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Abstract: We describe the Suuji representation of numbers which aims to deepen elementary students’ 
understanding of the base 10 system. (“Suuji” means “number” in Japanese.) This representation takes a 
two pronged approach of (1) making the place value more explicit and (2) using length to represent 
numbers, thus allowing students to reason spatially. We taught multi-digit addition using the Suuji 
representation to 20 second and third grade students. The article uses lesson descriptions and student work 
to illustrate the Suuji approach, as well as its impact on student learning. 
 
Keywords: Base 10 number system, Multi-digit addition, Place value, Measurement-based approach, 
Spatial reasoning, Representation, Physical manipulatives. 
 

Introduction 

Students typically learn multi-digit addition in second or third grade (CCSSI, 2010). Some struggle 

with this work when they do not have deep understanding of place value in the base 10 number system. 

For instance, a student might consider 37 as thirty-seven ones, rather than as three tens and seven ones. 

And when faced with 37 + 56, a student might resort to counting by ones (figure 1). 

                                                      
1 matsuura@stolaf.edu 
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Figure 1: Student adds by counting by ones. 

To alleviate this and other related issues, we developed the Suuji representation that makes each place 

value explicit. (“Suuji” means “number” in Japanese.) For example, H3 R1 S4, which is a short-hand for 

3 houses, 1 room, and 4 shelves, corresponds to the base 10 number 3.14.  

We taught multi-digit addition using the Suuji representation to 20 second and third grade students at 

a rural public school. In 2016–2017, the school had 180 students, with 14% minority, 16% free/reduced 

lunch, and 17% special education students. These students had a wide range of prior experiences. Some 

added by counting, without considering place values (figure 1). Others proficiently added multi-digit 

whole numbers.  

The article uses lesson descriptions and student work to illustrate the Suuji approach. We share pre- 

and post-assessment results to describe effects on student learning. While we used decimal numbers with 

our students, the article also describes how our approach may be adjusted for whole number addition. 

Note: We developed physical manipulatives, partner games, and exercises through which students 

engaged with the Suuji representation. For sample lesson plans, as well as templates for these 

manipulatives, contact the first author via email. 

Background 

The Suuji representation aims to deepen students’ understanding of numbers by making the place 

value more explicit. In this regard, our approach resembles often-used manipulatives such as the Base Ten 

blocks and the abacus (e.g., Cotter, 2000). However, the Suuji approach distinguishes itself by 



  TME, vol. 18, nos.1&2, p.311 

 

representing numbers as lengths, allowing students to reason spatially. More specifically, the Suuji blocks 

(described in Lesson 1) emphasize height as the underlying physical quantity of interest.  

The Suuji representation was inspired, in part, by the work of Russian psychologist Vasily Davydov. 

During the 1960s, Davydov and his colleagues developed an early elementary mathematics curriculum 

based on the measurement notion of numbers, rather than the traditional approach that uses counting 

(Davydov, 1990). In Davydov’s curriculum, children study scalar quantities such as length, area, and 

volume, which can be experienced visually and tactilely (Schmittau, 2005). For example, early first grade 

students might compare two lengths and make them equal by adding to the smaller or subtracting from 

the larger. Shown below is a schematic diagram of their thinking (Schmittau, 2005, p. 19):  

 

Figure 2: Measurement notion of numbers. 

Davydov’s approach provides opportunities for early algebraic thinking (Bass, 2015). Various 

studies, including those conducted in American schools, have shown that his approach is effective in 

fostering young children’s mathematical understanding (Schmittau, 2003; Venenciano, Slovin, & 

Zenigami, 2015). Suuji mathematics, with its emphasis on length, espouses this measurement-based 

approach, bringing coherence to the mathematics that students learn and providing them access to 

algebraic thinking at an early age.  

The Suuji representation takes the “best of both worlds” route by combining Davydov’s 

measurement-based approach with an explicit emphasis on place value. As described in Lesson 2, the 

Suuji blocks allow exchanges between ones and tens, or tens and hundreds; but in distinction from the 

Base Ten blocks, these exchanges occur in the context of towers of equal height. Thus, students can use 
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not only their grasp of discrete exchanges, but also their spatial reasoning with lengths, to undergird their 

learning about the base 10 number system. 

The Suuji representation was developed in collaboration with classroom teachers, who were looking 

for more than what their students were getting out of the Base Ten blocks. The teachers chose the 

representation using neighborhoods, houses, rooms, and shelves, because they thought it would be fun 

and relevant to their students. The key here is not “houses” or “rooms,” however. Instead, it is the way in 

which the Suuji representation allows students to visualize and work with numbers and number 

relationships in a meaningful way.  

In teaching these lessons, our goal was not simply to have students perform multi-digit arithmetic. 

Rather, we designed activities that allow them to develop richer understanding of the base 10 system 

through multi-digit addition, even as they gain fluency and understanding of multi-digit operations. Using 

the Suuji blocks, students learn to name numbers (such as H3 R1 S4 that we saw in the introduction), 

compare numbers, rewrite numbers (analogous to grouping in base 10), and add numbers. We view and 

treat these concepts not as separate skills to acquire, but all part of an interconnected whole. In this 

regard, our approach and this paper serve as an illustration of Skip Fennell’s rendering of how counting, 

place value, comparing and ordering, and operations are interconnected (Fennell, 2015). 

Lesson 1: Towers and Tower Names 

We describe five lessons on Suuji addition, each lasting 40 minutes. Lesson descriptions have been 

edited for clarity.   

In this first lesson, students learned about towers and tower names. Towers are made from building 

blocks that correspond to powers of 10. The block types and corresponding decimals are shown: 

● Neighborhoods tens 

● Houses ones 

● Rooms tenths 

● Shelves hundredths 
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For example, a tower containing 2 houses (2 ones) and 3 rooms (3 tenths) corresponds to 2.3. We did not 

reveal this tower-decimal correspondence until later.  

Note: This correspondence relies on general place value structure, rather than on particular place 

values. For example, if we had been working with whole numbers instead of decimals, we would have 

had neighborhoods, houses, rooms, and shelves correspond to thousands, hundreds, tens, and ones, 

respectively. 

We began the lesson by showing the two towers in figure 3. Blocks are stacked in right-alignment. 

Tower name describes how its blocks are arranged from the bottom. For example, the tower R1 H1 R2 H1 

(figure 3, right) has one room at the bottom, followed by one house, two rooms, and one house. In this 

lesson, students worked with towers containing houses and rooms only.  

Students played a partner game. Each student received a set of houses and rooms made of foam 

boards and cards with tower names. During each round, students built the tower whose name was written 

on the card. Then they studied their partner’s tower and wrote its name. This gave students practice in 

converting between towers and tower names. After each round, partners compared their towers to 

determine which is taller. Though we did not tell the students, the cards were designed so that partners 

built towers of equal height in each round (e.g., H2 R3 and R1 H1 R2 H1). 

 

Figure 3: Towers H2 R3 and R1 H1 R2 H1. 

Afterwards, we discussed whether or not towers with different names could have equal height. 

Students offered these ways to prove that two towers have equal height: 
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● The two towers contain the same number of blocks for each type. Example: H2 R3 and R1 H1 R2 

H1 both contain two houses and three rooms, so their heights are equal. 

● We can rearrange the blocks in one tower to form the other. Example: Students said R1 H1 R2 

H1 is “wobbly.” Moving its houses to the bottom forms the more stable H2 R3.  

During the game, partners built towers H1 and R10. Students observed that 1 house and 10 rooms 

have equal height, and we wrote H1 = R10. In the Suuji unit, the equal sign indicates equality of heights. 

The towers themselves need not be the same. Although we did not delve further into this issue with our 

students, this way of using the equals sign sets up a reasonable way of relating two objects as equivalent 

but not necessarily “the same.”  

Lesson 2: Standard Towers 

This lesson focused on standard towers. A tower is standard if (1) its larger blocks are below the 

smaller blocks and (2) it uses as few blocks as possible. To standardize H2 R8 H1 R5, for example, 

rearrange its blocks with the largest type (houses) at the bottom. This yields H3 R13. Then reduce the 

number of blocks in this tower, because 13 rooms have height equal to one house and three rooms (R13 = 

H1 R3). Combining these yields H4 R3 (figure 4). Standardizing does not change a tower’s height, since 

the only operations involved are rearranging blocks and exchanging 10 blocks with one block of equal 

height (i.e., 10 rooms with 1 house).  
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Figure 4: Towers H2 R8 H1 R5, H3 R13, and H4 R3. 

We began the lesson by recalling the pair of towers with equal height, H2 R3 and R1 H1 R2 H1 

(figure 3). This lesson’s theme was an “invariant,” or a property that does not change. Students would 

manipulate a tower to look like another without changing its height—thus, the height is an invariant. 

Students played another partner game. In each round, the “builder” built two towers of equal height 

whose names were written on a card. Then the “manipulator” manipulated the first tower (tower A) to 

look like the second tower (tower B). They switched roles after each round. By design, tower B was 

always standard—so, students standardized tower A in each exercise. Standardizing involved rearranging 

houses and rooms, and exchanging 10 rooms with 1 house. The rounds were sequenced so that students 

first grappled with individual skills of rearranging and exchanging, then gradually combined them.  

During the whole class discussion afterwards, we created H2 R8 H1 R5 and issued a challenge: 

“Make a tower of equal height that uses as few blocks as possible.” Students suggested rearranging the 

houses to the bottom, then exchanging 10 rooms with 1 house, obtaining H4 R3. Then, we formally 
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introduced the notion of standard towers and pointed out that students had made standard towers 

throughout the partner game.  

Although we did not yet connect towers and decimals, some students noticed that houses and rooms 

behaved like base 10 numbers. 

Lesson 3: Standardizing Tower Names 

Students began the transition from visual to symbolic, to standardize towers using only tower names, 

without the visual support of blocks. We also introduced a new block type called shelves.  

We began by showing students the visual image in figure 5a. We said, “This middle tower is taller 

than H1 R5 but shorter than H1 R6. The four tiny blocks are shelves.” We discussed how 1 room and 10 

shelves have equal height (R1 = S10), just like 1 house and 10 rooms (H1 = R10).  

  
 

Figure 5a (left): Towers H1 R5, H1 R5 S4, and H1 R6. 

Figure 5b (right): Zoomed-in look at the top of the tower H1 R5 S4. 

We demonstrated how to standardize H1 R5 S4 H1 R8 S7 using tower names only (figure 6). 

Students suggested combining houses, rooms, and shelves, with the largest blocks at bottom—this yielded 

H2 R13 S11. We called such a tower a stable tower and explained that it is a helpful step before 

standardizing. Then we exchanged the 11 shelves with 1 room and 1 shelf, and the 14 rooms (13 original 

plus 1 extra) with 1 house and 4 rooms, obtaining H3 R4 S1.  
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Figure 6: Standardizing H1 R5 S4 H1 R8 S7 using tower names. 

Students worked on a series of exercises in which they saw a tower name like H1 R5 S4 H1 R8 S7 

and found the name of the standardized tower, i.e., H3 R4 S1. The exercises were scaffolded by gradually 

increasing the complexity of towers. In the early exercises, students were also shown images of tower 

blocks with tower names. When students were ready, we removed the visual support, and students worked 

purely symbolically. Many students devised their own approaches for standardizing (figures 7a and 7b).  

 

Figure 7a: Standardizing H2 R17. 

 

Figure 7b: Standardizing H1 R8 H1 R3. 
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Lesson 4: Tower Addition 

Students learned to add towers. Example: To find H2 R8 + H1 R5, stack the two towers on top of 

each other, obtaining a new tower H2 R8 H1 R5; standardizing that yields the sum H4 R3 (figure 8).  

 

Figure 8: Tower sum H2 R8 + H1 R5 = H4 R3. 

Since students had previously standardized towers such as H1 R5 S4 H1 R8 S7 (which corresponds to 

the sum H1 R5 S4 + H1 R8 S7), tower addition felt familiar. This lesson also provided more experience 

with standardizing.  

Students worked on a series of exercises in which they saw two tower names and found the sum. 

Again, the exercises were scaffolded to introduce sums of gradually increasing complexity. Tower blocks 

were shown in early exercises, and this visual support was later removed.  

During the whole class debriefing, we used the sum H8 R2 + H6 R1, where the two towers together 

contained more than 10 houses, to introduce a new block type called neighborhoods. 1 neighborhood and 

10 houses have equal height (N1 = H10), thus H8 R2 + H6 R1 = H14 R3 = N1 H4 R3. 

Note: Tower addition is essentially regrouping. For example, to find H2 R8 + H1 R5, first create a 

stable tower H3 R13; this is analogous to combining the digits in each place. Then exchange the 13 rooms 

with 1 house and 3 rooms to obtain H4 R3; this exchange corresponds to the regrouping process.  
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Lesson 5: Big Reveal 

We introduced a shorthand for tower names called decimal numbers. Example: Decimal number 2.5 

corresponds to tower name H2 R5. Each digit in the decimal number corresponds to a block type, and the 

dot separates houses and rooms. Other examples include 1.54 = H1 R5 S4 and 1.87 = H1 R8 S7. Thus, a 

decimal sum 1.54 + 1.87 corresponds to H1 R5 S4 + H1 R8 S7. This equals H3 R4 S1 (see figure 6), 

whose decimal form is 3.41. Hence, 1.54 + 1.87 = 3.41.  

To summarize, computing a decimal sum like 1.54 + 1.87 involves: 

1. Converting the decimals into tower names. Here, 1.54 + 1.87 becomes H1 R5 S4 + H1 R8 S7. 

2. Computing the tower sum, i.e., H1 R5 S4 + H1 R8 S7 = H3 R4 S1. The sum must be standard. 

3. Converting the standardized tower sum back to decimal form, i.e., H3 R4 S1 becomes 3.41. 

Students worked on a series of exercises in which they saw a pair of decimals and computed the sum. 

Initially, the exercises guided students through the three steps above. Eventually, this support was 

removed—students were simply given, say, 2.78 + 5.63, and computed the sum (figure 9).  

 

Figure 9: Computing 2.78 + 5.63. 

Effects on Student Learning 

To measure effects on student learning, we administered pre- and post-assessments. They were 

administered three weeks apart, at the beginning and end of a larger unit that contained the five lessons. 

The assessments contained the same ten addition problems such as 37 + 56 and 5.76 + 3.37. On the post-

assessment, students demonstrated their understanding of the role of place value in addition. Figure 10 

shows the work of the student who, on the pre-assessment, computed 37 + 56 by counting (figure 1). 
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Here, he thinks about the place of each digit in 37 and 56 by grouping them as neighborhoods and houses. 

This conceptualization is very different from where he started.  

 

Figure 10: Computing 37 + 56 on the post-assessment. 

On the post-test, 84% of students (16 out of 19) comfortably added three- and four-digit numbers, as 

opposed to 10% (2 out of 20) on the pre-test. We saw fluidity in their thinking—students readily 

transferred their understanding of two-digit addition to the four-digit case. If students are merely building 

procedural knowledge, four-digit numbers pose more challenge than two-digits, because procedures 

become more complex. In Suuji addition, more digits did not increase difficulty for students, suggesting 

that they built conceptual understanding of multi-digit addition.   

We gave students opportunities to develop their own understanding, which is empowering. Several 

students who had previously lacked confidence in mathematics said they felt they are now good at math. 

A student who usually struggled mathematically said, “I like this Suuji math. It’s just at my level.” He 

was doing far more complex addition than he had been doing prior to the Suuji unit.   

Suuji Subtraction 

After the Suuji unit, we worked with one of the students on subtraction. We asked her to compute 

823 – 286, although she had not subtracted three-digit numbers before. She tried converting 823 to a 

tower name, but realized that another block type was needed to represent the 8 in 823. She chose 

boroughs, where 1 borough and 10 neighborhoods have equal height (B1 = N10). Thus, 823 – 286 

became B8 N2 H3 – B2 N8 H6. She could not subtract H6 from H3, however, so she exchanged one of 
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the neighborhoods in B8 N2 H3 with 10 houses; then she exchanged one of its boroughs with 10 

neighborhoods. Thus, B8 N2 H3 became B7 N11 H13, after which she subtracted (figure 11). 

 

Figure 11: Computing 823 – 286. 

As this episode illustrates, Suuji lessons provided students with a sense of ownership and 

empowerment—this particular student applied her understanding of Suuji concepts to solve an unfamiliar 

problem. We explicitly discussed with all students that the Suuji approach was designed to help them 

understand how numbers worked, and this gave them license to think about extending the model. If we 

had presented it as a fait accompli, they may not have felt as empowered to tinker and explore.  

Concluding Remarks: Benefits of the Suuji Approach 

In this section, we describe the various benefits of the Suuji approach in deepening students’ 

understanding of numbers and the base 10 representation. 

The Suuji representation such as H3 R1 S4 makes each place value explicit. Cotter (2000) notes how 

the English language—with words such as eleven, twelve, and thirteen—blurs the patterns for counting 

and obscures the groupings that occur in base 10. In contrast, many Asian languages have predictable 

counting patterns. For example, the number 37 is named 3-ten 7 in Japanese (san-ju shichi, where san, ju, 

and shichi mean three, ten, and seven, respectively). The Suuji representation follows Cotter’s 

recommendation of learning the base 10 system with an approach that highlights such counting patterns.  

We have discussed (in the Background section) how Suuji mathematics takes the “best of both 

worlds” route by combining Davydov’s measurement-based approach with an explicit emphasis on place 
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value. This connection is highlighted by the fact that there is a corresponding visual depiction of numbers, 

in the form of towers. Thus, students can see concretely that, for example, H3 R13 and H4 R3 have equal 

height, which offers a visual confirmation for the grouping that occurs. Such a visual cue is a powerful 

way to experience the relationship between these number representations. 

Games and exercises played a prominent role in the Suuji unit. They provided targeted practice with 

individual skills, while gradually increasing the complexity of the tasks; this also allowed students to 

work at their own pace. Students worked with many examples, which gave them opportunities to “look 

for and express regularity in repeated reasoning” (CCSSI, 2010, p. 8). As a result, our students found 

general methods, such as their own approaches to standardizing.  

An essential aspect of our approach is the set of physical manipulatives that allowed students to see 

and interact with tower blocks. The tactile nature of physical towers made these houses, rooms, and 

shelves feel concrete and real, even when working with their symbolic counterparts. Moreover, students 

connected with the playful nature of the Suuji representation. Learning about the base 10 system can be 

overwhelming and dry for many children. But our students enjoyed building towers with houses and 

rooms, seeing them get “wobbly,” and rearranging and exchanging blocks to make the towers standard. 

And it is precisely this “playing” with the tower blocks that led students to figure out for themselves and 

make sense of grouping in base 10. 

Our students worked with decimal numbers, although (as described in Lesson 1) the Suuji 

representation can be adjusted to work with whole numbers only. Decimal numbers intimidate many 

students. They think they have to relearn everything about integers—like how to add them—in decimal 

setting. By treating decimals as a separate topic, we balkanize students’ mathematical understanding. We 

are telling students there are “special cases” they will learn later. We developed the Suuji approach with a 

belief that learning about decimals and multi-digit addition together brings coherence to students’ 

understanding. We can teach fluidity with the base 10 number system. When learning to add multi-digit 

numbers, rather than working exclusively with integers, students can learn to view integers (and decimals) 

as part of a continuum in their understanding about numbers. The Suuji approach gets at the core of how 
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addition is done in the base 10 system, without separating the process into different cases according to 

different types of numbers. 

As students engaged with Suuji mathematics, they bumped into very significant mathematical ideas, 

used in virtually all areas of mathematics: equivalence, invariance, underlying structures of the base 10 

number system, multiple representations and going back and forth between them, and the value of 

“unpacked” representations and “compact” (or standardized) representations for working with and 

communicating about mathematical ideas. It is convenient to build a tower by simply stacking two towers 

on top of each other (e.g., H2 R8 H1 R5 in figure 8). But when communicating about numbers, it is 

convenient to have a standardized, compact way to describe them (e.g., H4 R3 in figure 8).  

Lastly, we did not present the Suuji representation as a finished product. Instead, we gave students 

free rein to extend the model and use it to ask questions beyond the scope of what we covered in class—in 

essence, using the model as an authentic mathematical tool, thus allowing students to be “tinkerers” and 

“inventors” (Cuoco, Goldenberg, & Mark, 1996). 
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