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Abstract

The ability to manipulate surface elastic instabilities finds many applications in en-

gineering smart interfaces, e.g. in fluid-structure interaction and micro-fabrication.

We study the buckling of a thin cylindrical shell constrained to slide onto an inner

non-deformable pipe. Our goal is to characterize the relationship between the shell

thickness and the localization of stresses by using curvature measurements. First, we

induce surface buckling by immobilizing one end of the shell and applying force to

the other end. Then, we obtain a virtual reconstruction of the surface from 3D opti-

cal scanning and compute the Gaussian curvature for every point on the mesh. We

find that as the shell gets thinner, the distribution of Gaussian curvatures becomes

broader. Furthermore, measurements of areas enclosed by the parabolic lines around

protruding vertices from the buckled surface show that the transitions between re-

gions of positive and negative curvature are more localized. Finally, the Gaussian

curvature reveals the formation of substructures within the lobes around the vertices.

The localization results demonstrate that the cylindrical shell clearly evolves towards

the isometric limit represented by the well-known Yoshimura pattern. However, the

emergence of substructures indicates that this evolution is more complex than origi-

nally anticipated.



1 Introduction

To most, the word “buckling” invokes images of an object being compressed to the

point of potentially catastrophic failure. Indeed, there are instances where buckling

causes extensive damage to large, important structures that we rely on. It is not un-

common for a silo or large tank to buckle, causing the entire structure to collapse [1].

In 1963, the Atlas Agena D rocket depressurized on its launch pad, causing the upper

stage to buckle which resulted in the entire rocket collapsing in half [12]. Buckling,

specifically the buckling of cylindrical shells such as silos, tanks, and rockets, has long

been the adversary of many engineers. Traditional approaches to the study of shell

buckling have mainly focused on determining the first or second buckling loads and

the initial post-buckling equilibrium paths in order to prevent ultimate failure [1].

However, there has been a paradigm shift in thin shell mechanics. Up until recently,

shell buckling was viewed as a catastrophic failure that was to be prevented. Now,

the dynamics behind shell buckling are being exploited to advance shape-changing

technologies. These ‘morphing’ structures find applications in haptic electronic dis-

plays and aerodynamical surfaces that can change from being smooth to rough and

back again [2], [3]. The push towards using these failure modes advantageously has

opened a floodgate of questions ranging from how to control the dynamics of shell

buckling to more fundamental ones about how the actual buckling pattern is formed.

In general, the walls of thin shells have membrane stiffness several orders of mag-

nitude greater than the bending stiffness. To deform a thin shell, it must absorb as

much bending strain energy as membrane strain energy. If most of this strain energy

is in the form of membrane compression, and if this membrane energy can be con-

verted into bending energy, the shell may experience buckling [1]. The way the shell

buckles depends on multiple factors, including how the shell is loaded, boundary con-
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ditions, and its geometrical and material properties. Buckling behavior is also heavily

influenced by the structure’s maximum load sensitivity to initial imperfections. In

the case of cylindrical shells, this imperfection sensitivity has lead to the increasing

discrepancy between test and theory with increasing radius-to-thickness ratio [13].

The Koiter theory [14] provides a rigorous proof of the critical axial load’s extreme

sensitivity to initial geometric imperfections. Due to the disconnect between test and

theory, it is hard to predict how a cylindrical shell will buckle. However, by internally

constraining a thin cylindrical shell with a rigid body, one can force the majority of

the deformation and energy into localized peaks. The addition of an internal support

introduces some degree of control over the surface pattern produced by buckling. In

order to successfully utilize this post-buckling pattern in tunable surfaces, we must

understand what factors influence its appearance. Namely, we look to explain how

the surface stresses distribute as a function of shell thickness.

(a) Origami representation
of the Yoshimura pattern.

(b) Experimental apparatus
with 50.8 µm shell.

Figure 1.1: Origami shell and experimental shell.

In order to understand the stress distribution on a constrained thin cylindrical
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shell, we first consider the case of an unconstrained thin cylindrical shell experiencing

compression. The thin shell buckles in a seemingly random way and a pattern emerges

that appears similar to the pattern on a thin sheet after it has been crumpled and

then flattened. In our work, we construct thin cylindrical shells from thin sheets;

thus, we look at the stress localization of crumpled thin sheets in order to gain

intuition on how thin cylinders deform as they evolve towards the isometric limit.

Isometric deformations are those in which stretching is zero. We expect the isometric

limit to be represented by the well-known Yoshimura pattern (Fig. 1.1a); the post-

buckling pattern is expected to evolve towards the origami Yoshimura pattern as the

shell thickness decreases due to the thickness-dependence of bending and stretching

energies.

When thin sheets are crumpled, line-like ridges and point-like peaks appear on

their surfaces [4]. Although the produced pattern is seemingly random and uncontrol-

lable, elasticity and confinement force the sheet to favor isometric deformations by

stacking layers of material without focusing [15]. We can understand the role stretch-

ing plays in this deformation by first looking at an isolated fold where a sheet is bent

around an undetermined radius of curvature. As this radius of curvature decreases,

the fold will appear sharper, due to the fact that bending energy is proportional to the

curvature square of the fold. However, the sheet cannot allow the radius of curvature

to become infinitely small so it must find a better energy balance by concentrating

stretching into a very localized region along the entire fold.

The simplest way to model stress localization in thin sheets is the d-cone, also

referred to as the ‘developable’ cone. Consider a flat disk that rests concentrically

on a simple rim. When a point force is applied to the center of the disk, the disk

experiences an increasing amount of in-plane circumferential compression that cannot

be maintained indefinitely. As a result, part of the disk buckles upwards and separates

3



from the rim, relieving the system from the compression. The resulting shape is the

d-cone mode shape [5].

One can study the d-cone in two different forms: continuous and discrete. The

continuous d-cone is created using the aforementioned method whereas the discrete

d-cone is created using a pre-folded disk. Folding the disk allows continuous motion

up to a point where all facets can “flat-fold” and contact each other in a vertical

plane under fold rotations equal to 180
◦

[5]. Like the discrete d-cone, the Yoshimura

pattern is also flat-foldable. If we connect multiple discrete d-cones together in a

cylindrical shape, we can recover the Yoshimura pattern (Fig. 1.1a).

By viewing the Yoshimura pattern in this perspective, the standard single d-cone

calculations can be expanded upon and adapted for this larger system. In particular,

the amount of out-of-plane angular deflection for a single d-cone is calculated using

the Gauss mapping technique by considering the deformed shape in terms of normal

vectors to the surface of the disk [5]. By considering the Yoshimura pattern in terms

of discrete d-cones, that calculation can be applied directly to this more robust struc-

ture: the amount of out-of-plane angular deflection for the Yoshimura pattern can

be calculated using the same Gauss mapping technique. Gauss’s theorem states that

the area of the Gauss map is equal to the angular deficit at the vertex and that the

angular deficit produces Gaussian curvature [6]. Gaussian curvature is the product

of the two principal curvatures and its presence necessarily produces a strain field [7].

Thus, the amount of Gaussian curvature is indicative of how much stretching energy

is contained within the surface. In order to understand how the thickness of a sheet

affects stress localization, we must first derive the total elastic energy equation of thin

sheets.
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1.1 Theory of Shell Mechanics

Detailed explanations and analysis of thin shell theory can be found in standard

texts [16-19]. Here, we present an abridged version of the derivation of the total

elastic energy equation of thin sheets from [8]. We begin this derivation by first

defining the geometrical quantities necessary to describe curved surfaces and their

deformations. Then, we establish the surface’s metric properties, namely the local

measure of distances between material points, as well as the measure of curvature that

quantifies warping and bending of the surface. From these, we define in-plane strain

and curvature strain. Finally, we construct the total elastic strain energy equation.

Derivation of Elastic Energy

Consider an undeformed shell with a collection of mid-surface material points, call

this collection S. We can map S in 3D Euclidean space by a three component vector

function S :S → R3, where S(x1, x2) = (S1(x
1, x2), S2(x

1, x2), S3(x
1, x2)) and (x1, x2)

are the local Lagrangian coordinates on S. We then calculate the induced prescribed

metric–a function that defines a distance between each pair of elements of a set– for S

to be ā = (∂αS · ∂βS)dxα ⊗ dxβ. Now consider a deformed shell with a collection of

mid-surface material points, called S. We can construct a deformation map F :S → S

which will induce a target metric represented by a = (∂αF · ∂βF)dxα ⊗ dxβ. From

here, we see that the reference and target components of the metric tensor, called the

first fundamental form, are given by

āαβ = (∂αS · ∂βS) (1.1)

aαβ = (∂αF · ∂βF ). (1.2)
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(1.1) and (1.2) establish local measures of distances between material points. We

can define the unit normals to the reference surface S̄ and the target surface S by

N̄ = (det ā)−
1
2 ∂1S× ∂2S and N = (det ā)−

1
2 ∂1F× ∂2F, respectively. We can

recover the reference and target components of the curvature tensor, otherwise known

as the second fundamental form, by taking the second derivative of the mapping of

the material points of both S̄ and S and projecting them onto the direction of their

respective normal fields. These components are

b̄αβ = N̄ · ∂α∂βS (1.3)

bαβ = N · ∂α∂βF. (1.4)

The matrices a(−1)b and a−1b are the shape operators on the reference and target

shells respectively. Their eigenvalues are the corresponding principal curvatures.

We define the pure in-plane displacement as uα(x1, x2) and the out-of-plane dis-

placement as v(x1, x2) in our displacement field. The complete deformation of the

mid-surface of the shell is given by the function F = S + U where U(x1,x2) =

uα(x1,x2)∂αS + v(x1,x2)N̄ is the displacement vector in normal coordinates. Now

we define the in-plane strain, εαβ, as a measure of stretching and the curvature strain,

καβ, as a measure of bending.

εαβ =
1

2
(aαβ − āαβ) (1.5)

καβ = (bαβ − b̄αβ) (1.6)

We can now write the total elastic energy as a surface integral of energy density as

follows:

ε =
Et

2(1− v2)

∫
dA[(1− ν)Tr(ε2) + ν(Tr(ε))2 +

t2

12
((1− ν)Tr(κ2) + ν(Tr(κ))2)](1.7)
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where E is the Young’s Modulus, ν the Poisson ratio, and t is the thickness of the

shell. It is important to note that the trace operation, Tr, on any matrix M is taken

in a specific way that depends on the metric of the reference state in the following

way: Tr(M) ≡ aαβMαβ. In equation 1.7, the terms proportional to t compose the

stretching energy while the terms proportional to t3 compose the bending energy.

From equation 1.7, thickness-dependent balance equations can be derived. These

balance equations establish the presence of a boundary layer. Bending with stretching

happens within the boundary layer while pure bending occurs outside of it [8]. We

can understand how stretching localizes in the boundary layer by solving one of the

balance equations; the solution is given by a stress potential in which its source is the

Gaussian curvature.

In this thesis, we explain the mechanics behind the buckling of internally con-

strained, monocoque cylinders (Fig. 1.1b) by investigating the influence of shell

thickness on the localization of surface stresses through curvature analysis. We fo-

cus on the geometric features of the buckled pattern to make a connection between

the emerging pattern on shells of finite thickness and the isometric limit, represented

by the Yoshimura pattern. This thesis expands upon the work done on the axial-

buckling of thin-walled cylinders by Seffen and Stott [9]. Using an updated version

of the experiment described by Horton and Durham [20], they showed that the size

of the buckles depends only on the cylindrical radius and gap width and not on the

thickness of the shell.

We are interested in characterizing the buckled pattern of internally constrained,

monocoque cylinders in terms of thickness-dependence for tunable surface applica-

tions. Emerging controllable surface technologies have applications in areas such

as aerodynamics and hydrodynamics: by allowing the surface to switch from being

7



smooth to rough, and back again, the fluid flow can be disrupted, thus altering the

drag experienced. Due to the uniformity of the buckled pattern and the ease at which

it can be produced, a constrained thin cylindrical shell provides an ideal basis to study

controllable surfaces. Therefore, we propose a systematic study of the dependence of

the localization of surface stresses on shell thickness to build a deeper understanding

of deformations experienced by internally constrained monocoque cylinders.

8



2 Experimental Methods

In this chapter, we describe the methodologies developed to construct internally

constrained monocoque cylinders and the Yoshimura pattern.

2.1 The compressed cylindrical shell

The shells we use in the experiment are made of thin Mylar sheets, a polyester

film made from stretched polyethylene terephthalate (PET) suitable for our the ex-

periment because of its high tensile strength and its resistance to fractures and tears.

Mylar is commercially available in transparent, semi-clear white or reflective silver

surface from suppliers such as McMaster Carr (mcmaster.com) and SPI Supplies

(2spi.com) in thicknesses ranging from 0.254 mm to 0.0025 mm. It has a Young’s

modulus of 2-2.7 GPa and a Poisson ratio of 0.38 before yield and 0.58 after yield.

Eight different Mylar thicknesses were used to construct the cylindrical shells whose

properties are listed in Table 2.1.

Thickness (µm) Diameter ± 0.05 (mm) Gap Distance ± 0.035 (mm) Height ± 0.5 (mm)
178 ± 18 15.804 0.564 157
127 ± 13 15.88 0.640 157
102 ± 10 16.336 1.096 158
76 ± 7.6 16.172 0.932 158
51 ± 5.1 16.275 1.035 157.5
25 ± 2.5 16.495 1.255 158
6.0 ± 0.1 16.102 0.862 59.6
2.5 ± 0.1 17.249 2.009 62.3

Table 2.1: Table of experimental parameters for each shell thickness.

The shell is assembled as follows. First, we cut a rectangular piece of Mylar of

dimensions 15.75 cm x 22 cm (0.052 mm thickness and above) or 6 cm x 22 cm (0.0060

and 0.0025 mm thicknesses) using a laser cutter (ULS Versa Laser VLS 3.50 with a

50W laser). To help avoid immediate edge collapse, two thicker strips of Mylar (0.178
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mm) are adhered to the longer edges of the Mylar rectangular sheet using double sided

stick Scotch Tape. Then, the reinforced rectangle is next wrapped around a PVC tube

of diameter of d0 = 60± 6 mm. Seffen and Stott [9] have found that the pattern that

forms on the thin cylindrical shell under compression depends on the gap between the

Mylar and the tube. To control the gap size, we have used the same technique reported

in [9] of inserting a rodlike shim ( 1
16

in. stainless steel rod, annealed) between the

sheet and the tube before connecting the edges of the sheet in a narrow overlapping

seam with Scotch Tape. Once the Mylar is tightly wrapped around the tube, the

shim is removed and the excess Mylar trimmed. Despite rigorously following the

same procedure for all shells, small variations in the overlap seam (which are difficult

to control experimentally) result in significant variation in the gap from shell to shell.

We determined the gap by measuring the perimeter p of each shell and computing

(p/π)− d0. The result is found in Table 2.1.

Once the cylindrical shells were assembled, we applied a thin uniform coat of

white acrylic paint to the outer surface (Master Airbrush Cool Runner II Airbrushing

System). This step is necessary because the scanner cannot capture the features of

reflective surfaces.

To uniformly buckle the cylinder, plastic braces were fashioned to fit snugly around

the PVC tube, resting just above the Mylar. The top brace is then compressed, forcing

the Mylar to buckle. Once a uniform pattern is achieved, the top brace is secured

with a screw, ensuring that the Mylar stays in its buckled state for scanning. Figure

1.1b shows a compressed shell ready for scanning.

2.2 Scanning the surface

This study focuses on the nature of the buckling pattern of the compressed thin

cylinder. It is performed on 3D meshes generated for each shell with an EinScan Pro

scanner. This scanner is able to resolve features as small as 0.05 mm on the surface.
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We set the compressed shell on the instrument turntable and performed fixed auto 3D

scans of the surfaces by taking snapshots every 7 degrees (50 steps over a 360 degree

scan). After the scan was complete, we create an unwatertight model in the scanner’s

software. To create an unwatertight model, the software uses an algorithm to mesh

the point cloud such that it only connects points within a certain distance without

filling holes. After the unwatertight model is created, we use the software to fill any

holes with a perimeter greater than 10 mm. We then use the scanner’s smoothing

function to improve data quality. The output file is then saved in stereolithographic

format (.stl) for further processing and analysis.

Figure 2.1: 3D reconstruction of point-cloud mesh outputted by 3D scanner.

The complete scan includes not only the Mylar shell, but also sections of the the

plastic braces as shown in figure 2.1. We import the mesh into MeshMixer (mesh-

mixer.com) to crop and align the mesh. Figure 2.2 shows all shells considered in this

study, labeled by their respective thickness. Subsequently, we obtain detailed views of

the protruding vertices, illustrated in figure 2.3, by cropping the cylindrical shells in

MeshLab (meshlab.net). After all crops are completed, we process the mesh further.
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Figure 2.2: 3D scanned images of experimental model with eight different shell thick-
nesses.

Figure 2.3: 3D reconstruction of scanned cylinder. Red lines indicate path of crop.

2.3 Yoshimura origami construction

As discussed in the introduction, the stretching energy becomes increasing costly

for ever thinner shells. Consequently, we expect the features of the buckled pattern

12



to become more localized as the shell approaches the isometric limit. At this limit the

buckling pattern resembles the Yoshimura pattern, which allows a cylindrical shell

to buckle without stretching. To compare the evolution of the thin Mylar shell with

the Yoshimura pattern, we constructed an origami representation of the Yoshimura

pattern by making a grid of 1 in.×1 in. angled squares with horizontal lines through

their centers on origami paper (Folia Paper, Transparentpapier, 42 g/m2) in Inkscape.

We then perforated the lines using a laser cutter and folded along those lines to

reconstruct a cylindrical Yoshimura pattern as shown in figure 1.1a. The Yoshimura

pattern was then scanned and the point cloud processed for further analysis.

Once we have our face and vertices cropped, we apply smoothing steps to reduce

the noise from the scanner. Then, we compute the mean and Gaussian curvatures of

both the face and the vertices in MATLAB. This will be the topic of the next chapter.

13



3 Computing Curvatures

In this chapter, we discuss the MATLAB code used to calculate the mean and

Gaussian curvatures of our buckled surfaces as well as the techniques used to process

the meshes.

3.1 Curvature Code

We computed the mean and Gaussian curvatures of our buckled shells in MATLAB

using a code that had been previously developed by Mark Meyer et. al [10]. This

method utilizes triangular meshes, as it is often considered the most reliable approx-

imation of continuous surfaces. The geometric quantities of the surface are defined

at each vertex as spatial averages around the vertex. If these averages are made

consistently, the geometric property at a given vertex will converge to the pointwise

definition as local sampling increases, allowing the definitions of curvature or normal

vector to extend from the continuous case to discrete meshes. The spatial averages

are restricted to be within the immediate neighboring triangles, an area which Meyer

et. al refers to as the 1-ring neighborhood. The averaging area is restricted to a fam-

ily of special local surface patches that are contained within the 1-ring neighborhood

of each vertex with piecewise linear boundaries crossing the mesh edges at their mid-

points. A precise surface patch that optimizes the accuracy of our curvature operators

is then found. We now discuss the derivation of the discrete mean curvature normal

operator and the discrete Gaussian curvature operator as developed and explained

by Meyer et. al in their paper.

Discrete Mean Curvature Operator

In order to compute the discrete mean curvature operator (and thus the mean cur-

vature), Meyer et. al first derive the local integral using finite volume. A linear
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interpolation between the three vertices of a triangle is selected and for each vertex,

an associated surface patch (a finite volume) over which the average will be com-

puted, is chosen. The piecewise linear boundaries of the surface patch connect the

midpoints of the edges emanating from the center vertex and a point within each ad-

jacent triangle. This area is what they computed the integral of the mean curvature

over.

The mean curvature normal operator is a generalization of the Laplacian from flat

spaces to manifolds. Gauss’s theorem says that the integral of the Laplacian over a

surface going through the midpoint of each 1-ring edge of a triangulated domain can

be expressed as a function of the node values and the angles of the triangulation.

Thus, they achieved a general formula that is valid for any triangulation

∫ ∫
AM

K(x) dA = ∇A1−ring

where K(x) is the mean curvature normal operator A1−ring is the surface area for the

entire 1-ring neighborhood. In order to provide an accurate estimate of the spatial

average, they must chose one finite volume region. They chose the Voronoi region of

each sample because, by definition, it minimizes the discrepancy between the local

spatial average of the mean curvature with the actual pointwise value. They use

the vertices of the mesh as sample points and pick the Voronoi cells of the vertices

as associated finite-volume regions. However, the Voronoi region is inaccurate for

obtuse triangles. Thus, they define a mixed area, Amixed, as follows: for non-obtuse

triangles, the circumcenter point is used, and for obtuse triangles, the midpoint of

the edge opposite to the obtuse angle is used to construct our new surface area. Now

that the mixed area is defined, they can express the mean curvature normal operator
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as

K(xi) =
1

2Amixed

∑
j∈N1(i)

(cotαj + cot βj)(xj − xi) (3.1)

where αij and βij are the two angles opposite to the edge in the two triangles sharing

the edge (xi,xj) and N1(i) is the set of 1-ring neighbor vertices of vertex i. The mean

curvature value is computed by taking half of the magnitude of 3.1.

Discrete Gaussian Curvature Operator

They use the same arguments as described in the discrete mean curvature operator

section to argue that the Voronoi cell of each vertex is an appropriate local region

to use for good error bounds. Thus, they arrive at their definition of the Gaussian

curvature discrete operator:

κG(Xi) = (2π −
f∑
j=1

θj)/Amixed (3.2)

where θj is the angle of the j-th face at the vertex xi and f is the number of faces

around that vertex.

Principal Curvatures and Axes

Now that they have both the mean and Gaussian curvatures for triangulated surfaces,

they can define the discrete principle curvatures.

κ1(xi) = κH(xi) +
√

∆(xi) (3.3)

κ2(xi) = κH(xi)−
√

∆(xi) (3.4)

where ∆(xi) = κ2H(xi)− κG(xi) and κH(xi) = 1
2
||K(xi)||.
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They find the two orthogonal principal curvature directions by computing the

eigenvectors of the curvature tensor. The mean curvature can be viewed as a quadra-

ture that uses each edge as a sample direction. By doing so, they can use these

samples to find the best fitting ellipse so that the curvature tensor can be fully deter-

mined. They then find that the two principal axes are the two orthogonal eigenvectors

of their curvature tensor.

General Overview

In summary, Meyer’s et. al curvature code first restricts the averaging area to a family

of special local surface patches that are contained within the 1-ring neighborhood

of each vertex, with piecewise linear boundaries crossing the mesh edges at their

midpoint. Then, it finds the precise surface patch that optimizes the accuracy of the

curvature operators. These operators then take a vertex and its 1-ring neighborhood

as an input and provide an estimate using equations 3.1 and 3.2. From equations 3.1

and 3.2, they then define the principal curvatures (3.3 and 3.4) and find the principal

axes.

3.2 Mesh Processing

In this section, we discuss how we treat the mesh in order to achieve the most ac-

curate Gaussian curvature values possible. Calculation of the Gaussian curvature,

KG, involves the computation of a double derivative. As a result, small fluctuations

in the location of mesh points generated during the process of scanning the surface

propagates dramatically during the curvature computation effectively obscuring the

curvature map. In this subsection, we present a method to handle noise fluctuations

to enable adequate visualisation of the Gaussian curvature map for the entire surface.

To validate the method, we 3D-print and analyse a model of a synthetic surface of

known principal curvatures. We show that the Gaussian curvatures obtained with
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the proposed smoothing techniques are strikingly close to the synthetic case except

for very small values of KG.

Surface Construction

Figure 3.1: Image of the synthetic surface mesh and 3D scanning of the 3D printed
surface.

The main surface we created is a periodic synthetic structure that resembles an egg-

crate with peaks and basins of equal height and depth above and below the mean

height. A representation of this surface is shown in figure 3.1. By design, the Gaussian

curvature everywhere on this surface falls within the range [−0.01, 0.01] mm−2. A

color map of the Gaussian curvature for the entire surface is shown in figure 3.2,

where the colors range from dark-red representing peaks and basins of positive Kg,

to dark-blue representing saddle points of negative Kg. The parabolic points appear

green in the color map. The distribution of the Gaussian curvature for this surface

is shown in figure 3.3. Note that the frequency is symmetric around zero and decays

towards its extreme values.
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Figure 3.2: Gaussian curvature color map for the analytic surface.

Figure 3.3: Distribution of Gaussian curvature for the analytic surface.

To study noise fluctuations generated in the process of scanning 3D surfaces,

we convert the the egg-crate synthetic surface into an 3D model to be printed in
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a stereolithography printer (Form 2, Formlabs). We use Formlabs’ Tough resin

(FLTOTL05), chosen for its desirable mechanical and structural properties. The

printing was done at the finest possible resolution, 25 µm layer, to achieve the best

printing quality. After curing, the surface was air-sprayed with a thin layer of white

acrylic paint to cover the reflective surface of the resin to improve 3D imaging and

subsequent reconstruction of the surface.

The printed surface was then scanned by an EinScan Pro 2X Plus scanner, which

identifies points on the surface with 40 µm accuracy. We performed a fixed auto

3D scan of the surface by taking snapshots every 6 degrees (60 steps over a 360

degree scan). In post-processing, an unwatertight mesh model was generated from

the point-cloud and edited within the scanner software to crop undesirable features

such as support pillars and floating islands. Subsequently, holes on the surface were

identified and individually filled using the tangent mode in the scanner software that

calculates the patching solution based on the point position and the normal of the

last row of triangles forming the boundary. The final mesh was then processed with

point distance resolution of 0.2 mm, the highest available for the instrument and the

output file was then saved in stereolithographic format (.stl) for further analysis.

Figure 3.1b shows a rendering of the scanned mesh surface next to the synthetic

surface under artificial shading to enhance visualization of texture details. The ren-

dering is performed in MeshLab. A close comparative inspection reveals small features

on the scanned surface not present on the perfectly smooth surface of the synthetic

model. These small features were generated during the printing and scanning steps

and, as it will be shown later, are the source of noise in the curvature calculation.
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Figure 3.4: Color map of Gaussian curvature for (a) scanned surface and (b) synthetic
surface plus noise.

We now turn to the comparative analysis of the Gaussian curvature for the printed

and synthetic surfaces.

Gaussian Curvature Analysis of Surfaces

The computation of the Gaussian curvature for every point on the scanned surface

was performed with a method by Meyer et al. [10] and implemented in MatLab

by Dastan [23] as described in section 3.1. Figure 3.4a shows the color map of the

Gaussian curvature for the scanned surface. In contrast with clear regions of the

synthetic surface of figure 3.2, the curvature map of the scanned surface is fuzzy

and barely captures the periodicity of KG. Note that in this view the holes filled in

the editing steps are easily spotted as small patches of constant Gaussian curvature.

The blurring observed in the color map emerges from fluctuations in the position

of the mesh points. To mimic these fluctuations, we introduced random noise to

the coordinate position of the mesh points of the synthetic surface to a maximum

amplitude of 0.008 mm, which corresponds to the product of the accuracy and the
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resolution of the scanner. The color map of the noise-laden synthetic surface is shown

in figure 3.4b. The similarity is striking and the features are indistinguishable except

for the patches on the scanned surface. The Gaussian curvature distribution for

both surfaces shown in figure 3.5 also looks identical indicating that fluctuations in

the mesh points are indeed the source of the noise in the Gaussian curvature map.

Furthermore, the mean and variance of the two curves are essentially the same as

shown on table 3.1.

Figure 3.5: Distribution of Gaussian curvature for the raw scanned surface and the
noise-laden synthetic surface.
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Figure 3.6: Distribution of Gaussian curvature for the original synthetic surface, the
noise-laden smoothed synthetic surface, and the smoothed scanned surface.

Data Mean Variance Skewness Kurtosis

Synt. 5.421E-06 4.077E-03 -2.460E-04 6.834E-02
Synt. + n -1.412E-03 5.254E-03 3.431E-01 -8.458E-01

Synt. + n + T -3.324E-06 4.029E-03 -5.827E-03 8.384E-02
Sc. -1.362E-03 5.306E-03 3.181E-01 -8.768E-01

Sc. + T -1.995E-04 3.531E-03 2.081E-02 5.147E-01
Sc. + T + 2xL -7.027E-05 3.650E-03 2.806E-02 3.245E-01

Table 3.1: Table of statistical data of Gaussian curvature distribution for the synthetic
and scanned surfaces with noise and smoothing.

The fact that random noise added to synthetic surface captures so well the nature

of the fluctuations present on the scanned surface suggests that surface smoothing for

noise reduction is the first step to improve visualization of the Gaussian curvature on

the surface.

23



Gaussian smoothing, based on computing weighted averages of neighboring ver-

tices, is a popular method of noise reduction of geometric surfaces. Since the number

of operations scales linearly with the number of vertices in the surface, Gaussian

smoothing is computationally inexpensive and can be applied multiple times itera-

tively to achieve long range smoothing but with the side effect of causing significant

shinkrage, specially when applied multiple times. Taubin [11] proposed a solution

to this problem by implementing two Guassian smoothing steps, one with a positive

scale factor λ followed by another with negative scale factor µ, but greater in mag-

nitude than λ to suppress the shrinkage. When applied multiple times, the method

can be thought of as a low-pass filter that effectively attenuates the high-curvature

fluctuations that plague scanned surfaces.

The Taubin smoothing method described above has been efficiently implement

in MeshLab and we use this open-source software to smooth both the noise-laden

synthetic and scanned surfaces with parameters λ = 0.80, µ = −0.83 and N = 100.

Note that the results of Taubin smoothing is not very sensitive to the specific choice of

parameters as long as the number of iterations is large. Figure 3.6 shows the distribu-

tion of Gaussian curvature for the scanned surface, the noise-laden synthetic surface

and the pure synthetic surface. Not surprisingly, the Taubin smoothing procedure

restores the randomized surface to its original distribution except for small deviations

at the tip of the tails. For small to moderate curvature, the KG distribution for the

smoothed scanned surface follows the distribution of the synthetic surface except for a

slight excess of negative KG, but for larger curvatures the surface experiences stronger

attenuation. Since the original noise levels for both the synthetic and scanned sur-

faces were the same, we conclude that large curvatures gets attenuated during the 3D

printing and scanning stages.
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Figure 3.7: Gaussian curvature color map for the scanned surface after (a) Taubin
smoothing and (b) Taubin smoothing and 2 steps of Laplacian smoothing.

Figure 3.7a shows the Gaussian curvature color map for the scanned surface

treated with Taubin smooth. It is remarkable how local regions of positive and nega-

tive KG are recovered with this simple step. Even fine details such as the micron-size

steps of printing layers are discernible in between the peaks. However, the mean

value of the distribution of the smoothed surface is much removed from the expected

zero mean as compared with the original synthetic surface. We address this problem

by performing 2 steps of a simple Laplacian smoothing of the local Gaussian curva-

ture field with reduces the mean of the KG distribution by two orders of magnitude

falling much closer to the expected zero mean. Indeed, figure 3.7b shows how this

smoothing step enhances the clusters of positive and negative Gaussian curvatures.

The details of these steps can be more clearly seen in figure 3.8 where the Gaussian

curvature color map of the scanned surface subject to Taubin smoothing, and Laplace

smoothing can be compared with that of the synthetic surface.
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Figure 3.8: Comparative Gaussian curvature color map for (a) scanned surface with
Taubin smoothing, (b) scanned surface with Taubin smoothing and 2 steps of Lapla-
cian smoothing, (c) the analytic surface.
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4 Analysis of Curvatures

In this chapter, we discuss the results obtained from the mean and Gaussian

curvature calculations. First, we analyze the mean and Gaussian curvatures over a

portion of the buckled surface containing multiple protruding vertices. Next, we focus

on the Gaussian curvature charge of single protruding vertices. Finally, we determine

the minimum width across single protruding vertices and analyze the trend across all

thickness.

4.1 Mean Curvature

We compute the mean curvature because its presence is indicative of how much bend-

ing energy is contained within the surface. The result is show in figure 4.1 which

reveals that negative curvature dominates the ridges while the positive curvature is

confined to the interior of the unit cells. As thickness decreases, the colors indicative

of mean curvature become deeper, indicating that there is an increase of bending

energy. The lobes also appear smaller and the ridges sharper as thickness decreases.

The pattern remains relatively uniform for all thicknesses, excluding shells of thickness

2.5µm and 6µm. The irregularities in both 2.5µm and 6µm are due to the extremely

thin nature of the sheet; there might be a considerable frictional force between the

Mylar and the PVC tube that prevents the pattern from forming uniformly.
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Figure 4.1: Comparison between section of scanned shells and mean curvature for
sheets of different thicknesses. Scale bars are 10000 µm.

28



4.2 Gaussian curvature

In order to understand how stress localizes as we decrease the thickness of our

shell, we must consider the stretching energy, and thus the Gaussian curvature.

Large Sections

We compute the Gaussian curvature because its presence is indicative of how much

stretching energy is contained within the surface. The result is shown in figure 4.2

which reveals multiple trends. We observe that the Gaussian curvature color map dis-

plays increasingly localized features, more closely resembling the Yoshimura pattern

as thickness decreases. The colors indicative of Gaussian curvature become deeper

as thickness decreases, illustrating that the curvature charge substantially increases

from the thickest to the thinnest shell. This trend is what we expected to see; in-

creasingly localized stresses should have a higher Gaussian curvature. We also note

that the highest regions of Gaussian curvature become increasingly localized on and

around the protruding vertices as thickness decreases. The positive Gaussian curva-

ture is majority concentrated on the apex of the vertices while the negative Gaussian

curvature is focused on the interiors of the protruding vertices. It is important to

note that the overwhelming majority of the positive and negative Gaussian curvature

charges become increasingly concentrated on and around the protruding vertices as

thickness decreases, while the rest of the buckled pattern contains majority zero Gaus-

sian curvature. This indicates that as thickness decreases, stress becomes increasingly

localised on and around the protruding vertices, as expected.
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Figure 4.2: Comparison between section of scanned shells and Gaussian curvature for
sheets of different thicknesses. Scale bars are 10000 µm.
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Figure 4.3: Probability density vs. shell thickness.

Figure 4.4: Probability density vs. shell thickness with negative and positive Gaussian
curvature values superimposed.

We further analyzed our data by plotting the probability density of the average

Gaussian curvature (Fig. 4.3). There is a clear trend in which the distribution broad-

ens as the shell thickness decreases. This indicates that as the thickness decreases,

there is an increasing amount of extreme Gaussian curvature charges. Note that in

all cases, there is more positive Gaussian curvature than negative (Fig. 4.4). Figure
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4.4 displays an interesting trend; as the thickness decreases, the distribution broad-

ens and there is a decrease in the difference between positive and negative Gaussian

curvature. The decrease in Gaussian curvatures appears linear, indicating that, at

high curvatures, the distribution is approaching a power function of the Gaussian

curvature as thickness decreases.

Figure 4.5: Mean, variance, skewness, and kurtosis plots of figure 4.3

We analyze the statistics behind figure 4.3 and fit a power law to the data (Fig.

4.5) to guide the eye. We see that both the mean and variance increase as thickness

decreases. We expect the variance to increase as the thickness decreases because the

protruding vertices become sharper and generate more Gaussian curvature. It is not

clear why the mean is increasing. This will be a topic of future investigation.

In contrast, the skewness and the kurtosis increase as thickness increases. Skew-

ness measures how symmetric or asymmetric a distribution is. We see in figure 4.5

that skewness is decreasing with thickness; this suggests that excess positive Gaussian

curvature becomes balanced by negative Gaussian curvature as the shells approach

the isometric limit. Kurtosis measures the contribution of outliers to the distribu-

tion. The kurtosis for all thicknesses is above 3 but the values decrease as thickness

32



decreases. This indicates that the distribution is better behaved for thinner shells.

Next, we focus on the Gaussian curvature of single protruding vertices.

Single Protruding Vertices

Figure 4.6 highlights individual protruding apexes from each thickness. Qualitative

analysis of figure 4.6 reveals that as thickness decreases, the Gaussian curvature charge

of a single protruding vertex more closely resembles the Gaussian curvature charge of

the Yoshimura pattern– an increasing amount of Gaussian curvature becomes more

concentrated in an increasingly smaller area. This suggests that our isometric limit

may be represented by the isometric construction. The Gaussian curvature color maps

(Fig. 4.6) also reveal that an increasing amount of negative Gaussian curvature devel-

ops around the protruding vertex as thickness decreases. As thickness decreases, we

note that there is an unanticipated rich display of secondary structures surrounding

the vertices. Around the vertices, we observe an area of positive curvature bookended

by regions of negative curvature. This pattern represents a complex interplay of posi-

tive and negative Gaussian curvature surrounding the protruding vertices. Underlying

the more prominent interplay of positive and negative Gaussian curvatures, we find

a more complex substructure with small islands of positive Gaussian curvature on

both sides of the vertex. This result reveals a complex interplay between stresses and

geometrical constraints in the Mylar sheet.
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Figure 4.6: Comparison between scanned vertices and Gaussian curvature for sheets
of different thicknesses. Scale bars are 2000 µm.
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Protruding Vertex Width

For thinner shells, features of the buckling pattern get more localized. We estimate

the degree of localization by computing the minimum width of the protruding vertices.

The method is as follows.

Figure 4.7: (a) Greyscale mean curvature map of 50 µm shell, (b) mean curvature map
where black represents positive mean curvature values and white represents negative
mean curvature values, (c) Euclidean Distance Map (EDM) of positive mean curvature
values, (d) lowest point in the ridge corresponding to shortest width of protruding
vertex.

First, we compute the mean curvature of the section containing the vertex of

interest as described in chapter 3. Next, we convert the mesh into an image by

interpolating the x,y coordinates of the mesh points into a 2D grid whose values

correspond to the mean curvature (Fig. 4.7a). The image is then segmented into

positive (black) and negative (white) curvature regions. Our goal is to determine the

minimum thickness of the central black region (Fig. 4.7b). For that we compute the

Euclidean Distance Map (EDM) of the black region, which essentially assigns for each
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foreground pixel its distance to the nearest background pixel. The result is shown

in figure 4.7c. To find the minimum distance, we focus our attention on the ridge

line between the bifurcation points and locate the minimum point in the ridge (Fig.

4.7d).

A series of image manipulations are performed at this step. First, we skeletonize

the EDM image to restrict our search to the ridge only. Then we identify the bifur-

cation points by convolving the image with a neighbor summing kernel. Finally, we

search for the point of minimum for the section of the ridge located between the two

forks. By construction, the minimum corresponds to twice the width of the vertex.

We repeat this process for 5 different vertices for each shell. The mean width of

the vertex is shown on Table 4.1.

Thickness (µm) Minimum Feature Width (mm) Uncertainty (mm)
178 5.21 0.15
127 3.91 0.45
102 3.86 0.48
76 3.22 0.32
51 2.33 0.60
25 1.59 0.13
6 0.74 0.05

2.5 0.68 0.06

Table 4.1: Table of minimum protruding vertex width for each thickness.

We plot the results of table 4.1 in figure 4.8.

36



Figure 4.8: Plot of the minimum protruding vertex width against shell thickness.

Figure 4.8 shows a clear, almost linear, trend. As thickness decreases, the mini-

mum protruding vertex width decreases. This reveals that stress is becoming increas-

ingly localized as the shell thickness decreases.
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5 Numerical Simulations

To confirm our experimental results, we simulate our buckling problem using finite

element methods [12]. First, we digitally construct the cylindrical shell. Then, we

implement imperfections to achieve nonlinear behavior. Finally, we simulate the

buckling process in ABAQUS.

5.1 Model Construction

The cylinder was constructed with length L = 127 mm and diameter D = 61.39 mm.

We assume that the material of the shell has a linear elastic behavior with a Young’s

modulus of 2.5 GPa and a Poisson ratio of 0.38. The gap between the cylindrical

shell and inner constraint was set to be 0.8 mm. A surface-to-surface discretization

method with finite sliding was used to model the contact between the shell and inner

support. Both surfaces were allowed to slide freely without friction but an Augmented

Lagrangian method was implemented to enforce contact constraints. We set the outer

of the inner support as the master surface and the inner of the cylindrical shell as the

slave surface.

We use the transversal plane in the middle of the cylinder as the plane of symme-

try; this is allowed due to the compression experienced at both ends. The presence

of this plane of symmetry enables us to model only half of the cylinder, greatly re-

ducing the computational effort. A reference node is set in the plane of symmetry

along the axis of the cylinder and connected with rigid links to all of the nodes placed

in the plane of symmetry. Symmetric boundary conditions are applied on this ref-

erence node. Due to the rigid links, these symmetric boundary conditions are then

simultaneously applied to all of the nodes on the plane of symmetry.

We set another reference point along the axis of the cylinder, again connecting it to

the nodes placed on the end of the cylinder with rigid links. An imposed displacement
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boundary condition in the direction of the axis of revolution is applied to this node

and transmitted to the other end nodes, causing the cylinder to compress.

The post-buckling analysis is a nonlinear problem, but we have made the assump-

tion that the material used is linearly elastic. Thus, the material cannot be the source

of this nonlinearity; in fact, the geometry of the model is the source. The model is

not a perfect cylinder as there are some small imperfections in it, so we must im-

plement these imperfections into the cylinder mesh in order to achieve the correct

post-buckling behavior.

Implementation of Imperfections

We use a the Linear Buckling Mode-shape Imperfection (LBMI) [21] method to intro-

duce these imperfections into our mesh. LBMI perturbs the original mesh by scaling

its mode shapes by a factor. This can be seen as a small translation of the nodal

coordinates from the original mesh in Finite Element Method:

δx =
n∑
k=1

wkφk. (5.1)

Here, φk represents the mode k or the mesh, while wk represents the scaling factor

associated to that mode.

In general, the lowest mode carries the highest scaling factor. We use this assump-

tion and starting from w1 = 0.05, we calculate every scaling factor as 2wk = wk−1.

The first three modes are used to model the imperfections. In order to determine the

mode shape used to perturb the mesh, we implement a simple Linear Modal Anal-

ysis (LMA) in ABAQUS for the original mesh. We only use the first three modes

because the scaling factor, and the effect of the mesh perturbation, decreases expo-

nentially. The accuracy of this model is checked by studying the post-buckling of a

one-dimensional beam under axial compression.
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Beam under Axial Compression

The behavior of a one-dimensional bean under axial compression is well known.

The critical load for the first buckling mode is given by

Pcr =
π2EI

L2
.

The normalized Load-Displacement curve obtained by the numerical simulation

for this problem is shown in figure 5.1. It is obvious that the buckling behavior occurs

when the load is critical.
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Figure 5.1: Normalized load-displacement curve for a beam under axial compression.

The normalized maximum deflection at the middle of the beam is plotted as a

function of the load (Fig. 5.2). We see that the deflection is zero until the load

reaches the critical value and then it grows suddenly, again highlighting the effect of

buckling.
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Figure 5.2: Normalized maximum deflection of the beam as a function of the com-
pressive force.

The results from this problem show that the procedure used in implementing

imperfections and the post-buckling analysis is consistent with theory. Thus, we now

approach the main problem of our work.

Post-buckling Analysis

After the modes are obtained and the original geometry is perturbed, a post-buckling

analysis is performed. We perform the post-buckling analysis using a displacement

control method on the top reference node, which transmits the displacement to all of

the top edge nodes through rigid links. The shell is compressed until a displacement of

1.5 mm is applied on the top edge nodes. Then, a load-displacement curve is obtained

and the mean and Gaussian curvature fields are calculated over the deformed shell.

5.2 Numerical Implementation

This problem is solved using the Finite Element software ABAQUS. The thin cylindri-

cal shell is modeled with an S8R shell element. This allows a quadratic displacement
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field calculation along the shell which results in a more accurate model and fine re-

sults, even for coarse meshes. The inner support is modeled using R3D4 elements.

Given that the inner cylinder is rigid and does not deform, this element is not relevant

to our study. However, its mesh must be refined enough so that the contact algorithm

produces accurate results. We use structural meshes along both the thin shell and

inner support because, initially, it is not known whether a pattern will appear or

which regions of the shell are the most deformed.

We parametrize the size of the elements as a factor of the radius of the cylinder,

having the coarser mesh be of side length R/10 and the most refined mesh be of side

length R/30.

5.3 Results

In this section, we discuss the results obtained from the Gaussian curvature calcu-

lations of the simulated buckled shell. We analyze the Gaussian curvature over a

portion of the buckled simulation surface that contains multiple protruding vertices.

Analysis of figure 5.3 reveals similar trends to those displayed in figure 4.2. We

plot the probability density of the average Gaussian curvature (Fig. 5.4) and find

that the distribution broadens as shell thickness decreases. This matches the results

shown in figure 4.3; thus, we confirm that there is an increasing amount of extreme

Gaussian curvature charges as the thickness decreases.
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Figure 5.3: Comparison between sections of simulated shells and Gaussian curvature
for sheets of different thicknesses. Scale bars are 10000 µm.

Figure 5.4: Probability density vs. shell thickness.
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Figure 5.5: Probability density vs. shell thickness with negative and positive Gaussian
curvature values superimposed.

The probability density shown in figure 5.5 displays the same trend of the exper-

imental data seen in figure 4.4. We observe that as thickness decreases, there is a

decrease in the difference between positive and negative Gaussian curvature. How-

ever, we note that there is always more negative Gaussian curvature than positive in

figure 5.5, whereas figure 4.4 always displays more positive Gaussian curvature than

negative. This discrepancy will be explored in future work.
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Figure 5.6: Mean, variance, skewness, and kurtosis plots of figure 5.4.

We now analyze the statistics behind figure 5.4 and fit a power law to the data as

a guide to the eye (Fig. 5.6). The power bar fits remarkably well, indicating that the

distribution is indeed approaching a power function of the Gaussian curvature. We

see that the variance increases as shell thickness decreases. This matches our exper-

imental results (Fig. 4.5) and confirms that as thickness decreases, the protruding

vertices become sharper and generate more Gaussian curvature.

The mean, skewness, and kurtosis increase as thickness increases. Our experi-

mental results also show that skewness and kurtosis increase as thickness increases

(Fig. 4.5). Thus, we confirm that as shell thickness decreases, excess positive Gaus-

sian curvature becomes balanced by negative Gaussian curvature and the probability

distribution of the average Gaussian curvature becomes better behaved.

We note that our experimental data shows that the mean increases as thickness

decreases whereas our numerical simulation data shows that the mean decreases as

thickness decreases. We expected to find the latter; we expected that, if the isometric

limit is represented by the ideal Yoshimura pattern, then the mean Gaussian curvature

would approach zero as thickness decreases due to the flat-foldable nature of the
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Yoshimura pattern. The discrepancy between the two results will be explored in

future work.

Figure 5.7: Log-log plot of the standard deviation of the average Gaussian curva-
ture vs. shell thickness for experimental and numerical simulation data. Yoshimura
pattern is not included.

Finally, we consider a log-log graph of the standard deviation of the average

Gaussian curvatures verses the shell thickness (Fig. 5.7). As the shell thickness

decreases, the standard deviation increases, indicating that the spread of the average

Gaussian curvature broadens as we approach the isometric limit. Again, this implies

that as the shell thickness decreases, an increasing amount of Gaussian curvature

is contained within a smaller area. Figure 5.7 reveals an almost linear trend for

both experimental and numerical simulation data. The strong agreement between

the experimental and numerical data indicates that the cylindrical shells are indeed

approaching the isometric limit as expected.
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6 Conclusions

We have established concrete protocols in the construction, scanning, and post-

processing of thin constrained cylindrical shells. We have also successfully computed

the mean and Gaussian curvatures of these shells experimentally and numerically.

We have found that as shell thickness decreases, the Gaussian curvature charge

substantially increases (Fig. 4.2). More precisely, the highest regions of Gaussian

curvature become increasingly localized on and around the protruding vertices as

thickness decreases (Fig. 4.6). This indicates that as thickness decreases, stress

becomes increasingly localized on and around the protruding vertices. We found

that the probability density of the average Gaussian curvature distribution broadens,

showing that there is an increasing amount of extreme Gaussian curvature charges as

thickness decreases (Fig. 4.3). We also note that the difference between the positive

and negative Gaussian curvature distributions is decreasing as thickness decreases,

indicating that the distribution is approaching a power function of the Gaussian

curvature (Fig. 4.4).

Next, we analyzed the mean, variance, skewness, and kurtosis of the probability

distribution (Fig. 4.5). The variance increased as thickness decreases, indicating that

the protruding vertices become sharper and generate more Gaussian curvature. The

skewness decreased as thickness decreases, suggesting that excess positive Gaussian

curvature becomes balance by negative Gaussian curvature. The kurtosis showed that

the probability distribution is better behaved for thinner shells.

An analysis of the width of the protruding vertices revealed that as thickness

decreases, the minimum protruding vertex width decreases. This suggests that the

stress is becoming increasingly localized as the shell thickness decreases (Fig. 4.8).

Our numerical simulations confirmed our experimental results. We note that there
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is a strong agreement between the experimental and numerical simulation standard

deviation values; this indicates that the spread of the average Gaussian curvature is

indeed broadening as we approach the isometric limit (Fig. 5.7). We also observe

that the numerically simulated variance, skewness, and kurtosis trends agree with

our experimental results (Figs. 4.5, 5.6). Additionally, we find that as shell thickness

decreases, the probability distribution of the average simulated Gaussian curvature

increases; again, this agrees with our experimental results. However, our experimental

results show that there is always an excess of positive Gaussian curvature whereas

our simulations show that there is always an excess of negative Gaussian curvature.

We also observe that the experimental mean decreases as shell thickness increases,

whereas the numerically simulated mean increases as shell thickness increases. Both

of these discrepancies will be investigated in future work.

Along with the above quantitative analyses, we found that as thickness decreases,

there is an unanticipated rich display of secondary structures surrounding the pro-

truding vertices. This reveals a complex interplay between stresses and geometrical

constraints in the thin sheets. Our future work will investigate this complex interplay.
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