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Clifford algebra decompositions of conformal
orthogonal group elements

G. Stacey Staples∗and David Wylie

Department of Mathematics and Statistics, Southern Illinois
University Edwardsville, Edwardsville, IL 62026-1653

Abstract

Beginning with a finite-dimensional vector space V equipped with
a nondegenerate quadratic form Q, we consider the decompositions of
elements of the conformal orthogonal group COQ(V ), defined as the
direct product of the orthogonal group OQ(V ) with dilations. Utilizing
the correspondence between conformal orthogonal group elements and
“decomposable” elements of the associated Clifford algebra, C`Q(V ),
a decomposition algorithm is developed. Preliminary results on com-
plexity reductions that can be realized passing from additive to multi-
plicative representations of invertible elements are also presented with
examples. The approach here is based on group actions in the confor-
mal orthogonal group. Algorithms are implemented in Mathematica
using the CliffMath package.
Keywords: Clifford algebras; Lipschitz group; representation theory;
decomposition; complexity; conformal transformations
AMS Subj. Class. 15A66; 15A75; 68W30

1 Introduction

Beginning with a finite-dimensional vector space V equipped with a non-
degenerate quadratic form Q, we consider the decompositions of particular
elements of the Clifford Lipschitz group Γ in the Clifford algebra C`Q(V ).
These elements represent the conformal orthogonal group COQ(V ), defined
as the direct product of the orthogonal group OQ(V ) with dilations.
∗Corresponding author. Email: sstaple@siue.edu
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In Euclidean Clifford algebras, it is well known that elements u ∈ Γ
satisfying uũ = α ∈ R represent scaled orthogonal transformations on V ; i.e.,
x 7→ uxu is a conformal orthogonal transformation on V . When uũ = ±1,
one sees that the mapping x 7→ uxu is an element of the orthogonal group
O(n). More precisely, such an element u is an element of the Pin group. The
geometric significance of these mappings is detailed in a number of works,
including (but not limited to) [2] and [6].

When an invertible element u ∈ C`Q(V ) can be written as an ordered
Clifford product of anisotropic vectors from V , such a multiplicative repre-

sentation u =
k∏
i=1

vi is called a decomposition of u. The goal of the current

paper is to consider decompositions of Clifford group elements, with an eye
toward efficient symbolic computation. While the theoretical underpinnings
have been understood and studied in various forms for decades, the advent
of newer computing technologies and algorithms have shed a new light on
these concepts.

The basic problem considered here is not new. To wit, versor factor-
ization algorithms can be found in the work of Christian Perwass [7], and
efficient blade factorization algorithms are found in the works of Dorst and
Fontijne [3], [4].

More recently, the general problem of factorization in Clifford algebras of
arbitrary signature was considered by Helmstetter [5]. The Lipschitz monoid
(or Lipschitz semi-group) is the multiplicative monoid generated in C`Q(V )
over a field k by all scalars in k, all vectors in V , and all 1 + xy where x
and y are vectors that span a totally isotropic plane. The elements of this
monoid are called the Lipschitzian elements. Given a Lipschitzian element a
in a Clifford algebra C`Q(V ) over a field k containing at least three scalars,
Helmstetter showed that, if a is not in the subalgebra generated by a totally
isotropic subspace of V , then it is a product of linearly independent vectors
of V .

The current work is an extension of work begun in Wylie’s master’s the-
sis [10], where only Euclidean Clifford algebras were considered. Decomposi-
tion algorithms have been extended to Clifford algebras of arbitrary signature
and implemented in Mathematica.

When the quadratic form Q is definite, the decomposable elements of
C`Q(V ) are precisely the elements of the Clifford Lipschitz group. When Q
is indefinite, we pass to a proper subset of Γ. In particular, an element u ∈
C`Q(V ) is said to be decomposable if there exists a collection {w1, . . . ,wk}
of linearly independent anisotropic vectors such that u = w1 · · ·wk and if
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the “top form” (i.e., grade-k part) of u is invertible.
In Section 3, the basic theory underlying Clifford algebra decomposition

of conformal orthogonal group elements is laid out. Decomposition algo-
rithms are presented as pseudocode. For motivation, the Euclidean case is
considered first, and a geometric algorithm called VersorFactor is presented
for decomposing a transformation into elementary rotations and reflections,
combined with scaling.

Passing to indefinite quadratic forms, a more general algorithm, Clif-
fordDecomp (Algorithm 2), is developed for decomposition of elements of
the Clifford Lipschitz group which satisfy the decomposability criteria men-
tioned previously. When Algorithm 2 is applied to an invertible blade, the
output is an orthogonal collection of vectors.

A faster algorithm for decomposing blades is the FastBladeFactor algo-
rithm (Algorithm 3). This algorithm is essentially the same as Fontijne’s
blade factorization[3, 4], except that Clifford multiplication and grade pro-
jections now take the place of geometric contractions. The combinatorial
approach to writing and implementing the algorithm makes symbolic com-
putations very efficient; geometric contractions have been avoided by using
differences of sets, and computation of the ∞-norm of a blade to identify
a starting point for the factorization has been eliminated by choosing the
first term of the sum, as determined by a canonical ordering of multiindices.
Unlike the CliffordDecomp algorithm, FastBladeFactor does not return an
orthogonal collection of blades, but simply a set whose exterior product is
equal to the input blade.

FastBladeFactor offers two significant advantages over CliffordDecomp:
it works on null (noninvertible) blades, and it runs much more quickly than
CliffordDecomp. Where CliffordDecomp computes the image of a probing
vector under the mapping x 7→ uxû−1, using the full additive representation
of the blade u, FastBladeFactor makes use of a single basis blade chosen
from that additive representation. Relative differences in processing times
are illustrated in Section 4.

Experimental results were obtained using Mathematica 10 with the Cliff-
Math 1 package on a MacBook Pro equipped with 2.4 GHz Intel Core i7
processor and 8GB of 1333 MHz DDR3 memory. Numerous trials were pro-
cessed to compare the complexity between blade and versor factorizations,
comparisons with changing grade and fixed dimension, and changing dimen-
sion with fixed grade.

We note that the comparisons here illustrate the relative differences in
1Available through http://www.siue.edu/~sstaple.
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complexity of decomposing elements of different types. It is beyond the
scope of the current paper to perform comparisons among algorithms de-
vised by other authors because such comparisons are heavily implementation-
dependent.

The paper concludes in Section 5 with a preliminary discussion of reduc-
tions in the complexity of representations and further avenues of research.
The combinatorial set-theoretic approach to Clifford algebra computations
using Mathematica and the implementations contained herein are original
with the current authors.

For convenience, Table 1 details the various notation and font distinctions
used throughout the paper.

Notation Meaning
C`Q(V ) Clifford algebra of quadratic form Q of V .
C`n Euclidean Clifford algebra of Rn.
R∗ Invertible real numbers, R∗ := R \ {0}
vi Vector: lowercase, bold, single index.
vI Multi-index notation for basis blades.

vI :=
∏
`∈I v` = vI1 ∧ · · · ∧ vI|I| .

vI , vi Scalar coefficients in canonical expansions.
w product of linearly independent invertible vectors;

w = w1 · · ·wk

]w Grade of element w; i.e., w := w1 · · ·w]u.
〈u〉` Grade-` part of u ∈ C`Q(V )
π` Canonical grade-` projection operator: π`(u) := 〈u〉`.

vyu, vxu Geometric left and right contraction, respectively.
v ∧ u Exterior product.
x|w x “divides” w; i.e., w = ±xv for decomposable v, invertible x.

ũ Reversion of u ∈ C`Q(V ): ũ =
dimV∑
k=0

(−1)
n(n−1)

2 〈u〉k

û Grade involution: û =
dimV∑
k=0

(−1)k〈u〉k

u Clifford conjugate: u =
dimV∑
k=0

(−1)
n(n+1)

2 〈u〉k

ϕw Blade conjugation operator on V : x 7→ wxŵ−1

Table 1: Summary of Notation
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2 Preliminaries

Let V be an n-dimensional vector space over R equipped with a nondegen-
erate quadratic form Q. Associate with Q the symmetric bilinear form

〈x,y〉Q =
1
2

[Q(x + y)−Q(x)−Q(y)] .

The exterior product on V satisfies the canonical anti commutation re-
lation (CAR) u ∧ v = −v ∧ u for all u,v ∈ V . Geometrically, the exterior
product of two vectors represents an oriented parallelogram generated by
the two vectors. By associative extension, the exterior product of k linearly
independent vectors represents an oriented k-volume. It follows immediately
from the CAR that the exterior product of linearly dependent vectors is zero.

The Clifford algebra C`Q(V ) is the real algebra obtained from associative
linear extension of the Clifford vector product

xy := 〈x,y〉Q + x ∧ y, ∀x,y ∈ V. (2.1)

Given a nondegenerate quadratic form Q, the mapping ‖ · ‖Q : V → R
defined by

‖x‖Q = |〈x,x〉Q|1/2, (x ∈ V )

is readily seen to be a seminorm, referred to henceforth as the Q-seminorm
on V .

A vector x is said to be anisotropic if ‖x‖Q 6= 0. A set S of Q-orthogonal
vectors is said to be Q-orthonormal if ‖x‖Q = 1 for all x ∈ S.

Note that since Q is nondegenerate, all vectors of a Q-orthogonal basis
for V must be anisotropic. Given a collection of Q-orthogonal vectors {xi},
a Q-orthonormal basis {ui : 1 ≤ i ≤ n} for V is obtained by defining

ui :=
xi
‖xi‖Q

,

for each i = 1, . . . , n. In particular, for each i = 1, . . . , n,

ui2 = 〈ui,ui〉Q =
〈xi,xi〉Q
|〈xi,xi〉Q|

= ±1.

These vectors then generate the Clifford algebra C`Q(V ).
Generally speaking, the exterior product of k linearly independent vectors

is called a k-blade or blade of grade k. When the vectors are Q-orthogonal,
one sees from (2.1) that the Clifford product coincides with the exterior
product.
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Given an arbitrary Q-orthogonal basis {ei : 1 ≤ i ≤ n} for V , multi-
index notation for canonical basis blades is adopted in the following manner.
Denote the n-set {1, . . . , n} by [n], and denote the associated power set by
2[n]. The ordered product of basis vectors (i.e., algebra generators) is then
conveniently denoted by ∏

i∈I
ei = eI ,

for any subset I ⊆ [n], also denoted I ∈ 2[n].
These products of generators are referred to as basis blades for the al-

gebra. The grade of a basis blade is defined to be the cardinality of its
multi-index. An arbitrary element u ∈ C`Q(V ) has a canonical basis blade
decomposition of the form

u =
∑
I⊆[n]

uI eI ,

where uI ∈ R for each multi-index I. The grade-k part of u ∈ C`Q(V ) is
then naturally defined by 〈u〉k :=

∑
|I|=k

uIeI . It is now evident that C`Q(V )

has a canonical vector space decomposition of the form

C`Q(V ) =
n⊕
k=0

〈C`Q(V )〉k.

Example 2.1. Let {e1, e2} denote an orthonormal basis for the two-dimensional
Euclidean space R2. The associated quadratic form is Q(x, y) = x2 +y2, and
a general element of the Clifford algebra C`Q(R2) is of the form

a0 + a1 e1 + a2 e2 + a{1,2} e{1,2},

where aI ∈ R for each multi index I ∈ 2[2].

An arbitrary element u ∈ C`Q(V ) is said to be homogeneous of grade k
if 〈u〉k 6= 0 and 〈u〉` = 0 for all ` 6= k. As the degree of a polynomial refers
to the maximal exponent appearing in terms of the polynomial, an arbitrary
multivector u ∈ C`Q(V ) is said to be heterogeneous of grade k if 〈u〉k 6= 0
and 〈u〉` = 0 for ` > k.

It is not difficult to see that C`Q(V ) contains the following two sub-
spaces: C`Q(V )+ = span{eI : |I| ≡ 0 (mod 2)}, called the even subalgebra
of C`Q(V ), and C`Q(V )− := span{eI : |I| ≡ 1 (mod 2)}, which is a subspace,
but not a subalgebra.
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The reversion on C`Q(V ) is defined on arbitrary blade u = u1 ∧ · · · ∧u]u
by

ũ := u]u ∧ · · · ∧ u1 = (−1)]u(]u−1)/2u,

and is extended linearly to all of C`Q(V ). Similarly, the grade involution is de-
fined by linear extension of û := (−1)]uu, and Clifford conjugation is defined
as the composition of reversion and grade involution. Specifically, Clifford
conjugation acts on an arbitrary blade u according to u := (−1)]u(]u+1)/2u.

By utilizing reversion, the inner product 〈·, ·〉Q is seen to extend to the
full algebra C`Q(V ) by bilinear linear extension of

〈b1, b2〉Q := 〈b1b̃2〉0

for arbitrary basis blades b1, b2.
Given the Clifford product, the left contraction operator is now conve-

niently defined for vector x and arbitrary multivector v ∈ C`Q(V ) by linear
extension of

xv = xyv + x ∧ v.

A similar definition holds for the right contraction, i.e., ux := uxx + u ∧ x.
The left and right contraction operators then extend associatively to blades
and linearly to arbitrary elements u, v ∈ C`Q(V ). Moreover, left and right
contractions are dual to the exterior product and satisfy the following:

〈uyv, w〉Q = 〈v, ũ ∧ w〉Q ,
〈uxv, w〉Q = 〈u,w ∧ ṽ〉Q .

2.1 Motivation: The problem in the Euclidean case

When Q positive definite, V ∼= Rn with the standard (Euclidean) inner
product. The associated Clifford algebra is denoted C`n for simplicity. Sup-
pose u ∈ C`n is written in terms of a generating set of orthonormal vectors
{ei : 1 ≤ i ≤ n} for Rn; i.e., u =

∑
I∈2[n]

uIeI , where, [n] = {1, . . . , n} denotes

the n-set, and 2[n] is the corresponding power set.
Let C`n∗ denote the multiplicative group of invertible Clifford elements.

In particular,
C`n∗ = {u ∈ C`n : uũ ∈ R∗}.

The inverse of u ∈ C`n is then seen to be u−1 =
ũ

uũ
.
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Definition 2.2. An element u ∈ C`n is said to be decomposable if u =
v1 · · ·vk for some linearly independent collection of vectors {v1, · · · ,vk} in
C`n. Equivalently, u is decomposable if and only if it satisfies the following
conditions:

1. u ∈ C`+n ∪ C`−n ;

2. For all x ∈ V , uxu ∈ V .

In fact, the decomposable elements of C`n are precisely the elements of the
Clifford Lipschitz group, Γn.

The pin group Pin(n) = {u ∈ C`+n ∪ C`−n : uũ = ±1} is a double covering
of O(n). The spin group Spin(n) = {u ∈ C`+n ∪ C`−n : uũ = 1} is a double cov-
ering of SO(n). One quickly sees that decomposable elements u ∈ C`+n ∪ C`−n
satisfying uũ = α 6= 0 provide a double covering of the conformal orthogonal
group CO(n).

For convenience, let ]u denote the maximum grade among nonzero terms
in the canonical basis blade expansion of u. the additive representation of
u with respect to any basis {ei : 1 ≤ i ≤ n} of V is then of the form
u =

∑
I⊆[n]

(|I|−]u)≡0 (mod 2)

uIeI . When k = ]u, u will also be referred to as a de-

composable k-element of C`n. A problem providing motivation now is to effi-

ciently represent such an element, which consists of as many as
bk/2c∑
`=0

(
n

k − 2`

)
nonzero terms.

As a consequence of the definition of a decomposable element, there exists
a constant α ∈ R and a linearly independent collection {w1, . . . ,wk} of unit
vectors in Rn such that

αw1 · · ·wk = u.

In the context of geometric algebra, any element constructed as the product
of a number of non-null vectors is commonly referred to as a versor. The
element u described above is correctly regarded as a k-versor.

Given a unit vector u and an arbitrary vector x ∈ Rn, it is well-known
and easily verified that computing the geometric product −uxu yields a
vector x′ obtained by reflection of x through the hyperplane orthogonal to
u.

By considering compositions of reflections, one similarly easily verifies
that given a second unit vector v, the geometric product uvxvu gives a
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vector x′ obtained by rotating x in the uv-plane by twice the angle measured
from v to u.

When u is a product of vectors in C`n, the mapping ϕu : Rn → Rn defined
by

ϕu(x) = uxû−1

is an orthogonal transformation on Rn. More generally, x 7→ uxu, where u

denotes the Clifford conjugate of u, is a conformal orthogonal mapping on
Rn.

Utilizing these basic facts allows one to develop and implement an effi-
cient algorithm for factoring versors and blades in C`n. The same algorithm
works equally well in the negative-definite Clifford algebra C`0,n.

2.2 Versor decomposition in definite signatures

When A ∈ SO(n) acts as plane rotation in Rn, there exists a two-versor
b ∈ C`n such that

Ax = bxb−1

for all x ∈ Rn.
Beginning with such a versor, written explicitly in terms of a fixed basis

in C`n, one task of interest is to obtain a factorization b = b1b2, where
b1,b2 are unit vectors of Rn. An intuitive geometric approach to accomplish
this is to first apply a “probing vector.” The normalized component of this
vector lying in the plane of rotation represents one factor, b1, of the versor.
This factor is rotated to its image, u, by the action of the versor. Halfway
between the probing vector’s projection and the projection’s image lies the
second factor, b2 = (b1 + u)/‖b1 + u‖, of the versor (see Figure 1). A
nice description of the ideas behind this process can be found in the work of
Aragón-Gonzales, Aragón, et al. [1].

By normalizing b1 and u, one guarantees that the angle between b1 and
b2 is θ/2, where θ is the angle measured from b1 to u. For arbitrary x ∈ Rn,
it follows that b2b1xb1b2 is rotation of x by angle θ in the b1b2-plane.

A natural extension of this geometric approach allows one to iteratively
factor blades and versors in Clifford algebras of definite signature. Consider
now a 2k-versor b such that ϕb : x 7→ bxb−1 represents the composition of
k plane rotations of x in Rn. An important assumption is that the linear
operator ϕb does not have −1 as an eigenvalue 2.

2The requirement that −1 is not an eigenvalue of ϕb ensures that b`
′ := (b` +u)/‖b` +

u‖ is well-defined.
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Figure 1: Applying a probing vector to factor a two-versor.

When b is a versor of odd grade, one vector can be “factored out” before
reverting to the iterated rotor factorization. Moreover, the group action can
be generalized from O(n) to CO(n) by considering arbitrary scalar multi-
ples of rotors and versors. An implementation of this approach is seen in
Algorithm 1.

Example 2.3. Consider b = 4 + 8e{1,2} + 6e{1,3} − 6e{2,3} ∈ C`3. The
action of x 7→ bxb is the composition of a plane rotation and dilation by
factor bb̃ = 152 in R3. Letting p = e1 serve as a “probing vector,” we
compute p′ = bpb̂−1 and obtain p′ = − 6

19e1 + 1
19e2 − 18

19e3. Letting b1 =
(p−p′)/‖p−p′‖, we obtain the normalized projection b1 of p into the plane
of rotation. In particular,

b1 = − 5√
38

e1 +
1

5
√

38
e2 −

9
√

2
5
√

19
e3.

Computing u = bb1b̂−1, we obtain

u =
275e1 + 293e2 + 426e3

95
√

38
.

Computing the unit vector b2, which lies halfway between b1 and its image,
we obtain

b2 = (b1 + u)/‖b1 + u‖ = −50
95

e1 +
78
95

e2 +
21
95

e3,

10



The rotation induced by b now corresponds to the composition of two reflec-
tions across the orthogonal complements of b1 and b2, respectively. Note
that b2 is the normalization of w in Figure 1. The factorization of b is then
given by

b =
√

152 b2b1 = 4 + 8e{1,2} + 6e{1,3} − 6e{2,3}.

3 Decomposable elements of COQ(V )

To maintain generality in the theoretical background, let Q denote a non-
degenerate quadratic form, and let V be an n-dimensional real vector space
with inner product 〈, 〉Q induced by Q. The Clifford algebra of this space is
then denoted by C`Q(V ). The conformal orthogonal group COQ(V ) is then
direct product of dilations and Q-orthogonal linear transformations of V .

The concept of a blade is commonplace in Clifford algebras, where it
refers to the Clifford product of a collection of pairwise-orthogonal vectors.
In such cases, the exterior product coincides with the Clifford (geometric)
product.

For a positive integer k, a blade of grade k, or k-blade, is a homogeneous
multivector u of grade k that can be written in the form u = w1 · · ·wk for
some Q-orthogonal collection {w1, . . . ,wk} ⊂ V .

A nonzero element u ∈ C`Q(V ) is said to be invertible if uũ is a nonzero

scalar. In this case, u−1 =
ũ

uũ
.

Due to complications arising from the use of indefinite quadratic forms,
we tighten our definition of decomposable elements for the general case. As
a result, the decomposable elements of C`Q(V ) are no longer in one-to-one
correspondence with elements of the Clifford Lipschitz group.

Definition 3.1. An invertible element u ∈ C`Q(V ) of grade k is said to be
decomposable if there exists a linearly independent collection {w1, . . . ,wk}
of anisotropic vectors in V such that u = w1 · · ·wk and 〈u〉k is invertible 3.
In this case, u is referred to as a decomposable k-element.

As a consequence of this definition, any decomposable element u is either
even or odd; i.e., u ∈ C`Q(V )+ ∪ C`Q(V )−. Further, invertibility is guaran-
teed by uũ ∈ R∗. The next definition lends meaning to the notion of whether
a vector can be said to “divide” a blade or decomposable element.

3Requiring invertibility of the top form makes the decomposable elements of C`Q(V ) a
proper subset of the Lipschitz group of C`Q(V ).
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input : Additive representation of u, an invertible k-versor,
expanded w.r.t. generators {ei : 1 ≤ i ≤ n}.

output: Vectors {b1, . . . ,bk} such that u = αbk · · ·b1.
`← 1;
u′ ← u;

while ]u′ > 1 do
Choose a random unit vector x ∈ Rn and compute its image under
the action of u′. ;

Let x ∈ Rn such that xyu = 0 and ‖x‖ = 1;
x′ ← u′xû′−1;

b` ← (x− u′xû′−1)/‖x− u′xû′−1‖;
If u′ is of odd grade, factor out a vector (reflection). Otherwise,
factor out a 2-versor (plane rotation).;

if ]u′ ≡ 1 (mod 2) then
u′ ← u′b`;
`← `+ 1;

else
z← u′b`u′

−1;
if 〈b`, z〉 6= −1;
then

b`+1 ← (b` + z)/‖b` + z‖;
w← b`+1b`;
`← `+ 2;

else
w← b`;
`← `+ 1;

end

Compute lower-grade versor;

u′ ← u′w−1;
end

end
return {b1, . . . ,b`−1, u

′};

Algorithm 1: VersorFactor: Factor Versors in Definite Signatures
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Definition 3.2. Let u be a decomposable element in C`Q(V ). An anisotropic
vector w ∈ V is said to divide u if and only if there exists a decomposable
element u′ ∈ C`Q(V ) of grade ]u − 1 such that u = ±wu′. In this case, one
writes w

∣∣u.
A basic result inherent to the decomposition algorithms is the following.

Lemma 3.3. If u is a decomposable k-element, then the grade-k part of u is
a k-blade and any anisotropic vector v dividing this blade also divides u.

Proof. If u = w1 · · ·wk is a decomposable k-element, then the grade-k part
〈u〉k represents an oriented k-volume in V . Any factorization of this blade
thereby spans a k-dimensional subspace of V , and by decomposability there
exists an anisotropic basis β for this subspace. Any vector v ∈ β divides
the blade 〈u〉k. Writing v as a linear combination of the (unknown) vectors
{w1, . . . ,wk} then gives

v−1u =
1
v2

(a1w1 + · · ·+ akwk)w1 · · ·wk

=
1
v2

k∑
j=1

ajw1 · · · w̌j · · ·wk,

where w̌j indicates the omission of wj from the product. Letting u′ =
v−1u, associativity guarantees that u = vu′ where u′ is a (k − 1)-element.
Decomposability of u′ depends on its invertibility; i.e. u′ũ′ ∈ R∗ is required.
This is verified by computation:

u′ũ′ = (v−1u)(ṽ−1u) = v−1(uũ)v−1 =
uũ

v2
∈ R∗.

The theoretical basis for an essential tool used in the decomposition al-
gorithms is provided by the following proposition.

Theorem 3.4. Given a decomposable k-element u = w1 · · ·wk ∈ C`Q(V ),
let n = dimV and define ϕu ∈ OQ(V ) by

ϕu(v) = uvû−1.

Then ϕu has an eigenspace E of dimension n − k with corresponding eigen-
value 1.
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Proof. If v is in the orthogonal complement of u, one sees immediately that

uvû−1 =
1
uũ

(w1 · · ·wk)v( ̂wk · · ·w1)

=
(−1)k

uũ
(w1 · · ·wk)v(wk · · ·w1)

= v.

Hence, dim E ≥ n− k.
On the other hand, since 〈u〉k = w1 ∧ · · · ∧wk, which is invertible by our

definition of decomposability, there exists an anisotropic orthogonal collec-
tion {v1, . . . ,vk} such that v1 · · ·vk = 〈u〉k. Setting w = v1 · · ·vk, it follows
that

wvkŵ−1 =
1

ww̃
(v1 · · ·vk)vk( ̂vk · · ·v1)

=
(−1)k

ww̃
vk2(v1 · · ·vk)(vk−1 · · ·v1)

=
(−1)k

ww̃
vk2(−1)

k(k−1)
2

+
(k−1)(k−2)

2 (vk · · ·v1)(v1 · · ·vk−1)

=
(−1)k

ww̃
vk2(−1)(k−1)(vk · · ·v1)(v1 · · ·vk−1)

= −vk2

ww̃
vk(vk−1 · · ·v1)(v1 · · ·vk−1)

= −vk.

The corresponding result is similarly obtained for v1. For 1 < j < k, one
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can consider

wvjŵ−1 =
1

ww̃
(v1 · · ·vk)vj( ̂vk · · ·v1)

=
(−1)k

ww̃
(v1 · · ·vj−1vj · · ·vk)vj(vk · · ·vjvj−1 · · ·v1)

=
(−1)k

ww̃
(v1 · · ·vj−1)(vk · · ·vj)vj(vj · · ·vk)(vj−1 · · ·v1)

=
(−1)kvj2

ww̃
(v1 · · ·vj−1)(vk · · ·vj+1vj)(vj+1 · · ·vk)(vj−1 · · ·v1)

=
(−1)k+(k−j)2vj2

ww̃
(v1 · · ·vj−1)(vj · · ·vk)(vk · · ·vj+1)(vj−1 · · ·v1)

=

(−1)k+(k−j)2

ww̃

k∏
`=j

v`2

 (v1 · · ·vj−1)vj(vj−1 · · ·v1)

=

(−1)k+(k−j)2+(j−1)2

ww̃

k∏
`=j

v`2

vj(vj−1 · · ·v1)(v1 · · ·vj−1)

= (−1)k(k+1)+2(j2−kj−j)+1vj
= −vj .

It follows that span{v1, . . . ,vk} is an eigenspace of the transformation x 7→
wxŵ−1 corresponding to eigenvalue −1. Letting v ∈ span{v1, . . . ,vk}, it is
not difficult to see that writing u = w + u′ implies

uvû−1 =
1
uũ

(
wvw + u′vw + wvu′ + u′vu′

)
.

Observe that vw and wv are blades of grade k−1 orthogonal to v, while the
highest grade terms of u′ are of grade k− 2. Consequently, the “cross terms”
contribute no components parallel to v. In other words, a little algebra shows
that uvû−1 = v implies

wvw + u′vu′ = (uũ)v. (3.1)

Note that writing u = w + u′ gives

uũ = ww̃ + u′ũ′.

Further, if v divides w, one sees that u′vu′ = λv implies λ = u′ũ′. Finally, a
little algebra applied to (3.1) yields

u′vu′ = (ww̃ + uũ)v
= (2ww̃ + u′ũ′)v.
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This implies u′ũ′ = 2ww̃+u′ũ′. Since w is anisotropic, this is a contradiction.
It follows that v ∈ Vu implies ϕu(v) 6= v, so that dim E ≤ n− k.

Corollary 3.5. Let x ∈ V be arbitrary. Then x − ϕu(x) ∈ Vu. In other
words, the operator πu := I−ϕu is a projection into the subspace determined
by u.

Proof. Write V = Vu ⊕ V ′u , where V ′u is the orthogonal complement of Vu in
V . Then, letting x = w + w′ ∈ V be arbitrary,

πu(x) =
1
2

(ϕu(x)− x)

=
1
2

(
u(w + w′)û−1 − (w + w′)

)
=

1
2

(
uwû−1 −w + w′ −w′

)
=

1
2

(
uwû−1 −w

)
∈ Vu.

Given u = w1 · · ·wk, it will be convenient to refer to Vu = span(w1, . . . ,wk)
as the u-subspace of V . As seen in Theorem 3.4, when the orthogonal comple-
ment of the u-subspace is nontrivial, any unit vector of Vu? is an eigenvector
of ϕu having eigenvalue 1. This observation allows one to define a u-subspace
projection by

πu(x) :=
1
2

(
x− uxû−1

)
.

It is clear that the null space of πu is Vu? , so that the range is u.
Now that all tools are in hand, it is possible to formalize a decomposition

algorithm for decomposable elements of C`Q(V ). Algorithm 2 makes use of
the projection operator defined in Corollary 3.5 to obtain component vectors
of decomposable elements. When the algorithm is applied to a blade, the
result is an orthogonal collection of vectors whose product is the blade.

3.1 Blade Factorization

Algorithm 3 provides an efficient method for blade decomposition. Unlike
the approach of Algorithm 2, it makes use of a single term of the canonical
expansion to obtain each vector of the decomposition, as opposed to comput-
ing the full blade conjugation. That is, subspace projections are computed
using a single basis blade from the expansion in place of the expansion it-
self. As a result, FastBladeFactor requires less time (see Figure 4) and also
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input : b, a decomposable k-element.
output: {bk, . . . ,b1} such that b = bk · · ·b1.
;

`← 1;
u← b/‖b‖;
while ]u > 1 do

Choose random anisotropic vector x ∈ V such that xyu 6= 0 and
compute its image under the action of ϕu. ;

Let x ∈ V such that xyu 6= 0 and x2 6= 0;
x′ ← uxû−1;

if (x− x′)2 6= 0 then
b]u ← (x− x′)/‖x− x′‖;
if ub]u−1 is decomposable then

u← ub]u−1;
end

end
end
return {bk, . . . ,b2, ‖b‖u};

Algorithm 2: CliffordDecomp

yields decompositions of null (i.e., noninvertible) blades. Unlike Algorithm 2,
FastBladeFactor does not return a Q-orthogonal decomposition but simply
a collection whose exterior product is the blade.

The combinatorial approach developed here effectively computes geomet-
ric contractions using differences of multi indices. Further, because multi
indices are well ordered by fI � fJ ⇔

∑
i∈I

2i−1 ≤
∑
j∈J

2j−1, the following

function is well defined:

FirstTerm

(∑
I

αIfI

)
:= min
{fX :αX 6=0}

αXfX .

The FirstTerm procedure thereby provides the means for choosing the term
that drives the blade’s decomposition.

Remark 3.6. Like Algorithm 3, Fontijne’s algorithm [4] also utilizes a single
term from the blade’s canonical expansion to compute the blade’s constituent
vectors. The initial term selected in Fontijne’s algorithm is a term whose
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scalar coefficient is equal in magnitude to the ∞-norm of the blade. This
term is then used in conjunction with geometric contractions to extract the
blade’s constituent vectors.

input : Blade b ∈ C`Q(V ) of grade k expressed as a sum
∑

I αIfI .
output: Scalar α and set of vectors {b1, . . . ,bk} such that

b = αbk ∧ · · · ∧ b1.
αM fM={m1,...,mk} ←FirstTerm(b);
for `← 1 to k do

u← fM\{m`};
b` ← 〈bu−1〉1;

end
return {αM ,b1, . . . ,bk};

Algorithm 3: FastBladeFactor

4 Decomposition examples with Mathematica

All results appearing here were obtained using Mathematica 10 with the
CliffMath package running on a MacBook Pro with 2.4 GHz Intel Core i7
processor and 8 GB of 1333 MHz DDR3 memory. The interested (Math-
ematica adept) reader can find code and examples online by clicking the
“Research” link at http://www.siue.edu/~sstaple.

Example 4.1. To compare the algorithms involving general element de-
composition, blade decomposition, and fast blade factoring, consider the
randomly-generated grade-5 element of C`8 seen in Figure 2. First, the ele-
ment is decomposed using Algorithm 2.

The grade-5 part of the element is a 5-blade. Applying Algorithm 2 to
this blade results in the factorization seen in Figure 3. Applying Algorithm
3 to the blade results in the non-orthogonal factors seen in Figure 3 in 1/18
of the time. All decompositions were subsequently verified to reproduce the
original elements.

Example 4.2. In Figure 4, runtimes are compared for decomposition of
grade-4 blades and general elements in C`6 and C`7. In each case, five hun-
dred elements of grade 4 were randomly-generated.
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Figure 2: Decomposable grade-5 element in C`8 and its decomposition.
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Figure 3: Decomposition and fast decomposition of the 5-blade (grade-5
part) in Figure 2.
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Figure 4: Computation time required for decomposition of grade-4 elements
and 4-blades in C`6 and C`7.

5 Complexity of representations and avenues for
further research

Consider the geometric product of a set of k linearly independent anisotropic
vectors in the Clifford algebra C`Q(V ), where k ≤ n = dimV . Fixing an
orthonormal basis {ei} of V as generators of the algebra, one immediately
notices that the additive representation of the product may contain up to
bk/2c∑
`=0

(
n

k − 2`

)
nonzero terms. As seen in Figure 4, blade factorization is

significantly more efficient than general decomposition of Clifford elements.
Fast blade factorization is faster still.

This leads to the following question: If one wishes to represent decom-
posable elements as a sum of (multiplicative representations of) blades, how
many blades must be factored? The next preliminary result leads to an
upper bound.

Lemma 5.1. Let b be an invertible k-blade. Let w be an anisotropic vector,
w = wb′ + wb where wb′ is orthogonal to b and wb divides b. Then bw can
be written as a sum of a (k + 1)-blade, b ∧wb′ , and a (k − 1)-blade, bxwb.
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Proof. Let b = v1 · · ·vk where v1,v2, . . . ,vk are orthogonal invertible vec-
tors and let w be an anisotropic vector of the form w = wb′ +wb where wb′

is orthogonal to b and wb divides b. Then

bw = b(wb′ + wb)
= (v1 · · ·vk)wb′ + (v1 · · ·vk)wb.

Since wb′ is orthogonal to {v1, . . . ,vk},

(v1 · · ·vk)wb′ = (v1 · · ·vk) ∧wb′

which is a k + 1-blade. Now, since wb divides b, wb exists in the space
spanned by {v1, . . . ,vk}. Performing Gram-Schmidt orthonormalization on
v1, . . . ,vk with w1 = wb gives

v1 · · ·vk = αwbw2 · · ·wk

for some α ∈ R, so that

(v1 · · ·vk)wb = (v1 · · ·vk)xwb

= (αwbw2 · · ·wk)xwb

= α(−1)k−1(wbxwb)w2w3 · · ·wk

= α(−1)k−1‖wb‖2w2w3 · · ·wk

which is a (k − 1)-blade.

Observe that the two blades obtained in Lemma 5.1 are not necessarily
invertible. It is true nonetheless that the product of a blade yields at most
two invertible blades. Iterated application of Lemma 5.1 thereby leads im-
mediately to an upper bound on the number of blades required to express
the grade j part of a decomposable element.

Lemma 5.2. If v ∈ C`Q(V ) is a decomposable k-element for k ≤ dimV ,
then ck,j, as defined below, gives an upper bound on the number of blades
required to express 〈v〉j as a sum of blades. This upper bound satisfies the
following recurrence:

ck,j =


(−1)k−j+1

2 if j = 0 or 1
1 if j = k

ck−1,j−1 + ck−1,j+1 if 1 < j < k

0 if j > k
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Proof. Values of ck,j for 1 ≤ k ≤ 10 are shown in Table 2. For readability,
entries with value zero have been left blank. The first line of ck,j and the
first two columns of the table follow from the summing of scalars and the
summing of vectors. The grade k part of a decomposable k-element is a
k-blade, giving the second line of ck,j which corresponds to the diagonal line
of 1’s in the table where j = k.

As shown previously, the product of a j-blade and a vector yields, at most,
a (j−1)-blade and a (j+ 1)-blade. Distributing shows that the product of a
vector and the sum of c j-blades yields at most c (j−1)-blades and c (j+1)-
blades. So the grade j part of any k-element comes from the product of a
vector with the grade (j−1) and (j+1) parts of a (k−1)-element. This gives
the third line of ck,j and the pattern seen in the table in which each entry
below the line j = k is the sum of the two entries above it diagonally.

k\j 0 1 2 3 4 5 6 7 8 9 10 Tk
1 1 1
2 1 1 2
3 1 1 2
4 1 2 1 4
5 1 3 1 5
6 1 4 4 1 10
7 1 8 5 1 15
8 1 9 13 6 1 30
9 1 22 19 7 1 50
10 1 23 41 26 8 1 100

Table 2: Values of ck,j

An upper bound on the number of blades required to represent a product

of k vectors is Tk =
k∑
i=0

ck,i, shown on the table in the column at the far right.

Values of Tk (k ≤ dimV ) satisfy the following recurrence:

Tk =

{
2Tk−1 if k is even
2Tk−1 − (ck−1,2 + 1) if k is odd.

Letting n = dimV , an upper bound on the number of scalars required

to describe these blades is ck,0 + n
k∑
i=1

ick,i. This can be compared to the
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maximum number of terms in the expanded form of a product of k vectors,∑
0≤i≤k

i≡k (mod 2)

(
n
i

)
.

In light of these considerations, an open problem is how to develop a
strategy for writing a homogeneous element as a sum of blades. More to the
point, one desires a method for recognizing a minimal collection of blades
that make up a general homogeneous element.

A very nice special case occurs when a homogeneous element w ∈ C`Q(V )
can be written as a sum of pairwise-orthogonal blades 4. In this case, the fast
blade factor algorithm can be used to “intelligently” pick apart the element,
one blade at a time. Each pass of the algorithm factors one blade of the
sum, resulting in a sort of “division algorithm” for elements of this type.
Algorithm 4 makes this idea more formal.

input : w ∈ C`Q(V ), a sum of m pairwise-orthogonal blades.
output: Sets of the form Fi = {αi,vij : 1 ≤ i ≤ m, 1 ≤ j ≤ ki} such

that w =
∑m

i=1 αi(vi1 ∧ · · · ∧ viki
).

while w 6= 0 do
{αi,vi1, . . . ,viki

} ← FastBladeFactor[w];

f← αivi1 ∧ · · · ∧ viki
;

w ← w − f;
end
return {{αi,vi1, . . . ,viki

} : 1 ≤ i ≤ m}

Algorithm 4: OrthoSumDecomp

A few more avenues of exploration are listed below.

• Factorization of permutations. Permutation matrices are 0-1 symmet-
ric matrices and hence represent orthogonal linear transformations.
Multiplicative Clifford algebra representations exist naturally. The
study of particular classes of permutations via Clifford algebraic meth-
ods might be interesting.

• Graph theory. Adjacency matrices of undirected graphs are 0-1 sym-
metric matrices. Under suitable conditions, a graph’s adjacency matrix
can be decomposed into a sum of orthogonal matrices. The relation-

4Two blades u, v are considered to be orthogonal if their associated subspaces have
trivial intersection.
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ship between such graphs and their Clifford algebra representations
could be an interesting area of study.

• Multiplicative representations of Kravchuk transforms. Kravchuk poly-
nomials and Kravchuk matrices are naturally related to Clifford alge-
bras [9]. Symbolic computations can be implemented using Clifford
factorizations of Kravchuk matrices.
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