
James Madison University James Madison University 

JMU Scholarly Commons JMU Scholarly Commons 

Senior Honors Projects, 2020-current Honors College 

5-8-2020 

Detecting credit card fraud: An analysis of fraud detection Detecting credit card fraud: An analysis of fraud detection 

techniques techniques 

William Lovo 

Follow this and additional works at: https://commons.lib.jmu.edu/honors202029 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Lovo, William, "Detecting credit card fraud: An analysis of fraud detection techniques" (2020). Senior 
Honors Projects, 2020-current. 86. 
https://commons.lib.jmu.edu/honors202029/86 

This Thesis is brought to you for free and open access by the Honors College at JMU Scholarly Commons. It has 
been accepted for inclusion in Senior Honors Projects, 2020-current by an authorized administrator of JMU 
Scholarly Commons. For more information, please contact dc_admin@jmu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by James Madison University

https://core.ac.uk/display/346453536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://commons.lib.jmu.edu/
https://commons.lib.jmu.edu/honors202029
https://commons.lib.jmu.edu/honors
https://commons.lib.jmu.edu/honors202029?utm_source=commons.lib.jmu.edu%2Fhonors202029%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=commons.lib.jmu.edu%2Fhonors202029%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/honors202029/86?utm_source=commons.lib.jmu.edu%2Fhonors202029%2F86&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu


Detecting Credit Card Fraud:
An Analysis of Fraud Detection Techniques

An Honors College Project Presented to

the Faculty of the Undergraduate

College of Integrated Science and Engineering

James Madison University

by William Lovo

May 2020

Accepted by the faculty of the Computer Science James Madison University, in partial fulfillment
of the requirements for the Honors College.

FACULTY COMMITTEE:

Project Advisor: Dr. Kevin Molloy
Assistant Professor, Computer Science

Reader: Dr. Nathan Sprague
Associate Professor, Computer Science

Reader: Dr. John Bowers
Assistant Professor, Computer Science

Reader: Dr. Michael Lam
Associate Professor, Computer Science

HONORS COLLEGE APPROVAL:

Bradley R. Newcomer, Ph.D.
Dean, Honors College

PUBLIC PRESENTATION REQUIREMENT WAIVED



Copyright c© 2020 by William Lovo
All Rights Reserved

2



Dedication

This work is dedicated to my mother Lucia Reyes and my wife Thi D. Lovo, both whom I credit

with establishing my passion for academia. This work is also dedicated to my brothers, Hector H.

Lovo and Alexander H. Lovo, for constantly motivating me to strive for success.

3



Table of Contents

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 Fraud Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.1 Early Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 State-of-the-art Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Encoding Non-Numerical Values . . . . . . . . . . . . . . . . . . . . . . 20

3.1.2 Imputation of Missing Values . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Scaling Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.5 Preserving Class Distributions . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.4 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Concept Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4



4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 Vesta Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Machine Learning Group Dataset . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Model Tuning Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 K-Nearest Neighbors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.4 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1 Vesta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.2 MLG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Concept Drift Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.1 Vesta Removed Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5



List of Tables

Table Page

4.1 Visual representation of a confusion matrix. . . . . . . . . . . . . . . . . . . . . . 37

4.2 The measures for the top 10 Naive Bayes classifiers on the Vestavalid set. . . . . . . 43

4.3 The measures for the top 10 NB classifiers on the MLGvalid set. . . . . . . . . . . . 44

4.4 The measures for the top 10 KNN classifiers on the Vestavalid set. . . . . . . . . . . 45

4.5 The measures for the top 10 KNN classifiers on the MLGvalid set. . . . . . . . . . . 45

4.6 The measures for the top 10 Random Forest classifiers on the Vestavalid set. . . . . . 46

4.7 The measures for the top 10 Random Forest classifiers on the MLGvalid set. . . . . . 47

4.8 The parameters for the top 10 Neural Network classifiers on the Vestavalid set. . . . 48

4.9 The measures for the top 10 Neural Network classifiers on the Vestavalid set. . . . . 49

4.10 The parameters for the top 10 Neural Network classifiers on the MLGvalid set. . . . 50

4.11 The measures for the top 10 Neural Network classifiers on the MLGvalid set. . . . . 50

4.12 Results of the top performing models for each unseen dataset. . . . . . . . . . . . 51

5.1 Results of the Random Forest static and update drift models. . . . . . . . . . . . . 59

A.1 The features removed during the Vesta dataset preprocessing step. . . . . . . . . . 67

6



List of Figures

Figure Page

1.1 Estimated payment methods used per transaction from 2009 to 2018. . . . . . . . . 12

1.2 The proposed process flowchart for credit card fraud detection. . . . . . . . . . . . 15

3.1 Overview of a typical neural network’s structure. . . . . . . . . . . . . . . . . . . 29

3.2 The process of splitting a training set for K-Folds Cross Validation. . . . . . . . . . 32

3.3 Overview of how a static approach operates. . . . . . . . . . . . . . . . . . . . . . 33

3.4 An ensemble of models trained with sequential subsets of data. . . . . . . . . . . . 35

4.1 Example Receiver Operating Characteristic curve graph. . . . . . . . . . . . . . . 39

4.2 The last 70 F1 scores within the feature selection algorithm on the Vesta dataset. . . 41

4.3 The F1 scores within the feature selection algorithm on the MLG dataset. . . . . . . 42

4.4 The confusion matrix of the tuned models for the Vestatest dataset. . . . . . . . . . 54

4.5 The Receiver Operating Characteristic graph of the tuned models for the Vestatest

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 The confusion matrix of the tuned models for the MLGtest dataset. . . . . . . . . . 56

4.7 The Receiver Operating Characteristic graph of the tuned models for the MLGtest

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 The confusion matrix of the drift models. . . . . . . . . . . . . . . . . . . . . . . 60
5.2 The Receiver Operating Characteristic graphs of the drift models. . . . . . . . . . 61

7



List of Algorithms

1 LABELENCODER algorithm for transforming non-numerical values. . . . . . . . . . 21
2 UNIVARIATEIMPUTER algorithm for univariate imputation. . . . . . . . . . . . . . 21
3 FEATURESELECTION algorithm for threshold feature selection. . . . . . . . . . . . 23

8



List of Acronyms

FDS Fraud Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

NB Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

KNN K-Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

RF Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
NN Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MSE Mean Squared Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

KLD Kullback-Leibler Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

BCE Binary Cross-Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

SGD Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
ELU Exponential Linear Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ReLU Rectified Linear Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
CD Concept Drift

TP True Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FP False Positive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
TN True Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

FN False Negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ROC Receiver Operating Characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ROC AUC Area Under the Receiver Operating Characteristic curve . . . . . . . . . . . . . . . . . . . . . . . . 38

PCA Principle Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9



Acknowledgments

I would like to start by thanking my advisor Dr. Kevin Molloy for his time, effort, and guidance

throughout this work and outside of it. It was Dr. Molloy who inspired me to explore the field of

machine learning and inspired this research. I also want to thank him for his commitment and

patience throughout the work, which would have not been completed without his support.

I would like to thank Dr. Nathan Sprague, Dr. Michael Lam, and Dr. Bowers for their continued

support throughout this work. Their insight provided some unique characteristics to the work and

their discussions helped solidify some of the topics discussed in this work.

I would like to thank Dr. Sprague for the discussions, idea, and advice provided during the start

of this work which helped progress the work and proved to be invaluable.

I would like to thank Dr. Lam and Dr. Bowers for their support outside of the work and helping

me become a better computer scientist.

I would like to thank Dr. Sharon Simmons and the entire Computer Science department at

James Madison University for their encouragement and continued efforts to assist me in every way

possible. I’ve enjoyed every moment I’ve spent in the Computer Science department and would

have not changed my time at James Madison University for anything else. I would also like to

thank the Honors College at James Madison University for providing the opportunity to better

myself academically and for providing me with the opportunity start this research work.

10



Abstract

DETECTING CREDIT CARD FRAUD: ANALYSIS OF FRAUD DETECTION TECHNIQUES

William Lovo

James Madison University, 2020

Thesis Director: Dr. Kevin Molloy

Advancements in the modern age have brought many conveniences, one of those being credit

cards. Providing an individual the ability to hold their entire purchasing power in the form of

pocket-sized plastic cards have made credit cards the preferred method to complete financial trans-

actions. However, these systems are not infallible and may provide criminals and other bad actors

the opportunity to abuse them. Financial institutions and their customers lose billions of dollars

every year to credit card fraud. To combat this issue, fraud detection systems are deployed to

discover fraudulent activity after they have occurred. Such systems rely on advanced machine

learning techniques and other supportive algorithms to detect and prevent fraud in the future. This

work analyzes the various machine learning techniques for their ability to efficiently detect fraud

and explores additional state-of-the-art techniques to assist with their performance. This work

also proposes a generalized strategy to detect fraud regardless of a dataset’s features or unique

characteristics. The high performing models discovered through this generalized strategy lay the

foundation to build additional models based on state-of-the-art methods. This work expands on the

issues of fraud detection, such as missing data and unbalanced datasets, and highlights models that

combat these issues. Furthermore, state-of-the-art techniques, such as adapting to concept drift,

are employed to combat fraud adaptation.
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Chapter 1: Introduction

Credit cards and other forms of electronic payment have become an integral part of modern

society. They simplify the day-to-day transactions with businesses and are slowly easing out cash

as the primary method of payment, with card-based payments accounting for approximately 51%

of transactions [1].

Figure 1.1: Estimated payment methods used per transaction from 2009 to 2018.

While the use of such modern systems promotes convenience and a level of security, they are

not infallible. These systems provide criminals (commonly referred to as bad actors) with the

opportunity to abuse them, such as committing fraud, in situations they previously would not have

been able to. The result of these fraudulent activities have financial consequences, not only for the

individual affected but potentially the financial institution involved and their customers. The cost
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of $1 used in a fraudulent transaction is estimated to cost the financial institution approximately

$3.25 [2]. In total, an estimated $27.95 billion was lost to fraud-related activities worldwide in

2018 and that figure is predicted to increase to $37.34 billion by 2025 [3].

Financial institutions typically use some form of authentication method as the first measure

to prevent fraud. However in 2020, an estimated 47% of financial institutions reported they had

experienced fraud in the past 24 months [4]. Advancements in the fields of Data Analysis, Data

Mining, and Machine Learning have provided more robust methods to detect and predict fraudulent

activities. This has led to the creation of Fraud Detection System (FDS), which typically implement

two steps to combat the issue: fraud prevention and fraud detection. Fraud prevention seeks to

block fraudulent transactions before they occur while fraud detection seeks to discover fraudulent

activities after they occur [5]. However, general technological advancements have also made it

easier for bad actors to commit fraud and possibly circumvent detection by changing their patterns

over time.

The purpose of this work is to analyze various machine learning techniques regarding their

ability to detect fraudulent credit card activity and patterns. This will be done by analyzing a select

number of common machine learning models for their effectiveness to detect credit card fraud and

explore additional techniques that can assist the models with their predictions to detect fraudulent

activity on datasets or data streams. The models to consider will be ones that can both predict the

class (fraudulent or non-fraudulent) of a transaction and generate the probability of a transaction

being fraudulent. The additional techniques to consider are ones that will generalize well and

will work independently of the dataset’s features or values, while assisting in the fraud detection

process.

Some of the major challenges in this work are:

• Addressing the imbalance of fraudulent and non-fraudulent transactions in datasets,

• Detecting the changing nature of fraudulent activity,

13



• Implementing a general strategy that will work efficiently and effectively on datasets, re-

gardless of the given feature set.

The imbalance of fraudulent transactions in datasets may lead to the creation of a model which

only learns the distribution of classes in a dataset, which may not be effective in discovering fraud-

ulent patterns. Bad actors may change their behavior over time to try and combat fraud detection.

This concept, known as drift, demonstrates how a model built from data collected in the past may

suffer in performance as time progresses. The concept of drift may also apply when modeling

normal/non-fraudulent behavior, where a customer may change their purchasing patterns due to

unforeseen events. Furthermore, not all Fraud Detection System use the same design and analyze

different information. A Fraud Detection System may benefit from implementing a generalized

strategy that will have the ability to act on datasets with different features.

This thesis investigates building models to perform automated classification of credit card

transactions as fraudulent or non-fraudulent (legitimate). Chapter 2 reviews prior works on the

subject of credit card fraud detection. Chapter 3 details the machine learning models used in this

work. Chapter 4 discusses the two datasets utilized in this work, the experimental setup, and the

results of tuning the machine learning models. Chapter 5 discusses and analyzes techniques that

focus on detecting and exploiting drift. Chapter 6 provides future potential research directions and

a summary of this work.

Figure 1.2 shows an overview of a proposed credit card fraud detection process flow discussed

in this work. The colors denote the section in which the step is discussed. The arrows between the

data transformations indicates information being shared among them.
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Chapter 2: Literature Review

This section outlines some background information and related work on credit card fraud de-

tection. First, we provide some background on general approaches to fraud detection. Next, we

briefly discuss state-of-the-art methods and some of the latest innovations in fraud detection.

2.1 Fraud Detection

Data science is utilized across many business and security fields to identify fraud. This includes

medical fraud, insurance fraud, financial fraud, and of course credit card fraud. A survey paper

by Phua et. al summarizes different computational approaches for identifying fraudulent activity

across these fields and the challenges that exist [6]. These challenges include the general lack

of publicly available data for research, the unbalanced nature of fraudulent activity (the small

percentage of fraud compared to the volume of “normal” transactions), and problem of model

comparison due to different performance measures employed by different researchers. Because

model comparison is difficult, the performance of the methods in this literature review have been

excluded. This paper also highlights another challenge of using supervised learning techniques for

this problem, which is the potential inaccuracies in the training data. For many fields (insurance

fraud for example), there is fraud that goes undetected. Mislabeling this activity as non-fraudulent

in training data makes it even more difficult for classification algorithms to succeed.

2.1.1 Early Methods

In the case of credit card fraud, customers are motivated to manually identify the fraud, where

they notice unusual activity on their card that they have not authorized. Similarly, the financial

16



institution may contact the customer and have them confirm the transactions if they suspect fraud-

ulent activity. However, manual reviews can be both time- and resource-consuming given the num-

ber of fraudulent transactions that occur. This has led to the development of various techniques,

some using statistical models, in order to assist in the fraud detection process.

As early as 1994, Ghosh and Reilly proposed a 3-layer neural network approach on a rather

large dataset for the time (450,000 transactions) [7]. Ensemble methods, such as those proposed

by Chan et al, utilized decision trees and boosting [8]. This work introduced methods for distribut-

ing the computation of these models (required for scalability) and employed a cost function that

assigned higher weight to transactions with larger fraudulent amounts. This type of loss function

focused on identifying the fraud that would recover the most money for a financial institution.

Naive Bayes approaches were also explored, such as the work by Mayes et al [9]. Mayes’ paper

highlights one of the challenges of fraud detection research, which is the confidentiality of the

datasets used even in peer reviewed published works. Mayes’ paper excludes any details on the

features utilized in building and evaluating their models.

2.2 State-of-the-art Methods

As identify by Phau, professional fraudsters will continually adapt their behavior to combat

fraud detection systems [6]. As discussed in Section 3.5 and explored in Chapter 5, the changes

in fraudulent activity in order to avoid detection is known as “drift”. This behavior can be seen in

many fields like email spam, where spam generation adapts to avoid automated detection. In order

to combat drift, one approach is for classification algorithms to divide data into “chunks” based on

time, and to effectively negatively discount data/observations based on time (in other words, assign

more weight to the more recent trends/patterns).

Early work by Fan utilized ensemble learning with decision trees to build models that could

17



capture this behavioral drift [10]. In order to generate enough data to perform this analysis, “syn-

thetic data” was utilized to introduce drift into the features. More recent works by Dal Pozzolo

utilize both real life and synthetic datasets to investigate how to divide the data into these temporal

groupings [5, 11]. In these works, the data is divided using a “sliding window”, where each set of

data is used to train a decision tree in a random forest architecture.
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Chapter 3: Methods

This chapter discusses the various methods explored in this work for the purpose of detecting

fraudulent credit card activity. Before investigating novel approaches to this problem, this work

implements and tunes commonly used machine learning classification models. These models assist

with investigating difficult issues in machine learning, such as data processing, and can be used for

comparisons to other models. These models will form a performance baseline, allowing this work

to be compared to other existing published results as well as to evaluate novel techniques used to

enhance model performance. The first section discusses the steps taken prior to building a machine

learning model. The second section discusses the details of the baseline models involved in this

work. The third section discusses the process behind the tuning the models. The fourth section

discusses how a model’s performance will be evaluated. The fifth section discusses the concept of

drift and methods to detect the changing nature of fraudulent credit card activities.

3.1 Preprocessing

In order to train machine learning algorithms to analyze statistical patterns and correlations, it

is necessary to collect example data and store them in datasets. These datasets commonly require

some preprocessing, commonly referred to as data cleaning or scrubbing, before building machine

learning models. These preprocessing steps commonly include:

• Changing categorical data into a nominal or ordinal representation,

• Dealing with example transactions that have some missing or omitted features,

• Selecting features from example transactions that contribute to its classification,
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• Normalizing features that have different order of magnitudes within their values,

• Handling datasets with unbalanced class distributions.

In order to properly create models for credit card fraud, many factors related to the data need

to be considered. For example, the party responsible for recording, aggregating, and providing

the data may not have a complete dataset. If the dataset is particularly large, it may require large

amounts of memory or time to generate a model or possibly some feature of the dataset may affect

a prediction more than others. If some features of a transaction are categorical, such as the type of

card used, it will be difficult to give a measure for the differences between the various categorical

values.

With all of these issues in mind, preprocessing the data provided becomes an essential part of

the model creating process. The next section will discuss the methods utilized to address the issues

discussed.

3.1.1 Encoding Non-Numerical Values

There are classification models that operate by mapping the feature space fd into the real

number space R. A standard credit card activity dataset may contain features that are categorical

or non-numerical by nature such as the name of the vendor, the type of card used, the product

type, and more. This becomes an issue when mapping their values into the R space and requires

some form of transformation. One solution is to replace the non-numerical values with a numerical

one, while retaining the categorical groupings within each features. Such a process is described

in Algorithm 1, which assumes there are no missing values in the given feature. The Scikit Learn

package implements such an algorithm with an ORDINALENCODER function and is utilized for

this purpose [12].
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Algorithm 1: LABELENCODER algorithm for transforming non-numerical values.
Data: x: categorical column in dataset, n: number of records in x
Result: x: resulting column with in-place transformation

dict ← {∅}
label counter ← 0

for i← 0 to n do
if dict .keyExists(xi) = False then

dict(xi) ← label counter

label counter++

xi ← dict(xi)
return x

3.1.2 Imputation of Missing Values

There are a number of classification models that cannot handle missing data, with the majority

of the baseline models falling under this category. In order to give the models a dataset where every

feature of a transaction has a value, information must be inferred to fill in the missing data. The

strategy used in this work imputes values (replaces missing values) with the statistical mean of the

values available in each feature in order to avoid significantly modifying the distribution of values.

Algorithm 2 demonstrates this process. The Scikit Learn package implements such an algorithm

with an SIMPLEIMPUTER function and is utilized for this purpose [12].

This step is applied to the training set and the testing set independently to avoid the transfer of

information from one to the other by fitting a different imputer on each set.

Algorithm 2: UNIVARIATEIMPUTER algorithm for univariate imputation.
Data: X: dataset with missing values
Result: X: resulting dataset with in-place transformation

foreach column in X do
µcolumn ← mean(column)
foreach value in column do

if value is not a number then
value = µcolumn

return X
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3.1.3 Feature Selection

It is a common misconception that an abundance of features to analyze is a desirable trait to

have from a dataset. Adding features to the dataset increases the dimensions of the feature space,

denoted as fd where d is the number of features, which may lead to a sparse dataset as the space

grows exponentially [13]. Sparse datasets can make it difficult to detect patterns, as the distances

between data points become more uniform. This work avoids a large feature space for the purpose

of building models that will accurately detect fraud. This is done by pruning the number of features

used from the dataset while retaining features that provide the most information.

There are a few different strategies that exist in order to select the best performing feature

subset. One is to iterate over every possible subset, from 1 to d, and select the subset that performs

the best. Although this strategy is very thorough, it does not work well on datasets with many

features. With a feature space of d, this strategy would need to iterate over
∑n

k=0

(
n
k

)
or 2n different

subsets. A dataset with 30 features would have over 1 billion different subsets to explore and the

number grows exponentially as features are added.

Alternative time-efficient strategies include forward and backward selection, in which the sub-

set of features that performs the best with a feature added, or removed, is progressively selected

until some threshold is reached and requires approximately d2 or 1+ d(d+1)
2

iterations, respectively.

Although this performs better in terms of time, there is still another more time-efficient strategy

that can be employed.

This work proposes a greedy algorithm, shown in Algorithm 3, which will run in d iterations.

The algorithm described is a generic one, accepting a classification model and metric function. The

model is trained on a subset of features from the original set, gradually adding a new feature to the

subset and calculating the metric score of the model on the new subset. If the change in the metric

score at an iteration remains above the threshold, then the new feature is retained. If the change in

the metric score goes beyond the threshold, then the feature is removed from consideration. This
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threshold is used to allow a feature to increase the metric score without bounds while preventing

the feature to significantly decrease the metric score. It is important to note this algorithm assumes

the given dataset has no missing values and is properly formatted for the given classification model.

Algorithm 3: FEATURESELECTION algorithm for threshold feature selection.
Data: X: complete dataset, y: true labels, j: Number of features,
model: classification model, metric: metric function, θ: threshold value
Result: Xs: reduced dataset with selected features, s: list of selected features,
f : list of removed features

s = [∅]

f = [∅]

previous metric← 0

train X, test X, train y, test y ← TrainTestSplit(X, y)

for feature← 0 to j do
current features← s ∪ feature
current train← train Xcurrent features

current test← test Xcurrent features

predicted labels←model.fit(current train, train y) .predict(current test)
current metric← metric( test y, predicted labels)

if previous metric− current metric < θ then
s← s ∪ feature
previous metric← current metric

else
f ← f ∪ feature

return Xs, s, f

3.1.4 Scaling Features

A common approach employed by classification algorithms is to label new data points with

the class of nearby examples within the training data. Example points are considered to be nearby

a query point p by computing the distance between p and the example points within the training

data. K-Nearest Neighbor is classic example of this type of classifier. However, simply projecting
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the values of a training example into a Rd space and utilizing a distance metric (such as Eucledian

distance) can be hazardous since features can have different magnitudes. An example of this would

be projecting a transaction’s product quantity and total purchase price, where we can expect a lower

number for the quantity as opposed to the purchase price which could easily be in the thousands.

To avoid this issue, all the features in a dataset are scaled to a common range. There are many

different strategies to scale a features to a common range but this work will use Min-Max scaling.

Min-Max scaling transforms features by scaling their values such that value ∈ [0, 1], based on the

minimum and maximum values within the feature. This process is shown in Equation 3.1 where

x is the vector of values for a feature. In theory, each feature in the dataset will have an similar

magnitude when used by a model.

x′ =
x−min(x)

max(x)−min(x)
(3.1)

Ideally, the range of values produced by the algorithm are retained to apply across the entire

dataset. The strategy used in this work will fit a Min-Max scaler only on the training set and then

use it to scale the other subsets to avoid any potential knowledge transfer between the training,

validation, and testing set during the scaling process.

3.1.5 Preserving Class Distributions

One of the challenges in building a proper model for fraud detection is properly separating

a dataset for the purposes of training, validating, and testing the models. If a split is made by

randomly sampling the dataset, there is a high chance that the classifier will miss the information

needed to identify fraud, given the unbalanced nature of fraudulent transactions (typically 4% or

less are are fraudulent). By using a stratified sampling for the initial split, the dataset can guarantee

a percentage of the fraudulent transactions will exist in the various samples.
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3.2 Machine Learning Models

The primary task of this work is to discover compare methods of predicting fraudulent trans-

actions. This process is defined as classification, using input data to predict a discrete label. In this

work, a number of classification models are constructed for two purposes: to reproduce existing

credit card fraud detection techniques and to serve as a baseline for comparison against alternative

methods and the other baseline methods themselves. The models included are Naive Bayes (NB),

K-Nearest Neighbor (KNN), Random Forest (RF), and Neural Network (NN) classification. Pre-

defined algorithms for each model are available from either the Scikit Learn API [12] or the Keras

API [14]. This chapter details out the implementation of each of these models.

3.2.1 Naive Bayes

Naive Bayes is a model that applies Bayes’ Theorem with the naive assumption that each

feature is conditionally independent from the other features [15]. The relationship between a target

variable and its vector of features can be described using Bayes’ Theorem in the formula below

[15]:

P (y | x1, . . . , xn) =
P (y)P (x1, . . . xn | y)

P (x1, . . . , xn)
(3.2)

Using the ’naive’ assumption that features are conditionally independent [15]:

P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y), (3.3)

The formula can be further simplified to [15]:

P (y | x1, . . . , xn) =
P (y)

∏n
i=1 P (xi | y)

P (x1, . . . , xn)
(3.4)
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Naive Bayes is considered a generative model, where the target variable prediction is based

on the probabilities of its features. One of the strengths of the model is that it easy to work with

in terms of building and making predictions. Probabilities can be easily calculated simply by

passing a series of examples with no missing values. However, correlated features may affect the

performance of the model as it assumes conditional independence [13].

The typical hyper-parameter to tune is the set of priors (prior probability distribution) for each

class, which this work does not tune. Instead, the priors are set by calculating the class distribution

in the training set. The Scikit Learn package provides the ability to tune a variance smoothing

value, which the source code states is the portion of the largest variance used to boost the variance

of other features, as unbalanced variance ratios may cause numerical errors [12].

3.2.2 K-Nearest Neighbors

The K-Nearest Neighbor method uses the k nearest points in some feature space to classify a

new test point, where k is the designated number of neighbors to consider. The standard method

of determining the class for a test example is through a majority vote, with each point in the model

having an unweighted vote. An alternative approach for classifying a point with KNN is to add a

weight to each neighbor’s vote by the distance of the neighbor to the test point, known as weighted

KNN.

K-Nearest Neighbor is a lazy-learning model, where an explicit model is not built. For each

query point p, KNN searches through the training data, identifies the k closest points to p through

some distance measure, then performs an unweighted or weighted vote. In some cases, data struc-

tures such as k-d trees are built to speed up this search. KNN has the advantage that because no

model is built a priori, then new data can be used to augmented the model with almost zero over-

head. Incorporating new data is referred to as online adaptation. If the amount of training data is

large, classifying each query point p can incur a significant memory requirement (since all of the

training data must be retained) and is computationally expensive.
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The typical hyper-parameters to consider when training a KNN are the number of neighbors to

consider k and whether the votes should be uniform or weighted.

The selection of k to use in the voting process is important. If k is too small then it may

be influenced by outliers or noise, leading to overfitting. If k is too large then the vote may be

influenced by the larger class, leading to a biased model.

As previously described, either uniform or weighted voting can be applied to the voting process.

This work will measure the distances between two n-dimensional samples p and q by using the

Euclidean distance, in which the formula is described as:

distance(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (3.5)

3.2.3 Random Forest

Random Decision Forests, also known simply as Random Forests, operate on the principle of

building an ensemble classifier composed of decision trees (a model that predicts a class using a

set of simple decision rules) such that each tree is built with a different feature vector [16].

Building a set of decision trees composed of varying data can help reduce bias in the Random

Forest classifier by forcing varying distributions for each feature when passing different sets of data

to train on [16]. This creates decision trees of varying structures, containing a different number of

leaves and reaching different depths. This entire process allows the ensemble of decision trees to

generate varying predictions, combining the results for a final prediction.

There are a few different methods available to generate a random set of examples to pass

through a decision tree. The most common technique is to randomly sample without replacement

a set of examples from the original training set. Another is to use bootstrapping where new sets

of examples are created by randomly sampling the original training set with replacement, allowing

an example to appear more than once, and passing the new set to the decision tree.
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When decision trees are created, they create decision rules based on the value should be used

to split a feature to better predict the target variable. The function used at a node to measure the

quality of a split affects how the splits are made during the creation of a decision tree. Typically,

the two criterion functions considered are Gini Index and entropy information gain [17]. However,

the Gini Index typically outperforms the entropy information gain, both computationally and ana-

lytically. Another factor that may improve performance is the use feature subsets to consider for

splits as opposed to using the entire feature set [16]. This helps maintain a high level of variance

in the decision tree but may cause some bias if the subset is not large enough [15].

The hyper-parameters to consider when training a RF model are the number of estimators

(decision trees) to build, the maximum feature subset size to consider, the maximum depth of the

tree, and the sampling method.

The number of estimators affect the quality of the RF prediction, where typically a larger

number of estimators tend to produce better predictions at the expense of more computations.

Predictions tend to stop improving after a critical number of estimators.

The maximum feature subset size can affect both the bias and variance of the classifier based

on the subset selected. The maximum depth of the decision tree affects the thoroughness of the

splits. Typically, allowing a tree to grow without restrictions produces a model that may overfit the

training data.

As previously mentioned, the sampling for the example subsets affects the decision trees con-

structed by passing different varying example sets, leading to varying predictions.
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3.2.4 Neural Network

Multiple 
Layers

. . . . .
Input

Hidden Layers

Output

Figure 3.1: Overview of a typical neural network’s structure.

Artificial neural networks, ANNs or simply NNs, are inspired by a network of neurons, where

signals are transmitted from one neuron to the next. A general overview of a typical neural net-

work’s structure is show in Figure 3.1. The general functionality of a neuron inside a network is

to take in a series of inputs and provide an output. This is done by storing a set of weights equal

to the number of inputs given within a particular neuron, processing the weighted input through an

activation function and a bias value. A single pass through this process is named forward propaga-

tion.

These neurons can be stacked into a layer, where typically all the inputs from the previous layer

are connected to each neuron. If the layer has k inputs, this results in k ∗n connections, where n is

the number of neurons in this layer. This strategy of a densely connected layer is known as a dense
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connection strategy. Multiple dense layers can be chained together to create a network of layers.

When training a neural network, there are a few tasks to focus on during the learning phase.

After completing a forward propagation cycle, the error between the predicted value and actual

value can be measured through some function known as a loss function. Some commonly used

loss functions are Mean Squared Error (MSE), Kullback-Leibler Divergence (KLD), and Binary

Cross-Entropy (BCE) [18]. This value is then propagated back through the network to adjust

and tune the weights of each neuron. A single pass through this process is named backwards

propagation. The process of completing a cycle of forward and backwards propagation across the

entire dataset is referred to as an epoch. Hyper-parameters include both the number of epochs to

complete as well as the number of training examples per epoch (referred to as the batch size).

After measuring the error of the predicted value, the neural network can begin to improve on

its predictions. This improvement occurs during backwards propagation, after an output has been

determined. The loss is reduced and optimized by adjusting the weights of each variable at each

layer. This process of optimizing the weights for each node is commonly accomplished using an

optimizer functions, such as Stochastic Gradient Descent (SGD), Adam, and Nadam [19, 20].

As previously mentioned, neurons operate using a set of weighted values to process a given

input, which acts as a linear function. However, it is possible to discover non-linear relationships by

mapping the results of a neuron into different space with a separate function known as an activation

function. Common activation functions include Softmax, Exponential Linear Units (ELU), and

Rectified Linear Units (ReLU) [21].

A neural network does not need to be composed of a single type of layer and can be composed

of varying layers to perform different tasks. An example of an alternative layer would be a modified

dense layer with a dropout factor, which drops random data samples each epoch so the neural

network does not overfit to the data over the course of many epochs.

All of the components described in a neural network are subject to hyper-parameter tuning.

However, due to numerous components and possible strategies to use within a component, the
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values to consider for each will be relatively small.

3.3 Model Tuning

A goal of this work is to evaluate each of the proposed models. In order to discover the best

performing instance of a classifier, an exhaustive hyper-parameter grid search can be performed

[22]. The idea is to have a set of possible values to pass to each hyper-parameter and exhaustively

run every combination possible, then use a validation set against each model to generate and report

various metrics for performance evaluation.

Stratified K-Folds Cross Validation assists in evaluating the performance of a model. The

training set and validation set are further split into k folds, each maintaining the original dataset’s

class distribution. This is done to prevent overfitting a model on the data given. The performance

results of each fold combination are then averaged and returned during the tuning process. A k

value of 5 for the cross validation is used is used for this work.
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Figure 3.2: The process of splitting a training set for K-Folds Cross Validation.

3.4 Model Evaluation

Prior to fitting the different models, the original dataset is subdivided into multiple splits, typ-

ically a training set and a testing set. The testing set is an unseen data that is used to produce

the different measures of performance. The simplest measure of performance is to evaluate the

accuracy of the models. While accuracy is important, it should not be the only indicator of perfor-

mance for the models. There is the possibility that a model may be overfitting the data and may

have issues generalizing to new data as the nature of fraud changes over time. The imbalance of

classes in the dataset can also affect the model’s performance, where one class is prevalent enough

to affect the model’s classification strategy.
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A model can be better evaluated for performance by using other measures alongside the classi-

fier’s accuracy, such as considering additional measures, utilizing confusion matrices, and charac-

terizing models via their receiver operator characteristic (ROC). The details of each are discussed

in Section 4.1.

3.5 Concept Drift

Sections 3.1, 3.2, 3.3, and 3.4 describe the various methods one can employ to build a machine

learning model for the purpose of detecting credit card fraud in a sequential manner, where past

examples are used to build a model which can then be deployed in a FDS to detect fraudulent

transactions in future instances. The model is replaced periodically, using newly gathered examples

to create a new model in an attempt to detect new fraudulent patterns, as shown in Figure 3.3 [5].

Dal Pozzolo defines this approach as a static approach [5].

Time

Predicts
Model

Non-Fraudulent Transactions

Fraudulent Transactions

Figure 3.3: Overview of how a static approach operates.

A static approach benefits from having a lower learning effort, relying on a single model to

make future predictions. However, the one drawback to this approach is the inability to adapt to

the changing nature of a customer’s buying habits and fraudulent activities. This change in the
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behaviour over time is typically referred to as Concept Drift.

Recent works uses a modified form of online adaptation to address the issue of Concept Drift.

Rather than updating a model by passing it the entire set of past examples in one go, an alternative

approach proposes to reduce the dataset into multiple, sequential subsets that ranges between a set

time interval. These subsets are likely to contain different distributions in the target class and their

features, emulating the drift in spending and fraud habits.

To address Concept Drift, a number of models can be created and trained with a consecutive set

of subsets to form an ensemble of models [5]. The strategy is to remove an older subset and replace

it with a newer subset for the next model in a chronological order to emulate the progression of

transactions through time.

More formally, a set ofmmodels can be trained by passing a set of b subsets, a batch of subsets

from the total c subsets, that occur in chronological order. These m models form an ensemble

that are used collectively to form predictions. Figure 3.4 displays how this method operates [5].

This allows individual models to discover trends and patterns as time progresses, adapting to the

changes that occur over time. However, a drawback of implementing such an approach is the need

for properly sized subsets to capture fraudulent activities and the increase in computation time to

build the various models.
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Figure 3.4: An ensemble of models trained with sequential subsets of data.
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Chapter 4: Results

This chapter describes the implementations the topics covered in Chapter 3 and presents their

results. The first section will discuss the details of the experimental design. The second section

discusses the datasets, their purpose in this chapter, and their characteristics, such as their origins,

their authors, and their distribution. The third section details the proposed models implementa-

tion and the hyper-parameter tuning process. The fourth section reviews the performance of the

proposed models.

4.1 Experimental Design

There are a variety of metrics this work employs to assess the performance of the different

models. The accuracy of the classifier can be used to evaluate how well a model predicts the

class of an example. By denoting the set of the true labels as y, the set of predicted labels as ŷ,

the number of samples in a given dataset as n, and the index of a sample as i, then the model’s

accuracy can be measured with Formula 4.1 [15]. In the formula, (ŷi = yi) denotes a boolean

operation for the ith sample where the result is 1 if the labels match and 0 if they do not.

accuracy(y, ŷ) =
1

n

n−1∑
i=0

1(ŷi = yi) (4.1)

Accuracy alone is not sufficient to measure a model’s performance, particularly with unbal-

anced datasets. In this work, the two datasets used have over 96% of their examples classified as

non-fraudulent. A model could achieve an accuracy of 96% or greater if it were to classify all
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examples as being non-fraudulent, which can be misleading as it misclassifies every fraudulent

sample. Therefore, this work uses additional metrics to report on the model’s performance.

The model classifies whether a given example is fraudulent, therefore we state that a fraudulent

class are positive and non-fraudulent cases are negative. A fraudulent example that is predicted to

fraud is a True Positive (TP), where a fraudulent example that is predicted to non-fraud is a False

Negative (FN). A non-fraudulent example that is predicted to non-fraud is a True Negative (TN),

where a non-fraudulent example that is predicted to fraud is a False Positive (FP).

We can further assess the model’s performance by creating a matrix of a transaction’s actual

class versus it’s predicted class, known as a confusion matrix. The confusion matrix provides a

visual representation of the model’s ability to identify fraudulent and non-fraudulent cases. Table

4.1 shows a representation of a confusion matrix, where the labels on the x-axis represents the

predicted classes and the labels on the y-axis represents the true classes. The confusion matrices

are normalized by dividing each predicted value by the total count of the true class.

Fraud Not Fraud

Fraud TP FN

Not Fraud FP TN

Table 4.1: Visual representation of a confusion matrix.

The precision measure displays a model’s ability to properly identify positive samples as pos-

itive and avoid misclassifying negative samples as positive. This is done through counting all the

TP and FP predicted by the model and evaluated using Formula 4.2.

precision =
TP

TP + FP
(4.2)

The recall measure displays a model’s ability to properly identify all positive samples as pos-

itive and avoiding misclassifying positive samples as negative. This is done through counting all
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the TP and FN predicted by the model and evaluated using Formula 4.3.

recall =
TP

TP + FN
(4.3)

Both the precision and recall measures focus on properly identifying positive cases, in this case

fraudulent activity, and can be combined to create a new score. One such score is the F1 score,

which is a weighted average of both scores. The formula for the calculate the F1 score is shown in

Formula 4.4.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4.4)

The F1 score ranges anywhere between 0 and 1. A score of 1 indicates the model is able to

distinguish between fraudulent and non-fraudulent transactions correctly, a score of 0.5 indicates

the model is unable to distinguish fraudulent and non-fraudulent transactions and is as good as a

guess, and a score of 0 indicates the model marks fraudulent transactions as non-fraudulent and

non-fraudulent transactions as fraudulent. This is an extremely useful score for identifying fraud,

as it can account for the class imbalance and displays a model’s ability to discover fraudulent

activity.

Another method used to assess a model’s performance is the Receiver Operating Character-

istic (ROC) curve and calculating the Area Under the Receiver Operating Characteristic curve

(ROC AUC). The ROC is typically used to graphically display the model’s TP rate and FP rate as

the threshold for the probability a sample is fraud varies. Figure 4.1 shows an example Receiver

Operating Characteristic graph with the area under the curve values displayed next to each curve.
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Figure 4.1: Example Receiver Operating Characteristic curve graph.

4.2 Datasets

A significant challenge is finding a high quality dataset for evaluating the models investigated

in this work. The models rely on a large number of examples to properly train for the purposes of

detecting fraudulent credit card activity. Furthermore, the dataset should be large enough to obtain

a testing set to measure a model’s performance without compromising the set needed for training.

This work also looks to propose strategies that generalize well over various datasets, thus multiple

datasets are required.

Fortunately, a wide variety of datasets are available on the Kaggle website, a community with

numerous resources for data scientists. One such dataset is provided on Kaggle through a partner-

ship between Vesta Corporation, an international company dedicated to providing secure electronic

payment and fraud management, and the IEEE Computational Intelligence Society (IEEE-CIS).

Multiple datasets are utilized to verify whether the proposed methods will work on a different
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dataset. The second dataset is one provided through a partnership between Worldline and the Uni-

versit Libre de Bruxelles’ Machine Learning Group, referred as MLG-ULB or simply MLG, where

anonymized credit card transactions were collected and analyzed during the research collaboration.

4.2.1 Vesta Dataset

There are multiple datasets provided by Vesta [23] but the dataset used in this work is the one

labeled for training by the vendor. This dataset will be denoted as Vesta and is split into smaller

subsets for the purpose of being used for training, validation, and testing internally and will be

denoted for their respective purposes as Vestatrain, Vestavalid, Vestatest.

The Vesta set contains 590,540 transactions (rows) and 393 features (columns), plus an addi-

tional column containing the class of the transaction, and spans over 6 days. The features of a

transaction include the purchase amount, the product type, card information, location of the seller,

and additional features engineered by Vesta, which are design to support the transaction. The

Vesta dataset has a significant amount of missing data, where 300,000 transactions are missing one

or many features. The sum of the missing data accounts for 41% the dataset. The Vesta set’s class

distribution is unbalanced with 569,877 (96.5%) non-fraudulent transactions and 20,663 (3.5%)

fraudulent transactions.

The feature selection process, described in Section 3.1.3, is applied to the Vesta dataset using a

NB classifier, the F1 scoring metric, and a threshold value of 0.04. Of the 393 features available,

there are 341 features selected for use and 52 are removed from consideration. All 52 features

removed are a subset of the engineered features, which may not contribute additional information.

The features selected and used for the remainder of the work are made available in Appendix A.1

for reproduction purposes. Figure 4.2 shows the F1 scores produced by the algorithm for the last

70 features, with the threshold line shown in red depicting the lowest F1 score to be accepted.
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Figure 4.2: The last 70 F1 scores within the feature selection algorithm on the Vesta dataset.

4.2.2 Machine Learning Group Dataset

The dataset provided by ULB-MLG [24] is distributed as a single dataset and will be denoted

as MLG . For the purposes of this work, the MLG dataset is also split into three subsets, a training

set MLGtrain, validation set MLGvalid, and testing set MLGtest.

The MLG set contains 284,807 transactions (rows) and 30 features (columns), plus an addi-

tional column for the class label, and spans over 2 days. The authors of the dataset made the

decision to apply Principle Component Analysis (PCA) to obfuscate the original data. However,

a time delta and transaction amount are excluded from the PCA process, alongside the class la-

bel, and are provided in their original format. The MLG set’s class distribution is unbalanced with

284,315 (99.83%) non-fraudulent transactions and 492 (0.17%) fraudulent transactions.

The feature selection process, described in Section 3.1.3, is also applied to the MLG dataset

using a NB classifier, the F1 scoring metric, and a threshold value of 0.4. Of the 30 features

available, all 30 features are selected for use. Figure 4.3 shows the F1 scores produced as the
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algorithm progresses through the features selected, with the threshold line shown in red depicting

the lowest F1 score to be accepted.

Features Selected

0.96

0.97

0.98

0.99

F1
 sc

or
e

F1 Score at each iteration

Figure 4.3: The F1 scores within the feature selection algorithm on the MLG dataset.

4.3 Model Tuning Results

This section discusses the details of the implemented models and the hyper-parameters consid-

ered for the tuning process. The metrics described in Section 4.1 are used to measure a model’s

performance through cross validation with k = 5 during the tuning process. After the tuning pro-

cess, the top performing models are selected using the mean F1 score and are evaluated further in

the next section.

Note that each model may employ a different domain for hyper-parameter tuning based on the

dataset used. An example of this would be using a different set of values for variable smoothing

for a Naive Bayes model or the maximum number of features in a Decision Tree, as the features

and number of features in each dataset differ.
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4.3.1 Naive Bayes

This work uses the predefined Naive Bayes model GAUSSIANNB from the Scikit Learn pack-

age [12]. Note that the Gaussian Naive Bayes model requires normally distributed features and

does not support multinomially distributed features and handles this issue by fitting a normal dis-

tribution across each feature based on its values.

Naive Bayes with Vesta Dataset

For this particular model, the hyper-parameters we explore are variance smoothing values rang-

ing from [5e-11, 1e-9] in increments of 5e-11. The meaning of these terms are described in Section

3.2. Table 4.2 shows the top performing NB model on the Vesta set obtains a mean F1 score of

0.1517. It appears the models with the lower smoothing factor produced better results.

Smoothing Mean Accuracy Mean Precision Mean Recall Mean F1
1.5e-10 0.8036 0.09294 0.4772 0.1517
2e-10 0.82 0.09342 0.4399 0.1499
2.5e-10 0.8243 0.09358 0.4237 0.1485
3e-10 0.8224 0.09223 0.4151 0.1455
1e-10 0.7464 0.0844 0.5546 0.1431
3.5e-10 0.8172 0.09057 0.4133 0.1426
4e-10 0.8099 0.08864 0.4145 0.1395
4.5e-10 0.801 0.08658 0.4193 0.1365
5e-10 0.7913 0.08444 0.4252 0.1335
5.5e-10 0.782 0.08246 0.4316 0.1309

Table 4.2: The measures for the top 10 Naive Bayes classifiers on the Vestavalid set.

Naive Bayes with MLG Dataset

For this particular model, the hyper-parameters we explore are variance smoothing values rang-

ing from [5e-10, 1e-8] in increments of 5e-10. The meaning of these terms are described in Section

3.2. Table 4.3 shows the top performing NB model on the MLG set obtains a mean F1 score of

0.3116. Models with mid-range smoothing factors appear to produce better results.
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Smoothing Mean Accuracy Mean Precision Mean Recall Mean F1
3e-09 0.9962 0.2275 0.4948 0.3116
4.5e-09 0.9968 0.2446 0.4163 0.3076
5e-09 0.9968 0.2455 0.3959 0.3025
3.5e-09 0.9964 0.2275 0.4517 0.3024
4e-09 0.9966 0.2332 0.4289 0.3019
2.5e-09 0.9958 0.2103 0.5253 0.3003
7.5e-09 0.9972 0.2663 0.3451 0.299
6e-09 0.997 0.2525 0.3629 0.2968
1e-08 0.9974 0.2923 0.3096 0.2961
7e-09 0.9971 0.2592 0.3476 0.2958

Table 4.3: The measures for the top 10 NB classifiers on the MLGvalid set.

4.3.2 K-Nearest Neighbors

This work uses the predefined K-Nearest Neighbors model KNEIGHBORSCLASSIFIER from

the Scikit Learn package [12].

K-Nearest Neighbor with Vesta Dataset

For this particular model, the hyper-parameters we explore are k-values ranging from [1,8] and

both types of weights, uniform and distance based. The meaning of these terms are described in

Section 3.2. Table 4.4 shows the top performing KNN model on the Vesta set obtains a mean F1

score of 0.5974. It seemed the KNN models using a lower k-value and distance-based weights

produced more favorable results.

K-Nearest Neighbors with MLG Dataset

For this particular model, the hyper-parameters we also explore are k-values ranging from [1,8]

and both types of weights, uniform and distance based. The meaning of these terms are described

in Section 3.2. Table 4.5 shows the top performing KNN model on the MLG set obtains a mean F1

score of 0.8387. It appears that mid-range k-values with distance-based weights produced better

results.
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k Value Weight Mean Accuracy Mean Precision Mean Recall Mean F1
1 uniform 0.9734 0.6352 0.5638 0.5974
1 distance 0.9734 0.6352 0.5638 0.5974
2 distance 0.9734 0.6352 0.5638 0.5974
4 distance 0.9777 0.8088 0.4735 0.5973
3 distance 0.9772 0.7859 0.4797 0.5957
5 distance 0.9776 0.8589 0.4292 0.5724
6 distance 0.9775 0.8712 0.4188 0.5656
3 uniform 0.9756 0.7778 0.425 0.5497
7 distance 0.977 0.8922 0.3885 0.5413
8 distance 0.9768 0.8987 0.3788 0.5329

Table 4.4: The measures for the top 10 KNN classifiers on the Vestavalid set.

k Value Weight Mean Accuracy Mean Precision Mean Recall Mean F1
4 distance 0.9995 0.9584 0.7463 0.8387
3 distance 0.9995 0.956 0.7462 0.8376
3 uniform 0.9995 0.9532 0.7411 0.8332
5 distance 0.9995 0.9477 0.7335 0.8268
6 distance 0.9995 0.9541 0.7259 0.8241
8 distance 0.9995 0.9484 0.7259 0.822
7 distance 0.9995 0.951 0.7234 0.8214
1 uniform 0.9994 0.8774 0.764 0.8165
1 distance 0.9994 0.8774 0.764 0.8165
2 distance 0.9994 0.8774 0.764 0.8165

Table 4.5: The measures for the top 10 KNN classifiers on the MLGvalid set.
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4.3.3 Random Forest

This work uses the predefined Random Forest model RANDOMFORESTCLASSIFIER from the

Scikit Learn package [12]. The model provided has many hyper-parameters beyond those de-

scribed in 3.2. This work uses the package default values for these additional hyper-parameters.

Random Forest with Vesta Dataset

For this particular model, the hyper-parameters we explore are 3 different values for the number

of estimators (75, 100, 200), 3 different maximum values for features to pass (
√
n, log2(n), None),

and the max depth to use (50, 100, None). The meaning of these terms are described in Section

3.2. Table 4.6 shows the top performing RF model on the Vesta set obtains a mean F1 score of

0.6789. It appears models with no bounds on the maximum number of features produced the best

results.

Max Depth Max Features # Estimators Mean Accuracy Mean Precision Mean Recall Mean F1
None None 75 0.9822 0.9232 0.5369 0.6789
100 None 75 0.9822 0.9232 0.5369 0.6789
None None 200 0.9823 0.9294 0.5345 0.6786
100 None 200 0.9823 0.9294 0.5345 0.6786
None None 100 0.9822 0.9268 0.5343 0.6777
100 None 100 0.9822 0.9268 0.5343 0.6777
50 None 100 0.9822 0.9269 0.5326 0.6764
50 None 75 0.9821 0.9242 0.5334 0.6763
50 None 200 0.9822 0.9299 0.5315 0.6763
100 sqrt 75 0.9793 0.9223 0.4461 0.6013

Table 4.6: The measures for the top 10 Random Forest classifiers on the Vestavalid set.

Random Forest with MLG Dataset

For this particular model, the hyper-parameters we explore are also 3 different values for the

number of estimators (75, 100, 200), 3 different maximum values for features to pass (
√
n, log2(n),

None), and the max depth to use (50, 100, None). The meaning of these terms are described in
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Section 3.2. Table 4.7 shows the top performing RF model on the MLG set obtains a mean F1

score of 0.8504. It appears models with no bounds on the maximum number of features produced

the best results.

Max Depth Max Features # Estimators Mean Accuracy Mean Precision Mean Recall Mean F1
None None 75 0.9995 0.9359 0.7793 0.8504
50 None 75 0.9995 0.9359 0.7793 0.8504
100 None 75 0.9995 0.9359 0.7793 0.8504
None None 100 0.9995 0.933 0.7793 0.8492
50 None 100 0.9995 0.933 0.7793 0.8492
100 None 100 0.9995 0.933 0.7793 0.8492
50 sqrt 200 0.9995 0.9467 0.769 0.8486
None sqrt 200 0.9995 0.9467 0.769 0.8486
100 sqrt 200 0.9995 0.9467 0.769 0.8486
None None 200 0.9995 0.9302 0.7793 0.848

Table 4.7: The measures for the top 10 Random Forest classifiers on the MLGvalid set.

4.3.4 Neural Network

Tuning a multi-layer neural network model and their various components poses an interesting

challenge. There are many pieces involved in the process of building a neural network that can be

adjusted. This model does not explore all the various parameters to tune but a select number are

selected for consideration and described below.

The primary hyper-parameter to tune is the number and type of layers and hidden layers to

include in the model. This work primarily focuses on using dense layers and dense layers with

a dropout operation added, as exploring all possible configurations is computationally intractable.

Even with only 2 types of layers to consider, these layers can be infinitely chained in various

combinations. For this reason, this work makes the decision to construct pairs of dense and dropout

layers and limits the number of combinations to four total.

To increase the diversity of the evaluated models, each dense layer may have a different number

of neurons, different activation function, and a different percentage of information to drop. Moving

beyond the design of the neural network, the next set of hyper-parameters to consider relate to the
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different configuration functions of the model such as the loss and optimization function. Finally,

the last set of hyper-parameters to consider involve the training and learning process of the network.

The value for batch size and the number of epochs are considered for tuning.

This work employs the Keras package [14] to build the neural network, as it provides the ability

to construct a neural network with a wide variety of components.

The neural network tuning results will be split into two tables, the model’s design and the

model’s metrics, in order to display all of the tuning details.

Neural Network with Vesta Dataset

For this particular model, the hyper-parameters we explore are 2 activation functions (Exponen-

tial Linear Units and Rectified Linear Units), three batch sizes (256, 512, 1024), 3 dropout rates (0,

0.1, 0.2), 2 epoch values (50, 100), 3 values for neuron at each layer (32, 64, 128), 3 values for the

number of hidden layer (2, 3, 4), and 2 loss functions (Binary Cross-Entropy and Kullback-Leibler

Divergence). Table 4.9 shows the top performing NN model on the Vesta set obtains a mean F1

score of 0.9801, which is oddly high and discussed in Section 4.4. The large number of tunable

parameters make it difficult to see a clear pattern in terms of better performance, but the models

using the ELU activation function, smaller batch size, a non-zero dropout rate, higher number of

neurons, and a mid-range number of hidden layers appear to perform better than the others.

Model Activation Batch Size Dropout Epochs Neurons Hidden Layers Losses Optimizer
1 ELU 256 0.1000 100 128 2 BCE Adam
2 ELU 256 0.0000 50 128 3 BCE Nadam
3 ELU 512 0.1000 100 128 2 BCE Nadam
4 ELU 256 0.1000 100 128 2 KLD Nadam
5 ELU 256 0.1000 100 128 3 KLD Adam
6 ELU 256 0.1000 100 128 2 KLD Adam
7 ELU 512 0.1000 100 128 3 KLD Nadam
8 ELU 512 0.0000 100 128 4 KLD Nadam
9 ReLU 1024 0.0000 100 128 3 KLD Adam
10 ELU 256 0.0000 50 128 2 BCE Nadam

Table 4.8: The parameters for the top 10 Neural Network classifiers on the Vestavalid set.
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Model Mean Accuracy Mean Precision Mean Recall Mean F1
1 0.9801 0.9801 0.9801 0.9801
2 0.9801 0.9801 0.9801 0.9801
3 0.9800 0.9801 0.9801 0.9801
4 0.9800 0.9800 0.9800 0.9800
5 0.9798 0.9799 0.9799 0.9799
6 0.9798 0.9798 0.9798 0.9798
7 0.9798 0.9798 0.9798 0.9798
8 0.9797 0.9798 0.9798 0.9798
9 0.9796 0.9797 0.9797 0.9797
10 0.9796 0.9796 0.9796 0.9796

Table 4.9: The measures for the top 10 Neural Network classifiers on the Vestavalid set.

Neural Network with MLG Dataset

For this particular model, the hyper-parameters we explore are 2 activation functions (Expo-

nential Linear Units and Rectified Linear Units), three batch sizes (256, 512, 1024), 3 dropout rates

(0, 0.1, 0.2), 2 epoch values (50, 100), 3 values for neuron at each layer (32, 64, 128), 3 values for

the number of hidden layer (2, 3, 4), and 2 loss functions (Binary Cross-Entropy and Kullback-

Leibler Divergence). Table 4.11 shows the top performing NN model on the MLG set obtains a

mean F1 score of 0.9996, which is oddly high and discussed in Section 4.4. As previously stated,

the large number of tunable parameters make it difficult to see a clear pattern in terms of better

performance, but the models using a larger batch size, a higher number of epochs, and a mid-range

number of hidden layers appear to perform better than the others

49



Model Activation Batch Size Dropout Epochs Neurons Hidden Layers Losses Optimizer
1 ReLU 256 0.0000 100 128 3 BCE Adam
2 ReLU 1024 0.0000 100 128 2 KLD Adam
3 ReLU 1024 0.0000 50 32 2 KLD Nadam
4 ReLU 1024 0.0000 100 64 3 BCE Adam
5 ReLU 1024 0.0000 100 128 3 KLD Adam
6 ELU 1024 0.2000 100 64 2 BCE Nadam
7 ELU 1024 0.0000 100 64 4 KLD Adam
8 ReLU 1024 0.2000 100 128 2 BCE Adam
9 ELU 512 0.2000 100 64 2 BCE Adam
10 ReLU 512 0.1000 100 32 2 BCE Nadam

Table 4.10: The parameters for the top 10 Neural Network classifiers on the MLGvalid set.

Model Mean Accuracy Mean Precision Mean Recall Mean F1
1 0.9996 0.9996 0.9996 0.9996
2 0.9996 0.9996 0.9996 0.9996
3 0.9996 0.9996 0.9996 0.9996
4 0.9996 0.9996 0.9996 0.9996
5 0.9995 0.9995 0.9995 0.9995
6 0.9995 0.9995 0.9995 0.9995
7 0.9995 0.9995 0.9995 0.9995
8 0.9995 0.9995 0.9995 0.9995
9 0.9995 0.9995 0.9995 0.9995
10 0.9995 0.9995 0.9995 0.9995

Table 4.11: The measures for the top 10 Neural Network classifiers on the MLGvalid set.
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4.4 Performance Evaluation

After selecting the top performing models for each model type, each model is provided the

appropriate test sets, Vestatest or MLGtest, to complete their final evaluation. The models trained

on the Vestatrain set and tuned on the Vestavalid set are given the Vestatest set. The models trained

on the MLGtrain set and tuned on the MLGvalid set are given the MLGtest set. Each model generates

predictions on the transactions in their respective test set to evaluate their overall performance on

unseen data.

The results of each selected model are aggregated, compared, and ranked by their respective

dataset and shown in Table 4.12.

Dataset Model Type Accuracy Precision Recall F1 Score Rank

Vesta

Random Forest 0.9829 0.9367 0.5480 0.6900 1
K-Nearest Neighbor 0.9747 0.6530 0.5892 0.6194 2
Neural Network 0.9792 0.8893 0.4626 0.6086 3
Naive Bayes 0.8293 0.1017 0.4953 0.1688 4

MLG

Neural Network 0.9997 0.9655 0.8571 0.9081 1
K-Nearest Neighbor 0.9996 0.9535 0.8367 0.8913 2
Random Forest 0.9996 0.9524 0.8163 0.8791 3
Naive Bayes 0.9963 0.2275 0.4898 0.3107 4

Table 4.12: Results of the top performing models for each unseen dataset.

The first thing to note is the relative performance between models trained on the Vesta dataset

versus those trained on the MLG dataset. The models had relatively higher scores when training,

tuning, and predicting the MLG dataset, which has no missing values. The assumption made is

the imputation of values on the Vesta dataset causes a shift in the true distribution of each imputed

feature. Each feature with missing values are filled in with artificial values (the mean of the feature)

which would not change the mean of the feature but certainly change the variance.

The Naive Bayes models has poor performance across either dataset. This was expected in the

case of the Vesta dataset, as the original dataset had many missing values and the dataset is arti-

ficially filled through imputation, as explained in the previous paragraph, and affects predictions
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based on probability. However, the MLG dataset had no missing values and while it performed

better relative to the Vesta dataset, it still performs poorly against the other models trained on the

MLG dataset. The assumption made here is performance is affected by the Naive Bayes model

used in this work, the GAUSSIANNB model from the Scikit Learn package. The predefined model

expects normally distributed features, but this may not apply to the datasets used. The Vesta dataset

has many discrete features which would not be normally distributed and most of the features repre-

sented in MLG dataset are principle components returned from principle component analysis. The

K-Nearest Neighbor, Random Forest, and Neural Network models experience varying levels of

performance on the datasets.

The top performing model in the Vesta set is the Random Forest model. The Random Forest

model’s higher performance can be attributed to its ability to avoid misclassifying non-fraudulent

transactions as fraudulent, which is inferred from the precision score. However, it does not per-

form as well as the K-Nearest Neighbor model’s ability to detect fraudulent transactions, which is

inferred by the recall score.

The top performing model in the MLG set is the Neural Network model. The Neural Network

model is able to outperform the other models due to its ability to both avoid misclassifying non-

fraudulent transactions as fraudulent and detect fraudulent transactions.

Another item to address is the slight disparity between the scores generated for the Neural

Network models in Section 3.4 during the tuning process and the results on the test sets shown in

Table 4.12. During the tuning process, the results for the Neural Network models are rather high

as compared to the results on the test set. One possible explanation is the model overfits during

the training phase and that this is somehow obfuscated and not highlighted by the validation set.

Another explanation may be an issue occurs while averaging the returned scores. This anomaly

appears to be stronger in the Vesta set, as the difference in performance between the validation and

test sets on the MLG dataset are small.

The next step in evaluating the models performance is to examine the supporting graphs, the

52



confusion matrix and Receiver Operating Characteristic curve graph, alongside the performance

metrics to gain a better understanding of their predictions on the unseen test sets. Models will be

divided by their dataset and will be examined independently of each other in the sections below.

4.4.1 Vesta

The first set of graphs are the confusion matrix for each of the models produced with the

Vestatest set, shown in Figure 4.4. Figure 4.4a validates the Naive Bayes model’s poor performance

shown in Table 4.12. Over 15% of the non-fraudulent transactions are misclassified by the Naive

Bayes model while less than 1.2% are misclassified by the other models. Figures 4.4c and 4.4b

show the cause of the higher performance from the Random Forest and K-Nearest Neighbor mod-

els, where the models are able to more accurately classify the fraudulent cases. As mentioned in

Section 4.1, the TP and the FP are accounted for through the precision and recall metrics which

directly affect the F1 score.
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(d) Neural Network.

Figure 4.4: The confusion matrix of the tuned models for the Vestatest dataset.

The second set of graphs are the Receiver Operating Characteristic curve graphs for each of the

models produced with the Vestatest set, shown in Figure 4.5. Once again, the Figure 4.5a presents

the cause of the Naive Bayes model’s poor performance, where the model’s probabilities of fraud

versus non-fraud overlap significantly. Figure 4.5b shows the K-Nearest Neighbor model produces

poor probabilities for fraud, while the Random Forest and Neural Network produce more favorable

probabilities for fraud as shown by Figures 4.5b and 4.5d.
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(b) K-Nearest Neighbor.
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(c) Random Forest.
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(d) Neural Network.

Figure 4.5: The Receiver Operating Characteristic graph of the tuned models for the Vestatest

dataset.

4.4.2 MLG

The first set of graphs are the confusion matrix for each of the models produced with the

MLGtest set, shown in Figure 4.6. This time Naive Bayes appears to be more competitive in terms

of its predictions, but this is due to the highly imbalanced dataset and is outperformed in identifying

TP and TN transactions. Figures 4.4b, 4.4c, and 4.6d display similar performance across the K-

Nearest Neighbor, Random Forest, and Neural Network models but this could also be attributed to
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the extremely unbalanced dataset. As previously mentioned, the F1 score is dictated by a model’s

ability to properly classify fraudulent transactions and Figure 4.6d shows the Neural Network

model’s ability to do so while retaining a low rate of FP and FN.
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Figure 4.6: The confusion matrix of the tuned models for the MLGtest dataset.

The second set of graphs are the Receiver Operating Characteristic curve graphs for each of the

models produced with the MLGtest set, shown in Figure 4.7. Oddly, the Figure 4.7a displays a Naive

Bayes model that out performs K-Nearest Neighbor and Random Forest, which Table 4.12 does

not support. However, one can see the slight disconnection of the line from the y-axis, indicating

that FP examples exist at a probability threshold of or near zero, which would lower the F1 score.
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The stranger results are Figures 4.7b and 4.7c displaying a fairly linear line for both K-Nearest

Neighbor and Random Forest models. This would indicate the generated probabilities for most of

the individual transactions are fairly uniform until a certain threshold start to effect the FP rate.
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(a) Naive Bayes.
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(b) K-Nearest Neighbor.
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(c) Random Forest.
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(d) Neural Network.

Figure 4.7: The Receiver Operating Characteristic graph of the tuned models for the MLGtest

dataset.
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Chapter 5: Concept Drift Adaptation

This chapter focuses on implementing state-of-the-art techniques discovered during literature

review to address the issues that arise with Concept Drift and analyze their performance thereafter

with respect to credit card fraud detection.

The results of Section 4.4 show that Random Forest consistently outperformed the other models

in both datasets. However, the question remains whether performance can be improved by adapting

to the drift of transactions over time. While fully exploring these methods is outside the scope of

this thesis, a single model (Random Forest) and dataset (MLG ) will be used in this work’s effort

to evaluate the performance related to drift.

5.1 Experimental Design

Some preliminary details on the design of capturing Concept Drift are discussed in Section 3.5,

but will be formalized in this section. Each subset and model created occur in chronological order

as C0 ≤ C1 ≤ C2 and M0 ≤ M1 ≤ M2, respectively, and ranges from [0, t − 1]. The approach

described in Section 3.5 and displayed in Figure 3.4 have models that contain overlapping periods

in time and will require m = c − b + 1 models, where m is the number of models, trained on a

batch of subsets of size of b, needed to cover all c subsets.

The MLG dataset undergoes the same preprocessing steps described in Section 3.1, with the

exception of preserving class distributions in the data splits. Instead, the data is split in a sequential

fashion by the transaction’s timestamp. The dataset is also split into a train set MLGdrift.train and test

set MLGdrift.test, where the examples in MLGdrift.test occur after the transactions in MLGdrift.train. This

suggests the test set will be composed of examples that occur last in MLG dataset.
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After the dataset is split into c subsets, the m models are trained with a batch of b subsets and

the completed models are passed into an ensemble model for evaluation. The ensemble model

predict the class of the transaction by accumulating the predicted probabilities from each model in

the ensemble model, returning the class with the largest sum of predicted probabilities.

5.2 Results

An arbitrary set of values for both c and b are selected for review and explored. Four values (6,

8, 12, 24) are selected for c and two values (2, 3, 4) are selected for b. The different combinations

of c and b are used to create the models to combat drift.

After the ensemble models are built using the MLGdrift.train set, the MLGdrift.test is used to evaluate

the performance of the predictions made, using the same metrics described in Section 4.1. Table

5.1 displays the measures of the top 5 ensemble model alongside the measures of the static Random

Forest model on the same dataset. Note the static model trains on the entire MLGdrift.train subset.

The confusion matrix and the ROC curve graph based on the model’s predictions are shown in

Figure 5.1 and in Figure 5.2, respectively.

Table 5.1 shows that the static model outperforms the update models in every metric. The small

time-frame provided with the MLG dataset may be the cause for the poor performance, spanning a

total of 2 days. It is unreasonable to expect a change in behaviors or patterns in 2 days. Figure 5.1

validates these statements, but there are some interesting results to consider in 5.2.

Model Accuracy Precision Recall F1 Score
RF Static 0.9996 0.9487 0.7115 0.8132
RF Update C8 B4 0.9995 0.9000 0.6923 0.7826
RF Update C12 B3 0.9995 0.8780 0.6923 0.7742
RF Update C24 B3 0.9995 0.8974 0.6731 0.7692
RF Update C24 B4 0.9995 0.8974 0.6731 0.7692
RF Update C8 B3 0.9995 0.8750 0.6731 0.7609

Table 5.1: Results of the Random Forest static and update drift models.
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Figure 5.1: The confusion matrix of the drift models.
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(a) RF Static.
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(b) RF Update (c=8, b=4).
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(c) RF Update (c=12, b=3).
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(d) RF Update (c=24, b=3).
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(e) RF Update (c=24, b=4).
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(f) RF Update (c=8, b=3).

Figure 5.2: The Receiver Operating Characteristic graphs of the drift models.
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As previously mentioned, Figure 5.1 displays the static model’s ability to better detect true

fraudulent transactions (TP) and true non-fraudulent transactions (TN). The more interesting re-

sults to discuss are the Receiver Operating Characteristic graphs shown in Figure 5.1, where the

area under each curve indicate the model’s performance of the generated probabilities. The graphs

indicate the drift models produce better probabilities for identifying fraudulent transactions and

avoid misclassifying non-fraudulent transactions as fraudulent.

This could be attributed to one of the many possibilities; either the ensemble models have

an improved method to detect fraud or the ensemble models are overfitting the non-fraudulent

transactions. The second possibility is more likely as the class imbalance may cause the individual

models within the ensemble models to overfit. However, the possibility that the ensemble models

can better identify fraud cannot be ruled out without further testing. This work is not able to reach

a conclusive answer, but can be expanded on by further tuning the c and b values of the described

update model and by using a larger dataset that covers a larger time-frame.
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Chapter 6: Conclusion

The parties involved in credit card fraud appear to be locked in a constant pursuit to outwit the

other as the increased use of credit cards further complicates matters. The financial impact and

evolving nature of credit card fraud has continued to motivate financial institutions and researchers

to explore methods that go beyond commonly employed methods. While it is not expected that

all credit card fraud will completely disappear, efforts to discover methods that help detect it can

reduce the number of cases and its impact. This is the motivation for this work: to contribute to the

cause through the analysis of the commonly employed methods, exploration of the more modern

approaches, and proposition of a generalized strategy. A summary of the work completed and

contributions to the topic are described below.

6.1 Summary

The main contribution this work offers is the proposition of a generalized strategy to assist a

Fraud Detection System during the fraud detection process, regardless of the dataset or data stream

provided. The process begins with the reception of the dataset, which undergoes an initial prepro-

cessing step designed to bolster the model building process. The categorical and non-numerical

features in the dataset are encoded into a numerical value, while retaining the original categorical

groupings. The dataset undergoes a proposed feature selection algorithm which intends to discover

high performing features and bolster the model building process. The pruned dataset is split into

train, evaluation, and test subsets through stratified sampling to retain the class distribution. Each

subset is transformed through scaling and data imputation, with the information discovered during
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the scaling of the train subset shared amongst the other subsets. The transformed train and eval-

uation subsets are used to train and tune the classification models alongside the hyper-parameters

to tune. Once the tuning process is completed, the top performing models for each model type are

passed along to a final performance evaluation with the test subset. The model that achieves the

highest performance for on the test set can then be employed in the Fraud Detection System for

credit card fraud detection.

This work also provides an analysis of the various methods, models, and strategies employed

during the implementation of the generalized strategy. First and foremost, the process of detecting

credit card fraud suffers greatly from missing data. Most processes involving machine learning

models suffer the same fate but some can use data imputation to fill in the blanks. The problem with

imputing credit card data is the loss of context. There may be a case where the machine learning

model is presented with two transactions which are fairly similar, where one occurs during the

customers normal spending hours and the other occurs when the customer is typically asleep. If the

timestamp were omitted, it would be impossible to know whether the transactions are approved by

the customer or by a fraudster. This work experiences a similar fate with the Vesta dataset, missing

approximately 41% of its values leading to poor performance.

In principle, the Gaussian Naive Bayes model provided by Scikit Learn works well for a variety

of standard machine learning applications but suffers in performance when operating on a dataset

with mixed data types and distributions, such as those found in credit card datasets. K-Nearest

Neighbor works fairly well when the credit card transactions are projected into the real number

space (R), which would lead one to believe fraudulent transactions share a common trait that

cluster other fraudulent transactions nearby. This is further proven by the higher performance

of weighted K-Nearest Neighbor models. However, the imbalance between fraudulent and non-

fraudulent still needs to be considered, which are exemplified by the higher scores achieved by

K-Nearest Neighbor models with lower k values. The previous paragraph stressed the importance

of a complete dataset, but occasionally large amounts of unbalanced data can cause a model to
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overfit a particular class, which is an issue with credit card fraud. This is the reason why the

Neural Network models that dropped out small amounts of information learned over epochs tended

to perform better.

The idea of employing Concept Drift alongside credit card fraud detection is still relatively

new. The majority of published works employing the two concepts together were published within

the last 6 years of this work. This leads one to believe there is still a lot that can be learned about

adapting the two ideas together. This work attempts to explore the subject further and some initial

analysis is performed on the matter. However, constraints on time and resources have cut further

exploration short.

6.2 Future Work

There are additional tasks that go beyond the scope of this work, but can substantially improve

on it. As previously mentioned, the generalized strategy proposed for credit card fraud detec-

tion aims to function across any given dataset or data stream. Discovering additional datasets for

credit card fraud detection can help support and progress the proposed strategy through testing its

performance even further.

A commonly used strategy to handle unbalanced data is to employ sampling techniques. This

work uses stratified sampling when creating the various data subsets for training, evaluating, and

testing as well as bootstrap sampling to build Random Forest. However, there are many other

sampling techniques that may improve the overall performance of the models built. Some proposed

alternative sampling techniques to explore include SMOTE [25] or ROSE [26] sampling.

The implemented machine learning models used in this work consisted of Naive Bayes, K-

Nearest Neighbor, Random Forest, and Neural Network. There are many other models that can

be analyzed for their performance for credit card fraud detection on the dataset employed. The

generalized strategy proposed can benefit from tuning and deploying additional high-performing
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models.

There are aspects of the tuning process that can be further explored. The range of values for

hyper-parameters tuning can be expanded to search a larger space. There are also additional hyper-

parameters that were not considered in this work that can be explored.

As mentioned in the previous section, constraints on time and resources limited the analysis of

Concept Drift, opportunities to find methods to assist it, and the exploration of other state-of-the-

art techniques to assist with credit card fraud detection. This work analyzes an implementation of

the Update strategy proposed by Dal Pozzolo [5], but can be improved through the tuning of the c

and b values proposed in this work and by employing a larger dataset with a larger time-frame. Dal

Pozollo also suggests and describes an alternative strategy to further adapt to Concept Drift named

Propagate-and-Forget [5]. It is yet to be seen how such a strategy can improve on the generalized

strategy proposed in this work. Applying his proposed strategies on additional datasets is another

task that may further expand this work.
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Appendix A: Reproducibility

The codebase created for this work includes a combination of readily available software pack-

ages, such as Scikit Learn [12] and Keras [14], and custom-built Python packages. The codebase

is not publicly available at this moment. However, some implementation details can be described.

The datasets used in this work can be found at the following citations [23][24]. The process

starts by importing these datasets and runs them through a custom preprocessing function which

encodes the non-numerical features, removes features deemed unhelpful (see Section 3.1.3), and

separates the class labels from the database. The data is split into the necessary subsets and a

transformation process is applied. A reference to the scaler used in the training set is passed along

to the other subsets for use. Then the data is passed along to a custom tuning script, which accepts

a reference to the model to tune and a dictionary of hyper-parameters to evaluate. The highest

performing model for each model type are evaluated for its performance by creating predictions

and probabilities for fraud on the testing subset.

A.1 Vesta Removed Features

These are the features selected for removal from the Vesta dataset during the feature selection

preprocessing step described in Section 3.1.3, primarily for the purpose of reproducing the results.

V128 V132 V133 V134 V137 V150 V159 V160 V164 V165 V166 V202 V203
V204 V205 V206 V207 V211 V212 V213 V214 V216 V263 V264 V265 V266
V267 V268 V269 V273 V274 V275 V276 V278 V306 V307 V308 V309 V311
V316 V318 V320 V321 V331 V332 V333 V334 V335 V336 V337 V338 V339

Table A.1: The features removed during the Vesta dataset preprocessing step.
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