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ABSTRACT 

American ginseng (Panax quinquefolius) is a well-known and sought-after medicinal plant 
native to North America that is facing increased threat of extinction due to overharvesting, 
herbivory, and habitat loss. Species distribution and habitat suitability models may be valuable to 
landowners interested in sustainable harvest or to institutions interested in the conservation and 
restoration of the species. With unequal sampling efforts across a region of interest, it is likely 
that some locations with appropriate habitat may be misrepresented in model predictions. This 
study refined a state-derived species distribution model for ginseng through increased sampling 
effort across the Cumberland Plateau of Virginia and experimental manipulation of model 
parameters using the machine learning method Random Forest. Through many iterations, sixteen 
final models were constructed with various parameters such as spatial partitioning, removal of 
correlated variables, and limiting the spatial extent for background point generation in an effort 
to reduce overfitting and increase accuracy. Models were evaluated using partial dependence 
plots, area under the curve (AUC), and out-of-bag error (OOB error). Of those models, this study 
determined that various methods may be used depending on the goal of the project—resulting in 
more accurate and realistic species distribution and habitat suitability models than were 
previously available. This study concludes that, although various model parameters can be 
altered to change the product thereby increasing accuracy or reducing overfitting, the most 
effective means of reducing the impact of sampling deficiency is to balance sampling effort 
across the region of study.  
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INTRODUCTION 

Highlighting the Herbaceous Layer 

The herbaceous layer of a forest, though often overlooked, comprises a startling amount of 

biodiversity found therein. Forest herbs provide food, shelter, substrate, and materials to many 

other species—and may be equally important to researchers and landowners attempting to 

understand temperate forests. In the average forest, 80% of plant species are found within the 

herbaceous layer, and the extinction rate of forest herbs is several times greater than that of canopy 

species (Gilliam 2007; Levin and Wilson 1976). This alone should encourage discussion of the 

herbaceous layer when considering how to preserve biodiversity in forest ecosystems, though the 

topic typically revolves around tree species that comprise the majority of biomass therein. 

In addition to their diversity, herbaceous plants also have an important role in soil nutrient 

cycling within forests. A study by Welch and colleagues (2007) found that herbaceous plants 

contribute significant amounts of available nutrients such as phosphorus, potassium, and calcium 

to the soil. They also noted that the litter generated from herbaceous plants has a lower carbon-

nitrogen ratio, causing them to decompose more rapidly and thus contribute those nutrients to the 

soil more promptly than tree leaf litter (Welch et al. 2007). As concluded by Gilliam (2007), the 

herbaceous layer may contain only one percent of the total biomass of a forest but can comprise 

the majority of the plant species present and contributes up to a fifth of the overall leaf litter, which 

typically contains more nutrients than that of tree-foliage. If forest herbs are as critical to 

regeneration and nutrient cycling of forest ecosystems as these studies suggest, then their 

importance to forests should be given due consideration by land-managers or government agencies 

when proposing treatments or harvests (Erikson 1995; Gilliam 2007; Welch et al. 2007).  
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Studies of herbaceous plants frequently occur in greenhouses, laboratories, or other 

experimental settings. While those settings may allow researchers to control influences and 

potentially confounding variables, there may be an increased risk to misinterpret results or 

overlook processes and influences that may occur within a working ecosystem (Gibson et al. 

1999). Therefore, it is important for studies to be conducted on forest herbs in their natural setting 

and native range—with all influencing parameters present.  

Land-managers must become aware of what might influence the health of their land and 

the ecosystems within. Species distribution and habitat suitability models are tools that may be 

valuable to forest farmers or others interested in sustainably harvesting non-timber forest products 

(NTFP).  American ginseng (Panax quinquefolius (L.)), is an exemplary NTFP whose populations 

may depend on understanding the habitat in which they thrive. Landowners will be better able to 

make informed decisions regarding harvesting and planting locations if environmental influences 

on ginseng presence is understood and suitable habitat can be reckoned. 

Morphology and Ecology of American Ginseng 

American ginseng is a slow growing, long-lived, herbaceous, perennial plant native to 

North America that may become capable of flowering as early as their second year or as late as 

their eighth year in some cases (Carpenter and Cottam 1982; McGraw et al. 2013). Initially only 

having one small “prong” or leaf, after several years they will reach reproductive maturity and 

develop two to four prongs consisting of several whorled leaves at the apex of the stem (Carpenter 

and Cottam 1982; Lewis and Zenger 1982). The fruits are two-seeded drupes approximately one 

centimeter in diameter and bright red in color once mature, indicating that birds may be a means 

of dispersal (Howe 1986; Lewis and Zenger 1982). After the seeds have been dispersed, they may 

require anywhere from 18 months to several years to germinate (Lewis and Zenger 1982; McGraw 
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et al. 2013; Snow 2009). Ginseng populations tend to form clusters varying from just a few to over 

one hundred plants within several square-meters (Cruse-Sanders and Hamrick 2004; McGraw et 

al. 2010; Mooney and McGraw 2007a). One study by Elza et al. (2016) suggests that wood 

thrushes, also in decline, might have served an important role in dispersing seeds but are often 

absent near ginseng.  

Ginseng appears to be somewhat more of a generalist than its rarity and current folklore 

would suggest—with a broad geographic range spanning from the American Midwest to Maine 

and from Canada to southern Appalachia and inhabiting different soil textures, moisture levels, 

and pH (McGraw et al. 2013). Although it appears to be more common in mixed mesophytic 

forests, ginseng can be found in a wide range of forest types (Albrecht 2009; McGraw et al. 2003; 

McGraw et al. 2013). According to many harvesters, ginseng is typically found on moist, north-

facing slopes or in protected hollows. If ginseng is more of a generalist than currently thought, it 

may be that it is usually found in these conditions because that is where they are harvested and 

replanted—creating a feedback loop sustaining their population there while also reinforcing 

inaccuracies about ginseng’s distribution.  

To further complicate the mythos surrounding ginseng’s habitat requirements, some 

studies suggest that certain soil minerals may be significantly correlated with plant health—stating 

that slightly acidic soils with higher levels of iron, sulfur, and aluminum with lower levels of 

magnesium may be most appropriate for increasing the levels of medicinal compounds within the 

root (Li and Mazza 1999; Lee and Wudge 2013). However, other studies such as one conducted 

by Lee and Wudge (2013) indicate that gypsum (and the resulting increase in calcium) may lower 

shoot to root ratio while still being correlated with an increase in certain concentrations of 

medicinal compounds. Lastly, study by Konsler et al. (1990) noted that soil chemistry may also 



4 
 

 
 

play a role in synthesis and storage of those compounds within the leaves rather than the roots—

which may be worthy of future investigation, as most research and the use of ginseng focuses on 

the root.  

Compounding the lack of concrete knowledge on factors that lead to appropriate habitat 

for ginseng, this species is facing increased threat of extinction due to climate change, 

overharvesting, herbivory, and habitat loss (Case et al. 2007; Farrington et al. 2009; Furedi and 

McGraw 2004; McGraw et al. 2003; McGraw et al. 2013; Souther and McGraw 2014). Using 

simulations, Souther and McGraw (2014) found that climate change, when coupled with harvest 

by humans, creates a 65% extinction risk for American ginseng over the next 70 years. Current 

regulations on ginseng harvest must be revised to mitigate the predicted effects of changing 

climate, and a pre-emptive style of management may increase the potential to conserve this species 

as well as others (Souther and McGraw 2014). Furthermore, a study by Furedi and McGraw (2004) 

found that deer browse may be having a large impact on American ginseng as seeds are most likely 

destroyed by the digestive process. Farrington and colleagues (2009) suggest that ginseng must be 

managed both to control harvest by humans and herbivory by deer to preserve and restore its 

populations. Lastly, as is the case with most rare species today, habitat loss is another important 

influence on species’ decline—and ginseng is no exception. Understanding the myriad of threats 

to ginseng populations will enable land-managers to gain a perspective on how its habitat, 

characteristics of growth, and distribution may be positive as well as negative influences on its 

potential to be restored and sustainably harvested. 

American Ginseng as a medicinal NTFP 

Agroforestry and non-timber forest products are growing industries in many parts of the 

world including the central-Appalachian region (Chamberlain 2009; Peri et al. 2017; USDA 2017). 
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Medicinal plants make up the largest portion of the non-timber forest product industry, and it is 

estimated that nearly three-quarters of people worldwide depend mostly on herbal medicine for 

their healthcare (Priya 2017). A report by Chamberlain (1998) stated that the worldwide market 

for herbal medicines valued at almost $8 billion and that number was expected to grow to more 

than $12 billion by the year 2000. A more recent report estimated the herbal market to be worth 

$50 billion (Nirmal et al. 2013). This is clearly a growing industry that necessitates further research 

into medicinal plants, their ecology, and implications for economically stressed regions in which 

forest farming may be more practical.  

Ginseng’s medicinal properties are mostly due to chemical compounds called 

ginsenosides: more than sixty types of these compounds are found within the roots and leaves of 

ginseng (Fuzzati 2004; Mazza 1996; Qi 2011). American ginseng has been shown to have many 

medicinal uses, from being high in antioxidants and relieving stress to inhibiting cancer cell growth 

(Duda et al. 1999; Kim et al. 2010; Kitts et al. 2000; Qi et al. 2011). The concentrations of different 

ginsenosides may vary depending on geographic location and habitat conditions—although the 

effects remain mostly consistent and products are not processed separately based on varying 

chemistry (Carlson 1986, Hu 1976, Wang 2005). These potent and time-tested medicinal 

properties of ginseng have allowed natural, high-quality roots to command a price of several 

hundred dollars per pound in Chinese herbal markets for generations—making it one of the most 

valuable herbaceous plants native to North America (McGraw et al. 2013, Snow 2009). Due to the 

extent of research that has gone into the phytochemistry of ginseng, it stands to reason that it should 

remain one of the most sought-after medicinal herbs across the globe. 

Harvest of American Ginseng 
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Shortly after European colonization of the New World, settlers recognized the relationship 

between Chinese ginseng (Panax ginseng C.A. Mey.) and American ginseng and began exporting 

the plant to China (Carlson 1986; Case et al. 2007). According to Carlson (1986), China’s demand 

for American ginseng nearly led to its extinction due to overharvesting—just as it had for their 

own Chinese ginseng (as cited in McGraw et al. 2013). The demand for ginseng has been reduced, 

but ginseng still remains one of the most valuable plants in North America (McGraw et al. 2013, 

Snow 2009). Today, harvest by humans remains a large influence on the abundance and 

distribution of American ginseng in the United States (Farrington et al. 2009; McGraw et al. 2013; 

Van der Voort and McGraw 2006).  

American ginseng is listed on Appendix II of Convention of International Trade in 

Endangered Species on Wild Fauna and Flora (CITES). This means that the plant is not currently 

threatened with extinction, although it may soon become so if trade is not directly controlled or 

regulated. Some states, such as Wisconsin, have attempted to protect ginseng with legislation. In 

1905, Wisconsin passed a law prohibiting digging ginseng between January 1 and August 1 to 

ensure that ginseng is less likely to be harvested before it has had a chance to fruit—although this 

law now exempts landowners (Carlson 1986).  

Issues involving ginseng harvest are worsened due to the fact that, while it can be grown 

and harvested in a commercial setting, buyers typically prefer wild ginseng which are 

distinguished by their forked roots and many annual scars indicating old age (Carlson 1986). Wild 

ginseng has also been shown to have differences in ginsenoside content, which suggests that there 

may be pharmacological and therapeutic advantages to using wild ginseng (Wang et al. 2010). 

This preference only exacerbated problems with overharvesting of wild ginseng—demonstrating 

the need to regulate wild ginseng harvest and poaching.  
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Contrary to what this may suggest, ginseng cultivation still occurs in the United States. In 

the 19th century, nearly thirty million pounds of ginseng were exported to Asia (Carlson 1986). 

Since the 1960’s, Wisconsin has led the country in exports of American ginseng, and it is very 

important to their economy even today (Carlson 1986). Some farmers grow ginseng on their own 

in a wild-simulated manner, sowing pre-stratified seeds in mulched beds with synthetic shade to 

simulate forest canopy cover (Oelbermann and Milburn, 1994).  

Today, the many regulations regarding ginseng harvest may not be adequate to protect wild 

populations. Van der Voort and McGraw (2006) suggest that a “stewardship-oriented harvester” 

who collects ginseng responsibly by delaying harvest, plants seeds, and limits the intensity of their 

harvest can improve population growth rates. Since ginseng produces seeds in the summer months, 

it is recommended that harvesters delay their digging until September and allow for the fruit to 

ripen before harvesting (Carpenter and Cottam 1982).   

Given the growing preference for environmentally friendly and sustainable natural 

products, the market would likely benefit from a transition to this model of ginseng harvesters. 

There are several factors limiting the amount of ginseng that the average landowner may try to 

grow, such as little-understood habitat preferences coupled with long germination times, slow 

growth, and the risk of poaching (Carpenter and Cottam 1982; Snow 2009). As mentioned 

previously, using habitat models to identify environmental factors that may be important for the 

growth of ginseng could be a means of enabling landowners to more easily grow and harvest 

ginseng on their property.  

Species distribution models for conservation efforts  
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When attempting to conserve a threatened species such as ginseng, land-managers must 

understand the habitat in which it best competes.  Many agencies’ funding is too limited to conduct 

in-depth or long-term field surveys and as a result land-managers can be unsure of where 

threatened species may be located. This issue can be alleviated using species distribution models 

to identify areas where the probability of wild populations being present is high (Guisan and 

Thuiller 2005; van Manen et al. 2005). When sampling is not equal throughout ecologically diverse 

areas such as Virginia, it may be more practical to create separate models for each region—as 

geology, soil conditions, and topography can vary across physiographic provinces. Evaluating 

models to find the most appropriate methods to predict either occurrence or suitable habitat could 

facilitate the location of rare plants or animals, help recovery efforts and field surveys, and allow 

land managers to protect those species (Odom and McNab 2000; van Manen et al. 2005). To that 

end, this study utilized random forest, a machine-learning algorithm that learns from a sample of 

data to improve the performance of predicting an outcome when provided with new data (Breiman 

1999; Dietterich 2000; Ho 1998; Kohavi and Provost 1998; Liaw et al. 2002).  

The advantages of using random forests include being reasonably simple to understand and 

interpret while being able to perform well with large data sets acquired through geographic 

information systems (GIS) and mirroring human decision making more closely than other 

approaches (Breiman 1996b; Breiman 1999; Dietterich 2000; Pal 2005). These models can ideally 

generalize from a trend in data rather than “memorizing” the training data and therefore becoming 

too rigid in its predictions. Specifically, random forest uses decision trees to classify data based on 

features. It creates a tree by first splitting the data, so information gain is highest (i.e., in a way that 

allows the algorithm to learn the most; Breiman 1999). The algorithm then begins to split the 

dataset in the largest and easiest way, then continues splitting it until entropy or randomness in the 



9 
 

 
 

dataset is zero, or the outcome is the same within each group of data (Fig 1a, Fig 1b). It also applies 

ensemble learning, using multiple learning algorithms to improve predictive performance further 

than could be obtained by a single algorithm (Breiman 1996a; Breiman 1996b; Dietterich 2000). 

In other words, random forests construct hundreds of trees and weighs them all equally to secure 

“votes” about the outcome. In this study, the outcome will be ginseng presence or absence. Data 

will be split based on all features and the model will learn how to use those features to predict the 

probability of presence or habitat suitability. With this process, quantifying the importance of 

certain variables and their influence on presence and growth will be simplified for researchers and 

potentially invaluable to landowners interested in harvesting ginseng.  

 

Figure 1a initial branch of a simulated data set containing soil moisture, canopy openness, and 
ginseng presence; decision tree first split these data by soil moisture, and then observes the 
output 

Moisture

Mesic Xeric

4 No 5 Yes

5 No 0 Yes
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Figure 1b second branch of a hypothesized data set containing soil moisture, canopy openness, 
and ginseng presence; decision tree has observed that canopy openness at mesic sites can be a 
good predictor of ginseng presence 

The Virginia Division of Natural Heritage is creating species distribution models using 

these methods. Recently, a model was constructed for American ginseng, of which this study 

examined and utilized presence points, a suite of 78 environmental variables, and model output 

(Virginia Natural Heritage Program 2017; see methodology). Ginseng presence data incorporated 

into the model reveal a sampling bias toward the Shenandoah National Park area—having over 

500 documented populations while only 142 were documented in a comparably sized area of 

southwestern Virginia and 16 documented within the Cumberland Plateau (Virginia Natural 

Heritage Program 2017). Uneven sampling effort is a common issue across large areas, and 

although random forest and machine learning methods in general have been shown to be robust to 

low sample sizes, geographical sampling biases of this nature could have serious impacts on the 

predictive models constructed from those data (Hui et al. 2011; Syfert et al. 2013; Stockwell and 

Peterson 2002; Phillips et al. 2009). Ecologists suspect that, in Virginia, ginseng would be most 

Moisture

Mesic Xeric

Closed Canopy Open Canopy

0 No 5 Yes 4 No 0 Yes
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abundant in the Cumberland Plateau (or more specifically the Cumberland Plateau) as that region 

typically contains more productive mesophytic forests.  

The Cumberland Plateau 

The High Knob Landform of southwestern Virginia lies in the Clinch River Watershed: 

one of the richest biodiversity hotspots for rare, threatened, and endemic species in North America 

(Nature Conservancy 2016; NatureServe 2013; Wilson and Tuberville 2003). Due to its unique 

location and topography, High Knob and the surrounding landscape of the Cumberland Plateau 

contain more microclimates and species assemblages than ecologists had predicted (Braun 1950; 

Browning 2018). According to The Nature Conservancy’s climate resiliency map, this region of 

southwestern Virginia is less susceptible to climatic variation and therefore may serve as refugia 

for many species in the coming decades as climate change progresses (Anderson 2016). However, 

due to its remote location and resulting distance from large research institutions, this area is not 

well known by researchers. This has led to a biodiversity sampling deficiency—making this a 

noteworthy region for ecological research. 

Southwestern Virginia has suffered a decline in its economy over several decades; 

therefore, ensuring that sustainable harvest can be conducted by local forest-farmers and 

landowners may provide a valuable means of long-term economic gain (Maggard 1994; Taylor et 

al. 2017). With regional developments such as local forest farming groups and growing interest in 

sustainable harvesting, understanding this region’s ecology as it pertains to forest herbs and soils 

may prove essential for success of those practices (Maggard 1994). The quantification of 

intelligible influences on ginseng’s presence, health, and growth should be critical for landowners 

attempting to grow and harvest for a profit. 
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It was hypothesized that American ginseng may be present in the Cumberland Plateau of 

southwestern Virginia at aspects, elevations, slope inclinations, and soil conditions that current 

models have not predicted due to sampling deficiencies coupled with the unique physiography and 

regional microclimates. The major goals of this study were to (1) use occurrence data provided by 

the state of Virginia’s Natural Heritage Program to test the efficacy of the model in southwestern 

Virginia through the alteration of model parameters and additional sampling, thereby improving 

the models’ accuracy and efficiency, (2) attempt to increase predictive power in specific regions 

of Virginia by limiting the spatial extent of model training data,  (3) quantify relationships between 

the presence of ginseng and environmental variables and (4) establish long-term seed plots to be 

monitored for survival and growth by citizen scientists.  

It was predicted that documenting additional populations in addition to changing various 

methods such as removing correlated variables, thinning presence points (spatial partitioning), and 

reducing the extent from which background points are generated would result in more accurate 

predictions for species distribution and habitat suitability. Improved models and the knowledge 

generated from them could facilitate the location of wild populations, their preservation, and the 

use of caution when conducting intensive land-management projects. Identifying locations in 

which ginseng best competes could also enable easier, low-risk planting and more economical 

harvest of wild or wild-simulated ginseng. Finally, conserving ginseng in this region will lead to 

easier and more sustainable harvesting in the future and could provide a boost to declining 

economies in regions where ginseng is most prevalent.  
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METHODOLOGY 

Site selection 

Using ArcMap (version 10.7.0.10450; ESRI Inc., California), 130 random points were 

generated throughout the USDA Forest Service, Clinch Ranger District. These points facilitated 

surveys in and around the City of Norton as well as Wise and Buchanan counties in Virginia. They 

were used as a guide to select general survey locations, rather than strictly for the establishment of 

transects or small study plots. For any point, the entire locale would be surveyed, and any ginseng 

found while travelling to or returning from that location would be documented. This method was 

predicted to increase documentation of plant occurrence as opposed to strictly surveying along 

transects, as the area surveyed was greatly increased. No surveys took place on private property 

without permission from the landowner.  

In addition to randomly generated points, communication with local citizens and 

professionals was used to identify additional ginseng populations. Establishing a rapport with 

locals and understanding folklore surrounding ginseng was determined to be an efficient means of 

identifying appropriate habitat or areas in which the presence of ginseng may be more likely. 

However, surveys were not exclusively focused on those areas. Habitat types ranging from rich 

cove forests to recently burned ericaceous habitats were surveyed. The USDA Forest Service uses 

a suite of ten species to determine appropriate ginseng habitat (Kauffman 2006). These species 

include maidenhair fern (Adiantum pedatum L.), rattlesnake fern (Botrypus virginianus (L.) 

Michx.), bloodroot (Sanguinaria canadensis L.), black cohosh (Actaea racemosa L.), blue cohosh 

(Caulophyllum thalictroides (L.) Michx.), hairy sweet cicely (Osmorhiza claytonii (Michx.) 

Britton), bedstraw (Galium triflorum Michx.), Canadian violet (Viola canadensis L.), dutchman’s-

pipe (Aristolochia macrophylla Lam.), and goldenseal (Hydrastis canadensis L).  



14 
 

 
 

To reduce sampling bias toward habitats containing companion species, habitats that 

contained no companions were also surveyed. Furthermore, since absence points are not surveyed 

and counted in this study, presence points in the region should be considered relatively unbiased. 

For example, a heavily harvested area that may be appropriate habitat—but harbors no ginseng—

would not necessarily be considered an absence point. Using background data (pseudo-absence 

points generated across a study region) rather than true absence points enables the negative 

response values to represent the average habitat over the study area rather than focusing on a few 

select points strictly identified as being devoid of ginseng (Barbet-Massin et al. 2012).  

Species distribution models 

All GPS data underwent a differential correction process using Trimble GPS Pathfinder 

Office (version 5.90, 2018) to increase accuracy and reliability. Data were then exported to an 

ESRI shape file and projected using the NAD 1983 UTM Zone 17N coordinate system. Points 

were organized in ArcMap and then transferred to an R programming environment where they 

were managed from that point forward (R development core 2007). All raster data were opened 

within R Studio (version 3.6.0, 2019) using the rgdal package and stacked using the raster package 

to create a single object representing all 78 environmental variables (Bivand et al. 2019; Hijmans 

2019). These rasters represented precipitation, temperature, topography, geology, hydrography, 

and land cover data. Using a raster stack, values from all variables could be extracted for each 

presence and background point to generate the data set used for modeling ginseng presence. 

Background points were used in lieu of absence points for this project to enable the models to learn 

the average background of the study region. For baseline models, the number of background points 

used was roughly equal to three times the number of presence points in the data set (1955 presence 

points and 5664 background points). Background points were generated using two different 
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methods to evaluate the efficiency of either method. The simplest method of background point 

creation is to produce a given number of points spread randomly but evenly throughout the study 

area, Virginia. Alternatively, Phillips and colleagues (2009) recommend that fewer background 

points should be generated and with similar bias as presence points (i.e., closer to roads or locations 

that are more accessible). Based on those guidelines, some models used roughly the same number 

of background points as presence points, generated exclusively within a 10-kilometer radius 

around presence points (Fig 2). This second method was used as an effort to alleviate bias such 

that areas that were not sampled would contain neither presence nor background points.  

 

Figure 2 Virginia physiographic provinces (left); Background point generation using a 10-
kilometer buffer around presence points (right) 

Each forest constructed in this study consisted of 2000 trees (k), with each node of a tree 

containing a number of variables (m) equal to the square root of the total number of variables 

present in the overall dataset. This varied depending on the model but was usually either 7 or 9, 

meaning as many variables were tried, or examined, at each node (Breiman 2001; Liaw et al. 2002). 

This method creates many trees where each tree consists of a random subset (of a defined sample 

size) of the data with regard to the randomly selected variables in each branch. The tree continues 

to branch until the response (ginseng presence or absence) is the same result at each tip—allowing 
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the model to learn which variables may be the most important in predicting the presence of 

ginseng. The sample size used for stratification in the models were equal to 20% of the number of 

total presence points (391 for 1955 presence points). Using this stratification method enables each 

tree to contain an equal number of presence and background points.  

In an attempt to reduce bias or noise in the modeling process, correlation tests were 

conducted among variables. Due to the large amount of processing power required, it was 

impractical to run a single test with all 79 variables—which would also generate a large correlation 

matrix prone to human error when reviewed. Variables were grouped logically by categories such 

as climate or geology and a test was conducted for each group. This allowed for more efficient 

processing and greater ease of analysis. Any correlation values over 0.6 were considered correlated 

for this study. Using the importance rankings from initial random forests, variables were selected 

to be used in refined models. If a group of variables were correlated, only the most important 

variable per the model would be selected out of that group for use in further models.  

Rigorous comparison of model iterations must take place to determine which changes may 

or may not be necessary to improve accuracy—as each change to the modeling process requires 

more code, time, processing power, and storage space. This was particularly important, as a major 

goal of this study was to identify the simplest and most efficient means of creating species 

distribution models using random forests. Models were evaluated using the out-of-bag error (OOB 

error) as well as the area under the receiver operating characteristic curve (AUROC or AUC). 

These metrics were selected for evaluating models due the OOB error being calculated within 

random forest, and AUC being a common approach (Breiman 1996b; Fawcett 2006). Within each 

forest, one-third of the data are withheld for testing and used to calculate the OOB error (Breiman 

1996b). Modeling runs were repeated 1000 times and the median OOB error was documented. The 
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average AUC was calculated from five-fold cross validation repeated 200 times for a total of 1000 

iterations of each model. These evaluation metrics serve as both means of interpreting error in 

predictive power as well as overfitting. For example, a model with an incredibly high AUC (>0.99) 

might be very good at predicting presence points in the data but could potentially be too 

conservative when making a prediction using environmental variables. When model parameters 

were changed, such as using different methods for generating background points, it necessitated 

additional cross validation. A total of ten statewide models were tested. Each random forest model 

was trained and used to create a prediction in the form of a new raster where each pixel represents 

the probability of ginseng presence.  

Initial models, including the model constructed by the Virginia Natural Heritage Program 

(2017), consisted of a final prediction calculated for the entire state. Ten separate statewide models 

(SM1–10) were constructed using various methods such as limiting the area from which 

background points are generated, spatial partitioning, selecting only non-correlated, important 

variables, and adding additional presence points documented in this study. The initial model, SM1, 

was constructed using basic methods (i.e., none of the previously described methods were used, 

and additional points were not yet added) to represent a baseline model for comparison. SM2 was 

made using spatial partitioning. Spatial partitioning methods reduced the number of presence 

points that are stacked in a small area, leading to multiple points within a single pixel. Points were 

rasterized and thinned such that only one presence point was remaining in a given pixel, which 

typically reduced the number of presence points by around 30%. SM3 was made using basic 

methods but underwent a variable selection process. SM4 was made using both spatial partitioning 

and selected variables. SM5 used only selected variables and limited background point generation. 

SM6 was constructed using a combination of methods from SM2–5. SM7 was made using base 
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methods from model 1, while SM8 used only selected variables and limited background points and 

SM9 used selected variables, limited background points, and underwent spatial partitioning on all 

presence points. Lastly, SM10 was an experimental model constructed using the same methods 

from SM9, but spatial partitioning was only conducted on the original 1955 presence points.  

To investigate whether models generalized for the entire state are biased to the regions with 

increased sampling effort, models with limited spatial extent were constructed to focus solely on 

the Cumberland Plateau (CPM1–4). All rasters and presence points were loaded into an R 

programming environment and masked such that only variable and presence point data 

representing that region would be incorporated into the model. Two of these provincial models 

(CPM1, CPM3) were constructed without new occurrence points, using baseline or variable 

selection and limited background point generation, respectively. CPM2 and CPM4 included newly 

documented occurrence points with baseline or variable selection and limited background point 

generation, respectively.  

Partial dependence plots (PDPs) of important variables from the models that appeared to 

be the most useful for predicting habitat suitability or species distribution (i.e., low indications of 

over-fitting, high accuracy, and ecologically sensible model predictions) were constructed using 

the pdp package in R (Greenwell 2017). Variables that frequently appeared as important according 

to the different models, while being intelligible in the field were selected for PDPs. These plots 

illustrate the marginal effect that a certain variable has on the outcome of the model in question. 

For example, one partial dependence plot could show how the probability of ginseng presence is 

affected by changes in precipitation levels across the study area. Following methods similar to 

those of the Virginia DCR division of natural heritage, PDPs will also have density plots showing 

the distribution of presence and absence superimposed above (Virginia Natural Heritage Program 
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2017). This is to visualize both how the variable impacts ginseng presence, in addition to being 

transparent with the distribution of ginseng presence across the range of variable.  

Field surveys 

Individual plants were documented using a Trimble GeoExplorer 6000 series (model 

88950; Trimble Inc., California) unit. Plant height, leaf length and width, the number of prongs 

(leaves) present, reproductive capability, and chlorophyll content of the leaves were quantified. 

Plant height was measured in centimeters from the ground or top of leaf litter if a layer was present 

to the top of the most prominent leaf. If a plant was growing in an irregular way (with a curved or 

damaged stem), the height of the plant remained the distance between the ground to the top of the 

leaf, not the entire length of the stem. Individuals were considered reproductive if they had either 

evidence of a flower stalk early in the season or flowers and fruit later in the season. The 

“greenness” of each plant was recorded using an index of relative chlorophyll content (ranging 

from -9.9–199.9) with a Soil-Plant Analyses Development (SPAD) 502 chlorophyll meter (Konica 

Minolta Sensing, Inc., Japan). Leaf area and chlorophyll measurements were taken from one leaf 

typically at random or from the most-intact leaf if there was damage to the plant.  

The abundance of each companion species was ranked using an ordinal scale (1–5) in the 

field when ginseng was present (Table 1). A rank of one was used to characterize species that were 

present in the same habitat or physiographic position (i.e., same slope or cove) but were not 

growing within two meters of any ginseng plant. A rank of two was to classify a species that was 

present in small numbers within two meters of ginseng, with one to five nearby neighbors. A rank 

of three indicated that the companion species was moderately abundant near a ginseng population, 

with six to nine nearby neighbors. A rank of four indicated that the companion species was 

abundant near a ginseng population, with 10–19 nearby neighbors. Lastly, a rank of five was used 
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to classify companion species that were very abundant and dominated the herbaceous layer, with 

20 or more individuals in the immediate area.  

Table 1 Companion species abundance rankings  

Rank Description Number of individuals 
(individuals/species) 

Proximity to ginseng 

1 Present 1–several Same physiographic 
position, but not within 2 
meters  

2 Infrequent 1–5 Within 2 meters 

3 Moderately abundant 6–9 Within 2 meters 

4 Abundant 10–19 0–5 meters 

5 Very abundant 20+ 0–5 meters 

All companion species were ranked using this scale with the exception of goldenseal and 

bedstraw. Goldenseal was predicted to be much rarer than the other species and therefore its 

abundance was not ranked initially. However, it was anecdotally noted that goldenseal was more 

abundant in this region than previously assumed and should be documented when conducting 

ginseng surveys in the future. Bedstraw is a small plant which spreads from creeping rhizomes, 

and often forms dense mats—making it difficult to estimate the number of individuals in an area. 

Because of this, bedstraw’s presence was noted but an attempt to count and rank this species’ 

abundance was not made.  Additionally, since it may be easily confused with other members of 

Galium sp., this study was effectively noting presence of Galium sp. rather than G. triflorum.  

Soil samples were collected near each ginseng population. Single populations were 

assumed if plants were directly surrounding each other, such as multiple small plants growing 

under a reproductive individual, or if they were in the same physiographic position, such as being 

located on the same slope, exposure, or cove. No pre-determined distance was used as a cutoff for 
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populations to be considered separate, as unrelated plants may be on opposite sides of a ridge but 

closer together than a parent located at the top of a slope with offspring far downslope. It should 

be noted that depending on dispersal in a given area, some groups of ginseng that were considered 

separate could be one population. The only method of accurately determining whether populations 

were truly separate would be through genetic analysis (not performed in this study).  

Soil from randomly chosen samples (N = 22) was sent to the University of Georgia 

Extension’s Agricultural and Environmental Services Laboratories (AESL) to obtain data on pH, 

phosphorus, potassium, calcium, magnesium, zinc, and manganese. Soil data were used only for 

exploratory analyses to summarize conditions where ginseng was present.  

Long-term monitoring sites 

In an effort to set up future studies on the germination and growth of American ginseng in 

the Cumberland Plateau, long-term monitoring sites were established at 15 locations in seemingly 

suitable or unsuitable habitat as interpreted by researchers (based on present site conditions or land 

use history) on property managed by the USDA Forest Service, Clinch Ranger District or the 

University of Virginia’s College at Wise. Ginseng seeds were planted in relatively undisturbed 

Appalachian cove forest within national forest (logged >100 years ago), under 30-year old autumn 

olive (Elaeagnus umbellata Thunb.) on a reclaimed mine site, and in a 100-year forest that was 

mined in the 1800s. At these locations, sprouting, wild-sourced seeds were sown and marked by 

GPS. Seeds were obtained from the North Carolina Goldenseal and Ginseng Company in Marshall, 

NC.  This seed source was from populations located in proximity to the study area such that the 

likelihood of introducing individuals from populations with major genetic differences was 

reduced.  
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Plots consisted of five subplots, with one center and four additional subplots established 

10 meters from the center. Ten ginseng seeds were planted 2–3 cm deep spaced 5–10 cm apart in 

two rows of five (Fig 3). A GPS point and four photos were taken from each plot’s center, facing 

each of the cardinal directions with plot number, a site description or name, and the direction 

recorded as well (Fig 3). GPS points and plot photos will all need to be used to find plots for 

follow-up studies.  

 

Figure 3 Long-term study plot design (N = 15) indicating the placement of subplots and 
arrangement of seeds within each; seeds were spaced 5–10 cm apart 

RESULTS 

Ginseng occurrence documentation 

All newly documented ginseng plants were added as new occurrence points for modeling 

ginseng habitat and distribution. This represents a 1200% increase in documented plants over an 

area of ~1,500 square kilometers (around half the total area of the Cumberland Plateau). The 

association between ginseng and companion species quickly became apparent and thereafter the 

presence of companion species became the most commonly used method to locate wild ginseng 
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populations. Ginseng populations found in this study ranged from a single plant to upwards of 40 

plants.  

Species distribution models 

The statewide models (SM) of most importance were determined to be SM1, SM7, and 

SM9. The models with the highest and lowest area under the curve (AUC) values were SM7 and 

SM9, respectively (Table 2). The models with the lowest and highest out-of-bag (OOB) error were 

SM1 and SM9, respectively (Table 2). The mean predicted probability of presence of ginseng in 

SM1, SM7, and SM9 were 0.099, 0.104, and 0.212, respectively (Fig 4). With the addition of new 

occurrence points from this study (N = 198), the mean predicted probability of presence of ginseng 

in the Cumberland Plateau increased from 0.170 (SM1) to 0.278 (SM7; Fig 5). These values are 

contrasted in models restricted to the Cumberland Plateau (CPM), which were made using either 

methods similar to those used in SM7 or SM9—where the mean predicted probability of presence 

of ginseng ranged from 0.143–0.660 (Table 3, Fig 6).  
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Table 2 Modeling method, number of presence and background points, number of variables, out-
of-bag (OOB) error, and area under the ROC curve (AUC) for state models; highlighted models 
emboldened; var=variable, bg=background, pres=presence, gen=generation 

Modeling method n presence n background n variables OOB Error AUC 

(SM 1) baseline 1955 5664 78 3.13% 0.9926 

(SM 2) spatial partitioning 1419 5664 78 4.32% 0.9880 

(SM 3) var selection 1955 5664 39 3.89% 0.9924 

(SM 4) spatial partitioning 
and var selection 

1419 5664 39 5.56% 0.9881 

(SM 5) var selection and 
limited bg point gen 

1955 1765 39 6.08% 0.9857 

(SM 6) var selection, 
limited bg point gen, and 
spatial partitioning 

1419 1264 39 7.55% 0.9808 

(SM 7) baseline with add 
pres 

2153  5664 78 3.33% 0.9927 

(SM 8) var selection limited 
bg point gen, and add pres 
points 

2153 1904 39 6.41% 0.9871 

(SM 9) var selection, 
limited bg point gen, add 
pres, and spatial partitioning 

1475 1311 39 8.08% 0.9792 

(SM 10) var selection, 
limited bg point gen, add 
pres, and spatial partitioning 
on state-documented points 

1617 1432 39 8.03% 0.9828 
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Figure 4 Comparison of statewide species distribution models (SM) for American ginseng; a–j 
represent SM1–10, respectively; the Cumberland Plateau includes the southwestern portion of 
each model; * indicates selected models; probability of ginseng presence ranging from 0–1 is 
shown above (darker to lighter) 
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Figure 5 Comparison of selected statewide models cropped to the Cumberland Plateau in 
Southwestern Virginia; a SM1 b SM7; probability of ginseng presence ranging from 0–1 is 
shown above (darker to lighter) 

Table 3 Modeling method, number of presence and background points, number of variables, out-
of-bag (OOB) error, area under the curve (AUC), and mean predicted probability of presence for 
Cumberland Plateau models (CPM)  

Modeling method n presence n background n variables OOB error AUC Probability  

(CPM1) baseline  16 48 78 14.06% 0.9955 0.5990 

(CPM2) baseline with 
add pres 

209 627 78 3.48% 0.9890 0.1432 

(CPM3) var selection 
and limited bg point 
gen 

16 10 40 12.50% 0.9954 0.6602 

(CPM4) var selection, 
limited bg point gen, 
and add pres 

209 150 40 5.29% 0.9899 0.2476 
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Figure 6 Comparison of provincial models for the Cumberland Plateau; a CPM1 b CPM2 c 
CPM3 d CPM4; probability of ginseng presence ranging from 0–1 is shown above (darker to 
lighter) 

In all ten statewide models deciduous forest cover was the most important variable per 

random forest for predicting either ginseng presence or suitable habitat. This is displayed in the 

selected models SM1, SM7 and SM9 (Fig 7, Fig 8, Fig 9). Other variables frequently quantified 

as highly important were mean diurnal range, canopy cover and openness, and distance to 

streams (Fig 7, Fig 8, Fig 9). In SM7, as deciduous forest cover and general canopy cover 

increases, the influence of these variables in predicting the probability of ginseng presence 

increases—while increasing distance to rivers decreased predictive power (Fig 10). Other 

important variables in SM7, such as precipitation levels and mean diurnal range, had more 

complex relationships with predicting probability of presence, where specific ranges had the 

greatest influence on the model’s predictive power (Fig 10). For example, SM7 experienced a 
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particular improvement to predictive power where the mean diurnal range (the mean difference 

in monthly maximum and minimum temperature) ranged from 10–12 °C (degrees Celsius; Fig 

10). In SM9 these relationships between important variables and predictive power are mostly 

similar, with few exceptions. For example, roughness—a variable not displayed in a partial 

dependence plot for SM7—had larger impact on this model than in previous iterations. The 

relationship between the model’s power and roughness was similar in its complexity to those 

variables in SM7, where median values (2000–4500 cm) had the greatest impact on predicting 

suitable habitat (Fig 10).  

The provincial models with the highest OOB error and probability of presence were those 

which only included the 16 original presence points: CPM1 and CPM3 (Fig 6, Table 3). Pearson 

correlation values between provincial and statewide models (cropped to the plateau) were 

inconsistent. For example, CPM2 and SM7 were made using the same methods and had a 

correlation coefficient of 0.848—however, CPM4 and SM9 were also made using the same 

methods and had a correlation coefficient of 0.423. Additional provincial models are not presented, 

as there was not an apparent visual or statistical improvement for the plateau over using predictions 

from statewide models (Table 3, Fig 6).  

In most cases, limited background points and variable selection (when combined with other 

methods) were shown to increase OOB error and decrease AUC (Table 2, Table 3). Variable 

selection reduced the number of variables used in statewide models from 78 to 39. Although spatial 

partitioning was not conducted in provincial models, it was shown to increase OOB error and 

decrease AUC in statewide models (Table 2). In statewide models where new occurrences were 

included, spatial partitioning decreased the number of presence points from 2153 to 1475 and the 

number of background points from 1904 to 1311 (Table 2).  
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In additional statewide predictions that were constructed from models (N = 2) that were 

trained exclusively on data representing either the Cumberland Plateau or the Blue Ridge 

Mountains, the mean statewide probability of presence of ginseng was 0.257 and 0.204, 

respectively (Fig A1). In particular, the model trained only on data representing the Cumberland 

Plateau predicted an average probability of presence of 0.143 for the Cumberland Plateau and of 

0.239 for the Blue Ridge Mountains (Fig A1). The model trained only on data representing the 

Blue Ridge Mountains predicted an average probability of presence of 0.265 for the Cumberland 

Plateau and 0.232 for the Blue Ridge (Fig A1).  

 

Figure 7 Importance rankings of top ten variables from SM1; importance is quantified as 
decrease in accuracy (%IncMSE) for each variable; decid=deciduous, dist=distance, 
precip=precipitation 
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Figure 8 Importance rankings of top ten variables from SM7; importance is quantified as 
decrease in accuracy (%IncMSE) for each variable; decid=deciduous, dist=distance, 
precip=precipitation  
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Figure 9 Importance rankings of top ten variables from SM9; importance is quantified as 
decrease in accuracy (%IncMSE) for each variable; decid=deciduous, dist=distance, 
precip=precipitation, temp=temperature 
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Figure 10 Partial dependence plots of six selected variables from SM7; y axes demonstrate the 
marginal effect that the variable has on predicting presence or suitable habitat for American 
ginseng; density plots of presence and background data are displayed above plot margins in blue 
and red, respectively; decid=deciduous, dist=distance, precip=precipitation  
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Figure 11 Partial dependence plots of six selected variables from SM9; y axes demonstrate the 
marginal effect that the variable has on predicting presence or suitable habitat for American 
ginseng; density plots of presence and background data are displayed above plot margins in blue 
and red, respectively; decid=deciduous, dist=distance, precip=precipitation 
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 Ginseng health parameters 

Although this area was previously predicted to be relatively low probability, robust 

populations were found with large reproductive individuals and offspring frequently present. Of 

the 192 plants measured in this study, 68 plants showed reproductive capability (Fig 12). The 

height of non-reproductive ginseng plants ranged from 4.7–26.0 centimeters (cm) with a median 

value of 9 cm, and their leaf area ranged from 17.5–792.0 cm2 with a median value of 76 cm2 (N 

= 124; Fig 12). Among reproductive plants, height ranged from 9.0–31.0 cm with a median value 

of 15.0 cm, and their leaf area ranged from 104.5–870.0 cm2, with a median value of 360 cm2 (N 

= 68; Fig 12).   

The tallest plants were reproductive individuals with three prongs (Fig 12). The number of 

individuals found with one, two, and three prongs was 65, 80, and 47, respectively (Fig 12). Among 

reproductive plants, only one was documented as having a single prong, while 24 were found with 

two prongs and 43 with three prongs (Fig 12).   

Reproductive plants were found to have significantly higher chlorophyll levels than non-

reproductive plants (p<0.01; Fig 13). Chlorophyll content (relative greenness) among all plants 

ranged from 12.8–38.2, with an average value of 27.9 (Fig 13). Chlorophyll content among 

reproductive plants ranged from 21.4–38.2, with an average value of 29.9 (Fig 13).  
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Figure 12 Height and leaf area per prong number and reproductive capability; circles and 
triangles represent non-reproductive and reproductive individuals, respectively; purple, orange, 
and green represent prong numbers of 1–3, respectively; R2 = 0.7491; p < 0.01  
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Figure 13 Chlorophyll content and reproductive capability; A and B denote significantly 
different median values (p < 0.01) 

Ginseng habitat parameters 

Herbaceous companion species were found with 191 of the documented ginseng plants, 

and a total of 538 occurrences of herbaceous companions were documented. The most common 

companions were Galium sp. (N = 165) and Actaea racemosa (N = 156) (Table 4). Other frequent 

companion species were Botrypus virginianus, Caulophyllum thalictroides, and Osmorhiza 

claytonii (Table 4). Liriodendron tulipifera, a tree species associated with high calcium uptake, 

was present at around 67% of locations where ginseng was found (Table 4). 

  



37 
 

 
 

Table 4 Companion species presence, abundance, and relative frequency; frequency is calculated 
as the proportion of companion occurrence (n) to ginseng occurrence (n=192); ¥Abundance of 
Galium sp. was not quantified; *Liriodendron tulipifera is included although it is not considered 
a companion species and abundance was not quantified 

Companion  n presence Median abundance rank Relative frequency 

¥Gallium sp. 165 NA 0.86 

A. racemosa 156 3 0.81 

*L. tulipifera 128 NA 0.67 

B. virginianus 87 1 0.45 

C. thalictroides 85 2 0.44 

O. claytonii 70 2 0.36 

A. pedatum 66 1 0.34 

V. canadensis 43 1 0.22 

A. macrophylla 18 1 0.09 

S. canadensis 13 1 0.07 

 

A total of 22 soil samples representing different populations or clusters of plants across the 

Cumberland Plateau in Virginia were analyzed to quantify pH, calcium, magnesium, manganese, 

phosphorus, potassium, and zinc (Table 5). There was a weak, negative correlation between soil 

calcium and chlorophyll content (p = 0.0144, R2 = 0.0537; Fig 14). That correlation is the 

exception, as all other soil ion concentrations as well as pH were not significantly correlated with 

any plant size or health variables (p > 0.1, R2 < 0.1). The pH of soil collected near wild ginseng 

populations ranged from 4.55–6.34 with an average value of 5.38. Calcium levels in soil at 

locations of ginseng presence varied widely, ranging from 217–6540 parts per million (ppm), with 

an average value of 1564.3 ppm (Table 5). The median magnesium, potassium, manganese, and 

zinc were 178.9, 144.45, 66.45, 4.07, and 3.17 ppm, respectively (Table 5).  



38 
 

 
 

Table 5 Ion concentration from soil samples collected near wild ginseng populations; n = 22 

Ion Min (ppm) Median (ppm) Max (ppm) 

Calcium 217 1005.50 6540 

Magnesium 35.6 178.90 600.2 

Potassium  79.3 144.45 343.4 

Manganese 38.2 66.45 152.4 

Phosphorus 0.15 4.07 40.61 

Zinc 0.64 3.17 12.95 

Figure 14 Chlorophyll content and soil ion concentration; red line displays linear regression, R2 
= 0.0537; rugs demonstrate density of points along the y and axes (right and left rug, 
respectively)  
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DISCUSSION 

This study increased the representation of a nearly unsampled region to identify another 

hotspot for American ginseng in Virginia. Through increased sampling and alteration of random 

forest parameters, the reliability of species distribution and habitat suitability models for American 

ginseng is expected to have been improved. Although the number of documented occurrence 

points in the region was increased by orders of magnitude, it is suspected that many more presence 

points could be documented elsewhere in the Cumberland Plateau. This study was restricted 

mainly to the USDA Forest Service, Clinch Ranger District, Breaks Interstate Park in the 

Cumberland Plateau, and a small number of private properties. Therefore, it is likely that most of 

the Cumberland Plateau is still under-surveyed, although significant progress has been made to 

alleviate sampling deficiency. With increased sampling in the Cumberland Plateau of Virginia, 

predictive outputs for species distribution and habitat suitability models in this province and 

Virginia overall are likely to improve.  

 Companion species were determined to be an incredibly reliable means of locating wild 

populations of American ginseng. This finding supports the continued use of companions as a 

means of selecting appropriate habitat for harvesting and reintroduction currently used by agencies 

and citizens alike (Kauffman 2006; Woods 2015; Davis and Persons 2014; Bonnabeaux 2016). 

Among those companion species, black cohosh (Actaea racemosa L.), blue cohosh (Caulophyllum 

thalictroides (L.) Michx.), and bloodroot (Sanguinaria canadensis L.) appeared to be some of the 

most reliable for indicating areas in which ginseng may be present. Although S. canadensis and 

dutchman’s-pipe (Artistolochia macrophyllum Lam.) were not found as frequently as other 

companions, it was anecdotally noted that ginseng was almost always found on surveys if either 

of those companions were present. On the other hand, most other companion species could be 



40 
 

 
 

found in locations without ginseng. This does not necessarily indicate poor habitat, nor does it 

mean companion species are unreliable—but may point to areas in which ginseng was removed 

prior to the survey. Many ginseng harvesters recognize companion species (including those used 

here among others), and companion plants can be used to enhance growth of wild simulated 

ginseng as well (Pritts K.D. 2010; Tringovska et al. 2015). Companion species may alter soil 

chemistry or decrease competition with ruderal species in field cultivation (Liphadzi and Reinhardt 

2006; Tringovska et al. 2015). This may explain some of the challenges in cultivating ginseng in 

a commercial setting, as companion species are absent, which warrants further investigation.  

Some species were noted to be frequent in locations where ginseng was found in this study 

but are not considered companions by the USFS. These species include Jack-in-the-pulpit 

(Arisaema triphyllum L.), wild yam (Dioscorea villosa L.), smooth Solomon’s-seal (Polygonatum 

biflorum (Walter) Elliott), hairy Solomon’s-seal (Polygonatum pubescens (Willd.) Pursh), red 

trillium (Trillium erectum L.), and white trillium (Trillium grandiflorum (Michx.) Salisb.). 

Therefore, these plants warrant consideration for use as companions when surveying for American 

ginseng for the purpose of modeling species distribution and habitat suitability.  

Random forest was shown to be an accurate means of creating species distribution models 

for American ginseng in Virginia. Among the statewide models, the most accurate—according to 

evaluation metrics (low OOB error and high AUC)—were the simpler models (SM1, SM7), using 

background points generated evenly across the state, all 78 environmental variables, and no spatial 

partitioning (Table 2). These two simpler models—both with OOB error below 3.5% and an AUC 

of over 0.99—are overfitting to some degree, and they may not be practical to use as a habitat 

suitability predictor, as an AUC approaching one is extremely high and likely does not represent 

the true accuracy of predicting occurrence (Table 2). However, SM1 and SM7 models may have 
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the greatest accuracy and reliability when predicting where wild populations currently occur. It is 

a common issue for species distribution models to display overfitting, only predicting presence in 

smaller patches closely resembling locations where training data were located—which will happen 

frequently in models where sample size may be small (Aguirre-Gutierrez et al. 2013; Stockwell 

and Peterson 2002). Although there was a high sample size in this study, the sample size in the 

Cumberland Plateau was not initially adequate for modeling species distribution or habitat 

suitability in the region, as evidenced by having only 16 occurrence points documented.  

The overfitting seen in the initial model (SM1) is likely due to the ratio of background 

points (N = 5664) to presence points (N = 2153) combined with the high number of correlated 

variables (Table 2). The model may become very adept at correctly predicting presence points but 

may not provide a realistic assessment of habitat suitability. As Merow and colleagues (2014) point 

out in their study on the complexity of species distribution models, a researcher’s goals may 

determine how complex or simple their model should be. These overfitting models are not 

necessarily incorrect or impractical but may have specialized uses. Models with this type of 

performance may be most useful for conservationists, organizations, and others looking to identify 

locations in which wild populations may be most likely to occur and would therefore allow them 

to focus search efforts and restoration projects.  

Determining the modeling methods that most accurately predict habitat suitability rather 

than presence may be more complicated for ecologists than anticipated. It is paramount for 

investigators to not only select the proper algorithm for modeling species distribution, but an 

accurate evaluation metric as well (Aguirre-Gutierrez et al. 2013). Instinctively, researchers strive 

to create the most accurate model according to some evaluation metric—AUC and OOB error, in 

this case (Merow et al. 2014; Stockwell and Peterson 2002; Evans and Cushman 2009). However, 
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models to predict habitat suitability may perform most realistically when there is some amount of 

generalization—and thus higher error—than models that are deemed most accurate. Among 

statewide models, there was a noticeable reduction in overfitting when applying specific methods 

such as reducing the number of correlated variables, spatial partitioning, and limiting the 

generation of background points (Table 2). When this method was followed, AUC decreased to as 

low as 0.976 and OOB error increased to around 8.08% in SM9 (Table 2, Fig 4). The predictive 

models became visually different—although all models were still significantly correlated with one 

another. Typically, spatial partitioning caused the predictions to be much less conservative, and 

every province had locations where the probability of presence was predicted to be over 0.83, per 

SM9.  These models are most likely generalizing more than others and may be of use as habitat 

suitability models rather than species distribution models. These may accurately predict locations 

where ginseng may grow well but might not contain wild populations.  The models with the lowest 

overfitting (and highest error) may best serve those with a goal of establishing new populations—

either for reintroduction or economic benefit.  

Machine learning methods, including random forest, have been shown to reduce overfitting 

or prediction biases compared to more conventional methods (Breiman 1996b, Breiman 1999, 

Dietterich 2000, Pal 2005; Stockwell and Peterson 2002). In this study, different parameters within 

random forest were tried to produce varying levels of overfitting, to reduce overall error, and to 

alleviate any bias toward certain areas with the highest sampling effort. Limited background point 

generation and reducing the number of correlated variables resulted in models that were less likely 

to only recognize the region where the most sampling occurred (Fig 4f, Fig 4i, Table 2). It has 

been shown that removing correlated variables from species distribution models tend to increase 

accuracy and as such, it is becoming a standard step in data preparation for species distribution 
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modeling (Crawford and Hoagland 2010; Genuer et al. 2010; Narouei-Khandan et al. 2017). With 

these methods, similar trends were still observed in the predictive models (i.e., the Blue Ridge 

Mountains are still predicted to be appropriate habitat for ginseng), but this does not mean the 

model is biased toward a single area. A biased habitat suitability model does not always signify 

that an area shouldn’t be predicted as suitable habitat. Rather, additional regions with appropriate 

habitat could get lost in the modeling process and not be accurately represented. When using the 

most basic methods (represented by SM7), there was a reduction in overfitting once additional 

points were added to statewide models, and from those models the Cumberland Plateau was 

predicted to contain more suitable habitat than before (Fig 4g). The Shenandoah region was 

indicated to be a ginseng hotspot within Virginia with many documented wild populations 

(Virginia Botanical Associates 2020; van Manen et al. 2005). However, the Cumberland Plateau 

was not predicted to be a ginseng hotspot until additional sampling was conducted there in this 

study. Sampling effort should be divided across all regions in such a diverse state to avoid 

overlooking potential populations, particularly hotspots. There are many modeling methods, such 

as the ones tested in this study, may be used to correct for unequal sampling. However, increased 

sampling effort is a better method of alleviating sampling bias (Foxcroft et al. 2011; Fithian et al. 

2015; Syfert et al. 2013; Phillips et al. 2009).  

If it is unclear whether a model is biased toward a specific region (such as the Shenandoah 

region), a model could be trained while excluding all data representing that region, followed by a 

prediction including that region. This was conducted in a tangential modelling run, where a model 

was trained exclusively on points from the Cumberland Plateau, and a statewide prediction was 

made. There were still similarities between the Shenandoah region (i.e., the Blue Ridge Mountains) 

and Cumberland Plateau, as the model predicted highest probabilities of ginseng presence in both 
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regions, but not elsewhere (Fig A1). This indicates that while the overall model may be biased 

toward Shenandoah and sampling efforts should be increased in other areas, it is not necessarily 

incorrect in its prediction.  

In an experimental step to reduce bias, spatial partitioning was conducted on points only 

within specific areas. Specifically, SM10 was constructed using selected variables and limited 

background points, but spatial partitioning was performed on each province except the 

Cumberland Plateau (Fig 4j). When compared to SM9—the most similar model—the AUC 

increased and OOB error decreased slightly, indicating that the model was more specific in its 

predictions, and the Cumberland Plateau contained higher predicted probability values (Fig 4i, Fig 

4j, Table 2). This approach effectively introduces a bias toward other regions and should be used 

with caution and only in instances where it is clear that there are biased or uneven sampling efforts 

such that species distribution or habitat suitability models would be severely impacted.  

To further investigate the model predictions and representation of the Cumberland Plateau, 

four provincial models representing that region were made and evaluated. Provincial models 

constructed prior to adding newly documented occurrences would not be useful, as there was a 

very high OOB error, and generally incredibly high predicted probability (Table 3, Fig 6). Once 

additional points were added to provincial models, their predictive output aligned more with that 

from statewide models (although not significantly correlated). This study concludes that limiting 

the spatial extent to areas with limited sampling (relative to other regions) is not an effective means 

of alleviating sampling deficiency or misrepresentation in predictive outputs for species 

distribution and habitat suitability. It is more beneficial to have an increased data set, even if those 

data may be skewed towards other regions.  
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Deciduous forest cover was always the top variable in statewide models, no matter the 

model parameters. This is likely the most intelligible influence on ginseng presence but is not 

practical to researchers. Although it must be included in the modelling process, most growers or 

researchers would naturally begin their search for planting sites in deciduous forest. The most 

useful information is likely to be more specific variables such as the amount of cover, mean diurnal 

range, and precipitation levels in which ginseng will perform best (Fig 10, Fig 11).  

Initial interpretations of some variables present in this project may not be intuitive. For 

example, roughness (10-cell circle) may be interpreted as more rugged terrain (understood as the 

term is used to describe areas like the Cumberland Plateau in Virginia). In reality, however, this 

variable is highlighting cliffs and other very steep areas. While roughness as one would interpret 

it may still be important for ginseng—rugged terrain contains many protected hollows that could 

harbor healthy ginseng populations—the data for these variables may be different than researchers 

anticipate.  

When interpreting these models in the future, researchers must strive to understand and 

explain relationships between variables and the predictive output. Focusing on variables that are 

the most useful or unique may serve best for researchers or others in the field. This study 

demonstrates that areas within deciduous forest cover with increased canopy closure (at least 60%) 

are important—which would not be surprising to seasoned ginseng growers, harvesters, or 

researchers (Fig 10, Fig 11). However, when those conditions are present in areas within a few 

kilometers of water (rivers, streams) with a mean diurnal range of 10–12 °C, ginseng may be easier 

to locate (Fig 10, Fig 11). For most citizens or landowners, it is most important that they recognize 

if they are living in areas with a generally higher probability of ginseng presence. Generally, 

stakeholders in the Cumberland Plateau or Blue Ridge Mountains may want to focus their search 
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and restoration efforts in forested locations with ample moisture (total annual precipitation 

between 100–130 cm or 20–25 cm in winter) and relatively steep or rugged terrain, while searching 

for areas with appropriate companion species. It should be noted, however, that precipitation may 

be more difficult to use in the field—as there was a higher density of both presence and absence 

points in those ranges, indicating that those values may simply be typical for Virginia’s climate 

(Fig 10, Fig 11). A combination of variables and their importance (using knowledge from models 

and field surveys) may best serve to aid location and conservation of American ginseng.  

Once habitat and species distribution models have been utilized along with identification 

of important variables to identify an area for planting, one may wish to monitor the health and 

success of those plants. As reproductive plants tend to have increased chlorophyll levels in their 

leaves, it is reasonable to conclude that both reproductive capability and chlorophyll content may 

serve as accurate means of assessing plant health (Fig 12, Fig 13). This is further supported by 

plant size and prong data, where larger plants tended to be reproductive and have higher levels of 

chlorophyll. Therefore, plant health could be quantified in the future mainly by reproductive 

capability and an individual’s size—without the need to measure chlorophyll. There was a 

significant correlation between leaf area and height (p < 0.01, R2 = 0.7491), which may suggest 

that researchers need not document both when measuring ginseng growth. Nevertheless, this study 

recommends that researchers document both plant height and leaf area, as younger plants (those 

with only one leaf) do not exhibit as strong of a correlation between those variables, though it is 

statistically significant (p < 0.01, R2 = 0.35). 

Soil calcium concentrations ranged from 217–6540 parts per million (ppm; Table 5). 

Previous research indicates that ginseng may grow best at calcium ranges above 4000 ppm 

(Thyroff and Griscom 2019). This study did not find significant correlations between calcium 
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concentrations and plant health measured by leaf area, height, or reproductive capability (p > 0.1, 

R2 < 0.1). There was, however, a slight correlation between calcium concentrations and 

chlorophyll content—although these data do not support a true correlation at the biological level 

(p = 0.0144, R2 = 0.0537; Fig 14). It proved difficult for this study to confidently classify locations 

as absence points (poor habitat) due to the abundance of ginseng and its companions in this region, 

coupled with a history of heavy poaching. If ginseng was not present in a given location, there was 

a strong possibility that it could be due to poaching rather than habitat conditions. As a result, there 

are no soil samples classified as being collected from absence points. This study recommends that 

future work be focused on identifying soil conditions and their relationship to the growth and 

fecundity of wild American ginseng.  

CONCLUSION 

The Cumberland Plateau and Blue Ridge Mountains are hotspots for American ginseng in 

Virginia. Of those hotspots, the former became apparent in statewide predictive models only 

after the addition of nearly 200 additional occurrence points in that region. Although it is likely 

that the Cumberland Plateau’s representation in these models could still be improved with 

continued sampling effort, this study has greatly increased the accuracy of species distribution 

and habitat suitability models with respect to the region. When constructing models such as 

these, researchers and agencies must consider the prediction they are seeking to construct prior to 

selecting model parameters within random forest. Through varying levels of complexity in data 

preparation and model parameters, random forest was shown to be a practical means of 

constructing realistic models for different purposes—which will inform agencies and allow them 

to more easily protect this species, while also aiding those interested in growing or reintroducing 

American ginseng throughout Virginia.  
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APPENDIX A 

 

 

Figure A1 Provincial models’ statewide predictions; a statewide model trained on data 
representing the Cumberland Plateau b statewide model trained on data representing the Blue 
Ridge Mountains; probability of ginseng presence ranging from 0–1 is shown above (lighter to 
darker) 
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Figure A2 Variable importance from SM1; importance is quantified as decrease in accuracy 
(%IncMSE) for each variable; decid=deciduous, dist=distance, imp=impervious, 
precip=precipitation, temp=temperature   
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Figure A3 Variable importance from SM7; importance is quantified as decrease in accuracy 
(%IncMSE) for each variable; decid=deciduous, dist=distance, imp=impervious, 
precip=precipitation, temp=temperature  
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Figure A4 Variable importance from SM9; importance is quantified as decrease in accuracy 
(%IncMSE) for each variable; decid=deciduous, dist=distance, imp=impervious, 
precip=precipitation, temp=temperature  
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