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On Representations of Semigroups Having

Hypercube-like Cayley Graphs

Cody Cassiday and G. Stacey Staples∗

Abstract

The n-dimensional hypercube, or n-cube, is the Cayley graph of the
Abelian group Z2

n. A number of combinatorially-interesting groups and
semigroups arise from modified hypercubes. The inherent combinatorial
properties of these groups and semigroups make them useful in a num-
ber of contexts, including coding theory, graph theory, stochastic pro-
cesses, and even quantum mechanics. In this paper, particular groups
and semigroups whose Cayley graphs are generalizations of hypercubes are
described, and their irreducible representations are characterized. Con-
structions of faithful representations are also presented for each semigroup.
The associated semigroup algebras are realized within the context of Clif-
ford algebras.

AMS Subj. Class. 05E15, 15A66, 47L99
Keywords: semigroups, combinatorics, hypercubes, representation theory,
Clifford algebras

1 Introduction

Hypercubes are regular polytopes frequently arising in computer science and
combinatorics. They are intricately connected to Gray codes, and their graphs
arise as Hasse diagrams of finite boolean algebras. Hamilton cycles in hyper-
cubes correspond to cyclic Gray codes and have received significant attention
in light of the “Middle Level Conjecture” originally proposed by I. Havel [23].

On the classical stochastic side, random walks on hypercubes are useful in
modeling tree-structured parallel computations [8]. On the quantum side, hy-
percubes often appear in quantum random walks, e.g. [1, 10]. Random walks
on Clifford algebras have also been studied as random walks on directed hyper-
cubes [15].

By considering specific generalizations of hypercubes, combinatorial prop-
erties can be obtained for tackling a variety of problems in graph theory and
combinatorics [17, 21, 22]. By defining combinatorial raising and lowering oper-
ators on the associated semigroup algebras, an operator calculus (OC) on graphs
∗Department of Mathematics and Statistics, Southern Illinois University Edwardsville,

Edwardsville, IL 62026-1653, USA
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is obtained, making graph-theoretic problems accessible to the tools of algebraic
(quantum) probability [14, 16, 18, 19].

The goal of the current work is to describe some particular groups and semi-
groups whose Cayley graphs are generalizations of hypercubes, to characterize
their irreducible complex representations, and to provide constructions for faith-
ful representations.

2 Signed, Directed, & Looped Hypercubes

Hypercubes play an important role throughout the operator calculus approach.
The n-dimensional cube, or hypercube Qn, is the graph whose vertices are in
one-to-one correspondence with the n-tuples of zeros and ones and whose edges
are the pairs of n-tuples that differ in exactly one position. This graph has
natural applications in computer science, symbolic dynamics, and coding theory.
The structure of the hypercube allows one to construct a random walk on the
hypercube by “flipping” a randomly selected digit from 0 to 1 or vice versa.

Given two binary strings a = (a1a2 · · · an) and b = (b1b2 · · · bn), the Ham-
ming distance between a and b, denoted dH(a, b), is defined as the number of
positions at which the strings differ. That is,

dH(a, b) = |{i : 1 ≤ i ≤ n, ai 6= bi}|.

Let b be a block, or word, of length n; that is, let b be a sequence of n zeros
and ones. The Hamming weight of b, denoted wH(b), is defined as the number of
ones in the sequence. The binary sum of two such words is the sequence resulting
from addition modulo-two of the two sequences. The Hamming distance between
two binary words is defined as the weight of their binary sum.

With Hamming distance defined, the formal definition of the hypercube Qn
can be given.

Definition 2.1. The n-dimensional hypercube Qn is the graph whose vertices
are the 2n n-tuples from {0, 1} and whose edges are defined by the rule

{v1, v2} ∈ E(Qn)⇔ wH(v1 ⊕ v2) = 1.

Here v1 ⊕ v2 is bitwise addition modulo-two, and wH is the Hamming weight.
In other words, two vertices of the hypercube are adjacent if and only if their
Hamming distance is 1.

Fixing the set B = {e1, . . . , en}, the power set of B is in one-to-one corre-
spondence with the vertices of Qn via the binary subset representation

(a1a2 · · · an)↔ eI ⇔ ai =

{
1 i ∈ I,
0 otherwise.

Of particular interest are some variations on the traditional hypercube de-
fined above. First, the looped hypercube is the pseudograph obtained from the
traditional hypercube Qn by appending a loop at each vertex. In particular,
Qn◦ = (V◦, E◦), where V = V (Qn) and E = E(Qn) ∪ {(v, v) : v ∈ V (Qn)}.
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Figure 2.1: Four-dimensional hypercube.

Definition 2.2. Let V denote the vertex set of the n-dimensional hypercube,
Qn. Let αV denote the set obtained from V by appending the symbol α to each
vertex in V . The Hamming weight of α is taken to be zero. A signed hypercube
is a (possibly directed) graph, G, on vertex set V ∪ αV such that

(u,w) ∈ E(G)⇒ wH(u⊕ w) = 1.

With various notions of generalized hypercubes in mind, a few relevant ex-
amples of finitely-generated semigroups can be given.

Let S0
4 denote the Abelian group generated by commutative generators

{γ1, γ2, γ3, γ4} along with γ∅ satisfying γi2 = γ∅ for each i. The Cayley graph
of S0

4 is readily seen to be the four-dimensional hypercube of Figure 2.1.
Let J4 denote the Abelian group generated by γ∅ along with commutative

generators {γ1, . . . , γ4} satisfying γi2 = γi for each i ∈ {1, 2, 3, 4}. The Cayley
graph of J4 is then readily seen to be the four-dimensional looped hypercube
obtained by appending a loop to each vertex of the graph seen in Figure 2.1.

Let B3
0 denote the non-Abelian group generated by {γ1, γ2, γ3} along with γ∅

and γα satisfying γi2 = γα for each i, and γiγj = γαγjγi for i 6= j. The signed
three-dimensional hypercube of Figure 2.2 is the undirected graph underlying
the Cayley graph of B3

0.
Hypercube generalizations appearing in this paper are summarized in Table

2.

2.1 The blade group Bq
p

Let B = {e1, . . . , en}, and let p and q be nonnegative integers such that p+ q =
n. Let Bqp be the multiplicative group generated by B along with the elements

3



Figure 2.2: Three-dimensional signed hypercube.

(Semi) Generator Generator
Group Commutation Squares
Bqp γiγj = γαγjγi {γ∅, . . . , γ∅︸ ︷︷ ︸

p

, γα, . . . , γα︸ ︷︷ ︸
q

}

Sqp Abelian {γ∅, . . . , γ∅︸ ︷︷ ︸
p

, γα, . . . , γα︸ ︷︷ ︸
q

}

Gn γiγj = γαγjγi γi
2 = 0γ , i = 1, . . . , n

Zn Abelian γi
2 = 0γ , i = 1, . . . , n

Jn Abelian γi
2 = γi, i = 1, . . . , n

Table 1: Semigroups summarized by generators.

(Semi) Directed? Signed? Looped
Group
Bqp Yes Yes No
Sqp No Only if q > 0. No
Gn Yes No No
Zn No No No
Jn No No Yes

Table 2: Properties of hypercubes underlying semigroups discussed.

{e∅, eα}, subject to the following generating relations: for all x ∈ B ∪ {e∅, eα},
e∅ x = x e∅ = x,

eα x = x eα,

e∅
2 = eα

2 = e∅,
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and

eiej =


eα ejei if i 6= j,

e∅ if i = j ≤ p,
eα if p+ 1 ≤ i = j ≤ n.

The group Bqp is referred to as the blade group 1 of signature (p, q).
Let 2[n] denote the power set of the n-set, [n] = {1, 2, . . . , n}, used as indices

of the generators in B. Elements of 2[n] are assumed to be canonically ordered
by

I ≺ J ⇔
∑
i∈I

2i−1 <
∑
j∈J

2j−1. (2.1)

Note that the ordering is inherited from the binary subset representation of
integers.

Remark 2.3. The order of the blade group Bqp is 2p+q+1 as seen by noting the
form of its elements, i.e., Bqp = {eI , eα eI : I ∈ 2[n]}.

To simplify multiplication within Bqp, some additional mappings will be use-
ful. For fixed positive integer j, define the map µj : 2[n] → N 0 by

µj(I) = |{i ∈ I : i > j}|. (2.2)

In other words, µj(I) is the counting measure of the set {i ∈ I : i > j}.

Definition 2.4. The product signature map ϑ : 2[n]× 2[n] → {e∅, eα} is defined
by

ϑ(I, J) = eα
(µp(I∩J)+

P
j∈J µj(I)). (2.3)

Applying multi-index notation to the generators B according to the ordered
product

eI =
∏
i∈I

ei (2.4)

for arbitrary I ∈ 2[n], the multiplicative group Bqp is now seen to be deter-
mined by the multi-indexed set {eI , eαeI : I ∈ 2[n]} along with the associative
multiplication defined by

eI eJ = ϑ(I, J)eI4J , (2.5)

where I4J = (I ∪ J) \ (I ∩ J) denotes set-symmetric difference. Inverses in Bqp
are given by

eI
−1 = ϑ(I, I)eI

since
eIϑ(I, I)eI = ϑ(I, I)2eI4I = e∅.

1The elements of this group are analogous to the “basis blades” of a Clifford (Grassmann)
algebra.
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Elements of the form eI are called positive, while elements of the form eαeI
are called negative. Positive elements of Bqp are now canonically ordered by

eI ≺ eJ ⇔ I ≺ J

using the ordering on 2[n] given by (2.1).
An element eI ∈ Bqp is said to be even if |I| = 2k for some nonnegative

integer k. Otherwise, eI is said to be odd.

Lemma 2.5. The collection of even elements of Bqp forms a normal subgroup,
denoted Bqp

+.
Bqp

+ C Bqp.

Proof. First, note that multiplicative identity, e∅ is indexed by a set of size
zero so that Bqp

+ contains the identity. Secondly, the inverse of any element eI
is indexed by the same subset so that Bqp

+ is closed with respect to inverses.
Finally, the symmetric difference of two sets of even cardinality is also of even
cardinality so that Bqp

+ is closed under multiplication. Thus, Bqp
+ is a subgroup

of Bqp.
To see that Bqp

+ is a normal subgroup, let eI ∈ Bqp be fixed and consider con-
jugation of elements of Bqp

+. That is, consider eIBqp
+eI
−1. Choosing arbitrary

eJ ∈ Bqp
+, one finds

eI eJ eI
−1 = ϑ(I, I)eI eJ eI = ϑ(I, I)eIϑ(J, I)eJ4I

= ϑ(I, I)ϑ(J, I)ϑ(I, J4I)eI4(J4I)

= ϑ(I, I)ϑ(J, I)ϑ(I, J4I)eJ ∈ Bqp
+.

Hence, the result.

Allowing commutativity of generators leads to another combinatorially in-
teresting group referred to as the “Abelian blade group.”

Definition 2.6. The Abelian blade group, Sqp , is defined as the abelian group of
order 2n+1 generated by the collection S = {ςi : 1 ≤ i ≤ n} along with elements
{ς∅, ςα} satisfying the following generating relations: for all x ∈ S ∪ {ς∅, ςα},

ς∅ x = x ς∅ = x,

ςα x = x ςα,

ς∅
2 = ςα

2 = ς∅,

and

ςiςj =


ςjςi if 1 ≤ i 6= j ≤ n,
ς∅ if 1 ≤ i = j ≤ p,
ςα if p+ 1 ≤ i = j ≤ n.

The quotient group algebra R Sqp/〈ςα + ς∅〉 is canonically isomorphic to the
symmetric-Clifford algebra C`p,qsym appearing in [21], where it is used to induce
homogeneous random walks on hypercubes.
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3 Group Representations

All group and semigroup representations considered in this paper are complex.
A representation of a given group, G, is a homomorphism ρ : G → GLn(C ).
The degree of this representation is n, and the representation space is the space
C n on which the elements of GLn(C ) act.

Given a representation ρ and a subspace W of C n, we say W is G-invariant
if ρ(g)W ⊆ W for every g ∈ G. If the only invariant spaces are {0} and C n,
the representation is said to be irreducible. The character of a representation,
χ : G→ C , is defined by χ(g) = tr(ρ(g)).

A fundamental result in group representation theory [20] is that a represen-
tation ρ with character χ is irreducible if and only if χ satisfies

(χ|χ) =
1
|G|

∑
g∈G

χ(g)χ(g) = 1.

Two representations ρ and r of a group G are said to be isomorphic if there
exists an invertible mapping f : C n → C n such that

f ◦ ρ = r ◦ f.

Lemma 3.1. The group Bqp has at least 2p+q distinct degree-1 irreducible rep-
resentations.

Proof. First, any representation ρ of degree 1 must satisfy ρ(e∅) = 1. We claim
that in the case p + q > 1, this implies ρ(eα) = ρ(e∅) = 1. To see this, note
that eα2 = e∅ clearly implies ρ(eα) = ±1. Suppose ρ(eα) = −1, and consider
the following cases:

1. The case p = 0 or q = 0. In this case, either ei2 = e∅ for all 1 ≤ i ≤ p+ q
or ei2 = eα for all 1 ≤ i ≤ p + q. In either case, since p + q > 1, one
considers the product ei ej for 1 ≤ i 6= j ≤ p + q. By anticommutativity,
(ei ej)2 = eα, but ρ(eα) = −1 guarantees a contradiction.

2. The case p, q ≥ 1. In this case, one considers a pair, i, j, satisfying 1 ≤
i ≤ p and p + 1 ≤ j ≤ p + q. Then ei

2 = e∅, ej2 = eα, and (ei ej)2 = e∅,
again leading to a contradiction.

Let J ∈ 2[p+q] denote a multi-index. A degree-1 representation ρJ is defined
by setting ρJ(e∅) = ρJ(eα) = 1, and for 1 ≤ i ≤ p+ q, setting

ρJ(ei) =

{
1 i ∈ J,
−1 i /∈ J

By considering the number of distinct subsets J , it follows immediately that
the total number of representations created this way is 2p+q. These representa-
tions are clearly irreducible and distinct, i.e., pairwise non-isomorphic.
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Remark 3.2. The groups B1
0 and B0

1 are instances of Abelian blade groups con-
sidered in Section 3.1. Irreducible representations of B1

0 are characterized in
Example 3.4.

Recall that given a group G, the conjugacy class of an element g ∈ G is the
set

Cl(g) = {hgh−1 : h ∈ G}.

A well-known result in representation theory says that the number of irreducible
representations of a group G is equal to the number of its conjugacy classes [20].
This provides a useful tool for establishing the following result.

Theorem 3.3. Given the group Bqp the number of conjugacy classes and subse-
quently the number of irreducible representations is given by the formula

κ = 2p+q + 1 + c,

where c = p+ q (mod 2).

Proof. If p+ q = 1 the formula trivially works.
Suppose p + q 6= 1 and denote the center of Bqp by Z(Bqp). If g ∈ Bqp\Z(Bqp)

then it is easily seen that

Cl(g) = {hgh−1 : h ∈ Bqp}

= {eIge−1
I : I ∈ 2[p+q]}.

Combining the following facts: eI−1 ∈ {eI , eαeI}, eIg ∈ {geI , eαgeI}, and
eI

2 ∈ {eα, e∅}, one sees that Cl(g) = {g, eαg}.
Further, if g ∈ Z(Bqp), then eαg ∈ Z(Bqp) and Cl(g) = {g}. Hence,

κ =
|Bqp\Z(Bqp)|

2
+ |Z(Bqp)|.

Therefore to finish the proof we need to understand the order of the center.
Let eI ∈ Bqp be arbitrary. If I = ∅ one can see that e∅ ∈ Z(Bqp).

Now suppose I 6= ∅. Let I = {i1, . . . , ih} for h even. Then,

eiheI = (eα)h−1eIeih
= eαeIeih .

Whence, eI 6∈ Z(Bqp).
Assume now that I = {i1, ...ih} 6= {1, 2, ..., p+ q} for h odd. Then there is a

natural number ` such that ` /∈ I and

e`eI = eαeIe`.

Thus, eI /∈ Z(Bqp).
Finally, suppose I = {1, 2, ..., p + q} = [p + q] for p + q odd. It is claimed

that
eJe[p+q] = e[p+q]eJ

8



for every indexing set J ⊆ I. To see this, note that if J = ∅ the result trivially
holds. By way of induction on the cardinality of J , assume J = {j}, set
µ+ = |{i ∈ [p+ q] : i < j}|, and set µ− = |{i ∈ [p+ q] : i > j}|. Then,

e[p+q]ej = (eα)µ
−+µ+

eje[p+q]

= (eα)p+q−1eje[p+q]
= eje[p+q].

Suppose e[p+q]eJ = eJe[p+q] for some multi-index cardinality |J |. The task
now is to show e[p+q]eJeh = eJehe[p+q] for some natural number h 6∈ J. From
the inductive hypothesis we know

(e[p+q]eJ)eh = (eJe[p+q])eh

and from the basis step, we know e[p+q]eh = ehe[p+q].
Combining these two facts and using associativity of the group operation,

e[p+q]eJeh = eJe[p+q]eh = eJehe[p+q].

Hence, by induction, eJe[p+q] = e[p+q]eJ for all J ∈ 2[p+q].
If p+ q is even, then Z(Bqp) = {eα, e∅}. In this case,

κ =
|Bqp\Z(Bqp)|

2
+ |Z(Bqp)|

= (2p+q − 1) + 2
= 2p+q + 1.

If p+ q is odd, then Z(Bqp) = {eα, e∅, e[p+q], eαe[p+q]}, which gives

κ =
|Bqp\Z(Bqp)|

2
+ |Z(Bqp)|

= (2p+q − 2) + 4
= 2p+q + 2.

Example 3.4. Consider the group B1
0. In this case, two non-faithful irreducible

representations are constructed as in the proof of Lemma 3.1. Two more faith-
ful irreducible representations are found in agreement with Theorem 3.3. The
four representations are listed in the left table of Figure 3.1. Four irreducible
representations of B0

1 are similarly constructed in the right table of Figure 3.1.
No faithful irreducible representations exist in this case. It is not difficult to
verify that the representations are distinct for each group.

The above example could have been completed using real representations,
although none would be faithful. When p+ q > 1, Bqp is non-Abelian, and hence
has no faithful degree-1 representation regardless of representation space.

Another well known result in group representation theory is the following,
found in [20].
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B1
0 e∅ eα e1 eα e1
ρ∅ 1 1 1 1
ρ{1} 1 1 −1 −1
δ1 1 −1 ı −ı
δ2 1 −1 −ı ı

B0
1 e∅ eα e1 eα e1
ρ∅ 1 1 1 1
ρ{1} 1 1 −1 −1
δ1 1 −1 1 −1
δ2 1 −1 −1 1

Figure 3.1: Irreducible degree-1 representations of B1
0 (left) and B0

1 (right).

Lemma 3.5. Let G be a finite group having κ irreducible representations. For
each i = 1, . . . , κ, let ni denote the degree of the ith irreducible representation
of G. Then,

|G| =
κ∑
i=1

ni
2.

Given the group Bqp there are always 2p+q distinct irreducible representa-
tions of degree 1. The remaining irreducible (complex) representations are now
enumerated in the next theorem.

Theorem 3.6. If p + q = 2k > 1, then Bqp has one irreducible representation
of degree 2k. If p + q = 2k + 1, then Bqp has two irreducible representations of
degree 2k. Moreover, all of these irreducible representations are faithful except
when p is odd and q is even.

Proof. This will be treated in two cases. First is the case of p + q even. Since
p+q is even, one can write p+q = 2k for some k ∈ N . Define τ : Bqp → GL2k( C )
by

τ(ej) =


σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j) 1 ≤ j ≤ k, j ≤ p
ı
(
σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j)) 1 ≤ j ≤ k, j > p

σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j) k + 1 ≤ j ≤ 2k, j ≤ p
ı
(
σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j)) k + 1 ≤ j ≤ 2k, j > p.

(3.1)

Setting τ(e∅) = σ0
⊗k and τ(eα) = −σ0

⊗k, this extends by multiplication to all
of Bqp. More specifically, for any multi-index I, τ(eI) =

∏
`∈I

τ(e`), and τ(eαeI) =

−τ(eI).
This representation is clearly well defined. To verify that this representation

is irreducible, let ξ be the character of τ . Let eI ∈ Bqp be arbitrary. Letting
σ(`) ∈ {σ0, σx, σy, σz} for each ` = 1, . . . , k, one writes

ξ(eI) = tr(τ(eI))

= tr

(
u

k⊗
`=1

σ(`)

)
= u

∏
`∈I

tr(σ(`))

10



for some unit u ∈ {±1,±ı}. Since tr(σx) = tr(σy) = tr(σz) = 0, and tr(σ0) = 2,
it follows that ξ(eI) = ξ(eαeI) = 0 unless I = ∅, in which case ξ(e∅) = 2k and
ξ(eae∅) = −2k. Now,

(ξ|ξ) =
1
|Bqp|

∑
g∈Bqp

ξ(g)ξ(g)

=
1

22k+1
((ξ(e∅))2 + (ξ(eαe∅))2)

=
1

22k+1
(2)(22k) = 1.

Thus, τ is irreducible.
To see that the representation (3.1) is faithful, consider the kernel:

ker(τ) = {eI : τ(eI) = σ0
⊗k}.

Noting that τ(Bqp) is a subgroup of GL2k(C ), we begin by showing that the
center of this subgroup consists only of elements having the form ±uσ0

⊗k, where
u ∈ {±1,±ı}. To begin, the center of τ(Bqp) is

Z(τ(Bqp)) = {τ(eE) : τ(eE)τ(eJ) = τ(eJ)τ(eE), ∀J ∈ 2[p+q]}.

Suppose an element of Z(τ(Bqp)) is of the form M = uσ(1)⊗ . . .⊗σ(k), where
for some index h, σ(h) 6= σ0 but σ(h+1) = · · · = σ(k) = σ0. If σ(h) = σz or σy

then we can see

τ(e{h,h+k}) = u(σ0
⊗(h−1) ⊗ σx ⊗ σ0

(k−h)),

which will anti-commute with M .
If σ(h) = σx, an element anti-commuting with M is given by

τ(e{1,k+1,2,k+2,...,h−1,k+h−1,h}) =h−1∏
j=1

(−ı)(σ0
⊗(j−1) ⊗ σx ⊗ σ0

⊗(k−j))

(σx
⊗(h−1) ⊗ σz ⊗ σ0

⊗(k−h)
)

= u
(
σx
⊗(h−1) ⊗ σ0

⊗(k−h+1)
)(

σx
⊗(h−1) ⊗ σz ⊗ σ0

⊗(k−h)
)

= uσ0
⊗(h−1) ⊗ σz ⊗ σ0

⊗(k−h).

This proves that every element of Z(τ(Bqp)) is of the form uσ0
⊗k for u ∈

{±1,±i}.
By construction, τ(e∅) and τ(eα) are elements of Z(τ(Bqp)). Suppose E is a

non-empty indexing set, and to the contrary suppose τ(eE) ∈ Z(τ(Bqp)), so that
τ(eE) = uσ0

⊗k. It is not difficult to see that eE 6∈ Z(Bqp), so there exists an
integer m such that

eEem = eαemeE .

11



Applying τ reveals

τ(eEem) = uσ0
⊗kτ(em) 6= −u τ(em)σ0

⊗k = τ(eαemeE).

This contradicts the homomorphism property of τ . We conclude then that
eE 6∈ Z(τ(Bqp)), which means

Z(τ(Bqp)) = {τ(e∅), τ(eα)}.

However, only one of these, τ(e∅), is σ0
⊗k. Thus, ker(τ) = {e∅}. Since the

kernel is trivial, τ is faithful.
Now suppose p+ q = 2k + 1 is odd; more specifically, suppose p is even and

q is odd. Let τ : Bqp → GL2k(C ) be defined by

τ(ej) =



σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j) 1 ≤ j ≤ k, j ≤ p
ı
(
σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j)) 1 ≤ j ≤ k, j > p

σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j) k + 1 ≤ j ≤ 2k, j ≤ p
ı
(
σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j)) k + 1 ≤ j ≤ 2k, j > p

σx
⊗k j = 2k + 1, j ≤ p

ı
(
σx
⊗k) j = 2k + 1, j > p.

(3.2)

Setting τ(e∅) = σ0
⊗k and τ(eαei) = −τ(ei), this extends by multiplication to

all of Bqp.
To check irreducibility of τ , let ξ denote the character of τ . It is already

known that ξ(eI) = 0 in all but the extreme case I = ∅. Further, since e[p+q] is
in the center of the group, its image under τ must be of the for uσ0

⊗k for some
scalar u ∈ {±1,±ı}. It thereby follows that

(ξ|ξ) =
1
|Bqp|

∑
g∈Bqp

ξ(g)ξ(g)

=
1

22k+2

(
(ξ(e∅))2 + (ξ(eα))2

)
+

1
22k+2

(
ξ(e[2k+1])ξ(e[2k+1]) + ξ(eαe[2k+1])ξ(eαe[2k+1])

)
=

1
(22k+2)

(
22k + 22k + 22k + 22k

)
= 1.

Hence, τ is irreducible.
Recall that when p + q is odd, Z(Bqp) = {eα, e∅, e[p+q], eαe[p+q]}. In light

of the proof that τ was faithful for p + q even, showing that e[p+q] /∈ ker(τ) is
sufficient to show that τ is faithful. Computing e[p+q], one finds

e[p+q] 7→ ıq(σzσyσx)⊗k = ıq(σ0
⊗k), (3.3)
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so that

τ(e[p+q]) =

{
ı(σ0

⊗k) if q ≡ 1 (mod 4),
−ı(σ0

⊗k) if q ≡ 3 (mod 4).
(3.4)

It follows that ker(τ) is trivial.
Finally, in the case p is odd and q is even, the construction of (3.2) is again

used. This representation is again irreducible, and τ(e[p+q]) = ıq(σ0
⊗k), as seen

in Equation 3.3. In this case, however, one has

τ(e[p+q]) =

{
σ0
⊗k = τ(e∅) when q ≡ 0 (mod 4),

−σ0
⊗k = τ(eα e∅) when q ≡ 2 (mod 4),

(3.5)

so that the representation is not faithful.
Recalling that the order of Bqp is equal to the sum of the squares of degrees

of irreducible representations, there remains one irreducible representation of
Bqp in the case p+ q is odd: the complex conjugate of τ . This representation is
given explicitly by

τ(ej) =



σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j) 1 ≤ j ≤ k, j ≤ p
−ı
(
σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j)) 1 ≤ j ≤ k, j > p

−σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j) k + 1 ≤ j ≤ 2k, j ≤ p
ı
(
σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j)) k + 1 ≤ j ≤ 2k, j > p

σx
⊗k j = 2k + 1, j ≤ p

−ı
(
σx
⊗k) j = 2k + 1, j > p,

where, τ(e∅) = σ0
⊗k and τ(eαei) = −τ(ei). This extends by multiplication to

all of Bqp.
To see that τ is not isomorphic to τ , one considers the action of τ on e[p+q].

In particular, (3.4) and (3.5) imply

τ(e[p+q]) =


σ0
⊗k = τ(e[p+q]) when q ≡ 0 (mod 4),

−ı(σ0
⊗k) = −τ(e[p+q]) when q ≡ 1 (mod 4),

−σ0
⊗k = τ(e[p+q]) when q ≡ 2 (mod 4),

ı(σ0
⊗k) = −τ(e[p+q]) when q ≡ 3 (mod 4).

Suppose there exists an invertible linear transformation f ∈ GL( C 2k) satisfying
f ◦ τ = τ ◦ f . Then, the cases q ≡ 1 (mod 4) and q ≡ 3 (mod 4) imply

f ◦
(
ı
(
σ0
⊗k)) = −ı

(
σ0
⊗k) ◦ f ⇒ f(v) = −v, ∀v ∈ C 2k ,

which contradicts f ◦ τ(e∅) = σ0
⊗k. Similarly, in the cases q ≡ 0 (mod 4) and

q ≡ 2 (mod 4),

f ◦
(
σ0
⊗k) =

(
σ0
⊗k) ◦ f ⇒ f(v) = v, ∀v ∈ C 2k ,

contradicting f ◦ τ = τ ◦ f , since τ 6= τ .
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It becomes evident in the case p ≡ 1 (mod 2) and q ≡ 0 (mod 2) that
in order to obtain a faithful representation of Bqp, one must pass to a larger
representation space. It is not difficult to show that a faithful representation is
given by defining τ : Bqp → GL2k+1( C ) by

τ(ej) =



σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j+1) 1 ≤ j ≤ k, j ≤ p
ı
(
σx
⊗(j−1) ⊗ σz ⊗ σ0

⊗(k−j+1)
)

1 ≤ j ≤ k, j > p

σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j) k + 1 ≤ j ≤ 2k, j ≤ p
ı
(
σx
⊗(j−k−1) ⊗ σy ⊗ σ0

⊗(2k−j)) k + 1 ≤ j ≤ 2k, j > p

σx
⊗(k+1) j = 2k + 1, j ≤ p

ı
(
σx
⊗(k+1)

)
j = 2k + 1, j > p.

Setting τ(e∅) = σ0
⊗(k+1) and τ(eαei) = −τ(ei), this is again extended by

multiplication to all of Bqp.

3.1 The Abelian blade group Sq
p

In the case of the Abelian blade group, Sqp , commutativity removes any hope
of finding an irreducible faithful representation except for the case of S1

0
∼=

B1
0, as noted in Example 3.4. The order of Sqp is 2p+q+1, and its irreducible

representations are found as follows.
As in Lemma 3.1, let J ∈ 2[p+q] denote a multi-index. A degree-1 repre-

sentation ρJ is defined by setting ρJ(ς∅) = ρJ(ςα) = 1, and for 1 ≤ i ≤ p + q,
setting

ρJ(ςi) =

{
1 i ∈ J,
−1 i /∈ J

Similarly, a degree-1 representation, δJ , is obtained for each multi index J by
setting δJ(ς∅) = 1, δJ(ςα) = −1, and

δJ(ς`) =


1 1 ≤ ` ≤ p and ` ∈ J
−1 1 ≤ ` ≤ p and ` /∈ J
ı p+ 1 ≤ ` ≤ p+ q and ` ∈ J,
−ı p+ 1 ≤ ` ≤ p+ q and ` /∈ J.

Hence, all 2p+q+1 degree-1 irreducible representations are obtained.
One can find a faithful representation of order 2p+q. Let ϕ be given by

multiplicative extension of

ϕ(ςj) = uσ
⊗(j−1)
0 ⊗ σz ⊗ σ⊗(p+q−j)

0 ,

where u = 1 or u = ı depending on j. This representation is clearly faithful
by construction. A meaningful question to ask is whether a smaller faithful
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representation exists. This question is answered in the affirmative by defining
the degree-2(p+ q) faithful representation, r : Sqp → GL2(p+q)( C ) as follows:

r(ςI) = u


A1 0 · · · 0

0 A2

...
...

. . . 0
0 · · · 0 An

 .

Here, each Aj is a 2× 2 matrix given by

Aj =

{
σx if j ∈ I,
σ0 otherwise,

and u is a complex unit determined by

u =

{
1 if ςI2 = ς∅,

ı if ςI2 = ςα.

4 Semigroup Representations

Essential definitions and notational conventions for semigroup representation
theory follow the formalism of Izhakian, Rhodes, and Steinberg [7]. As previ-
ously noted, all semigroup representation spaces are complex.

Given a semigroup S, two elements a, b ∈ S are said to be J-equivalent
(written a J b) if SaS = SbS. The set of all things J-equivalent to a ∈ S forms a
J-class. The J-classes partition the semigroup S. A J-class is said to be regular
if it contains an idempotent.

For every idempotent e of a semigroup S, we call Ge the maximal subgroup
of S at e where Ge = {invertible elements of eSe}. Two idempotent elements
e, f ∈ S are said to be isomorphic if there exists an x ∈ eSf and x∗ ∈ fSe such
that xx∗ = e and x∗x = f .

The regular J-classes will play a large role in determining the number of
irreducible representations of a semigroup S. Before we give the exact number
to expect, we need a few more results. The following useful lemma can be found
in [4].

Lemma 4.1. If e, f ∈ S are isomorphic idempotents, then Ge ' Gf . Moreover,
e and f are isomorphic if and only if e J f .

For a semigroup S we define a representation to be a homomorphism to the
set of endomorphisms of C n, which can be realized as n×n matrices with entries
in C . In other words, a representation ρ of S is a homomorphism

ρ : S → End(C n).

The familiar terminology of a faithful representation, trivial representation
and character of a representation follows. The idea of an irreducible semigroup
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representation is again the same, except we require that the representation is
not constantly 0.

The next theorem, based on results of Clifford-Suchkewitch [4] and Munn (as
found in Rhodes and Zalcstein [13]), will be useful for determining the number
of irreducible representations.

Theorem 4.2. Let G1, ..., Gm be a choice of exactly one maximal subgroup
from each regular J-class of S. Then, letting ki denote the number of conjugacy

classes of Gi, the number of irreducible representations of S is
m∑
i=1

ki.

4.1 Null blade semigroups Gn and Zn

By modifying the multiplication in Bqp such that generators square to zero,
one obtains a non-Abelian semigroup generated by null squares. The principal
difference from this point forward is a lack of multiplicative inverses for elements
in the algebraic structures.

Definition 4.3. Let Gn denote the null blade semigroup defined as the semi-
group generated by the collection G = {γi : 1 ≤ i ≤ n} along with {γ∅, γα, 0γ}
satisfying the following generating relations: for all x ∈ G ∪ {γ∅, γα, 0γ},

γ∅ x = x γ∅ = x,

γα x = x γα,

0γ x = x 0γ = 0γ ,

γ∅
2 = γα

2 = γ∅,

and

γiγj =

{
0γ if and only if i = j,

γα γjγi i 6= j.

Define the antisymmetric product signature map φ : 2[n]×2[n] → {γ∅, γα} by

φ(I, J) = γα
P
j∈J µj(I).

Remark 4.4. Note that the product signature map defined by (2.3) can be
extended to G × G and written in terms of φ as

ϑ(I, J) = γα
µp(I∩J)+φ(I,J).

Hence, ϑ has a decomposition into signature-dependent and signature-independent
parts.

Applying multi-index notation to the generators G = {γi : 1 ≤ i ≤ n}
according to the ordered product

γI =
∏
i∈I

γi
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for arbitrary I ∈ 2[n], the multiplicative semigroup Gn is now seen to be de-
termined by the multi-indexed set {0γ} ∪ {γαγI , γI : I ∈ 2[n]} along with the
associative multiplication defined by

γI γJ =

{
γα

P
i∈I µi(J)γI∪J I ∩ J = ∅,

0 otherwise.

Note that the order of the null blade semigroup is |Gn| = 2n+1 + 1. The
next combinatorial algebra can now be defined.

Definition 4.5. For fixed positive integer n, the null blade algebra is defined as
the real semigroup algebra R Gn/ 〈0γ , γα + γ∅〉, denoted B`∧n for convenience.

It now becomes clear that the null blade algebra B`∧n is canonically isomor-
phic to the Grassmann (exterior) algebra

∧
R n.

Theorem 4.6. For any natural number n, there are three irreducible represen-
tations of Gn.

Proof. First, we will classify every J-class of Gn, then identify which are regular.
From there we will compute the maximal subgroups of a choice of distinct idem-
potents. Then, using the formula above we will find the number of irreducible
representations.

Let γI ∈ Gn be such that γI 6= 0γ but otherwise arbitrary. Then,

GnγIGn = {s1 γI s2 : s1, s2 ∈ Gn}
= {γE , γαγE , 0γ : I ⊆ E}.

Similarly,
Gn(0γ)Gn = {0γ}.

It follows that for every w ∈ Gn, the set of all things J -equivalent to w
is simply {w, γαw}. The number of J-classes is thus 2n + 1. However we are
only concerned with the regular J-classes. The only idempotent elements of
Gn are 0γ and γ∅. Thus, the regular J-classes are {γ∅, γα} and {0γ}. The two
maximal subgroups are

Gγ∅ = {invertible elements of γ∅Gnγ∅} = {γ∅, γα},

and
G0γ = {invertible elemenets of 0γGn0γ} = {0γ}.

The trivial group, G0γ , has one conjugacy class, while Gγ∅ is an Abelian
group of order 2, consequently having two conjugacy classes. Thus, the number
of irreducible representations of Gn is three.

Definition 4.7. Let Zn denote the Abelian null blade semigroup defined as the
semigroup generated by the collection C = {ζi : 1 ≤ i ≤ n} along with {ζ∅, 0ζ}
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satisfying the following generating relations: for all x ∈ C ∪ {ζ∅, 0ζ},

ζ∅ x = x ζ∅ = x,

0ζ x = x 0ζ = 0ζ ,

ζ∅
2 = 0ζ ,

and

ζiζj =

{
0ζ if and only if i = j,

ζjζi i 6= j.

The Abelian null blade semigroup is of particular interest, as its associated
semigroup algebra is canonically isomorphic to the zeon algebra. Properties of
this algebra have been considered and applied in a number of works in recent
years, including [5, 6, 14, 16, 17, 18, 22].

Using nearly the same proof as above, it becomes apparent that Zn has two
copies of the trivial group as maximal subgroups, and thus has two irreducible
representations, regardless of n.

The irreducible representations of both Zn and Gn are almost immediately
obvious. For arbitrary n, define degree-1 representations θ, ρ0, and ρ1 of Gn by

θ(s) = 1, ∀s ∈ Gn.

ρ0(s) =

 1 s = γ∅,
−1 s = γα,
0 otherwise.

ρ1(s) =

 1 s = γ∅,
1 s = γα,
0 otherwise.

Note that these representations are clearly not faithful.
In Zn, the irreducible representations are simply θ and the degree-1 repre-

sentation ρ given by

ρ(s) =
{

1 s = ζ∅,
0 otherwise.

Given an arbitrary natural number n, there is a faithful representation τ of
Gn of order 2n given by

τ(γi) = σx
⊗(i−1) ⊗ η ⊗ σ0

⊗(n−i),

where η = σz + ıσy =
(

1 1
−1 −1

)
.

Similarly, a faithful representation ψ of Zn is given by

ψ(ζi) = σ0
⊗(i−1) ⊗ η ⊗ σ0

⊗(n−i).

4.2 The idempotent blade semigroup Jn

In the idempotent blade semigroup, generators are idempotent. The resulting
semigroup algebra is isomorphic to the “idem-Clifford” algebra C`nidem used
to define column-idempotent adjacency matrices of graphs [18]. These oper-
ators can be used to symbolically represent collections of cycles as products
of algebraic elements. In such a product, a graph’s edges are associated with
idempotents to avoid “double counting” in enumeration problems.
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Definition 4.8. Let Jn denote the Abelian semigroup of order 2n generated
by the collection E = {εi : 1 ≤ i ≤ n} along with ε∅ satisfying the following
generating relations: for all x ∈ E ∪ {ε∅} and for all i, j ∈ {1, . . . , n},

ε∅ x = x ε∅ = x,

εi
2 = εi, and
εiεj = εjεi.

Theorem 4.9. For any natural number n, there are 2n irreducible representa-
tions of Jn.

Proof. The proof method follows the same format as the previous one. Every
J-class of Jn is classified, and then the regular classes are identified. From each
regular J-class one idempotent element is chosen and the maximal subgroup at
e is computed.

Each element is in its own J-class with no equivalent idempotent elements,
giving |Jn| = 2n unique idempotents. The maximal subgroups are found to be
Gε∅ = {ε∅} and GεI = {εI} for arbitrary non-trivial idempotent εI .

Enumerating the idempotent elements {f1, ..., f2n} and letting ki be the
number of conjugacy classes in Gfi , the number of irreducible representations
is thus

2n∑
i=1

ki =
2n∑
i=1

1 = 2n.

It would be nice if we were able to supply faithful representations of Jn,
even if they are reducible. This isn’t too difficult, let τ : Jn → End(C n+1) be
defined on the set {εi} by

τ(εi) = (aijk),

where

aijk =

{
1 j = k 6= i,

0 otherwise.
(4.1)

In other words, (aijk) is the matrix with ones on the diagonal except in the ith

position, and zeros elsewhere. These matrices are all idempotent and commute
pairwise. This is extended by multiplication to all of Jn so that

τ(εI) = (aIjk),

where

aIjk =

{
1 j = k /∈ I,
0 otherwise.

Remark 4.10. For each i = 1, . . . , n, the matrix defined in (4.1) represents
a hyperplane projection in C n+1. In particular, the ith matrix represents a
projection onto the hyperplane orthogonal to the ith unit coordinate vector of
C n+1 .
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5 Combinatorial Graded Semigroup Algebras

Beginning with a finite multiplicative semigroup, S, the semigroup algebra of S
over R is the algebra R S whose additive group is the Abelian group of formal
R -linear combinations of elements of S, i.e.,

R S =

{∑
s∈S

αss : αs ∈ R

}

and whose multiplication operation is defined by linear extension of the group
multiplication operation of S. This definition restricts in a natural way to group
algebras.

Given a (complex) representation ρ of a finite semigroup S, let ρ̃ denote the
representation of the |S|-dimensional semigroup algebra C S given by

x =
∑
s∈G

αss⇒ ρ̃(x) =
∑
s∈S

αsρ(s),

where αs ∈ C for each s ∈ S.
It is known that ρ is irreducible if and only if ρ̃ is irreducible [13], so that

the irreducible representations of S are in one-to-one correspondence with the
irreducible representations of C S. In particular, if ρ̃ is an irreducible represen-
tation of C S, an irreducible representation of S is obtained by restricting ρ̃ to
the elements of S.

Classifying the irreducible representations of Bqp and Sqp thereby classifies
the irreducible representations of the group algebras R Bqp and R Sqp . Similarly,
classifying the irreducible representations for Gn,Zn and Jn classifies the irre-
ducible representations of the semigroup algebras R Gn, R Zn, and R Jn. Taking
quotients reveals the algebras introduced in column 4 of Table 3.

To summarize:

• The Clifford algebra C`p,q (p + q > 1) is canonically isomorphic to the
blade group quotient algebra R Bqp/〈eα + e∅〉. Considering the degree-1
representations, ρJ(e∅) = ρJ(eα) = 1 for all J ∈ 2[p+q]. It then be-
comes clear that passing to the quotient has no effect on the number of
irreducible representations. On the other hand, the higher-dimensional
irreducible representations satisfy τ̃(e∅ + eα) = 0 a priori, so that rep-
resentations of the group algebra are precisely the representations of the
quotient algebra 2

2While results are stated here within the context of complex representation spaces, par-
ticular representations are, in fact, real. For example, the construction given in (3.1) for
Bqp when p = q yields elements of GL2k (R). Degrees of faithful representations then vary by
group signature. A detailed treatment of smallest fields for representation spaces and minimal
degrees of faithful representations is outside the scope of this work, as the goal is to enumerate
irreducible complex representations for combinatorial semigroups. Such details for the quo-
tient group algebra RBqp/〈eα + e∅〉 are covered by known results on matrix representations of
Clifford algebras (e.g., Bott periodicity) [2, 3, 9, 11, 12].
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• The symmetric Clifford algebra, C`p,qsym [19, 21], is canonically isomorphic
to the Abelian blade group algebra R Sqp/〈ςα + ς∅〉. By similar reasoning
to that for the blade group quotient algebra, the number of irreducible
representations is unchanged by considering the quotient.

• The Grassmann exterior algebra,
∧

R n, is canonically isomorphic to the
null blade semigroup algebra B`∧n = R Gn/ 〈0γ , γα + γ∅〉. This algebra is
isomorphic to the algebra of fermion creation (or annihilation) operators.

• The n-particle zeon algebra [5, 6, 16, 22] is canonically isomorphic to the
Abelian null blade semigroup algebra R Zn/ 〈0ζ〉. This algebra is isomor-
phic to an algebra of commuting lowering or raising (annihilation or cre-
ation) operators.

• The idem-Clifford algebra, C`nidem [17, 19], is canonically isomorphic to
the idempotent-generated semigroup algebra R Jn.

Example 5.1. Regarding γ∅ and γα as 1 and −1, respectively, the signed
hypercube seen in Figure 2.2 is the undirected graph underlying C`0,3. Similarly,
Figure 2.1 underlies the symmetric Clifford algebra C`4,0sym.

Group or Quotient Isomorphic
Semigroup Algebra Algebra Algebra
Bqp R Bqp R Bqp/〈eα + e∅〉 C`p,q
Sqp R Sqp R Sqp/〈ςα + ς∅〉 C`p,qsym

Gn R Gn R Gn/ 〈0γ , γα + γ∅〉
∧

R n
Zn R Zn R Zn/ 〈0ζ〉 C`nnil

Jn R Jn R Jn C`nidem

Table 3: Semigroup algebras.
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