
James Madison University James Madison University

JMU Scholarly Commons JMU Scholarly Commons

Masters Theses, 2020-current The Graduate School

5-8-2020

A multi-input deep learning model for C/C++ source code A multi-input deep learning model for C/C++ source code

attribution attribution

Richard Tindell

Follow this and additional works at: https://commons.lib.jmu.edu/masters202029

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and the

Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
Tindell, Richard, "A multi-input deep learning model for C/C++ source code attribution" (2020). Masters
Theses, 2020-current. 46.
https://commons.lib.jmu.edu/masters202029/46

This Thesis is brought to you for free and open access by the The Graduate School at JMU Scholarly Commons. It
has been accepted for inclusion in Masters Theses, 2020-current by an authorized administrator of JMU Scholarly
Commons. For more information, please contact dc_admin@jmu.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by James Madison University

https://core.ac.uk/display/346453479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://commons.lib.jmu.edu/
https://commons.lib.jmu.edu/masters202029
https://commons.lib.jmu.edu/grad
https://commons.lib.jmu.edu/masters202029?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.lib.jmu.edu/masters202029/46?utm_source=commons.lib.jmu.edu%2Fmasters202029%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dc_admin@jmu.edu

A Multi-Input Deep Learning Model for C/C++ Source Code Attribution

Richard Jeffrey Tindell II

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

In

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Department of Computer Science

May 2020

FACULTY COMMITTEE:

Committee Chair: Dr. Xunhua Wang

Committee Members/ Readers:

Dr. Nathan Sprague

Dr. Brett Tjaden

ii

Dedication

This work is dedicated to my children William, Theodore, and Charles. Thanks for

interrupting my work for silly things.

To my dad for gifting me with your love of learning and skill in computers.

To my wife. Thank you for your patience, support, and love during this long process.

I could not have done this without you.

Love you all.

iii

Acknowledgments

First, I would like to thank Dr. Xunhua Wang for serving as both my adviser and thesis

committee chair during this process. Thank you for expanding your knowledge base and

learning something new with me. I would also like to thank Dr. Nathan Sprague and Dr. Brett

Tjaden for serving on my thesis committee.

Finally, I would also like to thank Jonathan Fitch, Lynn Carr, and Matthew Wotring

for their proof-reading skills. Thank you for all the effort you put into making this the best

paper it can be.

iv

Table of Contents

DEDICATION... II

ACKNOWLEDGMENTS .. III

TABLE OF CONTENTS ... IV

LIST OF FIGURES ... VI

ABSTRACT .. VIII

CHAPTER 1 INTRODUCTION .. 1

OVERVIEW .. 1

PROBLEM STATEMENT .. 3

CONTRIBUTIONS .. 3

ORGANIZATION ... 3

CHAPTER 2 BACKGROUND INFORMATION AND EXISTING RESEARCH 4

TOOLSET AND BASIC DEFINITIONS ... 4

DEEP LEARNING .. 4

MANUAL STYLOMETRY TECHNIQUES .. 9

SOURCE CODE STYLOMETRY USING TRADITIONAL MACHINE LEARNING ... 10

EXISTING RESEARCH’S INFLUENCE ON THIS RESEARCH ... 11

BINARY SOURCE ATTRIBUTION .. 12

CHAPTER 3 PREPROCESSING AND CREATING THE DATA MODEL 13

PROBLEM STATEMENT .. 13

INPUT DATA .. 13

UNKNOWN DATA .. 15

INITIAL NAÏVE APPROACH .. 15

REVISED APPROACH.. 16

CONSTRUCTING THE MODEL .. 18

TRAINING THE MODEL ... 19

OTHER VARIATIONS OF THE MODEL .. 20

TEST DATA .. 25

RANDOM FOREST COMPARISON ... 26

CHAPTER 4 PREDICTIONS USING THE MODEL .. 27

OLDER VERSION OF OPENSSL ... 29

OTHER PROJECT PREDICTIONS .. 31

v

CHAPTER 5 CONCLUSIONS... 32

AREAS OF FURTHER RESEARCH .. 32

APPENDIX A CODE FOR PREPROCESSOR.PY ... 34

APPENDIX B CODE FOR CREATE_MODEL.PY ... 38

APPENDIX C CODE FOR UTILS.PY .. 42

APPENDIX D CODE FOR PREDICT_BITCOIN.PY ... 45

APPENDIX E TABLE OF KEYWORDS ADDED TO STOPWORDS 47

APPENDIX F LIST OF INPUT PROJECTS .. 48

BIBLIOGRAPHY ... 49

vi

List of Figures

Figure 1 - AI Relationships. .. 5

Figure 2 - Recurrent Network .. 8

Figure 3 - Distribution of Files ... 14

Figure 4 - Distribution of Lines of Code .. 14

Figure 5 - Pandas Dataframe with Columns Array. .. 16

Figure 6 - OOV Token Table. .. 17

Figure 7 - Multi-Input Model with Multiple Hidden Layers. ... 18

Figure 8 - Multi-Input Loss Values throughout Epochs. ... 19

Figure 9 - Multi-Input Accuracy Values throughout Epochs. 20

Figure 10 - Accuracy at 96% for the training and 90% for the pre-split test data 20

Figure 11 - Just Source Accuracy. .. 21

Figure 12 - Just Source Loss. .. 21

Figure 13 - Just Features Accuracy. ... 22

Figure 14 - Just Features Loss. ... 22

Figure 15 - Just Comments Accuracy. ... 23

Figure 16 - Just Comments Loss .. 23

Figure 17 - Multi-Input Model Without Source Text. .. 25

Figure 18 - Cryptocpp Files Matching Table .. 26

Figure 19 - File Predictions. .. 28

Figure 20 - Prediction Summary. .. 28

Figure 21 - File Predictions with older OpenSSL. ... 29

Figure 22 - Prediction Summary with older OpenSSL. .. 30

vii

Figure 23 - Distribution of Lines of Code with Older OpenSSL.................................. 30

Figure 24 - New Input Data Matches .. 31

viii

Abstract

Code stylometry is applying analysis techniques to a collection of source code or

binaries to determine variations in style. The variations extracted are often used to identify the

author of the text or to differentiate one piece from another.

In this research, we were able to create a multi-input deep learning model that could

accurately categorize and group code from multiple projects. The deep learning model took as

input word-based tokenization for code comments, character-based tokenization for the

source code text, and the metadata features described by A. Caliskan-Islam et al. Using these

three inputs, we were able to achieve 90% validation accuracy with a loss value of 0.1203 using

12 projects consisting of 5,877 files. Finally, we analyzed the Bitcoin source code using our

data model showing a high probability match to the OpenSSL project.

Keywords: stylometry, source code attribution, deep learning

Chapter 1

Introduction

Overview

Being able to determine who wrote a piece of code can be an important step in

analyzing source code. Scholastically, it can be used to detect plagiarism in the computer

science department. In the computer security field, knowing who wrote a piece of malicious

code could potentially determine the security posture for a defending organization. For

example, knowing that a threat actor is state sponsored may compel an organization to seek

help from a law enforcement agency while suspecting an insider threat may elicit a more

internal response. Stylometry is “the statistical analysis of variations in literary style between

one writer or genre and another” [1]. This can be a very arduous process to do by hand, and

many have used computing models to aid with this. Human languages are a little easier to

analyze in this regard. When writing, the author has a large pool of words and letters to choose

from. The author’s choices ultimately reflect a bit of who he is. The more that author writes,

the more likely it is that a pattern or indicator of authorship will manifest.

Stylometry is an important part of an investigation where authorship is central. In the

case of WikiLeaks, the central figures were alluding that they had a large number of volunteers

all with the same cause. This projected strength but the truth was far from this. Daniel

Domscheit-Berg made the statement that if WikiLeaks were subjected to stylometric analysis,

it would become apparent that all of their press releases were written by one of two people,

himself and Julian Assange [13].

2

Using techniques in deep learning, it is possible to accurately identify the author of a

piece of code. The source code contains clues—pieces of the author within every choice of

word, variable name, and code style. Something as simple as whether a brace symbol ({)

appears on the same line as a control structure such as an if-then block or instead on a new

line could help determine the author. Style choices, in addition to word choices in the code

comments or variable names in the source code, can be transformed into numeric values to

be used as input in a deep learning model. The model can then classify new input code based

on what was learned from previous training data.

The modern process of using machine learning techniques are usually fairly similar. A

preprocessor will extract various features and convert these features into a statistical value.

This extracted metadata can achieve a high level of accuracy and may be the only option when

analyzing binaries; but when source code is available, analyzing the comment text with a word-

based tokenizer and the source-code text with a character-based tokenizer can vastly improve

accuracy.

The basic process for any deep learning application is performing any required

preprocessing, training the data model, and testing the model. In our approach, we extract

three separate inputs during the preprocessing phase, apply natural language processing to

comments, tokenize the source code text using character-based encoding, and extract

metadata features from the source code. The inputs are passed into a deep learning model

where multiple layers help classify a given file. These three separate inputs provide the highest

accuracy and the lowest loss value of all methods tested.

3

Problem Statement

This thesis research paper aims to answer the following two questions:

1. Can deep learning be used to accurately determine the author of source code?

2. What contributes the most to author attribution in source code: comments, source

code text, or an abstracted feature list?

Contributions

The results of this thesis research paper are

1. Deep learning is an effective tool when identifying the authors of source code

using comments, source code text, and abstracted feature lists.

2. Comments tend to leave the most amount of author evidence.

3. Source code text leaves the least amount of author evidence.

Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of

existing research and background information on deep learning and source code attribution.

Chapter 3 discusses our approach in preprocessing and model creation. In Chapter 4, we use

the model to predict the similarity of an unknown code sample. Finally, we summarize our

findings in Chapter 5.

Chapter 2

Background Information and Existing Research

The specific topic of stylometry with deep learning does not appear to be a widely

published topic. There is existing research into manual stylometry techniques and even

techniques using machine learning, but not all machine learning is deep learning.

Toolset and Basic Definitions

The research represented in this paper utilizes the Python programming language and

the Keras and TensorFlow frameworks. A tensor is a dynamic, n-dimensional matrix; that is,

if the force or weight of a specific value changes, the rest of the tensor must change relative

to the transformation. These tensors are the basic unit of data in this deep learning application.

While the tool TensorFlow allows for direct manipulation of a tensor object, Keras provides

a high-level API built on top of TensorFlow to make working with tensors and other machine

learning objects much easier.

Deep Learning

Machine Learning vs Deep Learning

An important distinction to make is the one between machine learning and deep

learning. Deep learning is a subset of machine learning that attempts to turn raw data into

useable information.

5

Figure 1 - AI Relationships.

One of the key advantages of deep learning when comparing it to other types artificial

intelligence is outlined in “Deep learning” by Y. LeCun, Y. Bengio, and G. Hinton [2]:

Conventional machine-learning techniques were limited in their ability to

process natural data in their raw form. … Deep-learning methods are

representation-learning methods with multiple levels of representation,

obtained by composing simple but non-linear modules that each transform

the representation at one level (starting with raw input) into a representation

at a higher, slightly more abstract level. (p. 463)

While traditional machine learning would require the data to be in a structured format,

the goal of the deep learning subset is to input raw data without having to heavily preprocess

it into a structured format. Different layers are implemented to extract and group pertinent

information [3]. A neural network is a deep neural network if it contains two or more hidden

layers within the network. The output of one layer becomes the input of a subsequent layer.

Each layer can be of a various type including input, convolutional, sequence, normalization,

pooling, combination, and output layers.

6

Layer Types and Other Important Terms

Data shape is how a data model is represented. It is tied to the number of inputs and

outputs of a given layer. One way to limit the number of inputs would be through

preprocessing the data. If the input data is too abstract, preprocessing can reshape it to focus

on only what is important in the data.

Embedded layers transform “positive indexes into dense vectors of fixed size” [4].

Because much of this project deals with language processing, this layer is essential. By

converting the input data (words or characters in our case) into a smaller dense vector, the

process time should be dramatically faster.

Dense layers are also called “fully connected layers” because every “cell” or “neuron”

within the neural network is connected. These layers take inputs of a specified shape and

produce outputs of a different specified shape. In addition to the input and output units, these

layers can have different activation functions. The activation function acts to produce a

weighted output for a given input in the layer using a mathematical equation as a gate. One of

the simplest activation functions is a linear activation, which allows multiple inputs to be

mapped to multiple outputs through a linear equation. This project uses dense layers with both

rectified linear unit (ReLU) and softmax activations.

ReLU activation is similar to a linear activation function, except that all negative input

values are outputted as zeros. This is generally much faster, as fewer subsequent neurons are

firing, and it allows for back propagation. This back propagation is used to calculate weights

of specific outputs for use throughout the neural network.

Softmax activation is used to produce an output of probabilities. These probabilities

correspond to the likelihood an input can be placed into a specific category of a number of

outputs. In a classification problem, this is typically the last step since the output corresponds

7

to the various categories. The output probabilities all sum to the value of 1, so this output is

not only able to categorize inputs but also to give a ranked categorization.

The benefit of using deep learning is that a computer is able to apply different weights

to different data transformations and adjust these weights based on outputs of the loss

function and an optimizer. The loss function calculates the distance between an output and

what was expected. The output of this function is called the “loss score” or “loss value” and

is used with an optimizer to adjust the weights of another layer. Categorical cross-entropy is

the loss function utilized in this project, and it is also called “softmax loss” because it combines

a softmax activation and a cross-entropy loss. Cross-entropy loss is used for probability

applications which makes it a great choice for our final output [3, page 73].

The loss function feeds the loss score into an optimizer. RMSprop is the optimizer

used in this project. It uses a moving average over the root mean squared (RMS) [5]. It is useful

for training very large datasets, as it is fast. Our dataset is large enough to see a benefit by using

this type of optimizer.

Types of Input Data

Training a machine learning model requires data of three different types—training,

validation, and test. The training data is somewhat self-explanatory, it is used to train the data

model. The important thing about selecting this data is making sure there is enough training

data to teach the model about a specific set of characteristics.

Validation data is the data used by the model to verify the training values and adjust

them during the training process. It is important to contrast this data with test data which is

only used once the model is complete. Validation data is sometimes a subset of training data

used to adjust weights. Test data is used afterward to verify the accuracy of the model created.

8

Recurrent Neural Networks

A layer is described as recurrent if it needs to have a memory of previous inputs or

states. A recurrent neural network (RNN) attempts to mimic the way a biological lifeform

learns by keeping some track of state while processing a larger body of information. These

layers are necessary when a specific piece of data cannot be processed in isolation and are used

quite extensively on text data, speech data, and classification problems. The basic features

behind an RNN are its use of a loop and its ability to keep track of state.

Figure 2 - Recurrent Network. Reprinted from Deep Learning with Python (196),
by François Chollet, 2018, Manning Publications. Copyright 2018 by Manning Publications Co.

Reprinted with permission.

Long Short-Term Memory or LSTM is a common recurrent layer and is one of the

layers used in this project. It is a type of RNN that is used to compensate for the “vanishing

gradient problem.” When a neural network becomes too large, the weight of each layer will be

difficult to change; that is, the gradient will become too small. The output will be unable to

change regardless of the new data [3, page 202]. LSTM compensates for the vanishing gradient

problem by saving some information for later use which helps to prevent old signals from

having no effect on the current output. Being an RNN, it also has a “memory” of what has

been passed into it.

9

Supervised vs Unsupervised

Another way to classify a machine learning neural network is by calling it “supervised”

or “unsupervised.” In a supervised neural network, data is mapped to a known output. This is

particularly useful for classification and regression or when the output is of a known type [3,

page 94]. Unsupervised machine learning is used in data visualization problems. Usually this

technique is applied to the data set to understand the data better, after which a supervised

machine learning technique or traditional programming can be applied. This project is

classified as supervised machine learning.

Manual Stylometry Techniques

Deep learning is merely a technique applied to a problem. It is a means to an end, and

for this project, the end is code attribution via stylometry. Stylometry has been around in some

form since 1890 when the basics were published in a book entitled Principes de Stylométrie. Using

a manual technique attempts to identify indicators of authorship within a text by examining

the following features [12]:

 Word length

 Sentence length

 Paragraph length

 Punctuation

 Function words

 Letters

 N-grams, bigrams, trigrams (characters in a row)

 Bi-words and Tri-words (two or three words occurring in a certain order)

Every author chooses different words to convey meaning. Even if two authors were

writing the same basic prose, their choice of words could reveal who they are. It is necessary

10

for both manual and programmatical stylometry to obtain large amounts of sample text in

order to establish this pattern.

The work represented in Burrows (2010)[14] and Kalgutkar[15] make for an excellent

survey in source code attribution. Burrows implements traditional statistical analysis of n-

grams and stylistic features. The outcome is an accuracy of 78.86% for single authorship (p.

131). Kalgutkar outlines a brief history to authorship attribution and mentions a number of

possible features including which type of control loop a code author employs. This particular

paper outlines existing manual techniques and presents a comparative summary in this field.

Source Code Stylometry Using Traditional Machine Learning

There have been several attempts at stylometry for source code using traditional

machine learning techniques. These all generally follow a similar process: feature extraction,

mapping features to the code samples, and classification usually through a decision tree. The

features extracted from source code can be grouped into one of three categories: lexical, layout,

or syntactic features [8].

Lexical Features

The lexical features extracted from source code are similar to those in natural

languages. These include things like unigram frequency, keyword usage, number of comments,

number of input parameters for functions, and unigram location [6, page 258] [8, page 5]. The

applications studied took the values of frequency and location of the various features and

applied different averaging and logarithmic functions to them to produce a numeric value for

these features as input into a machine learning algorithm.

11

Syntactic and Layout Features

Layout features of source code have more to do with the style of the code itself rather

than the words selected. Things like number of empty lines, whether tabs or spaces were used,

and whether a curly brace appears on the same line or next line of a block of code are all

syntactic features in source code. Syntactic features are extracted through an abstract syntax

tree, which is also created for every function [6, page 259]. This is accomplished by essentially

compiling the application. The tree provides useful information such as the maximum depth

of an AST node, frequency of language keywords, and how much of the code is in a branch

vs a leaf in the tree.

Existing Research’s Influence on this Research

For this project, we utilize much of the lexical and layout features. None of the

syntactic features were used, as the abstract syntax tree could not be generated reliably from

our Python application. The following features from the CHLNVYG15 paper were used (see

Appendix A):

 Lexical Features

o ln_keyword_length

o ln_unique_keyword_length

o ln_token_length

o avg_line_length

 Layout Features

o ln_tabs_length

o ln_space_length

o white_space_ratio

o is_brace_on_new_line

o do_tabs_lead_lines

12

Using these features with other inputs allows for a high level of accuracy. With a large corpus,

they were able to classify 1,600 authors at 94% accuracy and 250 authors at 98% accuracy.

 The problem of code authorship attribution has been addressed in a number of other

papers with varying methodologies. In a paper by Junfeng Wang, et al. [16], a program

dependence graph methodology is proposed. They represent data dependencies within an

application for both data and control features. This method emphasizes how data flows within

the control statements rather than the stylistic features of an application.

Binary Source Attribution

Finally, study has been done into binary attribution; that is, identifying the author of a

software program that is already compiled with no access to the source code. The approach

taken in RZM11 was to first create a control flow graph and instruction sequence so that

features could be extracted. These features are the inputs into a machine learning model used

to group similar groups of code. The results were 81% accuracy for ten authors and 51%

accuracy for 200 authors [7]. While our research analyzes binaries rather than source code, the

extracted features and the approach taken suggest a good pattern to follow even if the input

data differs.

Chapter 3

Preprocessing and Creating the Data Model

In this chapter, we describe the model we wish to create and how we will create it

including the important preprocessing step. We will start by examining the input data used to

create the model.

Problem Statement

Given a C++ cryptography project with an unknown origin, can we determine who

wrote the source code or perhaps what code most resembles this code, giving clues to the

authorship of the new project?

Input Data

To prove the concept, it is important to limit the type and scope of input data. For

our research, we selected eleven C/C++ projects of similar, closely related projects.

Additionally, the input data is limited to source files only. While readme text files and

markdown files might aid in authorship attribution, our original problem statement deals with

source code only. In all, this encompasses 5,877 different files. For a full list of which projects

were selected and where to find them, see Appendix F.

The number of files is not distributed equally. About 64% of the files are found in the

OpenSSL, NSS, and Botan projects. If the distribution is calculated by number of lines of code

rather than number of files, the OpenSSL project is no longer the most probable project. Even

though the distribution is not equal, this doesn’t really affect the probability of selecting the

correct project at random. If a random guesser knew the percentage distribution, with no other

14

information, this guesser would have no reason to guess any project other than the one with

the highest probability. This would establish a baseline of 22.1% to 26.1% for a random guess

if the distribution was known, depending on the distribution model.

Figure 3 - Distribution of Files

Figure 4 - Distribution of Lines of Code

02-weidai-
cryptopp, 6.6% 03-gutmann-

cryptlib, 7.9%

04-openssl, 26.1%

05-libgcrypt, 3.8%
06-mcrypt, 1.3%

07-botan,
16.9%

08-nss, 21.1%

09-truecrypt, 6.5%

10-gpg4win, 0.2%

11-luks, 2.0% 12-gnupg, 7.6%

02-weidai-
cryptopp, 5.4%

03-gutmann-
cryptlib, 15.4%

04-openssl, 20.1%

05-libgcrypt,
5.4%06-mcrypt, 0.8%07-botan, 7.9%

08-nss, 22.1%

09-truecrypt, 4.3%

10-gpg4win, 0.2%

11-luks, 2.3%
12-

gnupg,
11.6%

15

Unknown Data

To further test the data model, we selected source code with an unknown author, the

Bitcoin source code. We selected the earliest version of this available to us, v0.01 ALPHA.

The code is attributed to Satoshi Nakamoto, but many believe this to be a pseudonym. In

addition, there are enough lines of code in this project to make it a viable data source. The

unknown author and sizable code base make this an interesting project to analyze.

A pre-requisite for the input data was that there had to be enough data in the sample

to produce a reliable result. Hal Finney, a programmer who some think could be the author

of the Bitcoin source code, was also considered for an input to this project. Unfortunately, the

only data source available written by Hal Finney consisted of only one file with 507 lines of

code. Training using this project produced results of 0% accuracy. This should be expected as

we train using a whole file. This one file would be in either our training data or our testing

data, but not both. There would be no way to test this file after training. For this reason, the

project 01-halfinney was removed from the input data.

Initial Naïve Approach

Initially, we decided to tokenize every word of the source code and perform a

traditional natural language approach. We quickly identified several challenges, the first being

how long the model would take to train. Trying to accommodate most of the tokens from all

files would run for hours without finishing. When we attempted to capture all the tokens, we

ran into the other main issue, that is, running out of memory. When we limited the data source

16

to a small sampling of words, the accuracy was fairly low. Because of these issues, we decided

to preprocess the data.

Revised Approach

Abstracting a smaller dataset that can still represent the larger dataset is the goal of

preprocessing the data. We wanted to test three different inputs separately to see which adds

the most value and then combine them all to get a result. For a given file, the source code is

separated into source-only and comment-only strings. These are saved in a data frame column

to be tokenized later. The feature set is then extracted from the source code by analyzing the

important statistics. This is the subset of features mentioned in CHLNVYG15. Each feature

is placed into a column in the data frame table.

Figure 5 - Pandas Dataframe with Columns Array.

17

Next, the source code text and comment text are tokenized. Both tokenizers do similar

things, but it is worth noting their differences. For the comment text tokenizer, we selected

word-based encoding; and for the source code text tokenizer, we went with character-based

encoding. Because the comments are written in a natural human language, we processed them

using many standard methods. This included treating each word as a token. We then removed

what are called “stopwords,” or common words from the English language, and included some

C and C++ keywords (see Appendix E). The words that remain reflect the individuality of the

author and will help isolate the author’s identity.

The source code text is tokenized with character-based encoding. This is done for

several reasons. The first is to avoid what we call an “out-of-vocabulary” word when the words

are tokenized. This is a word that is unknown to our tokenizer during a test phase or during

our prediction phase. It is more likely to happen in source code because variable names or

packages that may not exist in other code.

Figure 6 - OOV Token Table.

Filename OOV Tokens Percent OOV OOV Tokens Percent OOV
base58.h 53 134 39.55% 0 851 0%
bignum.h 122 505 24.16% 0 2729 0%
db.cpp 333 569 58.52% 0 4589 0%
db.h 255 468 54.49% 0 3413 0%
headers.h 2 29 6.90% 0 199 0%
irc.cpp 142 267 53.18% 0 1922 0%
irc.h 5 8 62.50% 0 74 0%
key.h 43 138 31.16% 0 908 0%
main.cpp 1430 2303 62.09% 0 19833 0%
main.h 805 1131 71.18% 0 9706 0%
market.cpp 108 171 63.16% 0 1293 0%
market.h 110 149 73.83% 0 1340 0%
net.cpp 500 877 57.01% 0 7897 0%
net.h 484 731 66.21% 0 6481 0%
script.cpp 345 677 50.96% 0 5134 0%
script.h 139 384 36.20% 0 2301 0%
serialize.h 599 1641 36.50% 0 10550 0%
sha.cpp 7 701 1.00% 0 2511 0%
sha.h 0 159 0.00% 0 1088 0%
ui.cpp 1713 3166 54.11% 0 28947 0%
ui.h 237 503 47.12% 0 5631 0%
uibase.cpp 826 3583 23.05% 0 40417 0%
uibase.h 185 668 27.69% 0 6707 0%
uint256.h 94 493 19.07% 0 1896 0%
util.cpp 96 329 29.18% 0 2299 0%
util.h 157 375 41.87% 0 2745 0%
Total 8790 20159 43.60% 0 171461 0.00%

Word Based Encoding Character Based Encoding

18

When word-based encoding was used, 43.6% of the tokens were out of vocabulary. While the

result to our final prediction was negligible, character-based encoding produced the same

result with no out-of-vocabulary tokens.

 Finally, the data is split into training and validation data and testing data. The split

chosen was a 25%-75% split for testing to training. This allowed for enough data to train the

model and a good amount of data to verify the model after training.

Constructing the Model

With preprocessing done, we have three main inputs into our program. We construct

a multi-input model using the tokenized source code text, tokenized comment text, and source

code features.

Figure 7 - Multi-Input Model with Multiple Hidden Layers.

19

The comments and source code go through an embedding layer, then an LSTM layer and two

dense layers. The features go through three dense layers. After this, all three are joined with a

concatenate layer and go through final processing into a final dense layer with an output size

equal to the number of input projects. Above, the model is shown with 12 final outputs.

 Several other configurations were tried as well. Having more layers did not seem to

increase the model’s accuracy, and it increased the time it took to train the model. Thus, any

extra layers seemed to detract from the overall application. Fewer layers would also detract

from the application, resulting in reduced accuracy and higher loss.

Training the model

The code runs through the input data, preprocesses it, and begins training using 75%

of the data for training and 25% of the data for testing and validation. Keras runs through the

configured number of epochs. We selected 20 epochs, as fewer noticeably diminished the

accuracy, and more added little in the way of accuracy.

Figure 8 - Multi-Input Loss Values throughout Epochs.

20

Figure 9 - Multi-Input Accuracy Values throughout Epochs.

As expected from a deep learning model, the loss value decreases and the accuracy increases

as the model is trained. The model trained well on the training data, achieving around 96%

with a loss value of 0.1203 and the test data that was split in the beginning achieved 90%

accuracy.

Figure 10 - Accuracy at 96% for the training and 90% for the pre-split test data

Other Variations of the Model

To see which input had the most impact on the overall accuracy, we removed portions

of the script used to create the model. The results would help us determine which portions of

the code were most necessary to increase the overall accuracy and minimize the loss value in

our testing.

21

Just Source Text

Figure 11 - Just Source Accuracy.

Figure 12 - Just Source Loss.

When the source code text alone was used, it achieved a validation accuracy rate of only 35%

and a loss value of 1.8. Given a file at random and asked to guess what project the file belongs

in without any analysis, random chance would give a 9.09% chance given 11 projects. If the

distribution were known, we could hope for 22.1% to 26.1%, assuming the guesser did nothing

but guess the most probable project. The “just source” model does appreciably better than

random chance would, but not by much. Additionally, with such a high loss value, further

training would not benefit the model. As can be seen in Figures 11 and 12, the training gets a

little more accurate after the first epoch, then stays nearly flat. While this input does seem to

22

contribute the least, it does still contribute to the overall model. Neither word nor character-

based tokenization seemed to have any effect on this comment-only output.

Just Source Features

Figure 13 - Just Features Accuracy.

Figure 14 - Just Features Loss.

The extracted features performed the next best. The validation accuracy was about

56%, and the loss ended at 1.1097. The loss value is still high, and at 56% accurate, it needs

some improving if it were to be the only input. One of the main benefits of this model is just

how fast it trained. After extracting all the features, this model took only six seconds to train.

23

In addition, extracting this information was much faster than tokenizing every word of the

comment text and every character of the source text.

To reiterate, the features extracted here are a subset of the ones outlined by

CHLNVYG15. If all features were extracted, we might expect this portion of the model to

contribute significantly more than it currently does.

Just Comment Text

Figure 15 - Just Comments Accuracy.

Figure 16 - Just Comments Loss

The comment contributed the most to the overall accuracy of the model. This result

might be intuitive, as writing comments gives the author the most opportunity to add his own

24

words. The end validation accuracy was about 77% with a loss value of 0.4940. While using

the comments alone is the most beneficial, there are a few files that have minimal or no

comments at all. This is just one of many necessary inputs into our multi-input model.

Features and Comments Without Source Text

Since the source text seemed to contribute the least, a model with only the source

features and comment text was created to see if removing it would perform just as well as the

full multi-input model. This model was identical to the multi-input model, just without the

tokenized source text. The multi-input model with three inputs achieved 90% validation

accuracy, and this model was 88% accurate.

25

Figure 17 - Multi-Input Model Without Source Text.

This accuracy was only marginally worse than the three-input model and is possibly negligible.

One thing that was different in the output was the loss value. The loss value of this model was

0.2128 compared to the loss value of 0.1203 of the three-input model. Because of this, the

source text is significant enough to merit retaining it as one of our inputs.

Test Data

In addition to separating some of the files programmatically for test data, it was

important to verify our result with test data with a known author. The project cryptocpp was

chosen to be split in half as test data. The authors of this project are known and should map

directly to the cryptocpp bucket if our model is trained properly.

After the project was split into two folders, the model was retrained using the

remaining data. Nearly every file in the split directory matched the proper directory with a high

level of certainty.

26

Figure 18 - Cryptocpp Files Matching Table

Random Forest Comparison

Finally, a random forest classifier was used to compare the results of the deep learning

model to a more traditional machine learning approach. The same preprocessing was applied

to the input data and the same stylometric features were extracted. Using just the stylometric

features, the random forest classifier achieved a validation accuracy of 59.7% and when using

all the same inputs the validation accuracy peaked at 76.9% accuracy.

02-weidai-cryptopp 182 93.81%
03-gutmann-cryptlib 3 1.55%
04-openssl 0 0.00%
05-libgcrypt 1 0.52%
06-mcrypt 1 0.52%
07-botan 5 2.58%
08-nss 0 0.00%
09-truecrypt 2 1.03%
10-gpg4win 0 0.00%
11-luks 0 0.00%
12-gnupg 0 0.00%

Chapter 4

Predictions Using the Model

One of the main reasons to create such a data model is to use it in other applications

for making predictions. As stated before, we selected the Bitcoin code base as our subject for

prediction. We wrote an application (see Appendix D) that would use the same tokenizer and

models created previously. Reusing the same tokenizer values is very important, as we want a

new file to be tokenized with the same values as all previous files. More specifically, a new

tokenizer would create a new word index. When words are separated for their numeric values,

each file would use a different word index. The token “myVariable” might be indexed at the

value 5 for one file and at the value 237 in another. The word index must remain constant

throughout all files analyzed.

Each file in the Bitcoin code was separately passed through the application. The file

went through the same preprocessing and was then passed through the data model; and a list

of predictions was generated, one for each labelled project in our training data. For each file,

the results came back as a highly probable match to the OpenSSL codebase. In fact, most of

the files were over a 90% probable match.

28

Figure 19 - File Predictions.

Additionally, only four files did not match the OpenSSL codebase as the most likely candidate

for authorship.

Figure 20 - Prediction Summary.

File
Name

Project
Predicted

Percentage
Match

base58.h 04-openssl 95.10%

bignum.h 04-openssl 99.53%
db.cpp 04-openssl 98.78%
db.h 04-openssl 98.85%
headers.h 09-truecrypt 84.43%
irc.cpp 04-openssl 97.71%
irc.h 04-openssl 52.38%
key.h 04-openssl 97.30%
main.cpp 04-openssl 98.55%
main.h 04-openssl 98.52%
market.cpp 04-openssl 95.65%
market.h 04-openssl 97.70%
net.cpp 04-openssl 98.66%
net.h 04-openssl 98.55%
script.cpp 04-openssl 99.38%
script.h 04-openssl 99.41%
serialize.h 04-openssl 97.97%
sha.cpp 06-mcrypt 52.65%
sha.h 06-mcrypt 70.09%
ui.cpp 04-openssl 82.81%
ui.h 03-gutmann-cryptlib 69.31%
uibase.cpp 04-openssl 91.95%
uibase.h 04-openssl 59.01%
uint256.h 04-openssl 98.82%
util.cpp 04-openssl 98.17%
util.h 04-openssl 63.24%

Project
Name

Number of
Predictions

02-weidai-
cryptopp 0
 03-gutmann-
cryptlib 1
 04-openssl 22
 05-libgcrypt 0
 06-mcrypt 2
 07-botan 0
 08-nss 0
 09-truecrypt 1
 10-gpg4win 0
 11-luks 0
 12-gnupg 0

29

Noteworthy here is the fact that the other projects guessed were not the highest

probability choices. The mcrypt project is one of the smallest code bases regardless of whether

the distribution is by lines of code or by file, at 0.8% or 1.2% respectively.

Older Version of OpenSSL

While these results are notable, the OpenSSL project on Github has over 400

contributors. An older version of OpenSSL should have fewer contributors and fewer years

of precedent in the code. OpenSSL version 0.8.1b was added to the project in addition to the

version already in the project (version 3.0.0). After removing the old tokenizer data and

retraining the model, the results indicated that Bitcoin was more similar to the older version

of OpenSSL than the new version.

Figure 21 - File Predictions with older OpenSSL.

File
Name

Project
Predicted

Percentage
Match

base58.h 01-openssl-0.8.1b 34.15%
bignum.h 04-openssl 31.43%
db.cpp 01-openssl-0.8.1b 25.06%
db.h 04-openssl 21.11%
headers.h 08-nss 53.98%
irc.cpp 04-openssl 40.00%
irc.h 01-openssl-0.8.1b 66.02%
key.h 02-weidai-cryptopp 27.24%
main.cpp 01-openssl-0.8.1b 32.67%
main.h 04-openssl 21.94%
market.cpp 01-openssl-0.8.1b 34.13%
market.h 04-openssl 29.20%
net.cpp 01-openssl-0.8.1b 28.74%
net.h 04-openssl 24.73%
script.cpp 01-openssl-0.8.1b 23.94%
script.h 04-openssl 22.14%
serialize.h 01-openssl-0.8.1b 30.97%
sha.cpp 05-libgcrypt 49.78%
sha.h 05-libgcrypt 36.97%
ui.cpp 04-openssl 55.17%
ui.h 04-openssl 74.40%
uibase.cpp 01-openssl-0.8.1b
uibase.h 02-weidai-cryptopp 56.55%
uint256.h 01-openssl-0.8.1b 24.02%
util.cpp 01-openssl-0.8.1b 29.93%
util.h 01-openssl-0.8.1b 20.68%

30

Figure 22 - Prediction Summary with older OpenSSL.

If the distribution of files and lines of code are recalculated with this new project

added, the older version of OpenSSL only makes up 7.4% of the total number of files and

4.3% of the lines of code. It ends up being one of the smaller projects in our training set.

Figure 23 - Distribution of Lines of Code with Older OpenSSL

Project Name
Number of
Predictions

 01-openssl-0.8.1b 12

 02-weidai-cryptopp 2

 03-gutmann-cryptlib 0
 04-openssl 9
 05-libgcrypt 2
 06-mcrypt 0
 07-botan 0
 08-nss 1
 09-truecrypt 0
 10-gpg4win 0
 11-luks 0
 12-gnupg 0

01-openssl-
SSLeay_0_8_1b,

4.3% 02-weidai-
cryptopp,

5.4%

03-gutmann-
cryptlib, 15.4%

04-openssl, 20.1%

05-libgcrypt, 5.4%06-mcrypt, 0.8%

07-botan,
7.9%

08-nss, 22.1%

09-truecrypt, 4.3%

10-gpg4win, 0.2%

11-luks, 2.3%

12-gnupg, 11.6%

31

While this result appears definitive, it does not mean that one of the original authors

of OpenSSL wrote Bitcoin. It does mean that of the code samples we analyzed, Bitcoin was

most like the OpenSSL projects.

Other Project Predictions

A valid question one may have would be if this model would classify all large projects

into the same buckets regardless of the code contained in them. To investigate this theory, a

number of large projects were chosen as test data after the model was created. The projects

chosen were curl, DeepSpeech, jq, linux-0.01, msgpack, Mosaic 2.7, SFML, and Whisper Yaffs.

All of these projects are written in C or C++, have a large number of files, and are not known

to be written by any of the authors in the original input data. These new test projects matched

a few different input projects. Only curl and DeepSpeech had over 90% of their files match

only one project. The other remaining projects generally had the matches spread across three

or more projects.

Figure 24 - New Input Data Matches

This shows that the model not only matches projects to one specific project, but also attempts

to classify an input file according to the features and encodings extracted during training.

Project Name Closest Match
Percent of

Files
Matching

Next Closest Match
Percent of

Files
Matching

curl 07-botan 97.23% 02-weidai-cryptopp 1.80%

DeepSpeech 07-botan 94.70% 04-openssl 2.54%

jq 07-botan 36.62% 02-weidai-cryptopp 23.94%

Linux 06-mcrypt 35.53% 02-weidai-cryptopp 30.26%

msgpack 07-botan 37.68% 06-mcrypt 27.56%

Mosaic 2.7 09-truecrypt 29.18% 08-nss 17.08%

SFML 06-mcrypt 55.39% 08-nss 16.39%

Whipser Yaffs 11-luks 41.18% 07-botan 19.61%

Chapter 5

Conclusions

Code stylometry to discover authorship is an important analytical step when reviewing

code. The research this thesis represents shows deep learning is another valuable asset in

determining the authorship of source code.

A strictly machine learning approach used by CHLNVYG15 was able to produce great

results. The source code features they describe are a great way to represent a larger data set

and provide a good baseline accuracy. We have shown that in the case where an analyst is

given access to the full source code, the specific word choices in both source code and

comments add valuable insights into who wrote the code. We have also shown that the

comments of a code seem to be the most telling piece of information when determining

authorship as this allows the author to have more selection at his choice of words. Source code

text analysis is the least telling piece of information as many of these choices have been made

by the compiler.

With 90% validation accuracy and a relatively low loss value of 0.1203, we have shown

that deep learning is a viable way to show similarities between code bases. In addition, with

such a low loss value, it appears that combining all three inputs into a deep learning model is

the best approach of the options presented.

Areas of Further Research

As discussed earlier, we could not determine an accurate way of generating an abstract

syntax tree from the C and C++ code short of compiling it. Having the full metadata feature

33

set would likely improve the accuracy of the model. This would be a good area for further

research.

The project was limited to C and C++, but the general model should be applicable to

multiple languages. The values in some of the columns would be different in regard to file

length, but this could be counteracted by adding in another column in the metadata stating

what language the original source code was in or, more simply, what file extension the original

file had. Possible research could include seeing which, if any, language was more susceptible

to this type of analysis and if the same author could be determined across different languages.

The type of source code chosen for this project was also limited in scope. A very

practical application for this type of software would be to try to identify who wrote a piece of

malware. Malware analysis is its own field of study, but one thing that might aid in this

application would be an additional input of indicators of compromise. To put this succinctly,

if a piece of code calls out to the same domain or IP address or it targets the same domain or

IP address, it is likely related. This could be a fourth input in the model as tokenized input, or

another column in the metadata. In either case, more research is needed to determine

usefulness in a specific application.

Finally, nearly all deep learning programs benefit from more training data. The final

prediction model here was able to identify code if it belonged to one of the eleven projects it

trained on. More samples with the same author, or sample depth, would be beneficial.

34

Appendix A

Code for preprocessor.py

The following is the Python code used as the preprocessor in this project. The code

extracts features, source code text, and comment text.

import re
from collections import Counter

from keras_preprocessing.text import Tokenizer
import nltk

nltk.download('punkt')
nltk.download('stopwords')

class FeatureSet:
 """
 Adapted from the CSFS presented in De-anonymizing Programmers via Code
 Stylometry by:
 Aylin Caliskan-Islam, Drexel University; Richard Harang,
 U.S. Army Research Laboratory;
 Andrew Liu, University of Maryland;
 Arvind Narayanan, Princeton University;
 Clare Voss, U.S. Army Research Laboratory;
 Fabian Yamaguchi, University of Goettingen;
 Rachel Greenstadt, Drexel University
 """

 # LEXICAL FEATURES
 ln_keyword_length = 0
 ln_unique_keyword_length = 0
 ln_comments_length = 0
 ln_token_length = 0
 avg_line_length = 0

 # LAYOUT FEATURES
 ln_tabs_length = 0
 ln_space_length = 0
 ln_empty_length = 0
 white_space_ratio = 0
 is_brace_on_new_line = False
 do_tabs_lead_lines = False

 comment_text = ''
 full_filtered_text = ''

 def __init__(self):
 self.ln_keyword_length = 0
 self.ln_unique_keyword_length = 0
 self.ln_comments_length = 0
 self.ln_token_length = 0
 self.avg_line_length = 0

 self.ln_tabs_length = 0

35

 self.ln_space_length = 0
 self.ln_empty_length = 0
 self.white_space_ratio = 0
 self.is_brace_on_new_line = False
 self.do_tabs_lead_lines = False

def get_features(input_file):
 input_file_text = ''

 num_empty_lines = 0
 lines = ''

 braces_on_new_lines = 0
 braces_not_on_new_lines = 0

 lines_starting_with_tabs = 0
 lines_starting_with_spaces = 0
 num_lines = 0

 with open(input_file, 'r', encoding="ISO-8859-1") as f:
 for line in f:
 input_file_text += line
 num_lines += 1
 if line.startswith(' '):
 lines_starting_with_spaces += 1
 elif line.startswith('\t'):
 lines_starting_with_tabs += 1
 if '{' in line:
 if line.index('{') == 0:
 braces_on_new_lines += 1
 else:
 braces_not_on_new_lines += 1
 if line.split() == []:
 num_empty_lines += 1

 tokenizer = Tokenizer()

 tokenizer.fit_on_texts([input_file_text])

 num_word_tokens = len(tokenizer.word_counts)

 keywords = ["alignas", "alignof", "and", "and_eq", "asm", "atomic_cancel",
 "atomic_commit", "atomic_noexcept", "auto", "bitand", "bitor",
 "bool", "break", "case", "catch", "char", "char8_t", "char16_t",
 "char32_t", "class", "compl", "concept", "const", "consteval",
 "constexpr", "constinit", "const_cast", "continue", "co_await",
 "co_return", "co_yield", "decltype", "default", "delete", "do",
 "double", "dynamic_cast", "else", "enum", "explicit", "export",
 "extern", "false", "float", "for", "friend", "goto", "if",
 "inline", "int", "long", "mutable", "namespace", "new",
 "noexcept", "not", "not_eq", "nullptr", "operator", "or",
 "or_eq", "private", "protected", "public", "reflexpr", "register",
 "reinterpret_cast", "requires", "return", "short", "signed",
 "sizeof", "static", "static_assert", "static_cast", "struct",
 "switch", "synchronized", "template", "this", "thread_local",
 "throw", "true", "try", "typedef", "typeid", "typename", "union",
 "unsigned", "using", "virtual", "void", "volatile", "wchar_t",
 "while", "xor", "xor_eq", "include"]

 # prepare the stopwords. extend them to include common keywords in c/c++
 stopwords = nltk.corpus.stopwords.words('english')
 stopwords.extend(keywords)
 stopwords = set(stopwords)

 num_keywords = 0
 num_unique_keywords = 0

 for keyword in keywords:

36

 keyword_count = tokenizer.word_counts.get(keyword)
 if keyword_count:
 num_keywords += keyword_count
 num_unique_keywords += 1

 def comment_remover(text):
 def replacer(match):
 s = match.group(0)
 if s.startswith('/'):
 return " "
 else:
 return s

 pattern = re.compile(
 r'//.*?\n|/*.*?*/',
 re.DOTALL | re.MULTILINE
)
 return re.sub(pattern, replacer, text)

 def comments(text):
 pattern = re.compile(
 r'//.*?\n|/*.*?*/',
 re.DOTALL | re.MULTILINE
)
 result = re.findall(pattern, text)
 return result

 comment_text = comments(input_file_text)
 text_without_comments = comment_remover(input_file_text)

 tokens = nltk.word_tokenize(text_without_comments)
 # remove all tokens that are not alphabetic
 source_words = [w for w in tokens if w.isalpha()]
 source_words = [w for w in source_words if w not in stopwords]

 num_of_comments = len(comment_text)
 char_count = len(input_file_text)

 comment_text = '\n'.join(comment_text)

 import numpy as np

 features = FeatureSet()

 features.full_filtered_text = source_words

 # LEXICAL FEATURES
 if (char_count):
 if num_keywords: features.ln_keyword_length = np.log(
 num_keywords / char_count)
 if num_unique_keywords: features.ln_unique_keyword_length = np.log(
 num_unique_keywords / char_count)
 if num_of_comments: features.ln_comments_length = np.log(
 num_of_comments / char_count)
 if num_keywords: features.ln_token_length = np.log(
 num_word_tokens / char_count)

 # start layout features
 char_counter = Counter(input_file_text)

 num_of_spaces = char_counter[' ']
 num_of_tabs = char_counter['\t']
 num_of_new_lines = char_counter['\n']
 num_of_white_spaces = num_of_spaces + num_of_tabs + num_of_new_lines

 # LAYOUT FEATURES
 if char_count:
 if num_of_tabs > 0: features.ln_tabs_length = np.log(

37

 num_of_tabs / char_count)
 if num_of_spaces > 0: features.ln_space_length = np.log(
 num_of_spaces / char_count)
 if num_of_white_spaces:
 features.ln_empty_length = np.log(
 num_of_white_spaces / char_count)
 features.white_space_ratio = num_of_white_spaces / (
 char_count - num_of_white_spaces)
 avg_line_length = char_count / num_lines
 features.avg_line_length = avg_line_length
 features.is_brace_on_new_line = braces_on_new_lines > braces_not_on_new_lines
 features.do_tabs_lead_lines = lines_starting_with_tabs > lines_starting_with_spaces

 features.comment_text = comment_text

 return features

EXAMPLE HOW TO RUN on it's own

files = ['sample.c', 'sample.cpp']

features = []

for file in files:
features.append(get_features(file))

df = pd.DataFrame([t.__dict__ for t in features])

38

Appendix B

Code for create_model.py

The following is the python code used to create the model used in this project. It

utilizes functions in preprocessor and the utils.py file.

import os
PROFILING METHODS
import time
from time import gmtime
from time import strftime

import click as click
from keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from tensorflow.keras import Model
from tensorflow.keras.layers import Dense, Embedding, LSTM, concatenate, Input
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.python.keras.utils import np_utils

from project2.new_take.config import DEFAULT_MAX_WORDS, file_exts
from project2.new_take.utils import ingest_files

def get_start_time():
 # import time
 start_time = time.time()
 return (start_time)

def get_end_time():
 # import time
 end_time = time.time()
 return (end_time)

def get_execution_time(start_time, end_time):
 return strftime("%H:%M:%S", gmtime(int('{:.0f}'.format(float(str((end_time - start_time)))))))

start_time = get_start_time()

from project2.new_take.utils import max_length # TODO: rename packages

@click.command()
@click.option('-i', '--input_directory', help='The input root directory to read all files for
training the data model.',
 type=click.Path(exists=True, file_okay=False, dir_okay=True, resolve_path=True)
)
@click.option('-e', '--extensions', help='List of file extensions to read.',

39

 default=','.join(file_exts),
 show_default=True,
 type=click.STRING
)
@click.option('-nm', '--num_words', help='Set the num_words variable for the Keras Tokenizer',
 default=DEFAULT_MAX_WORDS,
 show_default=True,
 type=click.INT)
def create_model(input_directory, extensions, num_words):
 extensions = [e.strip() for e in extensions.split(',')]
 print('Using extensions: ', extensions)

 if os.path.isdir(input_directory):
 # print('Labelled and ingested files.')
 print('Preprocessed files.')
 df = ingest_files(input_directory, extensions)
 # Load into a pandas dataframe
 print(df)

 # Tokenize the comments
 comment_texts = df.comment_text.values
 comment_tokenizer = Tokenizer(num_words=num_words)
 print('Tokenizing comments...', end='')
 comment_tokenizer.fit_on_texts(comment_texts)
 comment_seq = comment_tokenizer.texts_to_sequences(comment_texts)
 # # get Max size of a list to know how much to pad
 comment_max_len = max_length(comment_seq)
 comment_train_vals = pad_sequences(comment_seq, maxlen=comment_max_len, padding='post')
 comment_vocab_size = len(comment_tokenizer.word_index) + 1
 x = comment_tokenizer.word_counts.get('the')
 print('Done.')

 # Tokenize the source words
 print('Tokenizing source...', end='')
 source_tokenizer = Tokenizer(num_words=num_words)
 source_texts = df.full_filtered_text.values
 source_tokenizer.fit_on_texts(source_texts)
 source_seq = source_tokenizer.texts_to_sequences(source_texts)
 # # get Max size of a list to know how much to pad
 source_max_len = max_length(source_seq)
 source_train_vals = pad_sequences(source_seq, maxlen=source_max_len, padding='post')
 source_vocab_size = len(source_tokenizer.word_index) + 1
 print('Done.')

 # Drop the labels off the x values
 x = df.drop('label', 1)
 x.comment_text = comment_train_vals
 x.full_filtered_text = source_train_vals

 labels = df['label'].values # Also known as Y

 # split the x and y into test and train
 x_train, x_test, y_train, y_test = train_test_split(
 x, labels, test_size=0.3, random_state=1337)

 # split the train and test into comments and feature data sets
 comment_train = x_train.comment_text.values
 source_train = x_train.full_filtered_text.values
 feature_train = x_train.drop('comment_text', 1)
 # todo: check this

 comment_test = x_test.comment_text.values
 source_test = x_test.full_filtered_text.values
 feature_test = x_test.drop('comment_text', 1)

 # convert the y_train to a one hot encoded variable
 encoder = LabelEncoder()
 encoder.fit(labels) # fit on all the labels
 encoded_Y_train = encoder.transform(y_train) # encode on y_train

40

 one_hot_y_train = np_utils.to_categorical(encoded_Y_train)

 encoded_Y_test = encoder.transform(y_test) # encode on y_test
 one_hot_y_test = np_utils.to_categorical(encoded_Y_test)

 embedding_dim = 256 # This is the number of units in a hidden layer. Tune this
accordingly
 # BUILD THE MODELS
 # We will be using two branches and concatenating them.
 # One branch for the comments and one for the code features
 n_cols = feature_train.shape[1]

 # Input layers
 comment_input = Input(shape=(None,), name='comments')
 source_input = Input(shape=(None,), name='source')
 features_input = Input(shape=(n_cols,), name='features')
 # embedding layer
 features_f = Dense(100, activation='relu')(features_input)
 comment_f = Embedding(input_dim=comment_vocab_size,
output_dim=embedding_dim)(comment_input)
 source_f = Embedding(input_dim=source_vocab_size, output_dim=embedding_dim)(source_input)

 # memory layers
 # features_f = LSTM(32, name='features-LSTM')(features_f) #ndims don't match
 comment_f = LSTM(64, name='comment-LSTM')(comment_f)
 source_f = LSTM(64, name='source-LSTM')(source_f)

 # dense layers
 features_f = Dense(64, activation='relu')(features_f)
 features_f = Dense(512, activation='relu')(features_f)

 comment_f = Dense(64, activation='relu')(comment_f)
 comment_f = Dense(512, activation='relu')(comment_f)

 source_f = Dense(64, activation='relu')(source_f)
 source_f = Dense(512, activation='relu')(source_f)

 merge = concatenate([features_f, comment_f, source_f])

 # Post merge layers
 hidden1 = Dense(64, activation='relu')(merge)
 hidden2 = Dense(512, activation='relu')(hidden1)
 # todo: dynamic output
 output = Dense(encoder.classes_.size, activation='softmax')(hidden2)

 model = Model(inputs=[features_input, comment_input, source_input], outputs=output)

 plot_model(model, to_file='mulit-input-model.png', show_shapes=True)
 model.summary()

 model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['acc'])

 history = model.fit({'comments': comment_train, 'features': feature_train, 'source':
source_train},
 one_hot_y_train, epochs=20, batch_size=64)

 model.save('saved_new-take.h5')
 model.save_weights('saved_new-take-weights.h5')

 import matplotlib.pyplot as plt

 # Plot training & validation accuracy values
 plt.plot(history.history['acc'])
 # plt.plot(history.history['val_acc'])
 plt.title('Model accuracy')
 plt.ylabel('Accuracy')
 plt.xlabel('Epoch')

41

 plt.legend(['Train', 'Test'], loc='upper left')
 plt.show()

 # Plot training & validation loss values
 plt.plot(history.history['loss'])
 # plt.plot(history.history['val_loss'])
 plt.title('Model loss')
 plt.ylabel('Loss')
 plt.xlabel('Epoch')
 plt.legend(['Train', 'Test'], loc='upper left')
 plt.show()

 loss, acc = model.evaluate({'comments': comment_test, 'features': feature_test, 'source':
source_test},
 one_hot_y_test, verbose=False)
 print("Training Accuracy: ", acc.round(2))

 end_time = get_end_time()
 print("Execution_time is :", get_execution_time(start_time, end_time))

if __name__ == '__main__':
 create_model()

42

Appendix C

Code for utils.py

The following is the code in utils.py. The functions are called throughout the codebase

and exist as a convenience to tidy up the code.

import os
import pickle

import pandas as pd
from tensorflow import zeros
from tensorflow.keras.preprocessing.sequence import pad_sequences

from preprocessor import FeatureSet, get_features

class LabeledSourceFeatures:
 label = ''
 features = FeatureSet()

 def __init__(self, label, features):
 self.label = label
 self.features = features

 def flat_features(self):
 return self.features.__dict__

def get_label(full_path, base_path):
 """
 Given a full path, and a base path, this subtracts the base path from the
 full path and returns the parent-most folder.
 This is a bit brittle of a function, but it should work for our purposes.
 """
 try:
 # idx = full_path.index(base_path)
 label = list(filter(None, full_path[len(base_path):].split(os.sep)))[0]
 return label
 except ValueError:
 return 'Unknown'

def get_file_list(input_path, extensions):
 file_list = []
 for root, dirs, files in os.walk(input_path):
 for file in files:
 for ext in extensions:
 if file.endswith(ext):
 file_list.append(os.path.join(root, file))
 return file_list

def max_length(lst):
 """
 Returns a list of lengths for a list.
 """
 maxList = max(lst, key=lambda i: len(i))
 maxLength = len(maxList)

43

 return maxLength

def ingest_file(input_file, base_dir):
 # START BY INGESTING SOURCE CODE WITH LABELS
 labeledFeatures = []

 feature = get_features(input_file)
 labeledFeatures.append(
 LabeledSourceFeatures(
 get_label(input_file, base_dir), feature))

 intermediate_data = [(t.label, t.flat_features()) for t in labeledFeatures]
 final_data = []
 for row in intermediate_data:
 new_row = row[1]
 new_row['label'] = row[0]
 final_data.append(new_row)

 df = pd.DataFrame(final_data)

 # Converting bool columns to binary:
 df.is_brace_on_new_line = df.is_brace_on_new_line.astype(int)
 df.do_tabs_lead_lines = df.do_tabs_lead_lines.astype(int)

 # bar.finish()
 return df

def ingest_files(input_dir, ext):
 # START BY INGESTING SOURCE CODE WITH LABELS
 print('Scanning directory: ', input_dir)
 file_list = get_file_list(input_dir, ext)
 number_of_files = len(file_list)
 print('Scanning ', str(number_of_files), ' files...')

 labeledFeatures = []
 for file_name in file_list:
 feature = get_features(file_name)
 labeledFeatures.append(
 LabeledSourceFeatures(get_label(file_name, input_dir), feature))

 intermediate_data = [(t.label, t.flat_features()) for t in labeledFeatures]
 final_data = []
 for row in intermediate_data:
 new_row = row[1]
 new_row['label'] = row[0]
 final_data.append(new_row)

 df = pd.DataFrame(final_data)

 # Converting bool columns to binary:
 df.is_brace_on_new_line = df.is_brace_on_new_line.astype(int)
 df.do_tabs_lead_lines = df.do_tabs_lead_lines.astype(int)

 return df

CREATE THE TOKENIZERs
def tokenize_file(file_path):
 """
 returns a list of x values.
 """
 base_path = os.path.dirname(file_path)
 base_path = os.path.basename(base_path)

 df = ingest_file(file_path, base_path)
 # Tokenize the comments
 comment_texts = df.comment_text.values

44

 with open('pickles/comment_tokenizer.pickle', 'rb') as ctp:
 comment_tokenizer = pickle.load(ctp)
 comment_seq = comment_tokenizer.texts_to_sequences(comment_texts)
 # get Max size of a list to know how much to pad
 comment_max_len = max_length(comment_seq)
 comment_train_vals = pad_sequences(comment_seq, maxlen=comment_max_len,
 padding='post')

 if not comment_train_vals.any():
 comment_train_vals = zeros(1)

 # Tokenize the source words
 with open('pickles/source_tokenizer.pickle', 'rb') as stp:
 source_tokenizer = pickle.load(stp)
 source_texts = df.full_filtered_text.values
 source_seq = source_tokenizer.texts_to_sequences(source_texts)
 # get Max size of a list to know how much to pad
 source_max_len = max_length(source_seq)
 source_train_vals = pad_sequences(source_seq, maxlen=source_max_len,
 padding='post')

 if not source_train_vals.any():
 source_train_vals = zeros(1)

 # Drop the labels off the x values
 x = df.drop('label', 1)
 x.comment_text = comment_train_vals
 x.full_filtered_text = source_train_vals
 # pull out the comment_text and source code text out to their own values
 x_comment_val = x.comment_text.values
 x_source_val = x.full_filtered_text.values
 x_feature_val = x.drop('comment_text', 1)
 x_feature_val = x_feature_val.drop('full_filtered_text', 1)

 return [x_feature_val, x_comment_val, x_source_val]

45

Appendix D

Code for predict_bitcoin.py

The following code was used to generate predictions for each file in the sample bitcoin

code.

import os

import numpy as np
from tensorflow.keras import models

from config import file_exts, DEFAULT_MAX_WORDS, default_data_backup_dir
from utils import tokenize_file

num_words = DEFAULT_MAX_WORDS

model = models.load_model('models/saved_new-take.h5')
model.summary()

test_dir = sys.argv[1]
test_dir = './data-backup'
test_texts = []

labels_index = [
 '01-openssl-0.8.1b',
 '02-weidai-cryptopp',
 "03-gutmann-cryptlib",
 "04-openssl",
 "05-libgcrypt",
 "06-mcrypt",
 "07-botan",
 "08-nss",
 "09-truecrypt",
 "10-gpg4win",
 "11-luks",
 "12-gnupg"
]

current_dir = ''

guesses = {
}

for l in labels_index:
 guesses[l] = 0

for root, dirs, files in os.walk(default_data_backup_dir):
 t = 0
 r = root.split(os.sep)[-1]
 if r in labels_index:
 print(r)
 current_dir = r
 for file in files:
 for ext in file_exts:
 if file.endswith(ext):
 file_path = os.path.join(root, file)
 predictions = model.predict(tokenize_file(file_path))
 p = np.argmax(predictions[t])

46

 guessed_dir = labels_index[int(p)]
 percentage = "{:.2%}".format(np.max(predictions))

 print("\t%s ===> %s - %s " % (file, guessed_dir, percentage))
 guesses[guessed_dir] += 1

import pprint

pp = pprint.PrettyPrinter()
print('/n')
pp.pprint(guesses)

47

Appendix E

Table of Keywords Added to Stopwords

This was the list of words commonly found in C and C++ applications that I added

to my stopword list to filter out of the source code.

alignas alignof and and_eq asm
atomic_ca
ncel

atomic_co
mmit

atomic_n
oexcept

auto bitand bitor char16_t

bool break case catch char char8_t
char32_t class compl concept const consteval

constexpr constinit const_cast continue co_await if

co_return co_yield decltype default delete do

double
dynamic_
cast

else enum explicit export

extern FALSE float for friend goto

inline int long mutable
namespac
e

new

noexcept not not_eq nullptr operator or
or_eq private protected public reflexpr register
reinterpret
_cast

requires return short signed typename

sizeof static
static_asse
rt

static_cast struct wchar_t

switch
synchroni
zed

template this
thread_loc
al

union

throw TRUE try typedef typeid xor_eq
unsigned using virtual void volatile include
while xor

48

Appendix F

List of Input Projects

Project URL Notes

01-halfinney https://github.com/halfinney/bc_key

This project consisted of
one file. It was removed
as an invalid data set.

02-weidai-
cryptopp https://github.com/weidai11/cryptopp

03-gutmann-
cryptlib

https://cryptlib-release.s3-ap-southeast-1
.amazonaws.com/cryptlib345.zip

04-openssl https://github.com/openssl/openssl

05-libgcrypt
https://gnupg.org/ftp/gcrypt/libgcrypt/
libgcrypt-1.8.5.tar.bz2

06-mcrypt

https://sourceforge.net/projects/mcrypt/
files/Libmcrypt/2.5.8/libmcrypt-
2.5.8.tar.gz/download

07-botan https://github.com/randombit/botan

08-nss
https://ftp.mozilla.org/pub/security/nss/releases/
NSS_3_9_2_RTM/src/nss-3.9.2.tar.gz

09-truecrypt https://github.com/FreeApophis/TrueCrypt

10-gpg4win https://files.gpg4win.org/gpg4win-3.1.10.tar.bz2

11-luks
https://www.kernel.org/pub/linux/utils/cryptsetup/
v2.2/cryptsetup-2.2.2.tar.xz

12-gnupg
https://www.gnupg.org/ftp/gcrypt/gnupg/
gnupg-2.2.17.tar.bz2

01-openssl-
SSLeay_0_8_1b

https://codeload.github.com/openssl/openssl/zip/
SSLeay_0_8_1b

This project was later
added to compare the
results of the bitcoin
code with both this and
the older OpenSSL.

49

Bibliography

[1] Stylometry. (2020). In Oxford Online Dictionary. Online Edition. Retrieved from

URL https://www.lexico.com/definition/stylometry.

[2] Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

[3] François Chollet. (2018). Deep learning with Python. Shelter Island, NY: Manning

Publications Co.

[4] Embedding Layers - Keras Documentation. Retrieved December 2019, from

https://keras.io/layers/embeddings.

[5] RmsProp. (2013). Climin Documentation. Retrieved December 2019, from

https://climin.readthedocs.io/en/latest/rmsprop.html.

[6] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, and R.

Greenstadt. (2015). De-anonymizing programmers via code stylometry. In Proceedings

of the 24th USENIX Security Symposium, pages 255–270, August 12 - 14 2015.

Retrieved from https://www.usenix.org/conference/usenixsecurity15/technical-

sessions/presentation/caliskan-islam.

[7] N. Rosenblum, X. Zhu, and B. Miller. (2011) Who Wrote this Code? Identifying the

Authors of Program Binaries. In Proceedings of the 16th European Conference on

Research in Computer Security, pages 172–189.

50

[8] G. Shearer and F. Nelson. (2017). Source-code stylometry improvements in python.

Technical Report ARL-TN-0860, Army Research Lab.

[9] S. Alrabaee, P. Shirani, L. Wang, M. Debbabi, and A. Hanna. (2018). On leveraging

coding habits for effective binary authorship attribution. In 23rd European Symposium

on Research in Computer Security, pages 26 – 47.

[10] M. Brennan, S. Afroz, and R. Greenstadt. (2012). Adversarial stylometry: Circumventing

authorship recognition to preserve privacy and anonymity. ACM Transactions on

Information and System Security, 15(3):12:1–12:22.

[11] S. MacDonell, A. Gray, G. MacLennan, and P. Sallis. (1999) Software Forensics for

Discriminating Between Program Authors Using Case-Based Reasoning, Feedforward

Neural Networks and Multiple Discriminant Analysis. In Neural Information Processing,

Volume 1.

[12] Stylometry Methods and Practices: Methods. (2018). Temple University Libraries.

Retrieved from https://guides.temple.edu/stylometryfordh/methods.

[13] F. Brunton, & H. F. Nissenbaum (2016). Obfuscation: A Users Guide for Privacy and

Protest. Cambridge, MA: MIT Press.

[14] Burrows, S. (2010, November 4). Source Code Authorship Attribution. Retrieved from

https://researchbank.rmit.edu.au/eserv/rmit:10828/Burrows.pdf

[15] V. Kalgutkar, R. Kaur, H. Gonzalez, N Stakhanova, & A. Matyukhin.

Code Authorship Attribution: Methods and Challenges. Retrieved from

https://dl.acm.org/doi/fullHtml/10.1145/3292577

51

[16] F. Ullah, J. Wang, F. Al-Turjman, et al. (n.d.). Source Code Authorship Attribution Using

Hybrid Approach of Program Dependence Graph and Deep Learning Model. Retrieved

from https://ieeexplore.ieee.org/abstract/document/8848478

	A multi-input deep learning model for C/C++ source code attribution
	Recommended Citation

	Microsoft Word - tindelrj_thesis_wip.docx

