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Abstract 

 Distractors, or the incorrect options, are an important part of the multiple-choice 

item. Previous literature has supported the inclusion of distractors when estimating 

abilities. While the effects of well-functioning distractors on estimates of ability have 

been examined, research has neglected to examine the effects of undesirable distractors 

on estimates of ability. Undesirable distractors are defined as distractors that are opposite 

of what test-developers expect or want distractors to behave. For instance, an upper lure 

distractor is one that high ability examinees select rather than selecting the correct 

answer. A simulation study was employed to determine these effects by varying 

undesirable distractor type, percentage of items containing undesirable distractors, and 

test length. Item responses were generated using the Thissen-Steinberg multiple-choice 

model for simulating undesirable distractors and the three-parameter logistic model for 

simulating normal items. Following data generation, item responses were analyzed using 

the three-parameter logistic model in SAS. An analysis of covariance (ANCOVA) was 

used to examine the effects of undesirable distractors on estimates of ability for bias and 

standard error. Multiple significant interactions were identified for bias and standard 

error. One type of undesirable distractor that was especially problematic was the lower 

lure distractor, where high ability examinees have a slightly lower, but still high, 

probability of being selected in comparison to the correct answer. Additionally, a longer 

test resulted in the least amount of bias and standard error. Overall, test-developers 

should pay attention to the functioning of distractors, as there are effects of these 

undesirable distractors on estimates of ability.
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Chapter 1. Introduction 

Cognitive Items: Multiple-Choice & Constructed-Response 

Researchers categorize cognitive items as selected response or constructed 

response (CR), with a multiple-choice (MC) item an example of the former. A MC item 

provides the examinee with one correct answer and multiple incorrect options (Briggs, 

Alonzo, Schwab, & Wilson, 2006). In contrast, a CR item requires an examinee to 

respond to an open-ended question (Lukhele, Thissen, & Wainer, 1994). Test developers 

must take into consideration the advantages of using one type of cognitive item over the 

other to measure examinees’ knowledge. For example, test developers should consider 

the way in which students should exhibit the knowledge they have learned.   

MC items have many advantages. To begin, MC items are objectively scored 

(DiBatitista & Kurzawa, 2011). Because MC items are either correct or incorrect, and 

therefore require no subjectivity in determining the correct answer, they have the same if 

not better reliability than CR items (Bacon, 2003; Simkin & Kuechler, 2005; Wainer & 

Thissen, 1993). CR items and MC items can result in similar scores (Hickson, Reed, & 

Sander, 2012). They have even been shown to validly measure the same type of cognition 

(e.g., analyzing) as CR items (Bennett, Rock, Wang, 1991; Traub & Fisher, 1977). MC 

items are also simpler to grade, and examinees spend less time taking a MC test in 

comparison to CR items. This advantage allows for a greater number of items on an 

assessment (Simkin & Kuechler, 2005). The addition of computers in testing has 

introduced instantaneous scoring, which reduces human error (Xu, Kauer, & Tupy, 

2016). While CR items can be scored automatically (e.g., through artificial intelligence), 

it is a time-consuming process to program computers to read and score essays (Bennet, 
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1991). For these reasons, MC items are popular in the field of educational testing (Butler, 

2018), and they are preferred over CR items (Haladyna & Downing, 1989). 

While MC items do have several advantages, they have two major disadvantages: 

(1) it is difficult to create MC items that measure higher-level cognition and (2) 

examinees have the possibility of selecting the correct answer due to chance. While there 

is the possibility of writing MC items that measure high-level cognition, they are 

challenging to write. Even so, critics believe that MC items are unable to capture an 

examinee’s ability to analyze or synthesize information. Instead, a majority of MC items 

measure an examinee’s memorized information on an exam (Walsh & Seldomridge, 

2006). However, some MC item proponent believe that MC items can measure high-level 

cognitive processes, but they require more time to construct (Aiken, 1982; Palmer & 

Devitt, 2007; Simkin & Keuchler, 2005; Tractenberg, Gushta, Mulroney, & Weissinger, 

2013). Critics also express concern about examinees who possess little knowledge of the 

material being able to guess the correct answer on MC items (Kurz, 1999). Typically, 

though, most examinees do not guess without having first thought about their choice 

(Downing, 2003).  

In contrast to MC items, CR items tend to measure more complex abilities, such 

as analyzing or evaluating learned information (Hancock, 1994; Martinez, 1999; Walsh 

& Seldomridge, 2006). This is due to the wide variety of ways in which test developers 

can ask an examinee to exhibit knowledge through a CR item (Livingston, 2009). 

Proponents also argue that CR items provide greater validity evidence for measurement 

of a skill since CR items measure complex skills (McClellan, 2010). While CR items 
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have the primary advantage of measuring complex abilities, there are numerous 

disadvantages that researchers should consider before using them.  

In a situation where test developers use raters to measure a skill, CR items run the 

risk of introducing bias when raters are not trained correctly. A rater can make different 

interpretations about whether a response is good or not, even when a rubric is provided 

(Livingston, 2009). Thus, CR items are more complex to grade than MC items 

(McClellan, 2010). Training raters requires a great deal of time and effort, which can be 

costly (Livingston, 2009; McClellan, 2010). When raters are not consistent in their 

grading of CR items, reliability and validity are both diminished. Although these effects 

are mitigated with training, they still exist and can be problematic. This leads to test 

scores that cannot be interpreted (McClellan, 2010).  

While the selection of a MC or CR item is dependent upon the testing situation, 

there are advantages and disadvantages of each. MC items tend to be better in large-scale 

testing situations where items can be scored objectively and without human error (Xu, 

Kauer, & Tupy, 2016). However, this does not imply that MC items are completely free 

from issues. For instance, when test developers do not have sufficient time to develop 

MC items that measure more complex skills (e.g., memorization versus synthesis of 

information), CR items are a popular alternative (Hancock, 1994; Martinez, 1999; Walsh 

& Seldomridge, 2006). Although, CR items can be useful in many testing situations, MC 

items tend to prevail in popularity (Butler, 2018).  

The Multiple-Choice Item  

The history of standardized testing dates back to ancient Greece (Doyle, 1974), 

but this far preceded the invention of the MC item. Kelly (1916) was interested in 
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assisting teachers measure students’ knowledge in an effective way. This is the first time 

in literature that anyone had applied the MC item to the field of education. To do so, 

Kelly developed the Kansas Silent Reading Tests. The test was administered to evaluate 

students’, such as third, fourth, and fifth graders, mastery of various subjects. Figure 1 

provides an example of a MC item on this examination. 

Three words are given below. One of them has been left out of this sentence:  

I cannot ____ the girl who has the flag. Draw a line around the word which is needed 

in the above sentence. 

Red See Come 

Figure 1. MC item #3 on the Kansas Silent Reading Tests (Kelly, 1916). 

Kelly (1916) believed that three criteria had to be met when writing MC items: (1) 

examinees should have the same interpretation of the item, (2) there should only be one 

correct option, and (3) only parts of the question that are related to the content being 

measured (e.g., not wording) should influence an examinee’s response. All three criteria 

expressed by Kelly (1916) continue to be included in item-writing guidelines today (e.g., 

Haladyna, Downing, & Rodriguez, 2002).   

 With the development of the MC item, others began using it to create different 

kinds of tests. Otis developed a group-administered MC test in 1917 (Madaus, 1993). 

With this test, Otis was determined to create a better version of Binet’s intelligence test 

(Russell, 2006). The United States Army used Otis’ MC format when administering their 

intelligence test during World War I to evaluate recruits based on their test scores, 

allowing for a more efficient classification of skills (Madaus, 1993).  

Following Kelly’s (1916) development, the literature has been flooded with 

research on the properties and applications of MC items in educational testing. Some of 

the debates in the 1950’s are still unsettled today, such as the format of the item (e.g., 
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Dressel & Schmid, 1953; Ebel, 1971) or the optimal number of options to have for an 

item (e.g., Haladyna & Downing, 1993). A common theme in this research is to improve 

the MC item in order to more accurately determine an examinee’s knowledge of the 

content.  

It is important to understand each aspect of a MC item. A MC item has two 

components: (1) the stem and (2) the options. The stem is a question or phrase that 

prompts examinees to select one of the options. There are two different types of options, 

one correct answer and at least one incorrect answer commonly known as a distractor 

(Gierl, Bulut, Guo, & Zhang, 2017). To answer a MC item, the examinees select the best 

answer based on their interpretation of the stem. Ideally, only the examinees’ knowledge 

of the construct being assessed should influence this selection. Unfortunately, there is 

documented research that irrelevant details in the stem, such as poor wording, have undue 

influence on the examinee’s selection (Haladyna & Downing, 1989).   

 MC items can be administered to examinees in a variety of ways. Dressel and 

Schmid (1953) categorized MC items into those which had examinees recall information 

and those which had examinees apply recalled information. The former does not require 

the examinee to reason through the options. Instead, the examinee recognizes the 

information and selects an option based on memorization. Figure 2 provides an example 

of this, where an examinee needs to have memorized the formula for the area of a circle 

(Dressel & Schmid, 1953).   

The area of a circle with diameter 1” is: 

a) 2πsq. in. b) πsq. in. c) 
𝜋

2
sq. in. d) 

𝜋

4
sq. in. 

Figure 2. Item from Dressel & Schmid (1953) where examinee must recall the formula. 
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MC items that ask examinees to apply recalled information are more complex since 

examinees must apply what they have learned to select a correct option. Figure 3 shows 

an example where an examinee applies learned information rather than simply recalling 

the formula (Dressel & Schmid, 1953). Examinees need to recall the formula for the 

radius of a circle, then apply that in finding the difference of radii of two concentric 

circles (Dressel & Schmid, 1953).  

The area between concentric circles of 23-inch and 25-inch radius respectively is most 

easily found by the formula: 

a) 𝜋𝑟2
2 − 𝜋𝑟1

2 b) π(𝑟2 − 𝑟1)2 c) π(𝑟2 − 𝑟1)(𝑟2 +
𝑟1) 

d) 𝜋(𝑟2
2 − 𝑟1

2) 

Figure 3. Item from Dressel & Schmid (1953) where examinee must use reasoning.  

Other Multiple-Choice Item Types  

In addition to the formats Dressel and Schmid (1953) use, Haladyna (1992) 

synthesized five other types of item formats: true false (TF), multiple true false (MTF), 

alternate choice (AC), complex multiple choice (Type K or CMC), and context dependent 

item sets (CDIS). Each type of MC item format has advantages and disadvantages in 

comparison to one another (Haladyna, 1992). 

The TF format is more frequently used in classroom assessment than in 

standardized testing situations because TF items do not require the development of 

options (Haladyna, 1999). TF items are statements in which an examinee must determine 

whether the statement is true or false (Downing, 1992). Figure 4 provides an example of 

a TF statement, where examinees are tested on their astronomy knowledge (Ebel, 1982).     

Is the following statement true or false? 

1) An eclipse of the sun can only occur when the moon is new. 

Figure 4. Example of a TF item, where the answer is true (Ebel, 1982).  
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Opinions pertaining to the usefulness of TF items are mixed. Some research suggests that 

TF items test trivial content (i.e., memorized information), are highly influenced by 

guessing, and have low psychometric properties in comparison to other item formats 

(Downing, 1992; Haladyna, 1999). Grosse and Wright (1985) discuss guessing as a large 

error component in examinees’ scores resulting in low score reliability (Pinglia, 1994). 

On the other hand, Frisbie and Becker (1991) suggest that TF items can evaluate higher-

level thinking when test developers incorporate the guidelines for writing good items. 

 The MTF item is a way to test an examinee’s basic knowledge of material 

(Downing, Baranowski, Grosso, & Norcini, 1995; Haladyna, 1999). MTF items are 

similar to traditional MC items. However, the stem in a traditional MC item is made into 

an option, and examinees answer each option as true or false (Haladyna, 1992). There is 

no set amount of true or false answers (Frisbie, 1992). Figure 5 shows a MTF item, where 

the item from Figure 3 is transformed into an item of MTF format.  

Mark A if true, B if false. 

Which of these is the formula(s) for the area between concentric circles of 23-inch and 

25-inch radius, respectively? 

1) 𝜋𝑟2
2 − 𝜋𝑟1

2 2) π(𝑟2 − 𝑟1)2 3) π(𝑟2 − 𝑟1)(𝑟2 +
𝑟1) 

4) 𝜋(𝑟2
2 − 𝑟1

2) 

Figure 5. Item from Figure 3 (Dressel & Schmid, 1953) transformed to an MTF format. 

MTF items have been critiqued for the limited cognitive complexity that can be measured 

in items (Haladyna, 1999). MTF items are often not used due the association with the TF 

item format (Frisbie, 1990). In comparison to both TF and traditional MC item formats, 

MTF items do have multiple advantages. MTF items produce higher reliability estimates 

(Downing et al., 1999; Dudley, 2006; Frisbie, 1992; Frisbie & Druva, 1986; Frisbie & 

Sweeney, 1982; Kreiter & Frisbie, 1989), have a decreased length of time examinees take 
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to answer the items, and allow test developers to include more items on the test in 

comparison to other item types (Dudley, 2006; Kreiter & Frisbie, 1989).  

Although a strong proponent of the TF item, Ebel (1982) developed the AC item 

as a variant of the TF item. The item contains two options (i.e., one correct and one 

incorrect).  Instead of presenting examinees with one statement, the statement is 

separated into a true version of the statement and a false version of the statement (Ebel, 

1971). The word or phrase for each true and false statement is then listed as an option 

(Ebel, 1982). In Figure 6, the TF statement from Figure 4 follows the process of the TF 

item being broken into two statements. Figure 7 provides the AC item, where the 

differing words (i.e., new and full) in the two statements are used as the options.   

1) An eclipse of the sun can only occur when the moon is new. 

2) An eclipse of the sun can only occur when the moon is full.  

Figure 6. The TF statement in Figure 4 divided into a true and a false statement. 1) true. 

2) false. Item from Ebel (1982). 

 

An eclipse of the sun can only occur when the moon is: 

1) full 2) new 

Figure 7. The AC item based on the two statements in Figure 4. Option 2 is correct. Item 

from Ebel (1982). 

 

The AC item has multiple advantages in comparison to other MC item formats. 

To begin, examinees are able to reason through the options, where most MC items can be 

condensed from having four to two options (Ebel, 1982; Haladyna & Downing, 1993). 

The AC item format allows for the item writing process to be simpler for test developers, 

a larger number of items to be administered to examinees (Ebel, 1982), higher reliability 

estimates (Ebel, 1981), and a decrease in the cost of producing the exam (Haladyna, 

2002). 
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The CMC item, or Type K item, is an item format where multiple options can be 

plausible (Haladyna, 1992). This item type can be beneficial when an examinee should 

know multiple pieces of information (Harasym, Leong, Violato, Brant, and Lorscheider, 

1998; Hughes & Trimble, 1965). Options in this item type, such as all of the above or 

none of the above, are known as complex alternatives (Hughes & Trimble, 1965). This is 

because examinees must reason through each option, deciding whether it is correct or 

incorrect, before selecting their choice. In Figure 8, an item from a medical examination 

is presented. The examinee is asked to select all of the correct options (Burton, 

Sudweeks, Merrill, & Wood, 1991). 

The fluid imbalance known as edema is commonly associated with: 

1. Allergic reactions. 2. Congestive heart failure. 

3. Extensive burns. 4. Protein deficiency.  

 

The correct answer is: 

A. 1, 2, and 3. B. 1 and 3. 

C. 2 and 4. D. 4 only. 

E. 1, 2, 3, and 4.  

Figure 8. Example of a CMC item (Burton, Sudweeks, Merrill, & Wood, 1991). Option E 

is correct.  

While administering this type of item to examinees has some merit, research 

suggests against using it. Complex options allow examinees with a partial knowledge of 

the subject to select the correct answer (Burton et al., 1991; Tarrant & Ware, 2008); 

examinees are still able to reason to the correct answer without knowing the information. 

In Figure 8, an examinee can eliminate all other options besides E if the examinee knows 

that the first and fourth options are correct, but unsure of second and third options 

(Burton et al., 1991).    

CDIS items, or testlets (Wainer & Kiely, 1987), are popular in standardized 

testing due to their ability to measure higher level thinking (Haladyna, 1999). The most 
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frequently used CDIS relate to reading comprehension items (Haladyna, 1999). 

Examinees are given a reading passage and asked to answer multiple questions based on 

their comprehension of the passage (Haladyna, 1992). CDIS items allow for test 

developers to have creativity in what they are developing (Haladyna, 1992). For example, 

test developers can use different types of reading passages while measuring similar 

content. However, the group of items has issues of inter-item dependence. This issue can 

negatively influence estimates of reliability and examinees’ scores (Allen & Sudweeks, 

2001; Thissen, Steinberg, & Mooney, 1989).   

The traditional MC item is the most popular type of item on standardized 

assessments (Butler, 2018). Although other MC item formats can be used (e.g., TF or 

MTF), the most widely studied format is the traditional MC item format. Topics include 

accurately estimating item properties of MC items, examining the effects of poorly 

written MC items (Tarrant, Knierim, Hayes & Ware, 2006), or determining the optimal 

number of options in a MC item (Haladyna & Downing, 1993). The MC item as a whole 

has been the primary focus of research, but there is evidence that the distractors of a MC 

item are important to study (Gierl et al., 2017; Sideridis, Tsaousis, & Harbi, 2017; 

Thissen, Steinberg, & Fitzpatrick, 1989). By including distractors in the analysis of MC 

items, researchers have better accuracy in determining an examinee’s ability in 

comparison to not including the incorrect answers (Bock, 1972; Levine & Drasgow, 

1983; Thissen, 1976). Because distractors are useful components of MC item analysis, 

there is a need to understand the effects of the type of distractor on estimating examinee 

ability. In these studies, distractors were informative about ability, but no literature 

specifies the effects of distractors that are uninformative on or even detrimental to 
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estimates of ability. Researchers should be concerned about the potential consequences 

that these types of undesirable distractors have on estimates of ability.  

In the current study, I extend the process of evaluating distractor functioning by 

examining the effects of undesirable distractors on estimates of ability. In order to 

understand how undesirable distractors (i.e., distractors that do not provide any pertinent 

information) may come about, MC item writing guidelines are presented. An inattention 

to the guidelines can result in undesirable distractors. Once items are written, researchers 

are only able to identify undesirable distractors through the use of a distractor analysis. I 

believe that undesirable distractors will have negative impacts on estimates of ability.  
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Chapter 2. Literature Review 

Writing and Developing Multiple-Choice Items 

Flaws in MC items may negatively influence examinees’ responses rather than 

examinees’ ability of the construct of interest. For example, in a MC item, examinees’ 

ability levels should influence their choice instead of irrelevant details in the stem (Kelly, 

1916). Estimates of examinees’ ability levels have the possibility of being biased if parts 

of a MC item are poorly worded (Haladyna et al., 2002). To combat this issue, item-

writing guidelines have been created that suggest how to write good MC items.  

 Haladyna and Downing (1989) synthesized MC item-writing guidelines from 

literature in the educational measurement field to create a comprehensive review. 

Haladyna et al. (2002) later validated 31 of the original 43 MC item-writing guidelines by 

studying their use in literature. To do so, they recorded the frequency of authors who had 

ruled for, made no mention of, or ruled against the use of the 31 guidelines. The 

guidelines are organized into five sections about content, formatting, style, writing of the 

stem, and writing of the options.   

 Similar to Haladyna and Downing (1989), Haladyna et al. (2002) stress the 

development of the content, formatting, and style of the overall item including both the 

stem and all options.  As shown in Table 1, the first 13 guidelines refer to general item 

writing. These aspects pertain to all parts of a MC item.   
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Table 1 

Content, Formatting, and Style Item-Writing Guidelines 

Content 

1.  Single content 

2.  Non-trivial content 

3.  Novel material 

4.  Keep items 

independent 

5.  Avoid general/specific 

6.  Avoid opinions 

7.  Avoid trick items 

8.  Simple vocabulary 

Formatting 

9. Use correct item 

format 

10. Format vertically 

 

 

Style 

11. Edit and proof 

items 

12. Use correct 

grammar, 

punctuation, 

capitalization, and 

spelling 

13. Minimize amount 

of reading for 

items 

Note. Guidelines are from Haladyna et al. (2002). 

Of the thirteen guidelines, only the tenth guideline has disagreement amongst 

researchers. While most researchers believe MC items should be vertically formatted, 

11% disagree that this should be a requirement. Haladyna et al. (2002) suggest that the 

only exception to this rule be when trying to save space on paper. Research on the effect 

of item formatting on examinees’ abilities has yet to be done (Haladyna et al., 2002). 

Inconsistencies with the style of an item can lead examinees to use test-wiseness 

to answer items correctly instead of answering items based on their actual abilities (Dolly 

& Williams, 1986; Millman, Bishop, & Ebel, 1965). Test-wiseness is defined as the 

ability to use characteristics of an exam to gain a higher score. As an example, when the 

item and options are not grammatically consistent examinees can easily eliminate 

distractors, as it is typical that the inconsistencies are with the distractors, not the correct 

answer (Frary, 1995). Because of this, items become easier for examinees (Dunn & 

Goldstein, 1959; McMorris, Brown, Snyder, & Pruzek, 1972).  

There are several item-writing guidelines that refer to only the writing of the stem. 

Violating the stem-writing guidelines in Table 2 may lead to unnecessarily difficult 
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items, which decreases the accuracy in the interpretations made about the scores from the 

test (Downing, 2002).   

Table 2 

Stem Item-Writing Guidelines  

14.  Directions in the stem are clear 

15.  The stem should contain the central idea, not the options 

16.  Avoid window dressing/excessive verbiage 

17.  Word the stem positively and avoid negatives, such as NOT 

Note. Guidelines are from Haladyna et al. (2002). 

The first stem item-writing guideline explains that test developers should devote 

time to writing the stem with as much clarity as possible. If the directions are unclear to 

examinees, they may have a difficult time answering the item. A majority of researchers 

cite that they are in favor of the use of this item-writing rule (82%), or do not cite the rule 

at all (Haladyna et al., 2002).   

The second item-writing guideline states that the stem of a MC item, rather than 

the options, should contain the central idea. Researchers unanimously support this item-

writing guideline when creating MC items (Haladyna et al., 2002). Consider the item 

Downing (2005) provides from a medical licensure exam in Figure 9. The stem is 

unfocused since the options contain the content that the test developers are trying to 

evaluate. Instead, the stem should pose a question to examinees, so they know what 

content is being asked. This would result in a more focused stem.   

It is correct that: 

A. Growth hormone induces production of IGFBP3 

B. The predominant insulin-like growth factor binding protein (IGFBP) in human 

serum is 

     IGFBP3 

C. Multiple forms of IGFBP are derived from a single gene 

D. All of the above 

E. Only A and B are correct 

Figure 9. A flawed item containing an unfocused stem (Downing, 2005). 
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Although the second stem guideline emphasizes that the stem should not contain 

too little information, it is also possible to contain too much information in the stem. 

Specifically, the third item-writing guideline states that the stem of a MC item should not 

contain language that is irrelevant to an examinee when answering an item. Excessive 

language, such as a stem that is very long or material that does not match the content of 

the item, can make an item unnecessarily tricky (Haldayna et al, 2002). In Figure 10, the 

stem contains information that an examinee does not need to answer the item correctly. If 

the test developer is interested in determining whether an examinee can determine the 

sum of ‘X’ by knowing the mean and sample size, then being told the standard deviation 

and variance over complicates the item (Roberts, 1993). On the other hand, if the goal of 

the item was to test whether examinees can parse out which information is relevant (e.g., 

measure of central tendency versus variability), then the item stem would not contain 

irrelevant details. While there is no apparent disagreement toward this guideline, only 

half of test developers use this guideline when writing items (Haladyna et al., 2002). 

A researcher collected some data on 15 students and the mean value was 30 and the 

standard deviation was 3. What is the sum of X if the variance is 9 and the median is 

29? 

A. 3 B. 30 C. 15 D. 450 

Figure 10. A flawed MC item containing window dressing (Roberts, 1993). 

Finally, the stem should be positively worded.  Negatively worded items confuse 

examinees, and examinees become unsure of what the item is asking. This item-writing 

guideline is the most controversial, with 18% of researchers stating that it is not an issue 

to use negatively worded stems on exams (Haladyna et al., 2002). Figure 11 is an 

example of a negatively worded item (Downing, 2005). It has not been determined 

whether the incorrect response is a direct consequence of the negatively worded item, or 
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if examinees answer the item incorrectly due to a lack of ability (Frey, Petersen, 

Edwards, Pedrotti, & Peyton, 2005).  

Which of the following will NOT occur after therapeutic administration of 

chlorpheniramine? 

A. Dry mouth 

B. Sedation 

C. Decrease in gastric acid production 

D. Drowsiness 

E. All of the above 

Figure 11. A flawed MC item containing a negative stem (Downing, 2005). 

While some might argue against the use of negatively worded stems, there is no 

conclusive evidence to suggest that psychometric properties of the item, such as item 

difficulty, are influenced by negatively worded stems (Rachor & Gray, 1996; Tamir, 

1993). It may be useful to have a negatively-worded stem if test developers creating the 

items are interested in examinees having knowledge about when not to do something. 

However, it is suggested that these items should measure lower cognitive abilities (e.g., 

memorization of facts) rather than higher-order thinking (e.g., analyzing information; 

Maher, Barzegar, & Ghasempour, 2016).   

Writing and Developing Options and Distractors 

While the stem is an important part of the item, multiple item writing guidelines 

are about developing options. Haladyna et al. (2002) states that test developers should 

spend a majority of their time developing the correct answer and distractors. Table 3 

provides 14 item-writing rules pertaining to both the writing of the correct option and the 

distractors (Haladyna et al., 2002).   
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Table 3 

Guidelines for Writing Options for MC items 

18. Write as many plausible distractors as possible 

19. One right answer 

20. Vary location of right answer 

21. Logical/numerical order 

22. Choices should not overlap 

23. Choices homogeneous 

24. Choice length equal 

25. Use carefully none of the above (NOTA) 

26. Avoid all of the above (AOTA) 

27. Avoid NOT in choices 

28. Avoid clues 

29. Make distractors plausible 

30. Use common errors of students 

31.  Use humor sparingly 

Note. Guidelines are from Haladyna et al. (2002). 

The first guideline for writing options is to create as many plausible distractors as 

possible. While a low percentage (4%) of test developers disagree with this guideline, a 

number of researchers have examined the impact of the number of distractors on item 

quality (e.g., Andres & del Castillo, 1990; Crehan & Haladyna, 1993; Haladyna & 

Downing, 1993; Kilgour & Tayyaba, 2016). Although it would seem best to decrease the 

chances of guessing by writing as many distractors as possible, the distractors must be 

plausible and not contain irrelevant information. This is because most examinees have 

enough test-wiseness to not select options that seem random (Frary, 1995). It can also be 

a challenge to develop plausible distractors. Rather than developing as many plausible 

distractors as possible, test developers argue against this technique because qualities of 

the item do not change when there are only three options (Haladyna & Downing, 1993; 

Rodriguez, 2005; Vyas & Supe, 2008).  

It is also important to vary the location of the correct option. Attali and Bar-Hillel 

(2003) note that test developers typically place correct answers in the middle position of 
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the options or show middle bias when creating an answer key. Doing so may cause items 

to become easier and less discriminating amongst examinees. Key balancing calls for 

test-makers to vary the position of correct options so that each choice is the correct option 

an equal number of times throughout the test (Bar-Hille, Budescu, & Attali, 2005). Test 

developers can also randomize the location of correct answers instead of using key 

balancing, as patterns in key balancing are decided beforehand. At a minimum, the 

correct option should not be placed as the same choice multiple times in a row. When this 

occurs, examinees are able to pick up on patterns. Randomization corrects this issue since 

patterns cannot be created beforehand (Bar-Hillel & Attali, 2002).  

One option that cannot vary in location is all of the above (AOTA). AOTA is one 

of the two most controversial guidelines pertaining to option writing. While 22% of 

researchers say using AOTA is acceptable, 70% believe this option should never be used 

(Haladyna et al., 2002). Tarrant and Ware (2008) argue that using AOTA as a distractor 

can lead to examinees guessing the correct option more easily. For example, if an 

examinee is able to eliminate one option, then they are able to also able to eliminate 

AOTA. Additionally, having AOTA as an option only when it is the correct option cues 

examinees to pick the AOTA option, decreasing reliability of scores. As an alternative, 

using a constructed response format facilitates testing examinees’ knowledge on multiple 

details (Harasym, Leong, Violato, Brant, & Lorscheider, 1998).  

The option none of the above (NOTA) is just as controversial as AOTA. Nearly 

half of researchers believe that NOTA should not be used when writing options for MC 

items (Frary, 1991). While there are some instances where NOTA can be used, such as 

when learning objectives call for examinees to distinguish when or when not to do 
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something, items containing NOTA as an option can cause an item’s effectiveness to 

decrease (Frary, 1991). In particular, there are mixed results about how well using NOTA 

discriminates between examinees. Rich and Johanson (1990) found that the use of NOTA 

allows for items to discriminate among examinees better (Rich & Johanson, 1990), but 

others find that NOTA has no effect Crehan & Haladyna, 1991; Frary, 1991). After 

conducting a meta-analysis, Knowles and Welch (1992) concluded that using NOTA as 

an option does not significantly affect the quality of the item.  

In comparison to NOTA, humorous options are not as controversial. When 

examining the use of humor in option development, most test developers (85%) do not 

mention using humor (Haladyna et al., 2002). Since humor does not have an effect on 

how well an examinee does, it can be implemented in certain situations (McMorris, 

Boothroyd, & Pietrangelo, 1997). If one of the options for the items in Figure 9 and 

Figure 10 included a pun or a nonsensical option, it might be acceptable in low-stakes, 

but not in high-stakes, standardized testing situations as these tests are associated with 

important decisions (McMorris, Boothroyd, & Pietrangelo, 1997; Brown & Itzig, 1976).  

What is 2(3+6)? 

a) 12           b)   18 

c)   100         d)   15 

Figure 12. Hypothetical MC item on a math test. Option B is the correct answer. 

 Writing good distractors lies in common misconceptions examinees have of the 

material (Haladyna et al., 2002). These can be typical errors an examinee makes when 

problem solving (Gierl et al., 2017). For example, consider the plausibility of the options 

for the item in Figure 12. The examinee who chooses option A would be making an error 

since they likely multiplied two and three and then added six. Examinees who have 

limited knowledge of the rules for order of operations might pick this option. While there 
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was no disagreement for the use of student common errors as distractors, only 70% of 

authors specifically wrote about being in favor of using this technique to develop their 

own assessments (Haladyna et al., 2002).   

There are two ways to obtain information about examinees’ misconceptions: 

analyze responses to open-ended items or use options that are similar in content to the 

correct answer. By examining responses from open-ended items, where the examinee is 

only given the stem, test developers are able to determine where examinees make 

mistakes that lead to incorrect answers.  In turn, the incorrect answers can be used to craft 

the distractors (Halloun & Hastenes, 1985). If obtaining information from open-ended 

items is not possible, distractors can be created using similar content to the correct 

answer. This leads examinees who are not knowledgeable on the topic to have a lower 

probability of selecting the correct answer (Ascalon, Meyers, Davis, & Smits, 2007).  In 

Figure 13, options A, B, and C are steps that examinees would take to simplify the 

expression. Options B and C are examples of answers that examinees supplied on open-

ended items. In comparison, option D is not similar in content to the other options as it 

has nothing to do with the item nor the other options. This is a violation of the guideline 

suggesting to write plausible distractors.  

What would be the first step to simplify the following expression? 

 

5(7-2)+10 

 

a) Subtract what is in the parentheses                  b)   The expression is already 

simplified 

c)   Multiply 5 and what is in the parentheses       d)   Find the derivative of the 

expression 

 

Figure 13. Hypothetical MC item on a math test. Option A is the correct answer.  
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There is a significant decrease in the percentage of examinees who select the 

correct option when using technical phrases in distractors and nontechnical phrases in the 

correct option (Haladyna et al., 2002). This is likely due to students associating technical 

phrases with being the correct option, which is not related to an examinee’s knowledge of 

the subject (Strang, 1980). When examining the item in Figure 13, option D is not only 

illogical as an answer for this item, but examinees who are being tested on their 

knowledge of order of operations would not be likely to know what a ‘derivative’ is. 

Even though option D is illogical, because it uses the technical term ‘derivative’, 

examinees may be erroneously drawn to it.    

Measurement Paradigms: Classical Test Theory and Item Response Theory 

The proper development of each part of the item is imperative in producing good 

MC items. However, simply using the guidelines stated above does not ensure a well-

functioning item.  Once items are given to examinees and data are collected, researchers 

are able to empirically investigate psychometric properties of the items. There are two 

measurement paradigms primarily used to analyze the functioning of items: classical test 

theory (CTT) and item response theory (IRT). 

CTT uses an examinee’s total score on a test as an estimate of ability, which is 

represented with the formula: 

    𝑋 = 𝑇 + 𝐸.       (1) 

Equation 1 is known as the true score model, where the observed score, X,  is the sum of 

true score, T,  and error score, E (De Ayala, 2013).  The observed score is the score an 

examinee earns on a test. For example, if all items were scored as correct (1 point) or 
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incorrect (0 points), then an examinee who answers 30 out of 40 items correct has an 

observed score of 30.   

The true score is not a measure of truth. Instead, it can be thought of as an 

examinee’s trait score. Theoretically, if an examinee were tested an infinite number of 

times, measurement error would average zero, and the average would be the examinee’s 

true score of the ability being measured (Cronbach, 1990). Of course, this is not 

necessarily practical and only theoretical, which is why we never know an examinee’s 

true score. It can only be estimated by the observed score (De Ayala, 2013).     

Unfortunately, the observed score is also influenced by measurement error (De 

Ayala, 2013). When discussing measurement error in this context, researchers examine 

whether observed scores are reliable or consistent. To understand the reliability of scores, 

we need to first understand the decomposition of variance observed. The variance of the 

observed score is decomposed as:  

       𝜎𝑋
2 = 𝜎𝑇

2 + 𝜎𝐸
2                 (2) 

where the observed score variance, 𝜎𝑋
2, is the sum of the true score variance, 𝜎𝑇

2, and the 

error score variance, 𝜎𝐸
2. Observed scores from the instrument are considered more 

consistent as the amount of measurement error variance becomes smaller (𝜎𝐸
2). As 

measurement error variance decreases, the variance of the observed scores becomes 

closer to the variance of the true scores. The observed scores are then considered to be 

more reliable (Traub & Rowley, 1991).   

There are certain advantages to using CTT when developing tests. For example, 

test developers can use CTT to estimate difficulty, discrimination, and ability when the 

sample size is small (Hambleton & Jones, 1991). In addition, CTT is a good paradigm for 
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estimating scores when test developers would like to rank-order examinees and not 

generalize observed score beyond the classroom (De Champlain, 2010).  

While CTT is appropriate in certain situations, it does have disadvantages. Item 

properties in CTT are sample dependent, meaning that a group of examinees taking a test 

may produce different item statistics than another sample taking the same test (De 

Champlain, 2010). Because of this, it is difficult to compare estimates across samples 

(Hambleton & Jones, 1991). Ideally, test characteristics would not depend on the sample 

(i.e., person-free), and the sample characteristics would not depend on the test (i.e., item-

free measurement). Unfortunately, in CTT, test characteristics cannot be separated from 

sample characteristics. If scores are low, it is not always clear whether the test was hard 

or the sample had low ability. In comparison to CTT, IRT allows parameter estimates to 

be person-free and item-free (Embretson & Reise, 2000).    

When using IRT, the goal is to use examinees’ observed item responses to model 

the relationship between examinees’ abilities and the probability of an examinee correctly 

answering an item (Harris, 1989). Ability, θ, is on a scale of -∞ to ∞, but typical values 

range from -3 to 3. Examinees with a high ability level, or high θ value, should have a 

higher probability (i.e., close to 1) of selecting the correct option (Hambleton & Jones, 

1991). To model the probability of selecting a correct response on a MC item, test 

developers have the option of using the one-parameter logistic model (1-PL), the two-

parameter logistic model (2-PL), or the three-parameter logistic model (3-PL). 

The 1-PL model allows test developers to estimate a difficulty, 𝑏𝑖, for each item 

and it can be expressed with the following equation: 

    𝑃𝑗(𝜃) =
𝑒

(𝜃−𝑏𝑗)

1−𝑒
(𝜃−𝑏𝑗)

   𝑗 = 1, 2, … , 𝑛        (3) 
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where 𝑃𝑗(𝜃) is the probability of an examinee with an ability θ answering item j correctly 

on a test with 𝑛 items. The difficulty parameter is on the same scale as ability, where 

typical values range from -3 to 3. A higher value indicates that the item is more difficult 

to examinees. Examinees with an ability level higher than the item difficulty have a 

greater than 50% chance of getting the item correct. Those with a lower ability level have 

a smaller chance of getting the item correct (Hambleton, Swaminathan, & Rogers, 1991).  

We can graphically investigate the logistic function shown in Equation 3, which 

produces an S-shaped curve with the ability scale on the horizontal axis. The location of 

𝑏𝑗 on the ability scale is where an examinee at certain ability of θ has a 50% probability 

of selecting the correct response. As the 𝑏𝑗 parameter increases, the item difficulty 

increases. Values of 𝑏𝑗 that are below -2 are easy, and values greater than 2 are difficult 

(Harris, 1989). The location of 𝑏𝑗 tells us where the item information is maximized 

(Hambleton et al., 1991). 

Figure 14, provided by Hambleton et al. (1991), displays the item characteristic 

curves (ICCs) for four items from a 1-PL model. Item three has the lowest difficulty (𝑏3= 

-1.0) while item two has the highest difficulty (𝑏2=2.0). So, examinees with an ability 

level of -1.0 have a probability of 0.5 of selecting the correct answer on item three, but 

significantly less than a 50% chance of selecting the correct answer on item two. Harris 

(1989) explains that the 1-PL is advantageous compared to the 2-PL and 3-PL models 

because a total score can be used to estimate θ, and the number of examinees selecting 

the correct option can be used to estimate 𝑏𝑗. The total score estimated in the 1-PL model 

is a sufficient statistic for ability.   
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Figure 14. Four item characteristic curves using the 1-PL model (Hambleton, 

Swaminathan, & Rogers, 1991, p. 14). 

 

The two-parameter logistic model (2-PL) is similar to the 1-PL model, except for 

the addition of a parameter for discrimination (𝑎𝑗). The 2-PL model formula is expressed 

as:  

 𝑃𝑗(𝜃) =
𝑒

𝐷𝑎𝑗(𝜃−𝑏𝑗)

1−𝑒
𝐷𝑎𝑗(𝜃−𝑏𝑗)

   𝑗 = 1, 2, … , 𝑛        (4) 

where the 𝑎𝑗 parameter is the slope for each of the ICCs. An ICC with a steep slope 

indicates a more discriminating item than an ICC with a flat slope. The value of 𝑎𝑗 ranges 

from 0 to ∞, but is typically between 0 and 2. Compared to Equation 3, in Equation 4 we 

see the addition of 𝑎𝑗 and D. The D is a scaling factor that allows for the logistic function 

to be similar to a normal ogive function, fixed to 1.7.   

Item discrimination can be examined graphically by looking at the ICC’s slope. In 

Figure 15, the item that is most discriminating is item three because it has the steepest 

slope (𝑎3=1.5).  Item two has the lowest slope (i.e., closest to a horizontal line; 𝑎𝑖 = 0), 

and thus the lowest discrimination (𝑎2=0.5). The discrimination parameter for item three 

would be interpreted as having the highest utility for separating examinees at an ability 
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level of 𝑏𝑗 = −1 with the inclusion of the discrimination parameter (Hambleton & Jones, 

1993).   

 
Figure 15. Four item characteristic curves using the 2-PL model (Hambleton, 

Swaminathan, & Rogers, 1991, p. 16). 

 

The three-parameter logistic model (3-PL) introduces a third item parameter, the 

pseudo-guessing parameter. It is expressed as: 

           𝑃𝑗(𝜃) = 𝑐𝑗 + (1 − 𝑐𝑗)
𝑒

𝐷𝑎𝑗(𝜃−𝑏𝑗)

1−𝑒
𝐷𝑎𝑗(𝜃−𝑏𝑗)

   𝑗 = 1, 2, … , 𝑛      (5) 

The only addition is the 𝑐𝑗 parameter, or the pseudo-guessing parameter, which is a lower 

asymptote for the ICCs. This lower asymptote is the probability of low ability examinees 

answering an item correctly. Because the lower asymptote is no longer 0, the 

interpretation of the difficulty parameter is adjusted for guessing (Hambleton et al., 

1991).   

 In Figure 16, there is a different lower asymptote for each item (𝑐1=0.19, 𝑐2=0.17, 

𝑐3=0.07, 𝑐4=0.04; Hambleton & Jones, 1993, p. 41). 19% of low ability examinees select 

the correct answer, which could be due to guessing. We do not necessarily know whether 
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examinees are truly guessing or guessing after eliminating options. The smallest chance 

of guessing is for low ability examinees on item four. 

 

 
Figure 16. Four item characteristic curves using the 3-PL model (Hambleton & Jones, 

1993, p. 41).  

 

To use the IRT paradigm, the data should meet certain assumptions. First, there 

should only be one ability measured by the items. This is known as unidimensionality. 

Responses may be influenced by other traits (e.g., test anxiety or motivation), but the 

primary trait is what influences examinees to respond to items on the test (Hambleton, 

Swaminathan, & Rogers, 1991). 

 A second assumption for unidimensional IRT models is local independence. To 

satisfy this assumption, examinees’ responses to each item must be statistically 

independent of responses to other items, once ability is accounted for. Local 

independence is that the “probability of a response pattern on a set of items is equal to the 

product of the probabilities associated with the examinee’s responses to the individual 

items” (Hambleton et al., 1991, p. 11). Once the ability is accounted for, responses to 

items should be uncorrelated since the responses do not have any other shared variance 

(Hambleton et al., 1991).    
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An advantage to using IRT is that items possess the property of invariance. This 

means that item properties are not sample dependent. In other words, up to a linear 

transformation, item parameters are not dependent on the ability distribution for the 

examinees used when collecting responses. After scaling to a common metric, the ICCs 

will be the same for any group of examinees as long as the model fits the data 

(Hambleton et al., 1991). Because of this, IRT is especially useful for test developers 

estimating ability levels of examinees and tracking the scores across time (De Champlain, 

2010).   

A disadvantage of IRT is that it requires the use of large sample sizes, which is 

not always feasible in a classroom environment. Although sample size is dependent on 

the type of model (e.g., 1-PL, 2-PL, 3-PL) a test developer uses, a sample size of 500 or 

more is appropriate (Hambleton & Jones, 1991). IRT can also be challenging for those 

not in the measurement field. The theoretical concepts behind IRT, and the difficulty in 

using some programs associated with IRT can hinder test developers use of this paradigm 

(Thorpe & Favia, 2012).  

CTT and IRT both have advantages and disadvantages. In comparison to each 

other, CTT and IRT also have major similarities and differences that need to be addressed 

to understand which is better for test developers to use.  

Comparison of Measurement Paradigms 

 Table 4 contains two examinees’ responses to ten items on a test. For simplicity, 

the items become increasingly difficult from one to ten. Both examinees have the same 

total score, but they answered different items correctly. Examinee A answered the 6 
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easiest items correctly while Examinee B answered a mix of easy and hard items 

correctly.   

Table 4 

Two Examinees’ Item Responses 

Item                                 1 2 3 4 5 6 7 8 9 10 

Examinee A                           1 1 1 1 1 1 0 0 0 0 

Examinee B 1 1 1 1 1 0 0 1 0 0 

Note. 0 – incorrect; 1 – correct  

 Under the CTT framework, Examinee A and Examinee B have the same 

estimated true score (i.e., their total score). The CTT total scores are equivalent because 

both examinees obtain a total score of six. The ability estimates in the 1-PL model will 

also be equivalent since the total score is a sufficient statistic for ability in the 1-PL 

model. Under the 2-PL and 3-PL IRT models, however, Examinee A and Examinee B 

will have different estimated ability levels for the latent construct that this test is 

measuring. CTT and IRT may produce differing interpretations of ability levels, and both 

paradigms have differences that explain why this occurs. 

 Table 5 lists four differences between CTT and IRT pertaining to the levels of 

analysis, assumptions, item-ability relationship, and the way ability is defined. In CTT, 

the model focuses on true scores at the test-level while IRT models focus at the item-

level (Hambleton & Jones, 1991). In contrast to the clear specification of the item-ability 

relationship in IRT, CTT does not specify this relationship (Hambleton & Jones, 1991). 

While CTT only looks at the test level information, such as total scores, IRT looks at 

information at the item level. When developing tests, those using IRT rely on an ICC to 

see the relationship between ability levels and the probability of selecting the correct 

option for an item. This relationship is not specified in CTT (Hambleton et al., 1991). 
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Table 5 

Major Differences Between CTT and IRT 

Area CTT IRT 

Levels of analysis Test Item 

Item-ability relationships Not specified  Item characteristic 

functions 

Assumptions Weak Strong 

Ability Estimated true scores 

reported on test-score scale 

Ability scores reported on 

scale -∞ to ∞ 

Note. From Hambleton and Jones (1991, p. 43). 

Another difference is that assumptions in CTT are considered weak compared to 

strong assumptions in IRT. Assumptions that are weak tend to be easier to meet while 

strong assumptions are more challenging to meet (Hambleton & Jones, 1991). The 

assumptions of unidimensionality and local independence in IRT are more complex, but 

test developers who use IRT also focus on assumptions more than those using CTT 

(Osterlind & Wang, 2018). 

Another difference is that ability estimates are in different metrics when 

comparing CTT and IRT. In CTT, an estimate of an examinee’s true score is the total 

score and is based on the metric that the test is on. In comparison, test developers using 

IRT report ability on a scale of -∞ to ∞ rather than a total score (Hambleton et al., 1991).   

Due to advances in the measurement field, a distinction between the old (i.e., 

CTT) and new (i.e., IRT) rules is made. Embretson and Reise (2000) compare CTT and 

IRT by explaining the differences between ten rules of measurement. Table 6 presents the 

ten rules. Rules one, two, and four are explained and contrasted in detail for each 

paradigm due to their relevancy in this study. 

Table 6 

Rules of Measurement   

1. Standard error of measurement 

2. Test length and reliability 

3. Interchangeable test forms 
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Table 6 (continued) 

4. Unbiased assessment of item properties 

5. Establishing meaningful scale scores 

6. Establishing scale properties 

7. Mixing item formats 

8. Meaning of change scores 

9. Factor analysis of binary items 

10. Importance of item stimulus features 

Note. Rules of measurement from Embretson & Reise (2000). 

The first rule pertains to the standard error of measurement (SEM). The SEM is 

defined as variation in scores that is due to error on a test (Crocker & Algina, 1986). As 

the SEM increases, test developers become less certain about whether the test is 

measuring the construct (Magno, 2009). In CTT, the SEM applies to all scores for a 

population (Embretson & Reise, 200). In other words, the SEM is constant across all 

examinee test scores (Hambleton & Jones, 1993). In contrast, the SEM differs across 

scores but is averaged across populations in IRT (Embreston & Reise, 2000). Each ability 

level has an estimated SEM value (Embretson, 1996).  

Another rule states that the relationship between test length and reliability differs 

for CTT and IRT. It is important to note that SEM estimates are related to reliability 

estimates. As reliability increases, the SEM decreases (Crocker & Algina, 1986). In CTT, 

a test that is longer is typically more reliable (Embretson & Reise, 2000). In comparison 

to CTT, a test with fewer items can sometimes produce more reliable estimates under the 

IRT paradigm. Whereas in CTT there is one SEM for scores on the entire test, in IRT we 

estimate reliabilities that are not constant across ability. We refer to this as conditional 

reliability because reliability is a function of both ability and item parameters. Recall that 

ability and difficulty have the same metric. When item difficulties are around the same 

value, and discrimination is high, marginal reliability is large because we have the most 
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information about a specific ability. The inverse of information is SEM, meaning that the 

smallest SEM is where we have the most information and largest reliability.  

 The unbiased assessment of item properties differs in CTT and IRT, depending 

upon the type of sampling. In CTT, to determine if items properties are unbiased, 

researchers must use a representative sample (Embretson & Reise, 2000). If a researcher 

sampled examinees with low abilities the first time but high abilities the second time, the 

second group of examinees would answer the items correctly more often than the low 

ability examinees. Because of the biased sample, researchers cannot compare the item 

properties since the groups are very different (Embretson, 1996). When examining item 

properties in IRT, samples that are unrepresentative, to some degree, can be used 

(Embretson & Reise, 2000). This is because IRT has the assumption of invariance. When 

the model fits the data, researchers can infer that different samples will still produce 

unbiased item properties (Nguyen, Han, Kim, & Chan, 2014).  

While CTT and IRT have differences, there are similarities.  CTT and IRT 

paradigms address issues in measurement (Hambleton & Jones, 1993) and both are used 

to create and evaluate examinations (De Champlain, 2010).  Both CTT and IRT assume 

that the underlying, latent ability of the test is continuous (De Ayala, 2013).  While each 

can help evaluate the psychometric properties of the scores, they do so in different ways. 

Despite limitations already spoken to (i.e., sample size considerations), test developers 

may use either paradigm to analyze how items perform, known as an item analysis.   

Item Analysis 

 Once a test is created, psychometric properties of the scores and items can be 

calculated to see if the test is functioning well. In an item analysis under the CTT 
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paradigm, researchers can investigate item difficulty. Item difficulty, P, is the proportion 

of examinees who answer the item correctly, which is calculated as: 

𝑃 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠
       (7) 

If, for example, there is a total of 50 examinees and 35 examinees selected the correct 

response, the item difficulty would be .7 (𝑃 =
35

50
= .7). Item difficulty in this example 

can also be thought of as 70% of examinees selecting the correct option.      

Item difficulty ranges from 0 to 1, where 0 means that no examinees answered the 

item correctly, and 1 means that all examinees answered the item correctly. Difficulties 

less than .30 indicate a very hard item and difficulties above .7 indicate an easy item 

(Bandalos, 2018). Items that do not fall into this range require revision (Ding & Beichner, 

2009). In cases where p < .3, examinees who actually have high ability may answer the 

item incorrectly due to confusion in the wording of the item, and not necessarily as a 

result of the item content being difficult (Boland, Lester, & Williams, 2010).   

As an alternative to CTT, test developers can estimate item difficulty using IRT 

models.  The difficulty parameter, 𝑏𝑗, is on the same metric as ability, which can range 

from -∞ to ∞.  However, values are typically between -3 and 3. Higher values of 

difficulty indicate a more difficult item (Harris, 1989). The interpretation of item 

difficulty changes slightly in the 3-PL model to include the pseudo-guessing parameter.   

Test developers can also examine item discrimination (D) in CTT. Item 

discrimination refers to how well an item distinguishes between low and high ability 

examinees. Since it is inferred that high ability examinees will answer more items 

correctly, and low ability examinees will answer fewer items correctly, item 
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discrimination is an index for quantifying the discrimination between examinees with 

specific ability levels (Bandalos, 2018).   

In CTT, item discrimination values range from -1 to 1. A value of -1 indicates that 

all low ability examinees answered the item correctly and no high ability examinees did, 

whereas a value of 1 means all high ability examinees answered the item correctly and no 

low ability examinees did. Towns (2014) explains that item discrimination is preferred to 

be above .4, meaning that the item can discriminate between low and high ability 

examinees. Item with values between 0 to .2 should either be revised or discarded. 

Negative discrimination values are indicative of items that are either flawed or keyed 

incorrectly.  

One index of discrimination is equal to the proportion of high ability examinees 

who select the correct option minus the proportion of examinees with low ability (i.e., 

lower 27th percentile of total score) who select the correct option (De Ayala, 2013). 

𝐷 = 𝑃ℎ𝑖𝑔ℎ − 𝑃𝑙𝑜𝑤         (8) 

The discrimination would be positive if a higher proportion of high ability examinees 

select the correct answer (Bandalos, 2018; Towns, 2014). Table 7 displays examinees 

from both the low and high ability groups and number of examinees who chose each 

option for this example item.   

Table 7 

Table of responses for each option from low and high ability examinees 

 A* B C D Total 

High Ability 41 2 6 1 50 

Low Ability 20 7 17 6 50 

Note. Option A is correct (*). 

To calculate item discrimination, we take the proportion of high ability examinees who 

selected the correct option and subtract it from the proportion of low ability examinees: 
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𝐷 =
41

50
−

20

50
= .82 − .40 = .42 

This item is considered to have high discrimination amongst examinees because the value 

is positive and above .4. 

 In CTT, item discrimination can also be examined by calculating the point biserial 

coefficient. This coefficient is the correlation between item and total scores and produces 

the reliability of scores for each item (Ding & Beichner, 2009). The point biserial 

coefficient is calculated as: 

𝑟𝑝𝑏𝑖 =
(

𝑀1−𝑀0
𝑠

)

[((𝑛1∗𝑛0)∗.5)/𝑛2]
        (9) 

where, 𝑀1 is the mean of examinees who answer the item correctly, 𝑀0 is mean of 

examinees who answer the item incorrectly, s is the standard deviation of all scores, 𝑛1 is 

the number of examinees who answer the item correctly, 𝑛0 is the number of examinees 

who answer the item incorrectly, and 𝑛 is the total number of examinees. Similar to D 

values, point biserial coefficients range from -1 to 1, where a negative value indicates that 

examinees possessing low total scores tend to answer the item correctly and those with 

high scores answer incorrectly. Alternatively, a positive value indicates that examinees 

with high total scores tend to answer the item correctly and examinees with low total 

scores answering the item incorrectly, the ideal situation. The point-biserial correlation is 

equivalent to the Pearson correlation, where an examinees’ total score is correlated with 

selection of the correct option.   

 IRT provides a way to estimate item discrimination through the use of the 𝑎𝑗 

parameter. In the 1-PL, 2-PL, and 3-PL models, item discrimination is the slope of the 

ICC for each item.  In the 1-PL model, 𝑎𝑗 is fixed at a specific value. In most cases, the 
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discrimination parameter is fixed to have a slope of one, which is known as the Rasch 

model (Rasch, 1960), as presented in Equation 3 (Harris, 1989). Test developers can also 

use the 2-PL model to estimate the discrimination parameter for each item. Item 

discrimination values typically fall between 0 and 2, but values can range from 0 to ∞. As 

an ICCs slope becomes steeper, discrimination values increase (Hambleton et al., 1991). 

The addition of the pseudo-guessing parameter in the 3-PL model does not alter the 

interpretation of the discrimination parameter (Hambleton & Jones, 1993). 

 While test developers can gain important information about tests by examining 

item difficulty and discrimination, analyzing the functioning of distractors provides test 

developers with a more complete understanding of item functioning. Instead of solely 

looking at dichotomous responses (i.e., correct or incorrect), test developers can 

investigate the relationship between ability groups and their propensity to select a certain 

option (Gierl et al., 2017). Polytomous IRT models allow for this observation of 

properties of item responses.  

Distractor analysis 

Regardless of the paradigm, test developers examine multiple sources of evidence 

to conclude whether distractors are functioning as intended. In CTT, a simple way to 

accomplish this is to calculate the frequency of examinees picking each option. A 

distractor is considered low-functioning when it is chosen by less than 5% of examinees 

(Gierl et al., 2017; Haladyna & Downing, 1993). In Table 8, the percentage of examinees 

who selected each option for an item is displayed. Based on Haladyna and Downing’s 

(1993) rule, option D is considered a low-functioning distractor because less than 5% of 

examinees selected it. Options B and C, however, are well-functioning distractors as they 
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fall above this cut-off.  Although it is useful to see how many respondents are selecting 

each distractor, it may be more useful to see the type of examinee who is selecting each 

distractor.     

Table 8 

Percentage of examinees selecting each option 

Item 6     

 A* B C D 

Total 82.56 8.36 7.05 1.67 

Note. Option A is the correct option (*). 

To gain a better insight of who is selecting distractors, test developers can 

separate examinees into low, medium, and high groups based on their total scores. The 

proportion of examinees who select each option for the item is examined (Gierl et al., 

2017). Table 9 shows a frequency table with the percentages of examinees selecting 

certain options based on their ability levels (low, medium, and high). This is a version of 

Table 8 that is broken down by ability level. Less than 5% of examinees selected option 

D. Because of this, we would consider option D to be a poorly functioning distractor. The 

low percentage of examinees who are choosing the distractor for this item are likely to be 

guessing (Haladyna & Downing, 2013). Although options B and C contain percentages in 

the high group that are below 5%, these distractors are still functioning well since those 

with low and medium abilities are selecting them somewhat frequently. By breaking 

down the percentages of examinees who select each option by their ability level, it is easy 

to see which examinees are selecting certain options more often.  
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Table 9 

Percentage of low, medium, and high ability levels selecting certain options 

Item 6     

 A* B C D 

Low 65.59 18.74 13.15 1.98 

Medium 84.52 6.73 6.13 2.21 

High  93.82 2.11 3.32 0.6 

Note. Option A is the correct option (*). Table 8 is a frequency table for Figure 9. 

Another way to examine distractor functioning in the CTT paradigm is to create 

trace plots for each item. Trace plots provide a visual representation of how the options 

are functioning in relation to total score (Wainer, 1989). Examinees are grouped by total 

score on the x-axis. The frequency of examinees selecting each option is displayed on the 

y-axis. A unique line is shown for each distractor (see Figure 17).    

Based on the appearance of distractor trends in the trace plots and frequency 

tables, Haladyna et al. (1993) categorize four types of distractors as undesirable. They use 

the criteria that the lines of the trace plots should be monotonically decreasing for 

distractor options. Four types of undesirable distractors are: (1) a distractor where less 

than 5% of examinees select it, (2) a distractor with a completely flat trace line, (3) a 

distractor with a non-monotonic trace line, and (4) a distractor that is acting as the correct 

answer. First, as stated previously, the frequency of selecting a distractor should be 

greater than 5% to be considered functioning. Second, when a trace line is completely flat 

(i.e., slope is zero) for all levels of ability, the distractor is considered undesirable. This is 

because it is not discriminating high and low ability examinees.  

 Third, a trace line that is non-monotonic is not desirable. When examining a trace 

plot, this type of line will have a slope that is not consistent across the ability continuum. 

A non-monotonic slope is undesirable since it tells us little about the examinees. Instead, 

it is contradictory to the way we want a distractor to function (Haladyna et al., 1993). 
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 Finally, a distractor that has a monotonically increasing trace line indicates a 

pattern similar to the correct option. If examinees with high ability select a distractor 

more frequently than those with low ability, there is an issue with the options or 

instructions. Examinees with a high ability should select the correct option and not a 

distractor (Haladyna et al., 1993).  

Figure 17 is a trace plot for Table 8. On the horizontal axis of the graph, ability is 

quantified as total score, where examinees are placed into low, medium, and high ability 

groups. The vertical axis displays the percentage of examinees in each group who chose a 

specific option. Option A is the correct option, and it follows a trend we would expect. 

From low to medium to high total scores, the percentage of examinees selecting the 

correct option increases. Option C in Figure 9 is especially problematic because the trace 

line is flat (i.e., nondiscriminating) and less than 5% of examinees select it (i.e., 

nonfunctioning).  

 
Figure 17. Trace plot of the frequencies in Table 8. Option C is the undesirable distractor. 

Option A is the correct option.  

 

 Often times, the flatness of the lines is not clear. To test the slope objectively, a 

chi-square goodness-of-fit test can be used to see whether the slope of the trace line for a 

suspected nonfunctioning distractor is significantly different from zero (Haladyna et al., 
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1993). This statistic tests a null hypothesis of equal proportions of selection among the 

ability groups in the population. When a distractor displays a flat trace line, the same 

percentages of examinees in each ability group are selecting the distractor.    

Once distractors are identified as problematic, test developers may delete the 

distractor for future revisions of the test if they want to increase discrimination power 

between examinees with low and high abilities (Haladyna & Rodriguez, 2013). However, 

the distractor should not simply be removed based upon poor functioning. First, the 

distractor should be reviewed by subject-matter experts and examined for content before 

removing it (Gierl et al., 2017; Haladyna et al., 1993).  

Test developers may alternatively use IRT to analyze distractor functioning. IRT 

allows for simultaneous analysis of distractor functioning and estimating ability (Gierl et 

al., 2017). However, using the 1-PL, 2-PL, or 3-PL IRT model to perform a distractor 

analysis is not possible. These models only provide information for examinees who select 

the correct versus the incorrect options. Examinees who select any of the distractors are 

collapsed into a single, “incorrect” category. Instead of modeling dichotomous item 

responses, polytomous IRT models consider all response options as unique categories. 

The nominal response model (NRM; Bock, 1972) is amongst the most commonly 

used polytomous IRT models to examine distractor functioning. The NRM was originally 

created to examine information about distractors by modeling responses from MC tests 

(Bock, 1972; Stone & Zhu, 2015). This polytomous model allows test developers to 

examine the probability of examinees selecting each of the options in a MC item (Gierl et 

al., 2017). The NRM can be expressed as the probability of an examinee with ability θ 

selecting option k of item j: 



41 
 

 

                                                     𝑃𝑗𝑘(𝜃) =
𝑒𝑧𝑗𝑘

∑ 𝑒𝑧𝑗𝑥
𝑚𝑗
𝑥=0

                                      (10) 

where 𝑧𝑗𝑘 = 𝑎𝑗𝑘θ + 𝑐𝑗𝑘. The option discrimination parameter, 𝑎𝑗𝑘, represents the strength 

and direction of the relationship between the propensity to select an option and θ. The 

option extremity parameter, 𝑐𝑗𝑘, represents the probability for an examinee to select 

option k when θ = 0. The intersection of adjacent categories is notated as 𝑏𝑗𝑘, where 

𝑏𝑗𝑘 =
𝑐𝑗𝑘−𝑐𝑗𝑘+1

𝑎𝑗𝑘+1−𝑎𝑗𝑘
 (Stone & Zhu, 2015; Thissen, Cai, Bock, Nering, & Ostini, 2010).  

 Thissen and Steinberg (1988) provide the item characteristics choice curves 

(ICCCs) for a MC item with four options in Figure 18. Option A corresponds with the 

ICCC labeled 0, option B corresponds with option 1, option C corresponds with option 2, 

and option D corresponds with option 3. Option 3 is the correct answer for this item. For 

option 3, 𝑎3 = 2.7 and 𝑐3 = 0.7. The large 𝑎3 parameter estimate indicates that option 3 

discriminates well between low and high ability examinees, where high ability examinees 

have a higher probability of selecting it.  

 

Figure 18. ICCCs for an item with four options (Thissen & Steinberg, 1988). 
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 Option 0 is a well-functioning distractor since those with a low ability have a high 

probability of selecting it, and the probability decreases as ability (θ) increases. Option 0 

and option 1 have the same slope, meaning they have the same 𝑎𝑗𝑘 parameter estimate 

(i.e., the slopes of both lines are proportional). Low ability examinees tend to select either 

distractor, but the probability for selecting either option is different. We can examine the 

𝑐𝑗𝑘 to examine the difference in probabilities. Option 0 has a 𝑐0 parameter estimate of 0 

while option 1 has a 𝑐1 has a parameter estimate of -.9. Because the 𝑐1 parameter estimate 

is lower than the 𝑐0 parameter estimate, option 1 has a lower probability of being 

selected. The ICCC of option 0 is always greater than ICCC of option 1 due to unequal 

𝑐𝑗𝑘 values.  

The NRM may be appropriate to analyze distractors when the 1-PL or 2-PL are 

used to score responses.  However, it is less appropriate when the 3-PL is used to score 

the responses as the NRM does not account for guessing. In the NRM, the probability of 

not selecting the correct answer tends to approach one as ability decreases. This is likely 

not true, however, as examinees with low ability are able to guess the correct answer 

(Gierl et al., 2017). Due to this limitation, Samejima (1979) extended the NRM to 

account for guessing – conceptually similar to how the 3-PL IRT model extends the 2-PL 

to account for guessing. Under Samejima’s (1979) multiple-choice model (SMCM) , the 

probability of selecting option 𝑘, 𝑘 = 1, … , 𝑚𝑗 on item 𝑗 is,  

                       𝑃𝑗(𝑘) =
exp(𝑧𝑘)+𝑑𝑘exp (𝑧0)

∑ exp (𝑧ℎ)
𝑚𝑗
ℎ=0

                    (11) 

where parameters 𝑎𝑗𝑘 and 𝑐𝑗𝑘 are interpreted in a similar way as the NRM, and 𝑑𝑗𝑘 is a 

fixed guessing parameter across items. Under the SMCM, A, B, C, and D are treated as 

categories 1-4. Now, a latent category, 0, is added to incorporate guessing. The 𝑑𝑗𝑘 is a 



43 
 

 

“don’t know” parameter for each category, 1-4. This parameter is defined as the 

proportion of examinees who select an option (k) because they, theoretically, don’t know 

the correct answer.  A DK ICCC expresses the probability of guessing by an examinee 

with given ability. In Samejima’s (1979) model, the 𝑑𝑗𝑘 parameter is fixed to be 1/𝑚𝑗, 

where 𝑚𝑗 is the number of response categories 𝑚, for item 𝑗. 

The guessing parameter, however, is fixed for each item when using this model. 

The fixed 𝑑𝑗𝑘 parameter in Samejima’s (1979) model has been found to be more 

restrictive for all applications when modeling MC response data (Thissen & Steinberg, 

1984; Thissen, Steinberg, & Fitzpatrick, 1989). Thissen and Steinberg (1984) developed 

a multiple-choice model (MCM) where the parameter for guessing can be estimated for 

each item. Estimates of parameters of 𝑎𝑘 and 𝑐𝑘 undergo reparameterization because 

guessing is likely not fixed for each item.   

The NRM and SMCM both have strict assumptions that are typically violated 

when guessing occurs. First, the NRM assumes that as ability decreases, the probability 

of selecting the correct answer tends to approach zero. Because examinees are able to 

guess, this is likely untrue as there is still a likelihood of guessing the correct answer. 

While the SMCM model includes guessing, the guessing parameter is fixed to 1 𝑚𝑗
⁄ , 

where 𝑚𝑗 is the number of choices to guess from. Thissen and Steinberg (1984) extended 

both models to create the Thissen-Steinberg Multiple-Choice Model (TSMCM), allowing 

the guessing parameter for each option to vary.   

The TSMCM is mathematically defined in the same way as Samejima’s (1979) 

extension of the NRM (Equation 10) except that the 𝑑𝑗𝑘 can be freely estimated under 

specific constraints. Since 𝑑𝑘 represents the proportion of guessing each category, 𝑑𝑗𝑘 
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falls in the interval [0,1] and Σ𝑘𝑑𝑘 = 1. The 𝑑𝑗𝑘 parameter has the same interpretation as 

in Samejima’s (1979) model. The TSMCM is a generalized model in the sense that when 

𝑑𝑗𝑘 is fixed to 1/𝑚𝑗 for all options, the model simplifies to Samejima’s (1979) model. 

Furthermore, when 𝑎𝑜 and 𝑐𝑜 are fixed to 0, the 𝑑𝑗𝑘 becomes trivial and the TSMCM 

essentially simplifies to the NRM (Thissen & Steinberg, 1984).   

The addition of the 𝑑𝑗𝑘 affects the interpretation of the parameter values 𝑎𝑗𝑘 and 

𝑐𝑗𝑘. Parameter 𝑎𝑗𝑘 can have negative and positive values, which reflect the propensity to 

select that option 𝑘 for a given ability θ. For example, consider a positive 𝑎𝑗𝑘 value. 

Examinees with a higher ability (𝜃 > 0) tend to have a higher propensity of selecting 

option 𝑘. This means that the higher the 𝑎𝑗𝑘 parameter estimate, the steeper the slope of 

an ICCC for option 𝑘. The 𝑐𝑗𝑘 parameter is known as the intercept parameter. The 

intersection used for the NRM is no longer applicable because of the addition of the 𝑑𝑗𝑘 

parameter. The inclusion of 𝑑𝑗𝑘 parameter changes the location where adjacent ICCCs 

intersect because the 𝑑𝑗𝑘 parameter has its own ICCC for the DK category (Thissen et al., 

1989). 

The ICCCs for a four option MC item are shown in Figure 19. Option D is the 

correct answer, and it has an 𝑎𝐷 estimate of 1.04, 𝑐𝐷 estimate of 1.69, and 𝑑𝐷 estimate of 

0.41. The high, positive value of the slope indicates that as ability increases, examinees 

are more likely to select this option. However, option A also appears to be attracting high 

ability examinees. Option A has an 𝑎𝐴 estimate of 1.03. The similarity in the values of the 

slopes indicate that high ability examinees have a proportional propensity for selecting 

either option. Although both options have similar slope values, the parameter estimate of 

𝑐𝐴 is equal to .02. This value is much smaller than that of option D, indicating that high 
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ability examinees have a higher probability of selecting option D than option A. Option D 

has a guessing parameter estimate of 𝑑𝐷 = 0.41 while option A has an estimate of 𝑑𝐴 =

0.17. Option D has a higher value than option A, which is seen by comparing the 

asymptotic tendencies of the two ICCCs as ability decreases in Figure 19.  

 
Figure 19. ICCCs for an item with four options. The correct option is D. DK=don’t know 

(Thissen, Steinberg, & Fitzpatrick, 1989). 

 

 The modeling of examinee item responses with polytomous IRT models provides 

greater information about the functioning of items in comparison to dichotomous IRT 

models (Thissen et al., 1989). In addition, the NRM has been found to improve examinee 

ability estimates in comparison to the 2-PL model, especially for low ability examinees 

(Bock, 1972; Thissen, 1976). Levine and Drasgow (1983) showed that distractors can 

provide accurate information about an examinee’s ability since distractors provide 

diagnostic information. For example, the distractor an examinee selects might be a 

common misconception (Briggs et al., 2006). Because dichotomous IRT models may 

only provide partial information about examinee knowledge (DeAyala, 1989), there is 
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evidence that polytomous IRT models should be used more often when estimating an 

examinee’s ability because of the information that distractors can provide.  

 Because there is evidence to support that distractors are an important part of the 

MC item (Thissen et al., 1989), they should be examined more closely. Samejima (1988) 

named types of desirable distractors, which had positive influences on item properties. 

For example, informative distractors are able to discriminate examinees based on their 

ability level. The number of examinees who select the correct answer tends to be low 

(i.e., high difficulty) because the distractor draws in examinees who are not as high 

ability. Although, for example, the informative distractor can cause high discrimination, 

there is no evidence of how it affects ability estimates.  

Because properly functioning distractors are useful when analyzing items by 

providing more accurate estimates of ability, the effects of distractors that are not 

functioning well should be examined to see how they impact ability estimates. It is 

unknown whether ability estimates may be biased if multiple items on a test contain 

undesirable distractor properties. In all testing situations, scores are important to 

examinees. If distractors are not functioning as they are supposed to, researchers should 

be aware of the consequences they have on ability estimates.  
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Chapter 3. Methods 

Research Questions 

In the current study, I begin by examining the capabilities of the IRT procedure in 

SAS 9.4 (TS1M4) before examining the effects of undesirable distractors on estimates of 

ability. Without the accurate recovery of parameters and neglecting to report possible 

issues, interpretations of the second, third, and fourth research questions are not valid:  

1. How well does the SAS 9.4 IRT procedure recover estimates of ability using the 

3-PL model? 

2.  What are the effects of the percentage of items containing undesirable distractors 

on estimates of ability? 

3. Does the length of the test have an effect on an accuracy of ability estimates when 

items contain undesirable distractors? 

4. Is one type of undesirable distractor more prone to producing inaccurate estimates 

of ability? 

Simulation Studies 

 The interest of this study is to determine the effects that undesirable distractors 

have on estimates of ability. This main research question is challenging to answer in an 

empirical study because obtaining test-takers’ true ability is not possible. Additionally, it 

is unknown what the effects of undesirable distractors are on estimates of ability. There is 

the possibility to negatively impact test-takers in a high-stakes testing situation, which 

can lead to detrimental consequences to their futures. It is also not possible to manipulate 

distractors to be poorly functioning. Distractors can only be determined as poorly 

functioning after data collection and analysis. For these reasons, a simulation study is 
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appropriate to answer the research questions (Beaujean, 2018; Harwell, Stone, Hsu, & 

Kirisci, 1996; Luecht & Ackerman, 2018). 

 In a simulation study, item responses are generated using true ability values 

instead of collecting responses (Feinberg & Rubright, 2016). An important consideration 

when performing a simulation study is the generalizability of findings to real data 

(Feinberg & Rubright, 2016; Luecht & Ackerman, 2018). Specific reasoning is 

imperative when justifying the use of certain decisions (e.g., sample size, test length, 

etc.). The following sections explain reasoning for the use of conditions in the current 

study.  

Varying Conditions. Table 10 displays the simulation conditions for three 

factors: type of undesirable distractor, length of test, and percentage of items containing 

undesirable distractors. Each simulated test contained either 30, 50, or 100 items with a 

specific type of undesirable distractor in either 10%, 30%, or 50% of the items. When 

deciding on the number of items to use, it is appropriate to use at least 25 test items to 

obtain good correlations with values of true ability and estimated ability (Reise & Yu, 

1990). I selected other test lengths (i.e., 50 and 100 items) due to the interest of 

generalizing results to tests in both the classroom and standardized testing settings. I 

calculated the percentage of items containing undesirable distractors for each condition of 

test length, so each condition had a whole number of items. Crossing each factor (4x3x3) 

produced 36 conditions.  
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Table 10 

Simulation conditions 

Undesirable distractor Test length Frequency 

Implausible 30 10% / 30% / 50% 

 50 10% / 30% / 50% 

 100 10% / 30% / 50% 

Equivalent 30 10% / 30% / 50% 

 50 10% / 30% / 50% 

 100 10% / 30% / 50% 

Upper lure  30 10% / 30% / 50% 

 50 10% / 30% / 50% 

 100 10% / 30% / 50% 

Lower lure  30 10% / 30% / 50% 

 50 10% / 30% / 50% 

 100 10% / 30% / 50% 

 

I generalized the types of undesirable distractors to the TSMCM based upon 

Haladyna and Downing’s (1993) undesirable distractor trace lines. There are three types 

of undesirable distractors: implausible distractors, equivalent distractors, and lure 

distractors. There are two distinct types of lure distractors: upper lure and lower lure. The 

non-monotonic trace lines discussed by Haladyna and Downing (1993) were not 

simulated for this study because there is not complete agreement among researchers that 

this type of distractor is undesirable. For example, Thissen et al. (1989) discuss that non-

monotonic trace lines can provide useful information about examinees in the middle of 

the ability continuum when using polytomous models to analyze data.  

Implausible distractors occur when there is a low frequency of responses, no 

matter the ability level (Haladyna & Downing, 1993). Because I use the TSMCM in the 

current study, which incorporates guessing, the implausible distractor has a higher 

probability of selection for low ability examinees, but the item characteristic choice curve 

(ICCC) returns to less than 5% as ability increases. Table 11 provides the example item 
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parameter values and Figure 20 provides the ICCCs that lead to an implausible distractor 

(choice B). 

Table 11 

Example of item parameters for the implausible distractor condition 

𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

2.60 1.33 0.33 1.22 -1.68 0.33 -0.47 3.56 0.34 

 

 
Figure 20. Implausible distractor condition item. A is the correct answer. B is the 

distractor of interest.  

 

The second type of undesirable distractor is one with a flat trace line (Haladyna & 

Downing, 1993). Samejima (1988) referred to these distractors as equivalent distractors 

because examinees across all ability levels have an equal chance of selecting this option. 

Equivalent distractors in an item do not provide any pertinent information to estimates of 

ability due to the low discrimination they produce (Thissen et al., 1989). Figure 21 and 

Table 12 provide the ICCCs and parameter values for an example item containing an 

equivalent distractor (choice B). 
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Table 12 

Example of item parameters for the equivalent distractor condition 

𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

1.85 1.73 0.33 1.68 1.46 0.33 0.43 0.37 0.34 

 

 
Figure 21. Equivalent distractor condition item. A is the correct answer. B is the 

distractor of interest.  

 

 The final type of undesirable distractor is a distractor that has a monotonically 

increasing trace line (Haladyna & Downing, 2013). The lure distractor can either be (1) 

higher in probability of selection than the correct answer, or (2) slightly lower in 

probability of selection of the correct answer for high ability examinees. If the ICCC for 

this distractor mirrors the pattern expected of the correct answer, then this type of 

distractor is known as an upper lure distractor. Although unlikely, upper lure distractors 

are possibly due to an issue with the test key or confusion among examinees about what 

the actual correct response is. Table 13 and Figure 22 provide ICCCs and parameter 

estimates for an item containing an upper lure distractor (choice B).  
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Table 13 

Example of item parameters for the high lure distractor condition 

𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

2.67 1.46 0.33 2.67 1.56 0.33 -1.42 0.10 0.34 

 
Figure 22. Upper lure distractor condition item. A is the correct answer. B is the 

distractor of interest.  

 

The parameter values for the lower lure distractor condition were similar to the upper lure 

distractor condition parameters, but the lower lure distractor ICCC is below the correct 

option ICCC. Table 14 and Figure 23 present the ICCCs and item parameters for an item 

containing a low lure distractor (choice B).  

Table 14 

Example of item parameters for the low lure distractor condition 

𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

2.46 1.47 0.33 2.46 0.98 0.33 -1.08 0.76 0.34 
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Figure 23. Lower lure distractor condition item. A is the correct answer. B is the 

distractor of interest.  

 

Fixed Conditions. I fixed three conditions: sample size (N=2000), number of 

options per item (3), and guessing. I chose these conditions based on their relevance in 

high-stakes educational testing situations. I used a sample size of 2000 because a 

sufficient sample size is needed in order to produce accurate parameter estimates when 

using polytomous data (Reise & Yu, 1990). I selected the number of options based on 

evidence that suggests the use of three options, since four options do not provide more 

psychometric information in comparison to three options (Baghaei & Amrahi, 2011; 

Crehan, Haladyna, & Brewer, 1993; Haladyna & Downing, 2003; Haladyna, Rodriguez, 

& Stevens, 2019; Rodriguez, 2005; Vyas & Supe, 2008). The three options are (1) the 

correct answer, (2) the distractor of interest, and (3) all other distractor information that 

examinees are randomly choosing between. The third category can be generalized to two, 

three, or more total distractors for a test item with unspecified distractor patterns.  
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Data Generating Models 

 I systematically sampled true abilities from a standard normal distribution with a 

sample of N=2000 persons. I took 2000 theta values at equally spaced percentiles 

between .02275 for an ability of -2 and .97725 for an ability of 2. The probability of an 

examinee selecting the correct response for each item was computed as a function of the 

examinee’s ability and the item parameters. I used the 3-PL and the TSMCM models to 

generate item responses. Specifically, I generated responses to items containing 

undesirable distractors using the TSMCM and responses to items not containing 

manipulated distractors using the 3-PL. The TSMCM is used to generate the responses to 

item containing undesirable distractors because the 3-PL only analyzes the correct answer 

and groups the distractors together. If the distractors are grouped together as simply 

incorrect, then I cannot model the undesirable distractors.  

  Under the TSMCM, true item parameters reflected characteristics of the four 

types of undesirable distractors. I auditioned true item parameters in SAS by specifying a 

range of values and randomly selecting values in this range. This allowed for me to 

produce items with trace lines that reflected the undesirable distractor presented with 

some variability that would be present in a typical testing situation. Tables 15, 16, 17, and 

18 provide the ranges that true item parameters were selected from for each type of 

undesirable distractor. 

I specified option A to be the correct answer for all items. This was arbitrarily 

chosen for simplicity. I set option B as the distractor of interest (i.e., undesirable 

distractor). Finally, I fixed item parameters associated with option C depending upon the 

true parameters of the correct option and undesirable distractor. I fixed the guessing 
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parameter, 𝑑𝑘, at 0.33 for option A, 0.33 for option B, and 0.34 for option C. By fixing 

𝑑𝑘 to these values, the “don’t know” (DK) parameters converge to a probability of one. 

Fixing the 𝑑𝑘 parameters to be equal in the TSMCM is equivalent to Samejima’s (1979) 

model.  

Table 15 

Range of true item parameter estimates for an implausible distractor 

 Don’t know 

(𝑘 = 0) 

Correct Answer 

(𝑘 = 1) 

Implausible 

Distractor 

(𝑘 = 2) 

Other option 

(𝑘 = 3) 

 Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

𝑎𝑘 -4 -3 2 3 1 2 

= 0 − ∑ 𝑎𝑘

2

𝑘=0

 

𝑐𝑘 -4 -3 0 2 -2 -1 

= 0 − ∑ 𝑐𝑘

2

𝑘=0

 

𝑑𝑘   .33 .33 .33 .33 

= 1 − ∑ 𝑑𝑘

2

𝑘=1

 

 

Table 16 

Range of true item parameter estimates for an equivalent distractor 

 Don’t know 

(𝑘 = 0) 

Correct Answer 

(𝑘 = 1) 

Equivalent 

Distractor 

(𝑘 = 2) 

Other option 

(𝑘 = 3) 

 Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

𝑎𝑘 -4 -3.9 1.8 2 1.5 1.75 

= 0 − ∑ 𝑎𝑘

2

𝑘=0

 

𝑐𝑘 -4 -3.5 1.6 2 1.3 1.5 

= 0 − ∑ 𝑐𝑘

2

𝑘=0

 

𝑑𝑘   .33 .33 .33 .33 

= 1 − ∑ 𝑑𝑘

2

𝑘=1
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Table 17 

Range of true item parameter estimates for an upper lure distractor 

 Don’t know 

(𝑘 = 0) 

Correct Answer 

(𝑘 = 1) 

Lure (1) Distractor 

(𝑘 = 2) 

Other option 

(𝑘 = 3) 

 Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

𝑎𝑘 -4 -3 2 3 a1 a1 

= 0 − ∑ 𝑎𝑘

2

𝑘=0

 

𝑐𝑘 -4 -3 1 2 c1 3 

= 0 − ∑ 𝑐𝑘

2

𝑘=0

 

𝑑𝑘   .33 .33 .33 .33 

= 1 − ∑ 𝑑𝑘

2

𝑘=1

 

 

Table 18 

Range of true item parameter  estimates for a lower lure distractor 

 Don’t know 

(𝑘 = 0) 

Correct Answer 

(𝑘 = 1) 

Lure (2) Distractor 

(𝑘 = 2) 

Other option 

(𝑘 = 3) 

 Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

 

𝑎𝑘 -4 -3 2 2.5 a1 a1 

= 0 − ∑ 𝑎𝑘

2

𝑘=0

 

𝑐𝑘 -4 -3 1 1.5 0.5 c1 

= 0 − ∑ 𝑐𝑘

2

𝑘=0

 

𝑑𝑘   .33 .33 .33 .33 

= 1 − ∑ 𝑑𝑘

2

𝑘=1

 

 

Using SAS, I randomly selected true item parameters. The item parameters are 

listed in Tables 19, 20, 21, and 22. The tables each contain 50 sets of true item 

parameters for each type of undesirable distractor. The condition with the largest number 

of items containing undesirable distractors (50%) and the longest test (100 items) results 

in a total of 50 true item parameter sets. The true parameters for conditions that contained 
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less than 50% of undesirable distractors or a shorter test were randomly selected from the 

tables.  

Table 19 

Implausible distractor true item parameters 

Multiple-Choice Model 

Item 𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

1 2.73 0.11 0.33 1.32 -1.83 0.33 -0.75 5.23 0.34 

2 2.97 1.70 0.33 1.93 -1.10 0.33 -1.62 3.04 0.34 

3 2.54 0.45 0.33 1.29 -1.19 0.33 -0.02 4.07 0.34 

4 2.96 0.29 0.33 1.92 -1.49 0.33 -0.95 4.66 0.34 

5 2.03 1.74 0.33 1.47 -1.91 0.33 -0.48 3.53 0.34 

6 2.34 1.40 0.33 1.43 -1.37 0.33 0.15 3.89 0.34 

7 2.60 0.17 0.33 1.11 -1.39 0.33 -0.44 4.87 0.34 

8 2.51 1.26 0.33 1.14 -1.78 0.33 0.26 4.08 0.34 

9 2.72 1.63 0.33 1.17 -1.57 0.33 -0.30 3.60 0.34 

10 2.77 0.86 0.33 1.78 -1.24 0.33 -0.98 3.62 0.34 

11 2.75 1.89 0.33 1.29 -1.23 0.33 -0.65 3.05 0.34 

12 2.62 0.96 0.33 1.25 -1.18 0.33 0.07 3.46 0.34 

13 2.11 0.88 0.33 1.46 -1.00 0.33 0.08 3.74 0.34 

14 2.68 1.39 0.33 1.41 -1.43 0.33 -0.95 3.58 0.34 

15 2.10 1.30 0.33 1.60 -1.13 0.33 -0.04 3.00 0.34 

16 2.10 0.68 0.33 1.78 -1.82 0.33 -0.43 4.87 0.34 

17 2.20 1.13 0.33 1.11 -1.34 0.33 0.35 3.45 0.34 

18 2.58 1.07 0.33 1.84 -1.97 0.33 -1.31 4.59 0.34 

19 2.63 1.40 0.33 1.23 -1.12 0.33 0.14 2.78 0.34 

20 2.07 1.30 0.33 1.45 -1.66 0.33 -0.18 3.60 0.34 

21 2.17 1.46 0.33 1.67 -1.20 0.33 0.02 3.65 0.34 

22 2.15 1.09 0.33 1.84 -1.38 0.33 -0.59 3.73 0.34 

23 2.53 1.84 0.33 1.35 -1.39 0.33 -0.08 3.33 0.34 

24 2.97 0.33 0.33 1.41 -1.59 0.33 -0.87 4.73 0.34 

25 2.53 0.79 0.33 1.18 -1.73 0.33 -0.36 4.19 0.34 

26 2.19 0.22 0.33 1.61 -1.50 0.33 -0.35 4.59 0.34 

27 2.91 0.47 0.33 1.56 -1.03 0.33 -1.03 3.75 0.34 

28 2.23 1.07 0.33 1.46 -1.33 0.33 -0.48 3.57 0.34 

29 2.01 1.94 0.33 1.24 -1.87 0.33 0.73 3.85 0.34 

30 2.77 1.34 0.33 1.78 -1.74 0.33 -1.40 4.05 0.34 

31 2.84 1.35 0.33 1.84 -1.40 0.33 -0.76 4.01 0.34 

32 2.32 0.56 0.33 1.19 -1.72 0.33 -0.08 4.39 0.34 

33 2.86 1.07 0.33 1.47 -1.99 0.33 -0.42 4.07 0.34 

34 2.87 0.94 0.33 1.09 -1.80 0.33 -0.29 3.92 0.34 

35 2.03 0.02 0.33 1.39 -1.96 0.33 0.27 5.18 0.34 

36 2.18 0.12 0.33 1.68 -1.68 0.33 -0.61 4.59 0.34 
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Table 19 (contined) 

37 2.81 1.07 0.33 1.25 -2.00 0.33 -0.74 4.91 0.34 

38 2.91 1.79 0.33 1.91 -1.44 0.33 -1.47 3.16 0.34 

39 2.91 1.17 0.33 1.05 -1.82 0.33 -0.26 4.23 0.34 

40 2.42 0.63 0.33 1.80 -1.81 0.33 -0.30 4.34 0.34 

41 2.59 0.13 0.33 1.66 -1.97 0.33 -0.56 5.34 0.34 

42 2.79 1.97 0.33 1.71 -1.54 0.33 -0.80 2.70 0.34 

43 2.05 0.77 0.33 1.93 -1.49 0.33 -0.39 3.83 0.34 

44 2.10 0.35 0.33 1.14 -1.53 0.33 0.67 4.29 0.34 

45 2.04 0.90 0.33 1.39 -1.65 0.33 0.24 4.23 0.34 

46 2.91 0.72 0.33 1.43 -1.93 0.33 -0.65 5.14 0.34 

47 2.18 0.50 0.33 1.79 -1.68 0.33 -0.19 4.98 0.34 

48 2.68 0.60 0.33 1.56 -1.34 0.33 -0.25 3.86 0.34 

49 2.14 0.15 0.33 1.89 -1.20 0.33 -0.37 4.41 0.34 

50 2.29 0.62 0.33 1.01 -1.03 0.33 0.52 4.30 0.34 

 

Table 20 

Equivalent distractor true item parameters 

Multiple-Choice Model 

Item 𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

1 1.98 1.74 0.33 1.74 1.40 0.33 0.25 0.38 0.34 

2 1.82 1.68 0.33 1.61 1.35 0.33 0.49 0.85 0.34 

3 1.93 1.61 0.33 1.69 1.46 0.33 0.30 0.80 0.34 

4 1.96 1.94 0.33 1.55 1.50 0.33 0.47 0.42 0.34 

5 2.00 1.64 0.33 1.56 1.40 0.33 0.41 0.66 0.34 

6 1.99 1.79 0.33 1.73 1.37 0.33 0.23 0.47 0.34 

7 1.89 1.64 0.33 1.74 1.35 0.33 0.34 0.90 0.34 

8 1.92 1.80 0.33 1.71 1.44 0.33 0.33 0.30 0.34 

9 1.86 1.73 0.33 1.60 1.48 0.33 0.45 0.76 0.34 

10 1.84 1.93 0.33 1.53 1.34 0.33 0.58 0.63 0.34 

11 1.93 1.79 0.33 1.74 1.33 0.33 0.33 0.64 0.34 

12 1.98 1.63 0.33 1.67 1.44 0.33 0.27 0.72 0.34 

13 1.94 1.82 0.33 1.75 1.46 0.33 0.29 0.41 0.34 

14 1.87 1.85 0.33 1.72 1.33 0.33 0.38 0.61 0.34 

15 1.86 1.73 0.33 1.70 1.47 0.33 0.42 0.71 0.34 

16 1.94 1.67 0.33 1.62 1.41 0.33 0.39 0.56 0.34 

17 1.87 1.73 0.33 1.50 1.38 0.33 0.57 0.46 0.34 

18 1.87 1.73 0.33 1.64 1.37 0.33 0.47 0.56 0.34 

19 1.97 1.69 0.33 1.70 1.42 0.33 0.31 0.66 0.34 

20 1.81 1.97 0.33 1.55 1.35 0.33 0.61 0.28 0.34 

21 1.82 1.84 0.33 1.66 1.44 0.33 0.46 0.63 0.34 

22 1.81 1.69 0.33 1.58 1.43 0.33 0.54 0.59 0.34 

23 1.98 1.84 0.33 1.58 1.34 0.33 0.37 0.57 0.34 

24 1.85 1.75 0.33 1.55 1.38 0.33 0.58 0.71 0.34 
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Table 20 (continued) 

25 1.81 1.97 0.33 1.68 1.45 0.33 0.43 0.46 0.34 

26 1.86 2.00 0.33 1.70 1.48 0.33 0.43 0.26 0.34 

27 1.84 1.90 0.33 1.59 1.32 0.33 0.55 0.34 0.34 

28 1.81 1.68 0.33 1.65 1.44 0.33 0.45 0.67 0.34 

29 1.94 1.70 0.33 1.62 1.46 0.33 0.39 0.39 0.34 

30 1.91 1.85 0.33 1.61 1.42 0.33 0.43 0.50 0.34 

31 1.91 1.89 0.33 1.69 1.35 0.33 0.37 0.45 0.34 

32 1.81 1.68 0.33 1.55 1.46 0.33 0.61 0.42 0.34 

33 1.91 1.81 0.33 1.66 1.48 0.33 0.36 0.30 0.34 

34 1.99 1.84 0.33 1.53 1.33 0.33 0.42 0.74 0.34 

35 1.90 1.71 0.33 1.69 1.38 0.33 0.38 0.75 0.34 

36 1.98 1.92 0.33 1.66 1.46 0.33 0.28 0.27 0.34 

37 1.99 1.65 0.33 1.75 1.34 0.33 0.18 0.93 0.34 

38 1.96 1.72 0.33 1.58 1.40 0.33 0.42 0.45 0.34 

39 1.85 1.93 0.33 1.59 1.32 0.33 0.51 0.31 0.34 

40 1.83 1.84 0.33 1.61 1.32 0.33 0.55 0.83 0.34 

41 1.88 1.66 0.33 1.63 1.45 0.33 0.44 0.88 0.34 

42 1.95 1.96 0.33 1.67 1.32 0.33 0.37 0.65 0.34 

43 1.93 1.76 0.33 1.67 1.43 0.33 0.39 0.59 0.34 

44 1.94 1.64 0.33 1.69 1.32 0.33 0.35 0.82 0.34 

45 1.86 1.88 0.33 1.69 1.46 0.33 0.37 0.63 0.34 

46 1.95 1.66 0.33 1.65 1.48 0.33 0.37 0.85 0.34 

47 2.00 1.90 0.33 1.57 1.33 0.33 0.39 0.28 0.34 

48 2.00 2.00 0.33 1.62 1.36 0.33 0.29 0.62 0.34 

49 1.90 1.80 0.33 1.62 1.38 0.33 0.39 0.67 0.34 

50 1.81 1.84 0.33 1.69 1.49 0.33 0.42 0.17 0.34 

 

Table 21 

Upper lure distractor true item parameters 

Multiple-Choice Model 

Item 𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

1 2.21 1.59 0.33 2.21 1.71 0.33 -0.65 0.00 0.34 

2 2.36 1.49 0.33 2.36 1.73 0.33 -1.00 -0.16 0.34 

3 2.13 1.99 0.33 2.13 2.00 0.33 -0.66 -0.36 0.34 

4 2.14 1.67 0.33 2.14 1.96 0.33 -1.21 -0.08 0.34 

5 2.22 1.52 0.33 2.22 1.80 0.33 -1.40 -0.31 0.34 

6 2.00 1.63 0.33 2.00 1.65 0.33 -0.87 -0.09 0.34 

7 2.30 1.59 0.33 2.30 1.96 0.33 -1.57 0.26 0.34 

8 2.25 1.61 0.33 2.25 1.70 0.33 -1.17 -0.09 0.34 

9 2.31 1.08 0.33 2.31 1.82 0.33 -1.53 0.65 0.34 

10 2.38 1.38 0.33 2.38 1.95 0.33 -0.78 -0.05 0.34 

11 2.49 1.52 0.33 2.49 1.70 0.33 -1.14 0.15 0.34 

12 2.21 1.24 0.33 2.21 1.48 0.33 -0.87 1.12 0.34 
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Table 21 (continued) 

13 2.15 1.85 0.33 2.15 1.96 0.33 -1.05 -0.46 0.34 

14 2.42 1.74 0.33 2.42 1.78 0.33 -1.31 -0.27 0.34 

15 2.32 1.31 0.33 2.32 1.42 0.33 -1.26 1.14 0.34 

16 2.28 1.08 0.33 2.28 1.86 0.33 -0.83 0.98 0.34 

17 2.14 1.33 0.33 2.14 1.96 0.33 -0.77 0.39 0.34 

18 2.43 1.96 0.33 2.43 2.00 0.33 -0.87 -0.42 0.34 

19 2.32 1.09 0.33 2.32 1.36 0.33 -0.76 1.25 0.34 

20 2.49 1.60 0.33 2.49 1.95 0.33 -1.41 0.25 0.34 

21 2.34 1.91 0.33 2.34 2.00 0.33 -1.12 0.04 0.34 

22 2.31 1.03 0.33 2.31 1.93 0.33 -1.62 0.95 0.34 

23 2.40 1.80 0.33 2.40 1.81 0.33 -1.07 -0.59 0.34 

24 2.41 1.49 0.33 2.41 1.66 0.33 -0.89 -0.15 0.34 

25 2.46 1.50 0.33 2.46 1.87 0.33 -1.69 0.58 0.34 

26 2.04 1.28 0.33 2.04 1.91 0.33 -0.91 0.65 0.34 

27 2.15 1.29 0.33 2.15 1.36 0.33 -0.56 0.98 0.34 

28 2.16 1.88 0.33 2.16 1.90 0.33 -1.00 -0.20 0.34 

29 2.47 1.15 0.33 2.47 1.75 0.33 -1.09 0.39 0.34 

30 2.02 1.74 0.33 2.02 1.86 0.33 -0.53 0.31 0.34 

31 2.34 1.12 0.33 2.34 1.20 0.33 -1.03 1.53 0.34 

32 2.36 1.88 0.33 2.36 1.99 0.33 -0.86 0.07 0.34 

33 2.01 1.12 0.33 2.01 1.79 0.33 -0.31 0.99 0.34 

34 2.05 1.03 0.33 2.05 1.15 0.33 -0.58 1.82 0.34 

35 2.27 1.93 0.33 2.27 1.98 0.33 -1.20 -0.41 0.34 

36 2.08 1.70 0.33 2.08 1.97 0.33 -0.89 0.09 0.34 

37 2.21 1.94 0.33 2.21 1.99 0.33 -1.27 -0.22 0.34 

38 2.16 1.23 0.33 2.16 1.95 0.33 -1.25 0.01 0.34 

39 2.18 1.44 0.33 2.18 1.84 0.33 -1.09 0.38 0.34 

40 2.16 1.77 0.33 2.16 1.93 0.33 -0.52 -0.27 0.34 

41 2.09 1.74 0.33 2.09 1.87 0.33 -0.26 -0.56 0.34 

42 2.44 1.91 0.33 2.44 1.94 0.33 -1.58 -0.80 0.34 

43 2.22 1.54 0.33 2.22 1.80 0.33 -0.72 -0.30 0.34 

44 2.03 1.62 0.33 2.03 1.80 0.33 -0.10 -0.18 0.34 

45 2.02 1.12 0.33 2.02 1.17 0.33 -0.03 0.82 0.34 

46 2.15 1.86 0.33 2.15 1.93 0.33 -0.77 -0.56 0.34 

47 2.36 1.69 0.33 2.36 1.88 0.33 -1.36 0.25 0.34 

48 2.20 1.82 0.33 2.20 1.89 0.33 -1.31 0.19 0.34 

49 2.49 1.60 0.33 2.49 1.79 0.33 -1.55 -0.02 0.34 

50 2.04 1.59 0.33 2.04 1.88 0.33 -0.95 -0.37 0.34 
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Table 22 

Lower lure distractor item parameters 

Multiple-Choice Model 

Item 𝑎𝐴 𝑐𝐴 𝑑𝐴 𝑎𝐵 𝑐𝐵 𝑑𝐵 𝑎𝐶 𝑐𝐶 𝑑𝐶 

1 2.05 1.34 0.33 2.05 1.03 0.33 -0.45 1.42 0.34 

2 2.13 1.30 0.33 2.13 0.83 0.33 -0.74 1.15 0.34 

3 2.41 1.27 0.33 2.41 0.66 0.33 -1.73 1.91 0.34 

4 2.31 1.36 0.33 2.31 1.04 0.33 -1.27 1.13 0.34 

5 2.09 1.24 0.33 2.09 1.16 0.33 -0.19 1.24 0.34 

6 2.16 1.40 0.33 2.16 1.28 0.33 -1.31 0.36 0.34 

7 2.29 1.40 0.33 2.29 1.25 0.33 -1.46 0.89 0.34 

8 2.03 1.14 0.33 2.03 0.91 0.33 -0.19 1.27 0.34 

9 2.20 1.50 0.33 2.20 1.48 0.33 -0.52 0.65 0.34 

10 2.09 1.19 0.33 2.09 0.69 0.33 -0.27 1.60 0.34 

11 2.32 1.02 0.33 2.32 0.54 0.33 -1.29 1.95 0.34 

12 2.11 1.28 0.33 2.11 0.65 0.33 -0.96 1.58 0.34 

13 2.31 1.18 0.33 2.31 0.73 0.33 -1.48 1.46 0.34 

14 2.44 1.32 0.33 2.44 0.76 0.33 -1.69 1.14 0.34 

15 2.35 1.17 0.33 2.35 0.52 0.33 -1.47 1.85 0.34 

16 2.50 1.42 0.33 2.50 0.68 0.33 -1.85 1.32 0.34 

17 2.06 1.40 0.33 2.06 1.18 0.33 -0.83 1.39 0.34 

18 2.21 1.12 0.33 2.21 0.90 0.33 -1.23 0.99 0.34 

19 2.06 1.39 0.33 2.06 1.22 0.33 -0.55 0.82 0.34 

20 2.06 1.25 0.33 2.06 0.62 0.33 -0.81 1.75 0.34 

21 2.08 1.17 0.33 2.08 0.89 0.33 -1.14 1.10 0.34 

22 2.02 1.11 0.33 2.02 0.78 0.33 -0.59 2.03 0.34 

23 2.48 1.40 0.33 2.48 1.27 0.33 -1.57 0.64 0.34 

24 2.24 1.33 0.33 2.24 0.63 0.33 -1.46 1.80 0.34 

25 2.27 1.01 0.33 2.27 0.80 0.33 -1.35 1.98 0.34 

26 2.32 1.38 0.33 2.32 0.54 0.33 -1.51 1.78 0.34 

27 2.37 1.34 0.33 2.37 1.25 0.33 -1.64 0.97 0.34 

28 2.42 1.17 0.33 2.42 1.01 0.33 -1.70 1.06 0.34 

29 2.18 1.09 0.33 2.18 0.79 0.33 -1.17 1.98 0.34 

30 2.45 1.05 0.33 2.45 0.98 0.33 -1.46 1.30 0.34 

31 2.29 1.49 0.33 2.29 0.67 0.33 -1.21 0.98 0.34 

32 2.03 1.11 0.33 2.03 0.59 0.33 -0.56 1.67 0.34 

33 2.32 1.37 0.33 2.32 0.64 0.33 -0.98 1.17 0.34 

34 2.26 1.35 0.33 2.26 1.33 0.33 -0.58 0.75 0.34 

35 2.34 1.34 0.33 2.34 1.34 0.33 -0.76 1.32 0.34 

36 2.30 1.32 0.33 2.30 0.51 0.33 -0.76 1.38 0.34 

37 2.25 1.19 0.33 2.25 0.56 0.33 -1.17 2.22 0.34 

38 2.06 1.34 0.33 2.06 0.91 0.33 -0.49 1.52 0.34 

39 2.49 1.25 0.33 2.49 0.59 0.33 -1.91 2.08 0.34 

40 2.09 1.24 0.33 2.09 0.85 0.33 -1.00 1.76 0.34 
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Table 22 (continued) 

41 2.09 1.06 0.33 2.09 0.79 0.33 -0.51 2.04 0.34 

42 2.12 1.14 0.33 2.12 0.66 0.33 -0.59 1.26 0.34 

43 2.23 1.35 0.33 2.23 1.20 0.33 -1.34 0.98 0.34 

44 2.36 1.49 0.33 2.36 1.02 0.33 -1.50 0.69 0.34 

45 2.33 1.13 0.33 2.33 0.94 0.33 -1.46 1.79 0.34 

46 2.35 1.15 0.33 2.35 0.60 0.33 -0.78 1.64 0.34 

47 2.10 1.22 0.33 2.10 1.03 0.33 -0.60 0.94 0.34 

48 2.36 1.21 0.33 2.36 0.79 0.33 -1.46 2.00 0.34 

49 2.31 1.46 0.33 2.31 1.32 0.33 -0.69 0.55 0.34 

50 2.25 1.12 0.33 2.25 0.54 0.33 -1.02 1.76 0.34 

 

 I used the 3-PL model to generate responses of normal functioning items. Using 

SAS, I randomly selected true difficulty item parameters (𝑏𝑖) from a standard normal 

distribution and true discrimination item parameters (𝑎𝑖) from a distribution of N(0,1), 

but the lower bound for values was set to 0. I fixed the true guessing parameters to a 

value of 0.33. I then auditioned item parameters for unrealistic pairings. For example, no 

item difficulty below -1 is associated with a discrimination above 1. This represents an 

unrealistic situation in which a very easy item would highly discriminate respondents.  

 After I selected true item parameters, I merged the true item parameters and true 

ability parameters into one dataset to calculate the probabilities of responses. Under the 

TSMCM, for each person, I calculated three probabilities. These were the probabilities 

that each person selected options A, B, and C. For example, for conditions with a test 

length of 10 items, 30 probabilities were calculated for each person. The Rand(‘Table’, 

pA, pB, pC) function in SAS assigned a score depending on the probabilities. Using the 

TSMCM model, I used SAS to calculate the probability of each option being selected 

based on the item parameters. Scores are assigned to examinees based on the probability 

produced by the TSMCM model and their associated ability. Scores were specified as 1, 

2, and 3. These scores were translated so that 1 was equal to A, 2 to B, and 3 to C. I then 
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scored each item so that A indicated a score of 1, B a score of 0, and C a score 0. This is 

because A is the correct answer.  

 For the remaining normally functioning items, I used SAS and the 3-PL model to 

calculate a probability for each person selecting the correct answer. I used true ability and 

the true item parameters to calculate this. For example, for conditions with a test length 

of 10 items, each person has 10 probabilities. I then randomly selected a value between 0 

and 1 from a uniform distribution. If the value is less than the probability, the item is 

scored 1 (for correct). If this randomly selected value is greater than the calculated 

probability, then the person receives a score of 0. The final result was a dataset 

containing a person’s score for each item, combining generated responses from the 

TSMCM and the 3PL.  

 In addition to the undesirable distractor conditions, I created a control group to 

generate responses completely based on the 3-PL model. The control group acted as a 

baseline to facilitate comparisons between experimental conditions. The establishment of 

a baseline not only aided in comparing undesirable distractors and test length to those 

from a test with well-functioning items, but the results contribute to the literature in how 

well the SAS IRT procedure estimation routine recovers ability parameters.  

Analysis  

The first  research question pertains to how well the SAS 9.4 IRT procedure 

estimates ability using the 3-PL model. Similar to Cole and Paek (2017), who evaluated 

the recovery of item parameters for multiple types of IRT models (e.g., 1-PL, Rasch, 2-

PL, 3-PL, etc.) using the SAS 9.4 IRT procedure, the current study examines how well 

ability parameters are recovered. To address this question, full responses were simulated 
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under a fixed sample size of 2000 (N=2000) using the 3-PL model in all conditions of test 

length (30, 50, and 100 items). Values of bias and SE were investigated for the recovery 

of both ability and item parameters. The analysis of the recovery of ability parameters 

with the 3-PL model in SAS 9.4 was completed first to see how well these parameters 

would be recovered. This allowed us to answer our other research questions related to the 

models of interest with confidence in our interpretations. 

Proc IRT in SAS 9.4 was used to model the responses by obtaining ability 

estimates and item parameter estimates. To estimate ability for each person, maximum a 

posteriori (MAP) was used. This is the default estimation for abilities in SAS 9.4. Item 

parameter estimates of difficulty (𝑏𝑖), discrimination (𝑎𝑖), and guessing (𝑐𝑖) were 

estimated for each item using marginal maximum likelihood (MML). A total of 1000 

replications were completed for each condition. Harwell et al. (1996) suggest at least 25 

replications when performing an IRT simulation study. Based on suggestions from 

Feinberg and Rubright (2016), a total of 1000 replications were completed to estimate the 

stability of the simulation results. Harwell et al.’s (1996) recommendation is outdated, 

and with the advancement of computing capabilities, it is appropriate to increase the 

number of replications. 

 After completing the simulation and analysis cycles, the degree of bias in ability 

estimates was examined. For this study, the outcome of interest was investigated at the 

total score level. This was completed by calculating the expected response function 

(ERF; Luecht & Ackerman, 2018) and the root mean square error (RMSE). Luect and 

Ackerman (2018) suggest using the ERF when there are multiple models involved in the 
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simulation. The generating and analysis models differed so the ERF was used to gauge 

ability. The true expected total score is calculated as, 

   𝑓(Σ𝑥|𝜃) = ∑ ∑ 𝑥𝑗𝑘𝑃𝑗𝑘
𝑚
𝑘=1

𝑛
𝑗=1             (12) 

where the true expected total score is the sum of the expected item scores given the true 

ability and true item parameters.  

 To estimate the expected total score response, the sum of the estimated expected 

item scores given estimated ability and estimated item parameters is calculated: 

      𝑓(Σ𝑥|𝜃) = ∑ ∑ 𝑥𝑗𝑘𝑃𝑗𝑘̂
𝑚
𝑘=1

𝑛
𝑗=1                  (13) 

The true and estimated expected total score responses allowed for the comparison of bias 

in the estimated ability parameters. Average bias for the expected total score (Equation 

14) was calculated: 

            
∑ (𝑓(Σ𝑥|𝜃)−𝑓̂(Σ𝑥|𝜃))𝑅

𝑟=1

𝑅
       (14) 

where 𝑅 is the number of replications (𝑅 = 1000). This index of bias allow researchers 

to examine the discrepancies between true ability parameters and estimated ability 

parameter estimates. Values of bias increase as these estimates grow further apart.   

Total score bias allows for the examination of the amount of bias in examinees’ 

scores on the entire test. Total score bias takes into account parameter estimates across 

the entire test. Total score bias indicates the extent to which examinees’ true ability and 

estimated ability produce differing scores on a test based on the true and estimated 

parameters across all items. Large discrepancies between true expected total score and 

estimated expected total score mean that examinees’ total scores are not accurate 

representations of their ability. This bias can be attributed to the item parameters. 

Because total score bias examines the effects of parameter estimates on ability across all 
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items, researchers can determine how the inclusion of items with undesirable distractors 

impact ability estimates when there are other items that are functioning well.  

The empirical standard error (SE) was also calculated for each ability in each 

condition after 1000 replications. Similar to bias, I used expected total score as a proxy 

for ability. I calculated SE by first finding the average of the estimated expected total 

score ( 𝑓(Σ𝑥|𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) then found the squared distance of each of the 1000 expected total score 

estimates from the mean and finally divided by number of replications minus one and 

take the square root: 

                            𝑆𝐸 = √𝑓̂(Σ𝑥|𝜃)−𝑓̂(Σ𝑥|𝜃)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅2

𝑅−1
                 (17) 

Similar to bias, this was computed at each level of true ability. 

Total score bias and SE values were compared using a fully-crossed 4x3x3. I 

evaluate the results using an ANCOVA. Due to the large sample (N=2000), effect sizes 

were examined along with statistical significance. For example, less than 1% of the 

variance may be statistically significant, but 1% is not necessarily practically significant. 

If the partial variance explained was greater than 6%, (Cohen, 1988), I considered the 

effect as practically significant. A continuous covariate was also added to account for the 

linear and quadratic effects of true ability.  
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Chapter 4. Results 

Results of the recovery of ability parameters using the IRT procedure in SAS 9.4 

(TS1M4) precede the analyses containing undesirable distractors. I calculated total score 

bias and standard errors along the ability continuum for each condition (i.e., test length) 

to determine the degree of bias and inefficiency in the parameter estimates. I used 

analysis of covariance (ANCOVA) to analyze the effect of varying conditions on bias 

and efficiency of parameter estimates.  

PROC IRT Parameter Recovery   

It is important to evaluate the recovery of ability parameters in order to 

understand the results of this simulation study. I first examine the 3-PL model’s 

capabilities of recovering the ability parameter estimates for a typical multiple-choice 

test. This analysis was completed prior to evaluating the recovery of ability estimates 

when including the manipulated distractors to determine how well the ability parameters 

are recovered in a normal condition. Three conditions of varying levels of test length (30 

items, 50 items, and 100 items) were generated using the 3-PL model. The procedure was 

able to converge to a solution using maximum a posteriori to estimate abilities for all 

three levels of test length for all replications when analyzing the data generated with the 

3-PL model.  

To explore the utility of the IRT procedure, I compared total score bias across 

conditions of test length while controlling for true ability by using an ANCOVA. Total 

score bias was averaged across 1000 replications. Sample size was held constant across 

all conditions (N=2000). Recall, expected total score is used as a proxy for latent ability. 

To make conditions comparable, I transformed total score bias to percent correct bias 
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based on the number of items per condition. Not only did this facilitate interpretation and 

comparison, but also the number of items impacted the degree of total score bias. Total 

score bias was not accurately represented without changing it to a percent correct value 

because more items attenuated the total score bias values. Without conversion to percent 

correct bias, we would expect larger total score bias when there are more items. Raw 

score absolute comparison would indicate a bias of 2 on expected score when there 30 

items is equivalent to a total score bias of 2 when there are 100 items. However, these 

percent correct differences are 7% and 2% which are quite different. I will refer to this 

value as percent correct bias.  

Table 23 provides results of the ANCOVA, where percent correct bias acted as 

the dependent variable, test length as an independent variable, and true ability as a 

covariate. I included a squared term of true ability to account for the curvilinear 

relationship between percent correct bias and true ability. Partial eta-squared was used to 

determine practical significance since the large sample size contributed to the statistical 

significance of all main effects and interactions. I considered medium effect (i.e., partial 

η2 ≥ .06) sizes as being practically significant (Cohen, 1988).  

Table 23 

Baseline ANCOVA results for percent correct bias 

Source df SS MS F p Partial η2 

Test length 2 24.68 12.34 628.22 <.001 .17 

True ability 1 34958.57 34958.57 1780049 <.001 .99 

True ability2 1 24.54 24.54 1249.38 <.001 .17 

True ability x Test length 2 4303.73 2151.87 109570 <.001 .97 

True ability2 x Test length 2 1.19 0.60 30.31 <.001 .01 

Note. Practically significant effects are bolded. 

The interaction between the squared true ability term and test length only 

accounted for a small proportion of the variance (𝐹(2, 5991) = 30.31, 𝑝 < .001, 𝜂𝑝
2 =
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.01). In other words, the effect of test length on percent correct bias does not depend on 

values of true ability as a curvilinear term. The effect of test length on percent correct 

bias does depend on values of true ability (𝐹(2, 5991) = 109570, 𝑝 < .001, 𝜂𝑝
2 = .97). 

The main effects, true ability squared (𝐹(1, 5991) = 1249.38, 𝑝 < .001, 𝜂𝑝
2 = .17), true 

ability (𝐹(1, 5991) = 1780049, 𝑝 < .001, 𝜂𝑝
2 = .99), and test length (𝐹(2, 5991) =

628.22, 𝑝 < .001, 𝜂𝑝
2 = .17) were also found to be practically significant.  

The interaction term of true ability and test length was found to be practically 

significant. As previously stated, this interaction indicates that the effect of test length on 

percent correct bias is conditional upon values of true ability while holding true ability 

squared constant. As test length increases (i.e., 30 items to 50 items to 100 items), percent 

correct bias decreases. Figure 24 provides a graphical depiction of the varying levels of 

test length with percent correct bias means across replications plotted for each level of 

ability.  

The 100-item test results in the lowest absolute percent correct bias. Low ability 

examinees’ true ability is overestimated. As theta increases toward an ability of 0, 

examinees’ bias is close to 0 (i.e., there is no bias in percent correct score). Percent 

correct bias for the 100-item test results in increasingly positive values, indicating that 

examinees’ expected percent correct score with true abilities between 1 and 2 are 

underestimated.  

A 50-item test results in less biased expected percent correct scores across true 

ability in comparison to the 30-item test. Percent correct bias of the 50-item test for 

examinees with a true ability at -2 results in less of an overestimate than examinees with 

a true ability of -1. However, percent correct bias of the 50-item test becomes less of an 
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overestimate of expected percent correct scores at true ability of -1 to 0. From 0 to 2, the 

50-item tests results in an increasing underestimate of bias for expected percent correct 

scores.  

 The 30-item test results in the highest absolute percent bias across all test lengths. 

The 30-item test results in percent correct bias that flattens out for examinees with a true 

ability between -2 and -1, then increases as true ability increases. The 30-item test best 

estimates ability for examinees with a true ability of 0. High ability examinees’ true score 

is underestimated for the 30-item test.  

 
Figure 24. Percent correct bias as a function of true ability grouped by test length.  

As seen in Figure 24, longer tests indicate less percent correct bias across true 

ability. Across all test lengths, low ability examinees’ true ability is overestimated while 

high ability examinees’ expected percent correct scores are underestimated. We observe 

this trend because, when MAP is employed to estimate abilities, abilities are drawn in 

closer to the mean. Examinees in the middle of the ability continuum (i.e., around a true 

ability of 0) have the least percent correct bias across all conditions of test length. The 
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50-item and 100-item tests result in varying degrees of percent correct bias for low ability 

examinees. At a true ability of -2, the 100-item test results in lower absolute percent 

correct bias than the 50-item test. However, the 50-item and 100-item tests have similar 

degrees of percent correct bias for high ability examinees. At a true ability of 2, 

examinees’ expected percent correct scores are underestimated, as estimated by similar 

amounts of bias. The differences in these patterns explain the significant interaction of 

test length and true ability.  

I also examined standard error to evaluate the efficiency in estimates of ability. In 

order to put this on a comparable metric, I analyzed percent correct standard error. Table 

24 provides the ANCOVA results, using standard error as a dependent variable. Test 

length was entered as the independent variable, true ability was entered as covariate, as 

well as a squared true ability term to account for a curvilinear relationship. Partial eta-

squared was used to determine practical significance since the large sample size 

contributed to the statistical significance of all main effects and interactions. I considered 

medium effect (i.e., partial η2 ≥ .06) sizes as being practically significant (Cohen, 1988).  

Table 24 

Baseline ANCOVA results for standard error 

Source df SS MS F p Partial η2 

Test length 2 2752.81 1376.40 366176 <.001 .992 

True ability 1 251.69 251.69 66958.6 <.001 .918 

True ability2 1 106.86 106.86 28428.4 <.001 .826 

True ability x Test length 2 32.34 16.17 4301.81 <.001 .589 

True ability2 x Test length 2 7.14 3.57 949.11 <.001 .241 

Note. Practically significant effects are bolded. 

 All main effects and interactions were found to be practically significant. 

Standard error differs across various levels of test length, controlling for true ability 

(𝐹(2, 5991) = 366176, 𝑝 < .001, 𝜂𝑝
2 = .992). Standard error also differs across the 
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levels of both true ability (𝐹(1, 5991) = 66958.6, 𝑝 < .001, 𝜂𝑝
2 = .918) and true ability 

squared (𝐹(2, 5991) = 28428.4, 𝑝 < .001, 𝜂𝑝
2 = .826) after controlling for test length. 

While the effect of test length on standard error depends on the true ability 

(𝐹(2, 5991) = 4301.81, 𝑝 < .001, 𝜂𝑝
2 = .589), the interaction of test length and true 

ability squared was also practically significant (𝐹(2, 5991) = 949.11, 𝑝 < .001, 𝜂𝑝
2 =

.241). The differences between standard error associated with test lengths at lower levels 

of ability are greater than the differences between standard error associated with higher 

levels of ability.  

 Figure 25 provides a graphical depiction of the relationship between mean 

standard error across replications and true ability. This relationship is curvilinear. The 

change in differences of standard error between test lengths across true ability shows the 

interaction of test length and true ability. Across all levels of test length, standard error 

tends to be highest for low ability examinees and lowest for high ability examinees. A 30-

item test results in the greatest amount of standard error, while a 100-item test results in 

the least amount of standard error. As true ability increases, the distances between test 

lengths decrease. Examinees with a true ability of 2 have smaller differences across test 

length in comparison to examinees with true abilities of -2.  
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Figure 25. Standard error as a function of true ability grouped by test length.  

After analyzing 3-PL ability estimates without manipulated distractors, I focus my 

attention on the analysis with undesirable distractors. 

Percent Correct Bias 

I analyzed the generated item responses using ANCOVA to examine the effects of 

undesirable distractors on percent correct bias. There were three categorical independent 

variables: 1) undesirable distractor type, 2) test length, and 3) percentage of items 

containing undesirable distractors. There were four types of undesirable distractors, 

including implausible, equivalent, upper lure, and lower lure. Test length contained three 

levels (30 items, 50 items, and 100 items), and the percentage of items containing 

undesirable also had three levels (10%, 30%, and 50%). Additionally, true ability and 

true ability squared were used as covariates. The ANCOVA was fully crossed (4x3x3) 

with the inclusion of main effects and interactions. Practical significance, in addition to 

statistical significance, was examined. I considered medium effect (i.e., partial η2 ≥ .06) 

sizes as being practically significant (Cohen, 1988). 
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 Table 25 provides results of the ANCOVA. Based on the cut-off of ηp
2 ≥ .06, 

three main effects and five interactions were found to be practically significant, while the 

other 15 main effects and interactions were not practically significant.  

Table 25 

ANCOVA results for percent correct bias 

Source df SS MS F p Partial η2 

L 2 55.22 27.61 210.12 <.0001 .006 

P 2 96.13 48.06 365.77 <.0001 .010 

T 3 854.86 284.95 2168.51 <.0001 .083 

A 1 367125.58 367125.58 2793852 <.0001 .975 

A2  1 782.40 782.40 5954.12 <.0001 .076 

L x P 4 21.033 5.26 40.02 <.0001 .002 

L x T 6 30.87 5.15 39.16 <.0001 .003 

L x A 2 4500.51 22500.25 171299 <.0001 .827 

L x A2 2 50.45 25.23 191.96 <.0001 .005 

P x T 6 219.80 36.63 278.78 <.0001 .023 

P x A 2 193.66 96.83 736.90 <.0001 .020 

P x A2 2 227.25 113.63 864.70 <.0001 .024 

T x A 3 9007.77 3002.59 22849.90 <.0001 .488 

T x A2 3 1347.95 449.32 3419.32 <.0001 .125 

L x P x T 12 15.37 1.28 9.74 <.0001 .002 

L x P x A 4 44.51 11.13 84.68 <.0001 .005 

L x P x A2 4 6.97 1.74 13.25 <.0001 .001 

L x T x A 6 1034.37 172.40 1311.94 <.0001 .099 

L x T x A2 6 33.94 5.66 43.05 <.0001 .004 

P x T x A 6 1187.52 197.92 1506.19 <.0001 .112 

P x T x A2 6 392.73 65.45 498.11 <.0001 .040 

L x P x T x A 12 179.42 14.95 113.78 <.0001 .019 

L x P x T x A2 12 21.51 1.79 13.64 <.0001 .002 

Note. Test length = L; Percentage = P; Undesirable distractor type = T; True ability = A; 

True ability2 = A2; practically significant effects are bolded. 

 

Percent Correct Bias: Insignificant Effects. Percent correct bias does not differ 

across levels of test length after controlling for percentage, undesirable distractor type, 

and true ability (𝐹(2, 71892) = 210.12, 𝑝 < .001, 𝜂𝑝
2 = .006). Percent correct bias also 

does not differ across levels of percentage after controlling for test length, undesirable 

distractor type, and true ability (𝐹(2, 71892) = 365.77, 𝑝 < .001, 𝜂𝑝
2 = .010). The two-

way interactions of test length and percentage (𝐹(4, 71892) = 40.02, 𝑝 < .001, 𝜂𝑝
2 =
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.002), test length and undesirable distractor type (𝐹(6, 71892) = 39.16, 𝑝 < .001, 𝜂𝑝
2 =

.003), test length and true ability squared (𝐹(2, 71892) = 191.96, 𝑝 < .001, 𝜂𝑝
2 = .005), 

percentage and undesirable distractor type (𝐹(6, 71892) = 278.78, 𝑝 < .001, 𝜂𝑝
2 =

.023), percentage and true ability (𝐹(2, 71892) = 736.90, 𝑝 < .001, 𝜂𝑝
2 = .020), and 

percentage and true ability squared (𝐹(2, 71892) = 864.70, 𝑝 < .001, 𝜂𝑝
2 = .024) were 

not practically significant. In other words, percent correct bias does not differ across 

varying levels of, for example, test length and percentage, after controlling for 

undesirable distractor type and true ability. 

Five of the seven three-way interactions were also not practically significant. 

There was no three-way interaction effect on percent correct bias among test length, 

percentage, and undesirable distractor type (𝐹(12, 71892) = 9.74, 𝑝 < .001, 𝜂𝑝
2 = .002). 

Similarly, there was no practically significant interaction among test length, percentage, 

and true ability (𝐹(4, 71892) = 84.68, 𝑝 < .001, 𝜂𝑝
2 = .005), test length, percentage, and 

true ability squared (𝐹(2, 71892) = 13.25, 𝑝 < .001, 𝜂𝑝
2 = .001), and percentage, 

undesirable distractor type, and true ability squared (𝐹(6, 71892) = 498.11, 𝑝 <

.001, 𝜂𝑝
2 = .040). Finally, both four-way interactions of test length, percentage, 

undesirable distractor type, and true ability (𝐹(12, 71892) = 113.78, 𝑝 < .001, 𝜂𝑝
2 =

.019) and test length, percentage, undesirable distractor type, and true ability squared 

(𝐹(12, 71892) = 13.64, 𝑝 < .001, 𝜂𝑝
2 = .002) were not practically significant.  

Percent Correct Bias: Practically Significant Effects. The main effect of 

distractor type (𝐹(3, 71892) = 2168.51, 𝑝 < .001, 𝜂𝑝
2 = .083), true ability 

(𝐹(1, 71892) = 2793852, 𝑝 < .001, 𝜂𝑝
2 = .975), and true ability squared 
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(𝐹(1, 71892) = 5954.12, 𝑝 < .001, 𝜂𝑝
2 = .076) were practically significant. The effect 

of true ability is moderated by test length on percent correct bias (𝐹(2, 71892) =

171299, 𝑝 < .001, 𝜂𝑝
2 = .827). The effect of undesirable distractor type on percent 

correct bias is dependent on true ability (𝐹(3, 71892) = 22849.90, 𝑝 < .001, 𝜂𝑝
2 = .488) 

and true ability squared (𝐹(3, 71892) = 3419.32, 𝑝 < .001, 𝜂𝑝
2 = .125). There are two 

three-way interactions with practically significant effects on percent correct bias, which 

are discussed in detail below.  

Percent Correct Bias: Type x Percentage x True Ability Interaction. The first 

interaction is between undesirable distractor type, percentage, and true ability 

(𝐹(6, 71892) = 1506.19, 𝑝 < .001, 𝜂𝑝
2 = .112). The differences seen in percent correct 

bias for each type of undesirable distractor at each level of percentage vary across true 

ability. In particular, the lower lure distractor results in greatest amount of percent correct 

bias across true ability. In contrast, the differences in percent correct bias of the 

implausible, equivalent, and upper lure distractors differ across true ability. To better 

understand the three-way interaction, I examined Figures 26, 27, and 28 in which the 

relationship between true ability and percent correct bias among the four distractor type is 

separated by 10%, 30%, and 50% of items containing undesirable distractors, 

respectively.  

In Figure 26, 10% of items contain an undesirable distractor. The equivalent 

distractor results in the lowest absolute bias of all undesirable distractor types across true 

ability. Low ability examinees (-2) receive underestimates of their expected percent 

correct scores. From a true ability of -2 to 0, percent correct bias increases to 0, indicating 

no difference between the true and estimated expected percent correct scores. As true 
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ability increases for the equivalent distractor, percent correct bias becomes positive. From 

true abilities of 0 to 2, the equivalent distractor results in underestimates of expected 

percent correct scores. 

The implausible and upper lure distractors follow very similar trends. In Figure 

26, the lines overlap. This is especially evident towards the low end of true ability. The 

implausible and upper lure distractors both result in percent correct biases meaning 

expected percent correct scores are overestimated. However, the implausible distractor 

results in less absolute bias in comparison to the upper lure distractor. As true ability 

increases from -2 to 0, percent correct bias transitions from negative to 0. As true ability 

increases from 0 to 2, percent correct bias becomes positive for both the implausible and 

upper lure distractors. However, the implausible distractor results in greater absolute bias 

than the upper lure distractor.  

The lower lure distractor results in the highest absolute bias across true ability. 

This is especially evident at the ends of the true ability continuum. Low ability examinees 

receive overestimates of their expected percent correct scores. As true ability increases 

from -2 to 0, percent correct bias becomes less negative and closer to 0. At a true ability 

of 0, the lower lure distractor results in no differences between the true and estimated 

expected percent correct scores. Percent correct bias then becomes positive as true ability 

increases from 0 to 2. Examinees with a true ability of 2 answering items with lower lure 

distractors receive underestimates of their expected percent correct scores that are much 

higher than the other undesirable distractor types.  

Around a true ability of 0, all undesirable distractor types result in no percent 

correct bias. Across the entirety of the true ability continuum, the equivalent distractor 
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results in the lowest absolute percent correct bias, followed by the implausible and upper 

lure distractors. The lower lure distractor results in the highest absolute percent correct 

bias across true ability. Toward the lower end of the true ability continuum the 

undesirable distractor types have greater differences than at the higher end of the true 

ability continuum. In other words, distractor type has more effect on percent correct bias 

low ability examinees in comparison to high ability examinees. Guessing could be 

playing a role in this result. 

 
Figure 26. Relationship between percent correct bias and true ability with 10% of items 

containing each type of undesirable distractors. 

   

Figure 27 displays the relationship between percent correct bias and true ability 

with 30% of items containing each type of undesirable distractor. The implausible 

distractor has the lowest absolute percent correct bias across ability, with notable 

exception at low ability. At a true ability of -2, the implausible and upper lure distractor 

are approximately equal in terms of percent correct bias. At a true ability of -2, the 

percent correct bias associated with the upper lure distractor dips below percent correct 

bias for the implausible distractor. Both distractors follow a similar trend when true 
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ability is 0, where percent correct bias is equal to 0. Although, if we examine a true 

ability of 2, the implausible distractor results in less percent correct bias in comparison to 

the upper lure distractor. The equivalent distractor results in higher absolute percent 

correct bias in comparison to the implausible and upper lure distractors, but it has lower 

percent correct bias than the lower lure distractor. 

 If we examine true ability between -2 and -1, all percent correct bias for 

undesirable distractor types begin to level out. In other words, the percent correct bias is 

constant between true abilities of -2 and -1. From -1 in a positive direction, percent 

correct bias becomes increasingly less negative. For true abilities greater than 0, percent 

correct bias for all undesirable distractor types increase to positive values. Ultimately for 

high ability examinees, the lower lure distractor results in higher percent correct bias, 

followed by the equivalent, upper lure, and implausible distractors, respectively.  

Similar to the 10% condition, lower values of true ability are overestimated while 

higher values are underestimated in the 30% condition. However, the 30% condition 

results in higher overall absolute percent correct bias than the 10% condition. If we 

examine true ability at 2 in the Figure 27, we observe that the equivalent distractor results 

in the lower absolute percent correct bias than that of the 10%. In Figure 27, the 

implausible distractor results in the lowest absolute percent correct bias, but the absolute 

percent correct bias is higher than the 10% condition.  
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Figure 27. Relationship between percent correct bias and true ability with 30% of items 

containing each type of undesirable distractors. 

 

 Figure 28 displays the relationship between percent correct bias and true ability 

with 50% of items containing undesirable distractors. The implausible distractor results in 

the lowest absolute percent correct bias across true ability. The equivalent distractor 

overestimates ability to a greater degree than the implausible distractor for true abilities 

between -2 and -1. The equivalent distractor also tends to overestimate expected percent 

correct score for abilities greater than 0, but it results in the same percent correct bias as 

the implausible distractor at a true ability of 2. The upper lure and lower lure distractors 

result in almost equal absolute percent correct biases as the lines for each overlap. The 

upper lure distractor results in slightly less negative and less positive percent correct bias 

values across ability than the lower lure distractor, but these differences are negligible.  

 In comparison to the 30% condition, percent correct bias levels off for the 50% 

condition at the lower end of the true ability continuum. Between true abilities of -2 and -

1, percent correct bias does not change for each distractor type. For example, the 

equivalent distractor results in constant percent correct bias between true abilities -2 and -
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1 (approximately -4%). However, the flat slope of the percent correct bias for undesirable 

distractor type line discontinues as true ability increases.  

 
Figure 28. Relationship between percent correct bias and true ability with 50% of items 

containing each type undesirable distractors. 

 

 In summary, the effect of  undesirable distractor type on percent correct bias is 

moderated by the percentage of items containing undesirable distractors, controlling for 

true ability and test length. Across all levels of percentage, low ability examinees’ 

expected percent correct scores were overestimated while high ability examinees’ 

expected percent correct scores were underestimated. Aside from a true ability at 0, as 

percentage increased from 10% to 30% to 50%, the absolute percent correct bias 

increased. The lower lure distractor consistently resulted in the highest absolute percent 

correct bias across percentage. When 50% of items contained an upper lure distractor, it 

resulted in especially high absolute percent correct bias. When 10% of items contained an 

equivalent distractor, the absolute percent correct bias was lowest amongst undesirable 

distractor type. However, in both conditions where 30% and 50% of items contained an 

implausible distractor, the absolute percent correct bias was lowest. Overall, when 
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controlling for test length and true ability, as percentage of items containing undesirable 

distractors increases, percent correct bias also increases with some exceptions depending 

on the undesirable distractor type.  

Percent Correct Bias: Test Length x Type x True Ability Interaction. The 

second three-way interaction that is practically significant is between test length, type of 

undesirable distractor, and true ability (𝐹(6, 71892) = 1311.94, 𝑝 < .001, 𝜂𝑝
2 = .099). 

The effect of undesirable distractor type on percent correct bias depends on the test length 

and true ability after controlling for the percentage of items containing undesirable 

distractors. In particular, the differences of percent correct bias amongst the undesirable 

distractor types changes as true ability increases. With the shortest test, the differences 

among each distractor type are very apparent. However, the differences between the 

implausible, equivalent, and upper lure distractors diminish when compared to the lower 

lure distractor. Figures 29, 30, and 31 display the relationship between percent correct 

bias and true ability by the type of undesirable distractor across each level of test length 

(i.e., 30 items, 50 items, and 100 items). 

Figure 29 reveals that the lower lure distractor results in the greatest absolute 

percent correct bias for a 30-item test across true ability. The implausible and upper lure 

distractors result in percent correct bias that is equal when true ability is at -2, but the 

percent correct bias for the implausible distractor becomes less negative (i.e., less biased) 

at a faster rate as ability increases. The equivalent distractor results in the lowest absolute 

percent correct bias at a true ability of -2, but the implausible distractor results in less 

absolute percent correct bias as a true ability increases from -1.5. Overall, percent correct 

bias for the all undesirable distractor types overestimate expected percent correct scores 
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for low ability examinees. The lower lure, upper lure, and equivalent distractors’ percent 

correct bias values are consistent between a true ability of -2 and -1. In contrast, the 

percent correct bias of the implausible distractor becomes continuously increases.  

After a true ability of -1, all undesirable distractor types result in percent correct 

bias that is less negative. At a true ability of 0, there are no differences in percent correct 

bias; all undesirable distractor types for a 30-item test at a true ability of 0 result in no 

percent correct bias. As true ability increases, all undesirable distractor types 

underestimate expected percent correct scores. The lower lure distractor results in the 

largest percent correct bias when true ability is greater than 0. The implausible and upper 

lure distractors result in equal percent correct bias values, and the equivalent distractor 

results in the lowest percent correct bias values when true ability greater than 0.  

 
Figure 29. Relationship between percent correct bias and true ability of 30 items for each 

type of undesirable distractor. 

 

 As displayed in Figure 30, with a test length of 50 items, the lower lure distractor 

results in the largest absolute percent correct bias across true ability. Additionally, across 

true abilities, the equivalent, upper lure, and implausible distractors result in very similar 
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absolute percent correct bias. At a true ability of -2, the equivalent distractor results in 

higher absolute percent correct bias values in comparison to the upper lure and 

implausible distractors. However, as true ability increases to 2, the equivalent, upper lure, 

and implausible distractors result in equal overestimation (when true ability is less than 0) 

and underestimation (when true ability is greater than 0) of expected percent correct 

scores.  

With the lower lure distractor, we see constant percent correct bias for true 

abilities between -2 to -1, similar to as we did with the 30-item condition. The upper lure 

and equivalent distractors are also relatively flat, but this is not as pronounced as in the 

30-item condition. The implausible distractor results in percent correct bias that 

continuously becomes less negative as true ability approaches 0.  

 
Figure 30. Relationship between percent correct bias and true ability for 50 items for each 

type of undesirable distractor. 

 

 Figure 31 displays the relationship between average percent correct bias over 

replications and true ability for a 100-item test grouped by undesirable distractor type. 

There are very slight differences between the undesirable distractor type, but these 
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differences are negligible. Compared to the 30-item and 50-item tests, the 100-item test 

results in the least amount of percent correct bias across the true ability continuum.  

 
Figure 31. Relationship between percent correct bias and true ability for 100 items for 

each type of undesirable distractor. 

 

 Overall, expected percent correct scores for low ability examinees is 

overestimated while expected percent correct scores for high ability examinees is 

underestimated. The 30-item test results in the highest absolute percent correct bias. The 

lower lure results in the highest absolute percent correct bias for the 30-item and 50-item 

test, but the distractor tends to produce similar amounts of absolute percent correct bias in 

comparison to the other distractor types for the 100-item test. While the equivalent 

distractor results in the least amount of bias for the 30-item test, the implausible, upper 

lure, and equivalent distractors result in equal amounts of absolute percent correct bias 

for the 50-item test. The 100-item test results in the least amount of percent correct bias 

for all types of undesirable distractors.  
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Standard Error 

 Standard error of true expected percent correct score and estimated expected 

percent scores, hereafter referred to as standard error, was analyzed using an ANCOVA 

to examine the effects of test length, percentage of items containing undesirable 

distractors, and type of undesirable distractor with a covariate of true ability. Squared true 

ability was also included in the model to examine if the relationship between standard 

error and true ability had a curvilinear relationship. Table 26 presents the results of the 

standard error ANCOVA.  

Table 26 

ANCOVA results for standard error 

Source df SS MS F p Partial η2 

L 2 28635.98 14317.99 723062 <.0001 .953 

P 2 105.07 52.53 2653.01 <.0001 .069 

T 3 1545.87 515.29 26022.3 <.0001 .521 

A 1 139.32 139.32 7035.62 <.0001 .089 

A2  1 641.84 641.84 32413.1 <.0001 .311 

L x P 4 30.10 7.52 380.00 <.0001 .021 

L x T 6 429.82 71.64 3617.65 <.0001 .232 

L x A 2 22.68 11.34 572.71 <.0001 .016 

L x A2 2 46.87 23.43 1183.38 <.0001 .032 

P x T 6 339.66 56.61 2858.85 <.0001 .193 

P x A 2 1258.57 629.28 31779.0 <.0001 .469 

P x A2 2 13.64 6.82 344.46 <.0001 .010 

T x A 3 774.09 258.03 13030.6 <.0001 .352 

T x A2 3 201.11 67.04 3385.42 <.0001 .124 

L x P x T 12 82.12 6.84 345.61 <.0001 .055 

L x P x A 4 94.15 23.54 1188.63 <.0001 .062 

L x P x A2 4 0.88 0.22 11.06 <.0001 .001 

L x T x A 6 61.36 10.23 516.42 <.0001 .041 

L x T x A2 6 18.47 3.08 155.42 <.0001 .013 

P x T x A 6 178.55 29.76 1502.78 <.0001 .111 

P x T x A2 6 41.16 6.86 346.40 <.0001 .028 

L x P x T x A 12 9.43 0.79 39.67 <.0001 .007 

L x P x T x A2 12 5.04 0.42 21.19 <.0001 .004 

Note. Test length = L; Percentage = P; Undesirable distractor type = T; True ability = A; 

True ability2 = A2; practically significant effects are bolded. 
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Standard Error: Insignificant Effects. The effect of test length on standard 

error does not depend on the percentage of items containing undesirable distractors, 

controlling for true ability and type of undesirable distractor (𝐹(4, 71892) =

380.00, 𝑝 < .001, 𝜂𝑝
2 = .021). The effect of test length on standard error also does not 

depend on true ability (𝐹(2, 71892) = 572.71, 𝑝 < .001, 𝜂𝑝
2 = .016) or true ability 

squared (𝐹(2, 71892) = 1183.38, 𝑝 < .001, 𝜂𝑝
2 = .032), controlling for percentage of 

items containing undesirable distractors and type of undesirable distractor. The effect of 

percentage on standard error does not depend on true ability squared, controlling for test 

length and type of undesirable distractor (𝐹(2, 71892) = 344.46, 𝑝 < .001, 𝜂𝑝
2 = .010).  

Six of the three-way interactions were not practically significant. Standard error 

does not differ among the varying levels of the interaction between test length, 

percentage, and undesirable distractor type, controlling for true ability (𝐹(12, 71892) =

345.61, 𝑝 < .001, 𝜂𝑝
2 = .055). Standard error also does not differ among varying levels 

of the interaction between test length, percentage, and true ability squared, controlling for 

type of undesirable distractor (𝐹(4, 71892) = 11.06, 𝑝 < .001, 𝜂𝑝
2 = .001). The 

interactions of test length and type of undesirable distractor with true ability 

(𝐹(6, 71892) = 516.42, 𝑝 < .001, 𝜂𝑝
2 = .041), as well as with true ability squared 

(𝐹(6, 71892) = 155.42, 𝑝 < .001, 𝜂𝑝
2 = .013), were not practically significant. Finally, 

standard error does not differ among the varying levels of the interaction between 

percentage, undesirable distractor type, and true ability squared, controlling for test 

length (𝐹(6, 71892) = 346.40, 𝑝 < .001, 𝜂𝑝
2 = .028). 

Both four-way interactions were not significant. The interaction between test 

length, percentage, undesirable distractor type, and true ability does not have a practical 
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effect on standard error (𝐹(12, 71892) = 39.67, 𝑝 < .001, 𝜂𝑝
2 = .007). Additionally, the 

interaction of test length, percentage, undesirable distractor type, and true ability squared 

does not have a practical effect on the standard error (𝐹(12, 71892) = 21.29, 𝑝 <

.001, 𝜂𝑝
2 = .004). 

Standard Error: Practically Significant Effects. All main effects were 

practically significant. For example, the effect of test length on standard error explained 

the largest proportion of variance, after partialing out the variance explained by all other 

effects (𝐹(2, 71892) = 723062, 𝑝 < .001, 𝜂𝑝
2 = .953). Although still practically 

significant, the effect of percentage on standard error explained the smallest proportion of 

variance of all main effects, after partialing out the variance explained by all other effects 

(𝐹(2, 71892) = 2653.01, 𝑝 < .001, 𝜂𝑝
2 = .069).  

Five of the two-interaction were practically significant. The effect of percentage 

on standard error that depends on true ability explained the most variance of the two-way 

interactions, after partialing out the variance explained by all other effects 

(𝐹(2, 71892) = 31779.0, 𝑝 < .001, 𝜂𝑝
2 = .469). The effect of test length on standard 

error does depend on true ability squared, controlling for percentage and undesirable 

distractor type (𝐹(3, 71892) = 3385.42, 𝑝 < .001, 𝜂𝑝
2 = .124). Two of the three-way 

interactions were practically significant. 

Standard Error: Length x Percentage x True Ability Interaction. I first 

examine the interaction between length, percentage, and true ability (𝐹(4, 71892) =

1188.63, 𝑝 < .001, 𝜂𝑝
2 = .062). The differences in standard error for each test length 

become more variable as the percentage of items containing undesirable distractors 

increases. In particular, the shortest test results in the greatest amount of standard error 



89 
 

 

while the longest test results in the least amount of standard error. Figure 32 shows the 

relationship between standard error and true ability for 10% of items containing 

undesirable distractors grouped by test length. A test of 30-items with 10% of items 

containing undesirable distractors results in the largest amount standard error across true 

ability, a 50-item test results in the second largest amount of standard error, and a 100-

item test results in the least amount of standard error. Standard error is consistent for all 

three test lengths for true abilities less than 0. The resulting standard error for a 30-item 

increases slightly at a true ability of 0, but standard error decreases as true ability 

increases to 2. The standard error for a 50-item test follows a similar pattern as the 

standard error for a 30-item test. However, the slight increase in standard error at a true 

ability of 0 is not as pronounced. A 100-item test results in standard error that remains 

constant from -2 to 0, but then decreases as true ability increases from 0. 

 
Figure 32. Relationship between standard error and true ability with 10% of items 

containing undesirable distractors for each test length. 

 

 Figure 33 displays the relationship between standard error and true ability when 

30% of items contain undesirable distractors for test length. At a true ability, each test 
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length results in similar trends of standard error. Along the true ability continuum, 

standard error decreases between true abilities -2 and -1, increases between true abilities 

of -1 and .5, and decreases between .5 and 2.  

 In comparison to a test where 10% of items contain undesirable distractors, the 

30% condition produces increasingly varying levels of standard error across true ability 

for each level of test length. While true abilities of -2 share similar values of standard 

error for each test length for the 10% and 30% conditions, true abilities of -1 have much 

less standard error standard error for each test length in the 30% condition than in the 

10% condition. However, when true ability is near 2, there is larger standard error in the 

30% condition then the 10% condition for all test lengths. 

 
Figure 33. Relationship between standard error and true ability with 30% of items 

containing undesirable distractors for each test length. 

 

 Figure 34 shows the relationship between standard error and true ability when 

50% of items contain undesirable distractors grouped by test length. Similar to 10% and 

30% conditions, all levels of test length follow similar trends. However, in contrast to the 

10% and 30% conditions, true abilities near -2 have less standard error across all test 
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lengths, and true abilities near -1 for the 50% condition also have less standard than the 

other percentage conditions. The maximum for standard error in the 50% condition 

occurs near a true ability of .5, and is greater than the standard error in the 10% and 30% 

conditions at similar abilities. Finally, true abilities near 2 for the 50% condition result in 

higher standard error compared to the same abilities in the 10% and 30% conditions for a 

given test. 

 
Figure 34. Relationship between standard error and true ability with 50% of items 

containing undesirable distractors for each test length. 

 

Overall, the relationship between standard error and true ability is moderated by 

the percentage of items containing undesirable distractors and test length, controlling for 

type of undesirable distractor. As test length increases, less standard error is produced 

across true ability. The relationship between standard error and true ability, however, is 

dependent upon the percentage of items containing undesirable distractors at various 

levels of test length. A test containing 50% of items with undesirable distractors produces 

more extreme values of standard error across the true ability continuum. While a test 

where 10% of items contain undesirable distractors has a standard error that decreases as 
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true ability increases, the 30% and 50% conditions change across true ability. Finally, a 

100-item test produces the largest amount of standard error and changes the most as a 

function of true ability.  

Standard Error: Type x Percentage x True Ability Interaction. The 

interaction between undesirable distractor type, percentage, and true ability also had a 

practically significant effect on standard error (𝐹(6, 71892) = 1502.78, 𝑝 < .001, 𝜂𝑝
2 =

.111). As the percentage of items containing undesirable distractors increases, the 

differences in the amount of standard error for each undesirable distractor type varies 

across true ability. The relationship between standard error and true ability is displayed in 

Figure 35, where 10% of items contain each type of undesirable distractor. Across ability, 

the implausible distractor results in the least amount of standard error. A test where 10% 

of items contain a lower lure distractor results in a lower amount of standard error in 

comparison to the implausible, upper lure, and equivalent distractors when ability is less 

than -1. However, between a true ability of 0 and 2, the lower lure distractor results in 

higher standard error than the other three undesirable distractors types. For ability less 

than 0, the equivalent distractor, followed by the upper lure distractor, results in the 

largest amount of standard error, but the relationships between standard error and true 

ability decreases as true ability becomes greater than 0. Compared to low ability 

examinees, when ability is greater than 0, lower standard errors occur for all undesirable 

distractors when only 10% of items contain undesirable distractors.  
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Figure 35. Relationship between standard error and true ability with 10% of items 

containing each type undesirable distractors. 

 

 Figure 36 displays the relationship between standard error and true ability with 

30% of items containing an undesirable distractor. The implausible and lower lure 

distractors change the most with respect to standard error across true ability when 

comparing back to the 10% condition. For ability near -2, the implausible distractor 

results in the greatest amount of standard error. As true ability increases from -2 to -1, the 

standard error for the implausible distractor decreases, similar to the lower lure distractor. 

However, for these distractor types, standard error then increases as ability increases from 

-1 to 0. Standard error for the implausible distractor peaks at a true ability of 1 but 

decreases as true ability increase. In contrast to the implausible distractor, standard error 

for the upper lure distractor peaks at a true ability of 0 and decreases as true ability 

increases toward 2.  

In comparison to the 10% condition, there is a larger difference in standard error 

when 30% of items on a test contain the equivalent distractor and 30% of items contain 

the upper lure distractor. When true ability is between -2 and 0, the equivalent distractor 
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results in a greater amount of standard error than the upper lure distractor. However, this 

difference in standard error dissipates as true ability increases from 0 to 2.   

 
Figure 36. Relationship between standard error and true ability with 30% of items 

containing each type undesirable distractors. 

 

 The relationship between standard error and true ability when 50% of items 

contain an undesirable distractor is shown in Figure 37. While standard error resulting 

from tests with implausible distractors is greater than standard error from tests with any 

other type of distractor when true ability is near -2, it results in the least amount of 

standard error for abilities between about -1.7 to .7. The standard error resulting from the 

implausible distractor is greater than the resulting standard error from the upper lure and 

equivalent distractors for abilities greater than .7. In general, the standard error resulting 

from tests with 50% of items having implausible distractors follows a sinusoidal pattern. 

On average, the implausible distractor results in the least amount of standard error across 

true ability.  

The lower lure distractor follows a similar sinusoidal pattern as the implausible 

distractor, but it tends to result in greater standard error across the true ability continuum. 
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This curvilinear pattern ceases for abilities greater than 0. After reaching the point of 

maximum standard error at an ability of 0, standard error remains flat and relatively high 

as ability increases to an ability of 2. Standard error for the lower lure distractor then 

decreases slightly as true ability approaches 2.  

In comparison to the 10% and 30% conditions, the equivalent and upper lure 

distractors have even greater differences in standard error when 10% of items contain an 

undesirable distractor type. While the equivalent distractor for the 50% condition results 

in similar amounts of standard error as in the 30% condition, the upper lure distractor 

results in lower amounts of standard error for the 50% condition in comparison to the 

30% condition. Even though the equivalent distractor and the upper lure distractor result 

in similar sinusoidal patterns followed by flattening out standard error patterns as the 

lower lure, the curvilinear pattern’s maximum and minimum differences are not as 

dramatic.  

 
Figure 37. Relationship between standard error and true ability with 50% of items 

containing each type undesirable distractors.  
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 Overall, the relationship between standard error and true ability differs with 

respect to the percentage of items containing undesirable distractors and the type of 

undesirable distractor, controlling for test length. For each undesirable distractor type, the 

relationship between standard error and true ability of a test where 10% of items contain 

the undesirable distractor tends to peak at a true ability of 0 but decrease as ability 

increases. The lower lure distractor, on average, results in the largest amount of standard 

error, while the implausible distractor results in the lowest amount of standard error 

across ability. The equivalent and upper lure distractors tend to remain the same with 

respect to standard error across true ability, but the amount of standard error tends to 

increase as the percentage of items containing an undesirable distractor increases. 
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Chapter 5. Discussion 

 The purpose of this study was to determine how undesirable distractors impact 

estimates of ability. In the following sections, I discuss the results of my research 

questions, provide recommendations for test developers based on these results, outline 

limitations of this study, and consider next steps for this line of research. 

Research Questions 

Parameter Recovery. I first examined the capabilities of recovering ability 

estimates using the 3-PL IRT model in SAS 9.4 (TS1M4). Previous research by Cole and 

Paek (2017) also employed a simulation study to evaluate the recovery of parameters 

using the IRT procedure, but the authors focused on item parameters rather than ability 

parameters. In order to address this question, I first generated data for three test lengths, 

30 items, 50 items, and 100 items, each for a sample of 2000 examinees. Difficulty, 

discrimination, and pseudo-guessing item parameters of the 3-PL were randomly sampled 

in each replication to improve generalizability of the simulation results. Initially, no 

distractor properties were considered. Rather, I first explained recovery in baseline 

conditions. To analyze recovery of ability parameters in the default estimation routines of 

the IRT procedure in SAS, I calculated bias and standard error of ability over 1000 

replications. Because the distractor analysis would eventually require us of different 

generating models from analysis models, based on suggestions from Leuhct and 

Ackerman (2018), I used expected total score as a proxy for true and estimated ability. 

Further, to make results comparable across varying test lengths, expected total score was 

converted to expected percent correct score. I examined the differences between ability 

estimates and true ability averaged over replications. Standard error was calculated as 
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way to examine the spread of true ability across replications. In other words, I looked at 

the spread of the ability estimates to gain information about the efficiency of these 

estimates.  

 I begin by discussing the bias of the ability estimates for the three baseline 

conditions of varying test length. In general, bias tended to be greatest toward the tails of 

true ability. This is likely due to the way in which I generated the item parameters. 

Difficulty was randomly sampled from a standard normal distribution. Ability and 

difficulty are on the same scale, meaning that we have the most test information around a 

true ability of 0 since this the mean of the sampled difficulty distribution. More 

information near a true ability of 0 is associated with less bias. Therefore, we see more 

bias toward the tails of true ability and less bias in the middle of true ability.  

Bias was different at each level of test length and across true ability. Longer tests 

(i.e., 100 items) resulted in less biased ability estimates. In contrast, shorter tests (i.e., 30 

items) resulted in more biased ability estimates. On average, the ability estimates for a 

shorter test, over 1000 replications, are further away from true ability than that of the 

longer tests across the entirety of the ability continuum. This finding is consistent with 

previous research that a longer test will result in less biased ability estimates (De Ayala, 

2013).   

Additionally, guessing may have an impact on the amount of bias that each test 

length resulted in. A longer test resulted in a constant slope for bias as true ability 

increased. In contrast, the 30-item and 50-item tests result in bias for which the rate of 

change is a function of true ability. The 30-item test resulted in a negative bias that 

remained constant from true abilities of -2 to -1, but after -1, bias increased linearly as 
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true ability increased. We can observe a similar trend with the 50-item test. It is likely 

that estimation of low abilities is impacted by guessing. Guessing may have contributed 

to the slight increase in negative bias for true abilities of -2 to -1. 

Similar to bias, standard error differed at each level of test length and across true 

ability. Longer tests resulted in the least amount of standard error across true ability. 

While shorter tests resulted in the greatest standard error across true ability, standard 

error tended to be lowest for a true ability in the tails and greatest for a true ability near 0. 

This may seem like a contrary result as in the IRT paradigm standard error tends to be 

lowest for abilities where we have the greatest information. we see that standard error is 

highest for the true abilities where we have the most information. This pattern is 

occurring because expected percent correct score was used as a proxy for ability. Thus, 

we see evidence of similar floor and ceiling effects that occur for standard error in CTT. 

Similar to Cole and Paek’s (2017) evaluation of the IRT procedure in SAS for 

item parameters, ability parameters tended to be unbiased and efficient. However, shorter 

tests result in more biased and less efficient ability estimates. I recommend the use of the 

IRT procedure in SAS to recover ability parameters, but I would suggest that test 

developers attempt to create longer tests for less biased and more efficient ability 

estimates.  

 Bias: Undesirable Distractors. The remaining three research questions address 

concerns about the effects that the percentage of items containing undesirable distractors, 

the test length, and the type of undesirable distractor have on ability estimates. Overall, 

lower levels of ability tended to be overestimated while higher levels of ability tended to 

be underestimated. This occurred because I used MAP to estimate abilities, which draws 
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abilities in towards the mean of ability. First, I investigated the interaction among these 

factors on bias of abilities. There were two practically significant three-way interactions: 

(1) percentage, undesirable distractor type, and true ability and (2) test length, 

undesirable distractor type, and true ability. I discuss each interaction below. 

 The first interaction of percentage, undesirable distractor type, and true ability 

indicates that the bias of ability estimates is dependent on what distractor type, the 

percentage of items containing the distractor, and the true ability of the examinee. The 

lower lure distractor consistently resulted in ability estimates that contained the most 

bias. Bias for ability estimates associated with the lower lure distractor tended to increase 

with percentage, indicating that the more items containing a lower lure distractor, the 

more bias there is in estimating examinee ability.  

As the percentage of items containing undesirable distractors increased (10% to 

30% to 50%), bias in ability estimates increased. However, the rank ordering of the type 

of undesirable distractor resulting in the least amount of bias was not consistent across 

percentages. The implausible distractor resulted in the least amount of bias in ability 

estimates for the 30% and 50% conditions but not the 10% condition. A surprising result 

is that a distractor that produces no information results in the least amount of bias for the 

30% and 50% conditions. Upon further investigation, this result is likely due to the other 

distractor in the item. Figure 21 provides the item characteristic choice curves for a 

multiple-choice item containing an implausible distractor. The second distractor (option 

C) was defined to identify the model given item parameter constraints. However, this 

distractor is considered an informative distractor (Samejima, 1988). A distractor taking 

this form has been evidenced to provide discrimination information for examinees with 
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abilities in the center of the distribution. While the implausible distractor does not 

discriminate amongst examinees’ abilities, the inclusion of this informative distractor is 

likely the cause of the lowest absolute bias for the test with the implausible distractor. In 

other words, the addition of this desirable informative distractor is likely the reason 

ability estimates are closer to true ability in comparison to the other undesirable distractor 

conditions.  

 The equivalent distractor resulted in varying degrees of bias across true ability for 

each level of percentage. When 10% of items contained the equivalent distractor, bias 

was lowest across true ability. Although, the equivalent distractor resulted in greater 

amounts of bias compared to the implausible distractor as percentage increased. The 

upper lure distractor follows a similar trend, but the upper lure distractor resulted in less 

bias than the equivalent distractor for the 10% and 30% conditions and more bias than in 

the 50% condition. Overall, both the equivalent and upper lure distractors resulted in 

greater amounts of bias than the implausible distractor; however, both distractors resulted 

in less bias than that of the lower lure distractor.  

 There was also a practically significant three-way interaction effect on bias 

between test length, undesirable distractor type, and true ability. In other words, the 

effects of test length on bias differed for undesirable distractor types and across true 

abilities, controlling for percentage. Similar to the baseline conditions, a longer test 

resulted in less bias and the shortest test resulted in more bias. Trivial differences existed 

in the resulting bias between the baseline conditions and undesirable distractor conditions 

for all undesirable distractor types when the test contained 100 items. In other words, if 

the test is long, the effect of undesirable distractors in items tends to be minimized.  
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 Concerning the shorter tests (i.e., 30 items and 50 items), undesirable distractor 

types did result in varying degrees of bias from baseline. The lower lure distractor is 

especially problematic on shorter tests; it results in much greater bias in ability than the 

other undesirable distractors for a test of 30. The lower lure distractor also results in the 

largest amount of bias for the 50-item test in comparison to the other undesirable 

distractor types but less bias than that of the 30-item test. The implausible distractor 

resulted in the least amount of bias for the 30-item and 50-item tests. However, 

differences between the implausible distractor and equivalent and upper lure distractors 

were negligible for the 50-item test. Regardless of the positive or negative effects of 

distractor on bias, these effects on ability estimates tend to disappear when there is a 

greater amount of items. 

Standard Error: Undesirable Distractors. There were two significant three-

way interactions when examining efficiency of ability estimates: (1) percentage, 

undesirable distractor type, and true ability, and (2) percentage, test length, and true 

ability.  

The first interaction shows that the effect of percentage on standard error differs 

across undesirable distractor type and true ability, controlling for test length. Generally, 

tests containing items with higher percentages of undesirable distractors result in higher 

standard error of estimates across the true ability spectrum. However, this observation is 

not necessarily true for the implausible distractor. Standard error actually decreases as the 

percentage of items containing an implausible distractor increases across true ability. 

Across replications, ability estimates are more similar to one another when more items 

contain the implausible distractor. This may be due to the informative distractor. The 
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equivalent and upper lure distractors result in somewhat similar amounts of standard error 

across true ability and percentage. The lower lure distractor tends to result in the largest 

amount of standard error across true ability, especially as the percentage of items 

containing undesirable distractors increases.  

The second interaction was between percentage, test length, and true ability. The 

effect of percentage on standard error differs across test length and true ability, 

controlling for undesirable distractor type. The amount of standard error associated with 

true ability is not constant across all levels of test length and increasing percentage of 

items containing undesirable distractors. A test where 10% of items contain undesirable 

distractors results in the greatest amount of standard error for abilities at the center of the 

continuum and the least amount of standard error for high ability examinees. Although 

we have most information toward the center of the ability continuum, I calculated 

standard error on the percent correct metric. This is the reason we see a ceiling effect for 

standard error at the center of ability. A test where 30% and 50% of items contain 

undesirable distractors results in the largest amount of standard error for true abilities 

greater than an ability of 0 and the least amount of standard error for true abilities less 

than an ability of 0. In other words, as percentage increases, ability estimates are both less 

and more accurate across the continuum of ability. This pattern is likely the result of 

guessing. We expect varying percent correct scores for low ability when examinees are 

able to guess the correct answer. Therefore, as seen with higher standard errors, we 

expect more variability in ability estimates for these low ability examinees.  
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Recommendations 

 In general, I recommend that test developers should pay careful attention to the 

functioning of distractors. Many researchers have expressed that distractors are an 

important part of the multiple-choice item (Gierl, Bulut, Guo, & Zhang, 2017; Sideridis, 

Tsaousis, & Harbi, 2016; Thissen, Steinberg, & Fitzpatrick, 1989). I believe that this 

research supports that argument. The implausible distractor contained a second distractor 

that was informative. An informative distractor is one that divides examinees into groups 

based upon the selection of the options (Thissen, Steinberg, & Fitzpatrick, 1989; 

Samejima, 1988). For example, low ability examinees have equal probability of selecting 

all the choices, examinees in the middle of the ability distribution have the highest 

probability of selecting the informative distractor, and high ability examinees have the 

highest probability of selecting the correct answer. In the current study, conditions with 

the implausible distractor resulted in the least biased and most efficient ability estimates 

across the ability continuum. This was likely due to the inclusion of the informative 

distractor in the implausible distractor condition when there is a clear separation of 

groups of examinees based on which choice they select. Therefore, the implausible 

distractor could be alright to include in multiple-choice items but it is the the second 

distractor being informative that is crucial.   

 I suggest that test developers should be aware of lower lure distractors in their 

multiple-choice items. The lower lure distractor consistently resulted in the greatest bias 

and standard error. In other words, the inclusion of a lower lure distractor resulted in 

ability estimates that were both further from an examinees’ true ability and more variable 

over replications in comparison to the implausible, equivalent, and upper lure distractors. 
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For this reason, test developers should certainly be hesitant in interpreting an examinees 

ability estimate when a lower lure distractor is present, especially for a shorter test. 

 Test developers should use longer tests when possible. De Ayala (2013) agrees 

with this finding. If a test does contain any type of undesirable distractor, the negative 

effects on ability estimates are lessened with the inclusion of more items. A 100-item test 

always resulted in less bias and more efficient estimates of ability. In fact, the 100-item 

test containing undesirable distractors had very similar results of bias and standard error 

to the baseline condition of a 100-item test that contained well-functioning items.  

 While test developers can examine distractor functioning by performing an item 

analysis, this is completed after the creation of the distractors. If a test contains a large 

percentage of undesirable distractors, especially for a short test, there are bound to be 

biased and inefficient ability estimates. We want scores that are best representative of an 

examinees’ ability, but the inclusion of undesirable distractors would not allow for this. 

This issue is especially problematic when the test is high-stakes. If the examinee’s score 

is not representative of their true ability due to the inclusion of undesirable distractors 

during the scoring of the test, then this has the possibility of drastically effecting that 

examinee’s future.  

However, how are we to create good distractors if we are unable to evaluate their 

functioning until after examinees have completed the test? I recommend that test 

developers focus on Haladyna et al.’s (2002) item-writing rules. In particular, there are 14 

guidelines that pertain to the writing of multiple-choice item options. Not following these 

guidelines could align with the writing of certain undesirable distractors. For example, 

Haladyna et al. (2002) suggest having only one right answer. This guideline might seem 



106 
 

 

obvious, but certain distractors may be “somewhat” correct. If a “somewhat” correct 

distractor draws in some of the examinees with a high ability, then we might see a lower 

lure distractor on our test.  

Limitations and Next Steps 

 The current study does provide evidence that undesirable distractors can have 

effects on ability estimates. However, there are some limitations of this study that should 

be addressed. In addition to limitations, I discuss next steps for this line of research. To 

begin, I used a fixed sample size (N=2000) for all conditions. Typically, item parameters 

are most affected by large sample size, but if I had included smaller samples, how would 

this effect the bias and efficiency of the results? The large sample in this study allows for 

the generalization of results to large-scale assessment, but not all multiple-choice tests are 

taken by large samples of examinees. For example, investigation with a smaller sample 

would allow for the generalization of results to classroom assessments.  

 I also fixed the number of options to three. Although research suggests that the 

optimal number of options in multiple-choice items is three (Haladyna, Rodriguez, & 

Stevens, 2019; Baghaei & Amrahi, 2011; Vyas & Supe, 2008; Rodriguez, 2005; Crehan, 

Haladyna, & Brewer, 1993; Haladyna & Downing, 1988), this is not necessarily a 

requirement. Considering four or more options would allow better generalization of 

results to more multiple-choice testing situations.  

 In this study, I only considered undesirable distractor types. Although research is 

limited regarding undesirable distractors types, there may be others that are common but 

have yet to be investigated. Besides undesirable distractors negatively impacting ability 

estimates, good distractors, such as an informative distractor, may result in less biased 
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and more efficient estimates of ability. The implausible distractor condition alluded to 

this. It was likely positive effects of the informative distractor, not the effects of the 

implausible distractor that resulted in low bias and standard error. This effect and other 

positive effects necessitate further exploration. 

 Aside from the multiple-choice model (Thissen & Steinberg, 1984) to generate 

undesirable distractors, other models could have been used such as Bock’s (1972) 

nominal response model. I also fixed the guessing parameter for the multiple-choice 

model, meaning that guessing was immediately assumed for low ability examinees with 

equal likelihood of each choice. This may not generalize to real-world testing situations. 

Perhaps guessing is not a concern for some test developers. In this case, the nominal 

response model would be appropriate to use compared to Thissen and Steinberg’s 

multiple-choice model. Furthermore, in this study, I analyzed item responses using the 3-

PL model. Using the multiple-choice model to estimate ability may result in differing 

results.  

 Additionally, each replication within each condition had randomly sampled item 

parameters. This introduced more random error that limits the generalization of these 

results. With varying item parameters for each condition, it would have been appropriate 

to equate the tests for all replications in each condition. However, I assumed that all 

replications in a condition were equal. In general, shorter tests generally have larger 

standard errors (i.e., shorter tests impact standard errors more than longer tests). The 

difference in standard error evidenced between the longer tests and shorter tests may be 

overestimated. This is because the randomly selected item parameters for a shorter test 

are less likely to “even” out randomly. Larger tests are not as highly impacted by the 
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varying item parameters across replications, but there is still some random error which 

causes standard error to be greater than it should be. Thus, the differences in standard 

error between long tests and short tests are likely to exist, but may not be as dramatic as 

evidenced here. 

 It is also important to investigate what steps test developers can take to investigate 

each type of undesirable distractor. I suggest using IRT methods for evaluating distractor 

functioning, but small-scale multiple-choice tests are unable to use such advanced 

methods. In situations with smaller samples, it is still beneficial to use trace plots to 

examine undesirable distractor functioning. For example, Haladyna and Downing (1993) 

used trace plots to identify undesirable distractors. Although the current research does not 

address the examination of distractor functioning in CTT, it is an important consideration 

for testing situations with small samples. Perhaps undesirable distractors impact ability 

estimates in different ways in the CTT framework compared to the IRT framework.  

Although there are some limitations of this study, I believe that these results are 

best generalized to large-scale assessment testing situations where multiple-choice tests 

are administered to large samples of examinees (i.e., N=2000). This research supports 

that there are negative impacts of undesirable distractors on estimates of ability. Although 

I am hesitant to generalize to other testing situations (e.g., smaller samples, variable 

guessing, etc.), I believe that these results support the argument that distractors are an 

important part of the multiple-choice item. So much so that poor functioning distractors 

negatively impact ability estimates.   
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