out, suggesting that they are interacting less often. As a follow up experiment, 

we can test whether colocalization of these proteins is impacted by loss of DLC-1 binding 

in vivo. We will create a strain of worms that expresses the following mutant P granule 

proteins that do not bind DLC-1: GFP tagged PGL-1, OLLAS tagged PGL-3, and 

3xFLAG tagged MEG-4. PGL-3 will be included as its colocalization with PGL-1 was 

disrupted by dlc-1(RNAi) and it also interacts with MEG-4 in vitro. Colocalization of 

these proteins will be measured using the same approach as shown in Figures 4.7 and 4.8. 

If we observe a statistically significant reduction in colocalization of MEG-4 with PGL-1 

or PGL-3, then this would suggest that DLC-1 binding is important for promoting 

assembly of these proteins in vivo. Using in vitro GST pulldowns, we can test whether 

inclusion of DLC-1 facilitates these interactions by monitoring changes in abundance of 

these proteins in pulldown eluents by Western blot band density analysis. In the case that 

colocalization of MEG-4 with PGL-1 or PGL-3 does not change when DLC-1 binding is 
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removed, then DLC-1 does not promote MEG-4’s interaction with other core P granule 

proteins and serves a different purpose.  

In addition to reduced colocalization of different P granule proteins, embryonic P 

granules are reduced in size when dlc-1 is knocked down or knocked out. This could 

result from inefficient phase separation of these proteins in the absence of dlc-1. Using 

phase separation assays, we can test whether DLC-1 promotes the efficiency of PGL and 

MEG proteins to phase separate in vitro. Besides PGL-1 and PGL-3 mentioned earlier, 

MEG-3 has also previously been found to phase separate in vitro and form liquid droplets 

[35]. The redundant paralog of MEG-3, MEG-4, has not been shown to undergo LLPS in 

vitro, however it is presumed to have similar properties like MEG-3 that allow it phase 

separate. Using bacterially expressed and purified MEG-4, PGL-1/3, and DLC-1 proteins, 

we will reconstitute P granule assembly in vitro using phase separation assays. We will 

test whether inclusion of DLC-1 stimulates formation of more liquid droplets or an 

increase in their size. Droplet formation of DLC-1 with PGL-1, PGL-3, or MEG-4 

individually or paired (PGL-1/3, PGL-1/MEG-4, PGL-3/MEG-4) will be compared to 

control liquid droplets where DLC-1 is excluded. If we observe an increase in the number 

of droplets or size, then this would suggest that DLC-1 promotes efficient phase 

separation of P granule proteins. If no change in size or number of condensates is 

observed, then DLC-1 is not needed for promoting LLPS. 

Another potential role for DLC-1 is that it recruits transient RBP components to 

the P granules. Our lab has previously shown that DLC-1 is needed for localization of 

FBF-2 to P granules [171]. Using GST pulldowns, we will determine whether DLC-1 

binding promotes interaction between PGL-1 or PGL-3 and FBF-2. If these experiments 
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show that DLC-1 is needed for FBF-2 to interact with core P granule components, then 

this would support DLC-1’s role in recruiting RBPs to P granules. On the contrary, if 

DLC-1 does not promote the interaction between FBF-2 and PGL-1 or PGL-3, then DLC-

1 serves a different role for P granules that remains to be determined. 

 

The Dynein Motor Function of DLC-1 in P Granule Assembly is Not Yet Ruled Out 

 The putative functions of DLC-1 described above are based on its function 

independent of the dynein motor. However, DLC-1’s putative role in P granule assembly 

may involve the dynein motor complex. Currently, no research has established nor ruled 

out the dynein motor as a contributor to P granule assembly. Using drugs that disrupt 

polymerization of the microtubule network, such as nocodazole or colcemid, segregation 

and formation of P granules into the P cell were not disrupted [252], suggesting that P 

granule asymmetry and assembly do not involve transport along microtubules. Despite 

these findings, it remains to be determined whether loss of dynein motor function affects 

embryonic P granule assembly. The dynein motor is essential for many functions in the 

cell, therefore constitutive loss of function mutants or knockdown by RNAi of dynein 

heavy chain 1 dhc-1 are embryonic lethal. To overcome this issue and study loss of 

dynein function in the embryo, future experiments will use a temperature sensitive (ts) 

dhc-1 mutant that causes the dynein motor to lose function within seconds upon shifting 

the animals to a higher temperature [255]. Using a dhc-1(ts) strain of worm that expresses 

GFP-tagged PGL-1 and RFP-tagged MEG-4, we can shift 1-cell stage embryos from a 

permissive temperature (16°C) to a restrictive temperature (25°C) to inactivate the dynein 

motor. Colocalization of MEG-4 and PGL-1 will be quantified and compared with 
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control embryos at the same temperature with active, wild type dhc-1. If we observe a 

significant reduction in the colocalization of MEG-4 and PGL-1 in embryos with inactive 

dhc-1, then DLC-1’s role in P granule assembly likely involves the dynein motor. In 

contrast, no change in colocalization would mean that DLC-1 likely functions 

independently of the dynein motor to promote P granule assembly.  

 

Concluding Remarks 

Previous research from our lab together with the work presented in this 

dissertation has pointed to DLC-1 as a germline RBP cofactor. Additionally, the findings 

presented in chapter 4 illuminated another critical function of DLC-1 in promoting 

embryonic P granule assembly. Since DLC-1 is a member of the conserved LC8 protein 

family, our findings that describe its functions in RNA regulation may be relevant to LC8 

in other model systems. The proposed future work will help to better understand and 

define DLC-1’s role in P granule assembly. As a result, these studies may cause the field 

to consider the importance of cofactors such as DLC-1 and how they influence processes 

such as mRNA regulation and assembly of biomolecular condensates in the cell. 
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