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Abstract

Less-Java is an object-oriented programming language whose primary goal is to help new programmers

learn programming. Some of the features of Less-Java that might make it better for beginners are static

typing, implicit typing, low verbosity, and built-in support for unit testing. The primary focus of this

project is on improving type inference (especially with regards to object-oriented programming) and

adding static analysis in the Less-Java compiler.
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class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello, world!");

}

}

Figure 1: A basic hello world program in Java

main() {

println("Hello, world!")

}

Figure 2: A basic hello world program in Less-Java

1 Introduction

Less-Java is a programming language originally designed by Zamua Nasrawt [1, 2]. The goal of Less-Java is

to be easier for new programmers to learn than Java. There are several core ideas behind Less-Java that aim

to help accomplish this goal, each of them inspired by shortcomings of other popular introductory languages.

The core ideas behind Less-Java are minimal verbosity, built-in support for unit testing, and a strong and

implicit typing system.

Minimal verbosity makes Less-Java more beginner-friendly because it doesn’t force the programmer to con-

front more advanced concepts that would not be important in an introductory class. Brushing against these

advanced concepts for the sake of explaining the syntax could confuse the programmer, and ignoring them

and instructing the students to blindly write these “magic” words is not a good teaching practice. Consider

the basic hello world example in Java (Figure 1). For a new programmer to understand this code completely,

they would need to understand concepts such as classes, functions, static functions, and function visibility,

when all they need to do is write a message to the screen. The equivalent program in Less-Java (Figure 2)

only requires the programmer to understand functions and output. Other popular introductory languages

like Python and JavaScript address this complexity, but they have their own issues discussed later.

Less-Java also includes support for built-in unit testing. Introductory programming courses often teach that

writing a good set of unit tests is valuable for evaluating the correctness of a program, yet the languages

they use do not ship with native support for unit testing. Again take Java as an example. If a programmer

wants to test their program, they need to either test in main or use a third party library like JUnit. Testing

in main is not ideal because this mixes testing logic with application logic, and integrating external libraries

can be complicated for new programmers. This hindrance can discourage new programmers from writing

unit tests for their code, which makes the practice more difficult to pick up later in their career. In Less-Java,
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the programmer can write simple unit tests using the form test [conditional]. These tests can be run

separately from the program’s main function and do not require the programmer to use external libraries,

thus making the testing process easier for the programmer. This way the programmer is encouraged early

on to write unit tests for their code.

Another feature of Less-Java that is intended to make it more beginner friendly than other popular introduc-

tory languages is a strong and implicit type system. Implicit typing makes the language more user-friendly

because the programmer does not need to manually declare the data types for the variables in their programs.

Static typing makes the language more beginner-friendly than other implicitly typed languages like Python

and JavaScript because it allows the compiler to catch type errors before execution.

For the Less-Java compiler to enforce strong typing, it needs to determine the types of variables and ex-

pressions. Because the language is implicitly typed, this requires type inference. The compiler for Less-Java

developed by Nasrawt included type inference that worked for primitive data types, but was insufficient for

object-oriented programming. Additionally, the compiler did not check the program for type errors. Any

type errors present in the Less-Java program would be carried forward into the Java code generated by the

compiler. When this Java code was then compiled, the type errors would be caught and the programmer

would be informed of issues in code that they didn’t write. This behavior was not beginner-friendly, as

understanding the error messages would require the programmer to know Java and have an understanding

of which parts of the generated Java program correspond to which parts of the Less-Java program.

This work contributes full object-oriented type inference and static type checking to the Less-Java compiler,

along with associated bug fixes and formal specifications.
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2 Related Work

The Hindley-Milner type inference algorithm [3] is a common basis for type inference in programming

languages, and can be used to infer types in object-oriented languages where programs are contained in a

single compilation unit [4]. This algorithm first assigns each expression to be a variable, or unknown, type.

Expression trees are then traversed to infer the type of expressions. This traversal begins at the leaves and

works up to the root of the tree. The leaves are either variable references or literals. The type of a variable

reference is set to the type of the variable in the current environment and the type of a literal is simply the

type of the value it represents. Moving from child vertices to parent vertices, the type of the parent vertex

is inferred based upon inference rules and the types of the child vertices. An example of such a rule would

be that an addition of a Double and a Double is of type Double. Applying this inference rule, if a vertex

representing an addition has exactly two children, both of type Double, then the vertex is assigned the type

Double. This is shown in figure 3 where the two children of the addition node are of type Double, causing

the addition node to be of type Double as well.

+: Double

x: Double 1.5: Double

Figure 3: The expression tree for x+1.5 where x is known to be of type Double

Upon assigning a value to a variable, the Hindley-Milner approach unifies the variable’s type with the value’s

type. That is, the variable’s type is modified to include the type of the value. Likewise when the type of the

value of a return statement is inferred, the return type of the function is unified with the type of the return

value. Many type inference implementations, such as the one developed by Johnson [5], describe a type as

a set of classes. When types are unified here, the result of unification is simply the union of the two sets.

Graver [6] highlights type information flow as an important aspect of type inference algorithms, presenting

two forms of type flow: data flow type information and requirement flow type information. Data flow type

information is collected through definitions, such as assignments to variables, binding a function’s parameter

to an expression, or returning a value from a function. The type of the variable, parameter, or function

must be compatible with the type of the expression. Data flow type information can be used to create a

lower bound for a symbol’s type. Requirement flow type information is gathered by inspecting the usage of a

variable, function parameter, or return values from function calls. For instance in the expression foo(2) + 1
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the return type of foo must be either Integer or Double since it is used in an addition. This creates an

upper bound for a symbol’s type.

Agesen [7] outlines an algorithm similar to Graver’s approach. This algorithm is broken into three steps. The

first step is to allocate memory for associating each symbol and expression with a type. Step two consists of

identifying initial types for literals and variable declarations, similar to assigning types to leaf nodes in the

Hindley-Milner algorithm. So "hello" is given the type String and if x = "hello" is encountered then x

is assigned the type String as well. Step three identifies type constraints based on assignments, using data

flow type information similar to Graver’s approach. Note that this creates a lower bound on the type of

symbols, but not an upper bound. In this step, encountering x = y causes x’s type to be unified with the

type of y. Because the type of x has now changed, the types of other expressions that depend on x must be

inspected again. This can be done iteratively until there are no more type changes. This is the approach

most similar to the implementation in this project.

Palsberg and Schwartzbach take a different approach to type inference [8]. Rather than traversing expression

trees, they create a graph representing constraints imposed by usages of symbols in a program. Vertices in

the graph represent constraints imposed within a method and edges between vertices represent method calls.

Method calls are used here to place constraints on edges relating formal and actual parameter types. The

graph is used to generate an overall set of type constraints, to which a solution is found. This solution to

the constraints effectively assigns types to the program’s symbols.
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3 Objectives

The Less-Java language design and a prototype compiler were contributed by Nasrawt [2]. However, there

were several issues with the compiler at the beginning of this work. Specifically, there were no formal type

rules for the language, there were no unit tests for testing the correctness of the compiler, there was no

static analysis phase to ensure type safety of the program, type inference did not work with objects, object

constructors were not behaving as expected when inheritance was used, and variables within functions with

multiple parameter bindings were forced to have the same data type across bindings.

3.1 Type Rules for Less-Java

The Less-Java language as designed by Nasrawt did not include any formally written type rules for Less-Java.

Static analysis and type inference, which are significant portions of the current project, both heavily rely on

having a well-defined type system. This type system dictates which types can be used in different scenarios

in a valid Less-Java program. Type inference uses this type system to determine the types of expressions.

Static analysis implements the type rules to detect data type errors within a Less-Java program.

3.2 Unit Tests

Nasrawt provided sample programs that could be used to test that the compiler was working, but there were

no unit tests within the compiler to verify that different parts of the compiler were working as intended.

One of the goals for this project is to write unit tests to check for issues with the new and modified parts of

the compiler.

3.3 Static Analysis

One of the bigger issues with the compiler before this work was a lack of error messages when the programmer

presented the compiler with an invalid program. When an invalid program, such as in Figure 4, was compiled,

the Less-Java compiler did not detect any errors. The compiler generated Java code that corresponded to

the input Less-Java source, including the erroneous code. The errors were then detected and reported by the

Java compiler (Figure 5). This is undesirable behavior because Less-Java is intended to be an introductory

language. If errors are reported referencing the Java code rather than the Less-Java code that the programmer

wrote, then the programmer is likely to be confused. The error messages reference a file that the programmer
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didn’t write, line numbers that don’t correspond to the erring lines in the Less-Java file, and code that the

programmer is unfamiliar with. To fix this issue and make the language more beginner friendly, this work

added a static analysis phase to the compiler that detects errors in the Less-Java program before running

the Java compiler.

1 main() {

2 for(i: 1 -> 2.5) {

3 a = 5

4 if (a + true) {

5 foo(true, a)

6 }

7 }

8 break

9 }

Figure 4: An invalid Less-Java program

generated/Main.java:18: error: bad operand types for binary operator ’+’

if (Boolean.valueOf((a+Boolean.valueOf(true))))

^

first type: Integer

second type: Boolean

generated/Main.java:20: error: cannot find symbol

foo(Boolean.valueOf(true), a);

^

symbol: method foo(Boolean,Integer)

location: class Main

generated/Main.java:23: error: break outside switch or loop

break;

^

3 errors

Figure 5: Output of compiling figure 4 before the project

3.4 Object-Oriented Type Inference

Less-Java is an object-oriented language, and inheritance is an important feature of object-oriented program-

ming languages. If in a Less-Java program classes Bike and Car both inherit from Vehicle, then a variable

of type Vehicle should be able to reference instances of either class Bike or Car. Additionally, functions

should be able to accept objects as parameters. However, before this work, the compiler’s implementation

of type inference did not allow for either of these features. For example in the main function in Figure 6,

the type of var is initially inferred to be Car on line 21. The assignment on line 22 should have changed

the type of var to Vehicle, but it did not. The call to doThing(trike) on line 25 should have also created
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a binding of doThing taking a Bike as a parameter, but it failed to do so. These two type inference issues

meant that, before this project, the Less-Java compiler could not handle a single variable being assigned to

instances of two different but related classes and did not allow functions to take objects as parameters. This

work fixed the original type inference implementation to work with objects to allow both of these features.

1 Vehicle {

2 public numWheels = 0

3 Vehicle(numWheels) {

4 this.numWheels = numWheels

5 }

6 }

7
8 Car extends Vehicle {

9 Car() {

10 super(4)

11 }

12 }

13
14 Bike extends Vehicle {

15 Bike() {

16 super(2)

17 }

18 }

19
20 main() {

21 var = Car()

22 var = Bike()

23
24 trike = Bike(3)

25 doThing(trike)

26 }

27
28 doThing(param) {

29 // ...

30 }

Figure 6: A valid Less-Java program that failed to compile at the start of the project

3.5 Constructor Generation

One feature of Less-Java intended to cut down on verbosity is that constructors of superclasses are automat-

ically pulled into subclasses. For instance in Figure 6, classes Car and Bike extend Vehicle and Vehicle

has a constructor that takes a single parameter, so Car and Bike automatically inherit a constructor that

takes one parameter and makes a call to Vehicle’s constructor with that parameter. In addition to this,

classes also automatically get constructors that take no parameters. If the programmer defines any construc-
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tors that clash with the automatically generated ones, such as the constructors in Car and Bike that take

no parameters, then the conflicting generated constructors are discarded and the programmer’s version is

kept. The issue with the original implementation of this was that only one constructor from the superclass

was copied down, and the superclass’s no-parameter constructor would always be copied down even if the

programmer had defined their own. This ended up producing invalid Java code that had two bodies for the

constructor taking no parameters, as seen in Figure 7. This work fixes the issue.

3.6 Function Instantiation

Another feature of the Less-Java programming language is that functions with multiple possible parameter

bindings only need to be defined once. When the compiler encounters a function call, it first checks the types

of the arguments. If the types of all arguments are known and there is not already a binding of the function

for those types, then a new instance of the function is created with the given parameter binding.

At the beginning of this project, multiple bindings of the same function would reference the same function

block in the abstract syntax tree. This caused issues because it meant that every expression within the

function had to have the same type across all bindings, which defeated the purpose of having multiple

bindings. Given the code in Figure 8, the old version of the compiler produced an AST similar to that in

Figure 9. This AST is no longer a tree since the ASTBlock node now has two parents. The main issue here

is that the type of succ cannot be inferred. Type inference sees that succ’s type depends on a’s type, but

tracing up the AST doesn’t reveal what that type is. It could either be Integer or Double, depending on

which binding is used.
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1 import static org.junit.jupiter.api.Assertions.*;

2 import static wrappers.LJString.*;

3 import static wrappers.LJIO.*;

4
5 import org.junit.jupiter.api.Test;

6 import java.util.*;

7 import java.io.*;

8
9 import wrappers.*;

10 public class Main

11 {

12 public static void main(String[] args)

13 {

14 Bike trike;

15 Car var;

16 var = new Car();

17 var = new Bike();

18 trike = new Bike(Integer.valueOf(3));

19 }

20 private static class Vehicle

21 {

22 public Integer numWheels = Integer.valueOf(0);

23 public Vehicle(Integer numWheels)

24 {

25 this.numWheels = numWheels;

26 }

27 public Vehicle()

28 {

29 }

30 }

31 private static class Car extends Vehicle

32 {

33 public Car()

34 {

35 super(Integer.valueOf(4));

36 }

37 {

38 super();

39 }

40 }

41 private static class Bike extends Vehicle

42 {

43 public Bike()

44 {

45 super();

46 }

47 {

48 super(Integer.valueOf(2));

49 }

50 }

51 }

Figure 7: Java output of running the previous version of the compiler on Figure 6
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1 successor(a) {

2 succ = a + 1

3 return succ

4 }

5
6 main() {

7 successor(1)

8 successor(1.0)

9 }

Figure 8: A Less-Java program demonstrating multiple parameter bindings

ASTBlock

ASTFunction successor(Integer a) ASTFunction successor(Double a)

ASTProgram

ASTAssignment

ASTVariable succ ASTBinaryExpression (+)

ASTVariable a ASTLiteral 1

Figure 9: An incorrect AST for a function with multiple bindings
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4 Results

This work addresses the issues with the Less-Java compiler and type system identified in section 3 by pro-

viding formalized type rules, unit tests for various components of the compiler, and a comprehensive static

implementation of type checking. In addition, type inference works correctly in object-oriented programs,

constructors are generated correctly, and functions with multiple parameter bindings are also working cor-

rectly.

4.1 Type Rules for Less-Java

The type rules formalized as part of this project determine validity of expressions and statements. Following

the notation used in Pierce’s well-known textbook [9], the type rules have a name to the side of the rule,

premises above a line, and a conclusion below the line. Premises and conclusions are type judgements,

asserting that an expression is of some type in some environment (often provided by symbol tables in a

compiler). For example in TInt (Figure 10), there are no premises and the conclusion is that an INT token

is of type Integer. As a slightly more complicated example, TIIAdd (Figure 11) has two premises: that

both expressions e1 and e2 are of type Integer in environment Γ. The conclusion is that the sum of the two

expressions within environment Γ is also of type Integer.

TInt ` INT : int

Figure 10: The TInt type rule

TIIAdd
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘+‘ e2 : int

Figure 11: The TIIAdd type rule

As an example of a type rule pertaining to a statement, TIf (Figure 12) shows that an if statement is

well-typed in environment Γ if the condition is of type Boolean and the block is also well-typed in Γ.

TIf
Γ ` e : bool Γ ` b

Γ ` ‘if(‘ e ‘)‘ b

Figure 12: The TIf type rule

For the rest of the type rules for Less-Java, see appendix A
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4.2 Unit Tests

Unit tests for several parts of the Less-Java compiler were added as part of this project. Forty-six (46) new

unit tests cover the static analysis, type inference, constructor generation, and function instantiation aspects

of the compiler. The majority of the unit tests are focused on the static analysis and type inference portions

of the compiler. These tests assert that a given Less-Java program is either valid or invalid. A test will

attempt to compile a program through the static analysis phase of the compiler, and if no errors are found

then it is marked as a valid program. Otherwise it is marked as invalid. If the compiler marks a program

as valid and the test asserts that it is invalid, or vice-versa, then the test fails. Figure 13 shows an example

of Less-Java programs used in unit tests. The program on the left must be asserted invalid since the break

statement is not contained inside a loop body, while the program on the right must be asserted valid because

the break statement is contained within a loop body.

main() {

break

}

main() {

while(true) {

break

}

}

Figure 13: Invalid (left) and valid (right) uses of a break statement tested as part of unit tests

Figure 14 shows programs used in unit tests that assert a program is invalid if an if statement does not

have a Boolean condition. In the invalid program, the condition is an Integer rather than a Boolean.

main() {

if(0) {}

}

main() {

if(true) {}

}

Figure 14: Invalid (left) and valid (right) if conditions tested as part of unit tests

Figure 15 shows two more programs used in unit tests. The tests assert that a function can have different

return types across different parameter bindings, but that a given parameter binding should only have one

return type. Here the invalid program is invalid because the instance of foo taking an Integer parameter

might return an Integer or a Boolean.

17



foo(a) {

if(a == 0) {

return true

} else {

return a

}

}

main() {

foo(true)

foo(0)

}

foo(a) {

return a

}

main() {

foo(true)

foo(0)

}

Figure 15: Invalid (left) and valid (right) functions

4.3 Static Analysis

Static analysis is the phase of compilation where the program is checked for correctness. This can be

structural correctness or type correctness. An example of structural correctness is that break statements

should only occur inside loop bodies. An example of type correctness is that if a variable’s type is Integer,

then it cannot be assigned a String value. Static analysis is implemented in this project using the visitor [10]

design pattern. The visitor visits each node of the compiled program’s AST. At each node, various conditions

are checked to ensure no rules are being broken. At a node representing a break statement, for example, the

visitor checks that the node has a loop node as an ancestor. At a node representing a function call, the visitor

checks that the call is to a known function. Figure 16 shows the current output of the Less-Java compiler

when run on the code in Figure 4 from earlier, whereas before this work the errors were not reported until

the generated Java code was compiled by the Java compiler.

Line 2: For loops can only run through integers

Line 4: Cannot apply operator ADD with non-numeric right expression type Boolean

Line 4: Cannot unify types Integer and Boolean

Line 4: Integer is not a boolean expression

Line 5: Cannot find function foo with 2 arguments

Line 8: Break statement must be inside a loop

Figure 16: Output from compiling figure 4

4.4 Object-Oriented Type Inference

This project successfully modifies the previous implementation of type inference in the Less-Java compiler to

work with objects in addition to the primitive data types it already supported. Allowing type inference for
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objects is done by inspecting assignments to symbols. When a symbol is assigned a value of a given type, the

type of the symbol is unified with the type of the value. In cases where the symbol and value are of primitive

data types, the type of the symbol is unified with the type of the value in accordance with the original

implementation. If the symbol and value are both objects, then the type of the symbol is unified with the

type of the value by inspecting the class hierarchy. The unified type is the nearest common superclass of

the types of the symbol and value. Consider again the program from Figure 6. Here Car and Bike both

extend Vehicle. Because var is assigned values of type Car on line 21 and Bike on line 22, the type of var

is inferred to be Vehicle, the nearest common superclass between Car and Bike. If there is no common

superclass (this is possible because Less-Java does not have a rooted class hierarchy where all classes inherit

implicitly from Object like in Java), then unification fails and a static analysis error is generated.

The original implementation of type inference was also changed to make use of data flow type information

only, whereas before it also used requirement flow type information. Suppose in a Less-Java program,

variables a and b are of type Integer. Now suppose the expression a || b is encountered. Using requirement

flow type information here would attempt to unify the types of a and b with Boolean, since only Boolean

types are compatible with the || operator. This would generate an error message that Integer and Boolean

types cannot be unified, but this error message would not be very helpful to the programmer since the error

message doesn’t explain that the || operator requires Boolean operands. So instead of using requirement flow

type information, type inference only uses data flow type information (information gathered by inspecting

assignments). Errors such as using operands of incorrect types for a given operator are instead caught during

static analysis, which allows for more specific and helpful error messages to be generated. In the previous

example, the error message generated by static analysis explains that the Integer data type cannot be used

with the || operator, which is a better explanation of the error.

4.5 Constructor Generation

This project also addresses the issue where only a single constructor from a superclass wasbeing copied into

the subclass. To fix this problem, the AST nodes representing Less-Java classes now maintain a set of all

of the class’s constructors rather than a single constructor as in the previous implementation. Then when

a subclass is defined, the set of the superclass’s constructors is iterated over and each constructor is copied

down into the subclass.

The issue that caused a superclass’s zero-parameter constructor to always be copied into the subclass is

also fixed by this project. This project modified the code to only copy the superclass’s constructor into the
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1 Vehicle {

2 private numWheels = 0

3 Vehicle(numWheels) {

4 this.numWheels = numWheels

5 }

6 }

7
8 Bike extends Vehicle {

9 Bike() {

10 super(2)

11 }

12 }

13
14 main() {

15 car = Vehicle(4)

16 bike = Bike()

17 trike = Bike(3)

18 }

Figure 17: Less-Java code demonstrating use of a superclass’s constructor

subclass if the programmer hadn’t already defined a constructor taking zero parameters.

Figure 17 demonstrates a sample program that takes advantage of having a superclass’s constructor copied

into the subclass. The call to Bike(3) on line 17 shows a call to a constructor defined in Bike’s superclass,

Vehicle.

4.6 Function Instantiation

One final issue addressed by this project is that variables in a function were restricted to always being of

the same type across each parameter binding of the function. The issue was caused because each AST node

representing a binding of a function contained a reference to the same AST node representing the function’s

body. This made it so that each binding had identical implementations, including the types of variables.

This project addresses the issue by duplicating the AST node representing the function’s body so that

each binding can reference its own function body. This allows the types of symbols within each instance

of the function to change independent of the types in other bindings of the same function. The function’s

body is duplicated using the visitor design pattern. The original function body is visited, building a stack

of statements and a stack of expressions. When a node representing a new statement is visited, a node

representing its copy is added to the top of the statements stack. After completing a visit to a statement

node, the statement on top of the statements stack is popped off of the stack, populated with expressions

from the top of the expressions stack (such as the condition for an if statement) and added to the copy
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ASTProgram

ASTFunction successor(Integer a)

ASTBlock

ASTAssignment

ASTVariable succ ASTBinaryExpression (+)

ASTVariable a ASTLiteral 1

ASTFunction successor(Double a)

ASTBlock

ASTAssignment

ASTVariable succ ASTBinaryExpression (+)

ASTVariable a ASTLiteral 1

Figure 18: The correct AST for a function with multiple bindings as in Figure 8

of the function’s implementation. When a new expression is visited, a copy of the expression is generated

by popping expressions off of the top of the stack if needed (for example the left and right subexpressions

if the expression being copied is a binary expression). This new expression is then pushed onto the stack.

Duplicating an expression does not copy type information over to the copy, which ensures that types of

expressions and symbols between copies are independent.

The end result of this duplication process is that a new function body is created that is identical to the

original in every way except for type information. This allows the types of expressions in the duplicate to

be changed without having side effects on the original implementation. The AST generated by the current

implementation when compiling the code example from Figure 8 is illustrated in Figure 18. The ASTFunction

nodes reference identical but independent implementations of the successor function, allowing the type of

succ to be different in the two implementations.
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5 Future Work

The Less-Java language and compiler are now much closer to a finished product as a result of this work.

However, there are still several improvements to be made in future work.

One useful addition to the language would be to add file I/O capabilities. Currently the language is only

capable of reading from and writing to standard output. File I/O is included in many introductory program-

ming courses, so it is currently a notable exclusion from the Less-Java language. An ideal implementation

would have safe ways of reading and writing files, but this would likely require some sort of exceptional

control flow.

Adding basic exceptional control flow to Less-Java is itself another potential area for work in the future. The

only way to achieve some form of exceptional control flow in Less-Java currently is through special return

values, but this is limiting to the programmer because it removes a value from the possible outputs of a

function. As an example demonstrating why this is not a good method of exceptional control flow, consider

a function that finds and returns the key associated with some value in a map. If the function is called with

a value that does not exist in the map, then the function should fail. Currently, the only way to indicate

that the function failed is to have it return a special value, say "FAILED", and have the caller check for this

return value. But then there’s the possibility that "FAILED" actually was the key to the specified value. So

instead of just checking whether the function returned "FAILED", the programmer would also have to check

that "FAILED" doesn’t map to the specified value. This would be much cleaner with some actual form of

exceptional control flow such as the try/catch mechanism provided by Java.

Another improvement for Less-Java would be to have runtime errors reference lines in the Less-Java file,

rather than lines in the Java file that the compiler produces. For example, if a number is divided by zero

the Java runtime throws an exception and the program crashes, printing the exception to the screen. This

exception references the line number where the division by zero occurred, but this line number does not

correlate to the line in the Less-Java file. This can cause frustration when debugging a Less-Java program,

because it requires looking into the generated Java code, finding the Less-Java code that corresponds to the

Java code, and then fixing the issue. This process would be much simpler if the runtime could be made to

reference the Less-Java code rather than the Java code.

Less-Java’s ultimate goal is to be a better introductory programming languages than other commonly taught

programming languages. However, this claim remains untested. Once the language and compiler have been

more thoroughly refined, an empirical study should be conducted to test whether or not Less-Java is actually

a more effective introductory programming language than other popular languages like Java.
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6 Conclusion

Prior to this project, the Less-Java compiler had several major flaws. There was no formal type system

available for the language, the compiler had no unit test coverage, Less-Java programs were not inspected

for type errors, type inference with respect to objects was not working properly, constructors in subclasses

were not being generated properly, and variables within functions were restricted to having the same type

across different parameter bindings. This project has addressed all of these issues. Additionally, this is the

first instance of type inference being used in an object-oriented language with strong static typing that the

author is aware of.

The source code for the Less-Java compiler (including all improvements contributed in this project) is

available at https://www.github.com/JMU-CS/less-java.
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A Less-Java Type Rules

A.1 Expressions

TInt ` INT : int
TDouble ` REAL : double

TBool ` BOOL : bool
TStr ` STR : string

TList
Γ ` e1 : τ Γ ` e2 : τ ... Γ ` en : τ

Γ ` ‘[‘ e1, e2, ..., en ‘]‘ : List(τ)
(Similar for TSet)

TMap
Γ ` k1 : τk Γ ` k2 : τk ... Γ ` kn : τk Γ ` v1 : τv Γ ` v2 : τv ... Γ ` vn : τv

Γ ` ‘<‘ k1 : v1, k2 : v2, ..., kn : vn ‘>‘ : Map(τk, τv)

TMapAccess
ID : Map(τk → τv) ∈ Γ Γ ` e : τk

Γ ` ID ‘[‘ e ‘]‘ : τv
TListAccess

ID : List(τ) ∈ Γ Γ ` e : int

Γ ` ID ‘[‘ e ‘]‘ : τ

TSubExpr
Γ ` e : τ

Γ ` ‘(‘ e ‘)‘ : τ
TVar

ID : τ ∈ Γ
Γ ` ID : τ

TMember
IDo : τo ∈ Γ τo <: {IDm : τ}

Γ ` IDo.IDm : τ

TIIAdd
Γ ` e1 : int Γ ` e2 : int

Γ ` e1 ‘+‘ e2 : int
(Similar for TIIMul (*), TIISub (-), TIIDiv (/), and TMod (%))

TIDAdd
Γ ` e1 : int Γ ` e2 : double

Γ ` e1 ‘+‘ e2 : double
(Similar for TIDMul (*), TIDSub (-), TIDDiv (/), TDIAdd

(+), TDIMul (*), TDISub (-), and TDIDiv (/))

TEq
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` e1 ‘==‘ e2 : bool
(Similar for TNEq(!=))

TFuncCall
ID : (τ1, τ2, ..., τn) → τ ∈ Γ Γ ` e1 : τ1 Γ ` e2 : τ2 ... Γ ` en : τn

Γ ` ID ‘(‘ e1, e2, ..., en ‘)‘ : τ
(Similar for

TMethodCall)

A.2 Statements

TIf
Γ ` e : bool Γ ` b

Γ ` ‘if(‘ e ‘)‘ b
TIfElse

Γ ` e : bool Γ ` b1 Γ ` b2
Γ ` ‘if(‘ e ‘)‘ b1 ‘else‘ b2

TWhile
Γ ` e : bool Γ ` b
Γ ` ‘while(‘ e ‘)‘ b

TFor
ID : int ∈ Γ Γ ` e1 : int Γ ` e2 : int Γ ` b

Γ ` ‘for(‘ ID ‘:‘ e1 ‘->‘ e2 ‘)‘ b
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