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ABSTRACT 

 This study examined the effect of a new speech processing strategy (SpeechZone2) in a 

commercially available hearing aid on speech understanding in noise and self-reported listening effort. 

Seven adult, experienced hearing aid users (2 males, 5 females; mean age = 64.6 years) with mild to 

severe, sloping sensorineural hearing loss participated in this study. Binaural Unitron Flex receiver in the 

ear style hearing aids with closed domes were used to provide the manufacturer prescribed 

amplification for each participant. The hearing aids were programmed with two separate memories: 1) 

omnidirectional microphone without SpeecZone2 processing, and 2) adaptive directionality with 

SpeechZone2 processing. The participants were seated in the center of a five loudspeaker fixed array. 

HINT scores (dB SNR required for 50% speech understanding) with the speech source at 00, 900, 1800, 

and 2700 azimuths were measured for each program while uncorrelated speech babble noise was 

presented simultaneously from four speakers.  The participants were also asked to fill out a short 

questionnaire on listening effort after each condition. Results showed that the new speech processing 

algorithm (adaptive directionality with SpeechZone2) did not improve speech understanding in noise 

compared to the omnidirectional microphone condition (F(1,6)= 1.723; p = 0.237). Pairwise comparison 

with Bonferroni corrections (α=0.0125) indicated that there was a significant improvement only when 

speech was presented from 270 degree azimuth (p=0.002). The ANOVA also revealed a significant effect 

of the speech source location (F(3,18)= 5.62; p=0.02). Regardless of the directionality and speech 

processing, the participants performed better when speech was presented from the sides (900 and 

2700). A Wilcoxon signed-rank nonparametric test showed that there was no significant difference in the 

self-reported scores in the listening effort questionnaire (Z = 0.637, p = 0.39).  There was a large 

intersubject variability noticed in this small sample size. 

 

 



1 
 

 

CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

In environments with poor signal-to-noise ratios (SNRs), understanding speech in the presence 

of background noise can be difficult even for people with normal hearing. For those with hearing loss, it 

becomes an even greater issue. Moore (1996) provides a review of the effects of cochlear hearing loss 

on aspects of speech understanding such as audibility, intelligibility by examining the relationship of 

cochlear hearing loss with loudness perception, frequency selectivity, and temporal resolution.  

 

Hearing Loss and Audibility 

“Normal hearing” thresholds typically range from -10 to 20 dB HL across a range of frequencies 

tested. Hearing loss is noted when thresholds fall outside of that 20 dB HL range. Hearing loss may occur 

in only one part of the frequency range, but speech understanding may still be impacted, as speech 

sounds fall at various intensity levels across the frequency range. For normal hearing listeners, all speech 

sounds are suprathreshold and audible. However, with hearing-impaired listeners, since their thresholds 

are poorer than normal, the amount by which speech is suprathreshold, as well as the proportion of the 

speech spectrum that is suprathreshold, is less than for normal listeners (Moore, 1996). This creates an 

imbalanced perception of the speech spectrum and therefore affects speech intelligibility. Additionally, 

if any part of the speech spectrum is masked by noise, this will create a loss of information, also 

affecting intelligibility (Moore, 1996). 

 Several studies have examined the effects of hearing loss in speech intelligibility. Turner et al. 

(1992) examined both speech detection threshold (SDT) and speech reception threshold (SRT) in the 

presence of background noise for both normal hearing and flat moderate cochlear loss. They reported 

that while the SDT occurred at roughly the same signal to noise ratio (SNR) between the groups, the 
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subjects with hearing loss required a higher SNR in order to achieve the given speech reception 

threshold (SRT). This indicated that the issue with understanding speech in noise may not be due to a 

deficit in detecting the signal of interest, but rather a deficit in the ability to utilize audible speech cues 

presented over a broader frequency range (Moore, 1996). These findings support the idea that audibility 

is a primary factor in speech intelligibility: speech sounds may be detected even with access to a limited 

portion of the speech spectrum; however, speech recognition and understanding requires the 

information to be audible over a wider frequency range, making it difficult to hearing-impaired listeners 

to understand speech in noise on the same level as normal hearing listeners.  

 In addition to flat cochlear losses, cochlear losses above 3kHz only have been examined for their 

influences on speech intelligibility, often using simulations of hearing loss and speech processed through 

various high- and low-pass filters. Aniansson (1974) demonstrated that when speech sounds above 3 

kHz were filtered out of a signal, speech intelligibility significantly decreased, particularly in the presence 

of background noise (Moore, 2016).  

On the reverse side of audibility affecting speech intelligibility, when amplification was provided 

above 3 kHz for subjects with mild to moderate high-frequency hearing loss, speech intelligibility 

improved (Baer et al., 2002, Hornsby & Rickets, 2006; Skinner et al., 1982; Skinner & Miller, 1983). Of 

note, in these studies, speech and noise were presented from the same degree of azimuth. If the speech 

and noise differ in their spatial origins, then the frequencies above 3 kHz that are carried in the signal 

become more important. Particularly if subjects are fit with binaural amplification, this extends the 

audible frequency range, which has been shown to improve speech understanding.  

 The rationale for higher-frequency information becoming more important when speech and 

noise are spatially separated involves the head shadow effect. This is a proven phenomenon, more 

effective for mid- to high-frequency signals (Shaw, 1974; Bronkhorst & Plomp, 1989) in which a 

noticeable intensity level difference is present between ears. Listeners can use this to their advantage if 
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the target signal, most likely speech, is on the opposite side of the head from the noise. As previously 

stated, this effect is more advantageous at higher frequencies, which supports the idea that an 

extended audible frequency bandwidth could improve speech intelligibility.  

 In the event of overlapping speech signals such as in the case of multitalker babble noise, it can 

be especially difficult to discriminate the target signal, particularly for listeners with cochlear hearing 

loss. This difficulty is known as informational masking (Brungart et al, 2001). Freyman et al. (1999, 2001) 

demonstrated that when the simultaneous speech signals are perceived to be spatially separated, this 

can help with focusing on the target signal, therefore reducing the effects of informational masking and 

leading to improved speech intelligibility (cf Moore, 2016).  

 These studies support the indication that a separation between the noise source and the signal 

source will improve speech intelligibility for those with mild to moderate high-frequency cochlear 

hearing loss, especially with the addition of amplification for frequencies above 3 kHz (Moore, 2016). 

This is due in part to the audibility principle: frequencies well above 3 kHz have been shown to 

contribute to speech intelligibility when the target signal is spatially separate from the source of the 

interfering noise. Audiometric thresholds from 6-10 kHz have the most influence on a listener’s ability to 

exploit this spatial separation for better understanding of speech in noise; if these thresholds are 

elevated, the listener may not be able to take advantage of this phenomenon (Besser et al, 2015).  

 

 Hearing Loss and Loudness Recruitment 

Loudness recruitment is an issue that emerges in cases of hearing loss, in which the range of 

intensity levels over which sounds are both audible and comfortably heard is reduced or narrowed. This 

range of levels is known as the dynamic range. In a normal hearing listener, there is a large difference 

between the level of the hearing threshold, at which the sound is just audible, and the level at which the 

sound is uncomfortable (UCL), resulting in a wide dynamic range.  
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As discussed above, hearing-impaired listeners have thresholds above the normal range. 

However, their UCL is likely to stay the same as a normal hearing listener, leading to a reduced dynamic 

range, otherwise known as recruitment. Several studies attempted to simulate the effects of loudness 

recruitment on the auditory system and on speech intelligibility. Villchur (1977) simulated the effects of 

recruitment on speech intelligibility for subjects with severe hearing loss by filtering a signal through 16 

bands and expanding the range of levels in each band before recombining them. This was done to 

essentially reverse the fast-acting compression that occurs in a normal cochlea at each characteristic 

frequency of a stimulus. According to Moore’s review of this study (1996), increased difficulty was found 

for intelligibility of words and sentences in the presence of quiet, white noise, and speech-shaped noise 

for simulated hearing losses. This indicates a difference in processing between normal hearing listeners 

and those with hearing loss. Normal hearing listeners are able to take advantage of the spectral and 

temporal dips of a signal, even in the presence of a single-talker masker. However, in order for “dip 

listening” (Moore, 1996) to be successful, the listener must have a wide dynamic range. As discussed 

above, hearing loss will narrow the dynamic range which, while also leading to recruitment, can indicate 

more difficulty hearing in noise. It is important to note that the type of background noise may influence 

speech intelligibility regardless of dynamic range: as Moore (1996) notes, “When a background of 

speech-shaped noise is used, dip listening is of much less importance, since the noise does not contain 

dips of sufficient magnitude or duration. Hence, speech intelligibility depends more on the higher-level 

portions of the speech, and these are less affected by dynamic range”. This difference in speech 

intelligibility between various types of background noise was later explored by Moore et al. (1997) using 

simulated hearing losses in normal hearing subjects, as well as subjects with cochlear hearing loss.. It 

was noted that for the simulated hearing losses, speech intelligibility improved significantly for single-

talker noise compared to speech-shaped noise. This was in contrast to the subjects with cochlear loss, in 

which there was very little difference in their discrimination abilities between the two types of 



5 
 

 

background noise. The findings of this study pointed to the possibility that other factors outside of 

audibility and recruitment, may be affecting speech intelligibility in those with cochlear hearing loss.  

 

Effects of Hearing Loss on Frequency Selectivity 

Many studies examining effects of hearing loss on speech intelligibility use the speech reception 

threshold (SRT) as the dependent variable. It has been noted that even among subjects with similar 

degrees of hearing loss, the SRT for each subject varies. This indicates that processes occurring at levels 

above absolute threshold, such as frequency selectivity and temporal resolution, may be responsible for 

a significant proportion of the variance in SRTs that occur among subjects with similar degrees of 

hearing loss (Moore, 1996). In other words, for subjects with moderate or greater cochlear losses, the 

variability in SRT cannot be explained solely by the subjects’ absolute thresholds. Several correlational 

studies, including Glasberg and Moore (1989) examined the effects of bilateral cochlear hearing loss on 

SRT compared to normal hearing, both in quiet and in speech-shaped noise. As expected, the SRTs for 

the hearing-impaired group were higher in both conditions, but it was noted that in the same 75 dB level 

of speech-shaped noise, the SRT was raised significantly more for the hearing impaired subjects than for 

the normal hearing subjects. However, the SRT in noise had a lower correlation to pure tone average 

(PTA) for the hearing impaired group compared to the SRT in quiet, indicating that the variance in SRT 

was not entirely due to variations in absolute threshold (Moore, 1996). In fact, it was found that the SRT 

in the 75 dB noise condition correlated more closely not with the PTA, but with the three measures of 

suprathreshold discrimination used in the psychoacoustic tests given to both groups of subjects, 

assessing frequency discrimination of both pure and complex tones, as well as gap detection in bands of 

noise. This indicates that in a high level of background noise, the ability to understand speech is 

determined more by these suprathreshold abilities than by absolute threshold sensitivity.  
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 Frequency selectivity as a factor for understanding speech makes sense when the speech 

spectrum is considered. Speech sounds fall along a wide range of frequencies. If the natural auditory 

filters of the basilar membrane are working correctly, these sounds are easier to discriminate. However, 

with hearing loss comes a broadening of the auditory filters, creating less specific frequency selectivity. 

This was demonstrated in a study by Thibodeau and van Tasell (1987) in which subjects with both 

normal hearing and moderate flat cochlear hearing loss were asked to discriminate the syllables /di/ and 

/gi/ both in broadband noise, and in noise with a 2000Hz spectral notch. Subjects’ frequency selectivity 

was estimated by measuring the subjects’ ability to detect a 2000Hz sinusoid as a function of the width 

of a 2000Hz spectral notch in noise. It was noted that subjects with poorer frequency selectivity (a lower 

percent-correct for detecting the 2000Hz sinusoid) also showed worse discrimination between the two 

syllables. However, Moore (1996) notes that this study used stimuli that were restricted to a certain 

frequency range; natural speech contains information over a much broader frequency range, making it 

difficult to demonstrate the effects of reduced frequency selectivity. This is true with vowels as well as 

consonants, though to a lesser extent, as demonstrated by Turner and Henn (1989), whose results 

indicated that for subjects with moderate cochlear hearing loss, vowel identification is often not 

affected. This is due to several factors, the most important of which is that the spectral differences 

between vowels are much larger than between consonants, making it easier to identify different vowels 

even if frequency selectivity is impaired. Additionally, when vowels are naturally produced rather than 

synthetically, they contain temporal cues which may help to identify them even in cases of impaired 

frequency selectivity (Moore, 1996).  

 Reduced frequency selectivity can also have deleterious effects on localization skills. The ability 

to localize a sound depends on the information obtained when a signal reflects off the listener’s outer 

ear. This change in the signal will alter the sound spectrum that actually reaches the eardrum and is 

processed through the rest of the auditory system (Moore, 2016). Gardner & Gardner (1973) found that 
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this change in spectrum is more dramatic for signals higher than 3 kHz. Therefore, for high-frequency 

losses, e.g., elevated thresholds above 3 kHz, localization will likely be adversely affected, as the ability 

to use pinna cues will have decreased in combination with the reduced frequency selectivity that comes 

as a consequence of hearing loss. This decrement in localization ability will make it more difficult to 

detect where sounds are coming from; both the target signal and the interfering noise. The impaired 

ability to localize and discriminate sounds can lead to further difficulties in speech intelligibility due to a 

lack of spatial-separation advantage (Moore, 2016).  

  

Effects of Hearing Loss on Temporal Resolution  

Temporal resolution of a signal depends on two elements: the envelope of a signal, which 

contains relatively slow fluctuations in signal amplitude over time; and the temporal fine structure, or 

the rapid oscillations within a signal, a rate closer to the center frequency of the signal (Moore, 1996). 

Speech, as a broadband signal, is naturally band-pass filtered by the cochlea along the basilar membrane 

according to place coding. Therefore, we can examine the role of both envelope cues and fine-structure 

cues in speech by simulating the band-pass filtering performed by the basilar membrane. The speech 

signal was filtered into multiple adjoining frequency bands. Each band was processed in a way that 

preserved only either the envelope or the temporal fine structure cues (Moore, 1996). It was found that 

when speech was separated into 4-16 bands, envelope cues on their own provided high intelligibility of 

speech in quiet for both normal hearing subjects and hearing-impaired subjects. However, even for 

normal hearing listeners, speech intelligibility suffers when an envelope-filtered signal is presented in a 

fluctuating background sound, such as a single-talker masker, or amplitude-modulated noise. Moore 

(1996) suggests that this is due to the fact that envelope cues alone do not allow for effective listening in 

the “dips” of a fluctuating background sound. Furthermore, in order to effectively use the “dips” in a 

fluctuating background noise, the listener’s auditory system must be able to determine whether the 
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signal that persists during the dips is dominated by the target speech or the background sound. In a 

normal auditory system, this is done by using the information derived from neural phase locking to the 

temporal fine structure of a signal. Changes in the rate of phase locking when a dip occurs indicate that 

the target speech is present in the dip.  

Therefore, it may be that hearing impaired listeners are unable to take advantage of the 

information from the temporal fine structure of a signal, which can add to their difficulty understanding 

speech in noise: they are unable to “listen in the dips” (Moore, 1996). This was shown in a study by 

Lorenzi et al. (2006) in which speech was processed to remove envelope cues while preserving the fine 

structure cues. Even in quiet, hearing-impaired subjects performed more poorly compared to normal 

hearing subjects when asked to identify nonsense syllables in quiet. These same hearing impaired 

subjects were later tested with steady-state and modulated background noise as well. The data support 

the idea that listening in the dips depends on the use of temporal fine structure information, and those 

with cochlear hearing loss are not as able to take advantage of this.  

The loss of ability to take advantage of temporal fine structure information and “listen in the 

dips” may be due either to reduced phase locking precision or else to a reduced ability to extract 

information from the phase locking patterns (Moore, 1996). It was originally thought that a cochlear 

hearing loss would only affect the filtering and the nonlinearity of the basilar membrane, not the 

temporal integrator itself. This was supported by Drullman, Festen, & Plomp (1994) who examined the 

effects of “temporal smearing” on speech intelligibility. The incoming signal was split into frequency 

bands, with the envelope of each band being low-pass filtered with a different cutoff frequency. As the 

cutoff frequency reduced, the envelope became more “smeared” in the time domain, to simulate the 

loss of temporal resolution of the signal. It was found that envelopes with higher cutoff frequencies did 

not affect the SRT in the presence of speech-shaped noise. However, cutoff frequencies of 4 or 8 Hz 

significantly elevated the SRT. In other words, when very rapid fluctuations of 16 Hz or greater were 
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filtered out, there was very little effect on intelligibility, even in noise, compared to when slow 

fluctuations were filtered out. This suggests that reduced temporal resolution does not have a 

significant adverse effect on speech intelligibility for most people with cochlear hearing loss, as these 

subjects could easily detect modulation rates up to 16 Hz (Moore, 1996). 

 

In summary, it should be considered that reduced frequency selectivity still has an effect on 

speech intelligibility even when stimuli are presented at suprathreshold levels. Linear amplification will 

be unable to improve upon this. Additionally, those with severe to profound cochlear losses will 

experience difficulty listening to speech in noise for reasons other than pure loss of audibility. Due to 

their reduced dynamic range, they will experience loudness recruitment and they will be unable to use 

temporal and spectral cues to “listen in the dips” of background noise. However, with the advent of 

digital signal processing hearing aids, as well as directional microphones, it has become easier to address 

some of these concerns. 

 

Digital Signal Processing and Noise Reduction in Hearing Aids 

As opposed to analog hearing aids, which work by amplifying a continuous incoming acoustic 

waveform, digital hearing aids work by performing an analog to digital conversion, implementing 

algorithms in the processing core of the hearing aid to clean up the signal, and then converts from digital 

back to analog, in order to deliver the processed acoustic signal to the patient’s ear. As a result of this 

change in how the signal is analyzed, digital processing is able to handle a much wider range of 

frequencies, and as the signal is broken down into a binary signal stream made of discrete bits, digital 

processing makes it easier to individually adjust specific bands or channels of the signal.  

These advancements in processing technology have made noise reduction in hearing aids much 

more sophisticated over the years. It is important to note that there is no program that can completely 
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remove background noise from a speech signal; all that the processing can do is reduce the noise 

relative to the signal of interest. 

There are three main strategies when it comes to digital hearing aid processing and noise 

reduction: they work in the spatial domain, the spectral domain, and the temporal domain. The spatial 

domain works to figure out which direction the sounds of interest are coming from. Typically, hearing 

aids will designate the signal coming from the front (0 degrees azimuth) as the desired signal. This is also 

known as adaptive directionality, which has been one of the signature improvements of hearing aid 

processing. Adaptive directionality uses a system of twin omnidirectional microphones to determine the 

direction of the desired signal. As omnidirectional microphones are sensitive to sound originating from 

all directions relative to the person wearing the hearing aids, their sensitivity can be adjusted based on 

the direction of the signal of interest. With a system of two omnidirectional microphones, there is a 

built-in electrical delay that can be adjusted through computer programming. The length of the delay 

between the microphones will affect the level of directionality (focus) of the microphones. This is called 

“beamforming” technique. A longer delay (a larger “distance” between the microphones) will result in a 

greater focus toward the front of the speaker. 
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Figure 1.  Functional block diagram of an adaptive directional microphone system. The variable 

electronic time delay is added to the signal from the rear microphone. The adaptive microphone system 

can change the directional sensitivity by changing the time delay. 

 

The next strategy used in digital noise reduction involves the spectral domain, in which the 

processor determines which frequencies are desired. For instance, the speech intelligibility zone 

involves primarily the mid-frequencies, while steady-state background noise is typically more low-

frequency. Filtering the signal correctly and applying frequency-specific gain reduction can attenuate 

low-frequency noise without affecting the speech intelligibility zone in the mid-frequencies.      

Finally, the temporal domain of digital noise reduction determines the differences in signal 

envelopes for the competing signals (desired input versus noise). The envelope of a signal is the 

boundary by which the signal is contained, following its fluctuations in frequency and amplitude.  These 

variations in frequency or amplitude differ depending on the type of signal. For instance, while 

mechanical or steady-state noise has a low modulation depth and high modulation frequency, speech 
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signals typically have a high modulation depth and low modulation frequency. When the signal is getting 

processed, the shape of the signal envelope can be key in whether the signal gets attenuated or 

amplified. This is the most popular technique in digital noise reduction strategies.     

 

Figure 2.  Waveforms of speech (top) and computer fan noise (bottom) are shown. The x-axis represents 

time and y-axis shows amplitude in arbitrary units. Speech has a slow modulation rate compared to that 

of noise, which fluctuates rapidly. The depth of modulation for speech is deep while the modulation 

depth for noise is shallow. 

 

Directionality 

As explained above, hearing aids can either use omnidirectional or directional microphones. 

Omnidirectional microphones are sensitive to sound originating from all directions (degrees of azimuth) 

relative to the person wearing the hearing aid. In a system of two omnidirectional microphones, an 

artificial delay between ports can be created.  

On the other hand, directional microphones work by improving the SNR based on the spatial 

location of sounds of interest, relative to the location of the unwanted sounds. Directional microphones 

use two inlet ports, spaced a certain distance apart. Depending on the location of a sound, the wave will 
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arrive at the two ports at two different moments in time. Sounds arriving from the side should arrive at 

the two ports at the same time, canceling out most of that energy and giving more amplification to 

sounds arriving from the front (assuming that is the direction of interest) because sounds arriving from 

the front or back will reach the two inlet ports at slightly different times. This principle works for hearing 

aid users because “noise” (any undesirable signal that interferes with the message) will likely be coming 

from behind them rather than only from the sides - think of a busy restaurant, with noise going on all 

around the hearing aid user. With a single mic that has two ports, the filter in the middle will delay the 

arrival of sound to the diaphragm. Depending on the length of the delay, the directional pattern and 

direction of focus on the incoming signal will be different. 

 

Listening Effort in Noise  

 The ability to process and understand speech requires attention as well as substantial cognitive 

resources. The cognitive load created by processing speech in a variety of environments is called 

listening effort. This load, and thereby the required listening effort, may be increased with a degraded 

signal, interference such as background noise, or in limitations of the listener, such as hearing loss 

(McGarrigle et al., 2014). Note that listening effort may still be required for a normal hearing listener; 

however, as discussed above, normal hearing listeners have an improved ability to carry out “backstage 

operations” - that is, selective processing of a particular sound while simultaneously filtering out 

irrelevant information. This is similar to the phenomenon of “listening in the dips” described by Moore 

(1996). This ability is also called a selective gain mechanism. This mechanism is degraded somewhat in 

hearing-impaired listeners. The process of maintaining ongoing “backstage operations” is much more 

taxing, particularly in challenging environments. Speech perception is not the only type of auditory 

processing that requires effort if hearing loss is present; as discussed above, localization ability is often 

degraded with high-frequency hearing loss (Gardner & Gardner, 1973). Based on this, it can be assumed 
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that additional mental effort would be required for speech understanding in the presence of 

background noise. Ohlenforst et al. (2017) suggest that the degree of processing required to keep up 

with simultaneous ongoing auditory streams (for instance, understanding speech in background noise) 

increases the cognitive load imposed by the listening task.  

When a listener has hearing loss, this cognitive load is even larger. Indeed, Larsby et al. (2005) 

found that hearing-impaired listeners struggle more with speech-recognition tasks compared to normal-

hearing listeners. Additionally, it was found that hearing-impaired listeners require a higher listening 

effort in order to achieve speech-recognition results comparable to those of normal-hearing listeners.  

 The effects of increased listening effort in subjects with hearing loss have been well 

documented. Fatigue, stress, and tension were all found to be consequences of increased listening 

effort (Hornsby, 2013; Stephens & Hetu, 1991; Kramer et al., 1997, 2006). These effects can be 

attributed to increased strain on an auditory system already experiencing deficits due to hearing loss. 

These consequences can lead to increased social isolation, due to the amount of energy and effort 

required to follow speech, particularly in noisy environments (Weinstein & Ventry, 1982; Demorst & 

Erdman, 1986; Strawbridge et al., 2000).  

 It has been well documented that modern hearing aid technology can assist with improving 

speech understanding in noise due to advancements made in compression, directional microphones, 

and noise reduction algorithms (Ohlenforst et al., 2017; Dillon, 2001). Zekveld et al. (2011) found that 

subjective reports of listening effort decreased slightly when speech-in-noise intelligibility was increased 

for young and middle-aged listeners with hearing loss, in contrast to age-matched normal-hearing 

listeners. Klink et al. (2012) further demonstrated that this phenomenon should be attributed to hearing 

loss, rather than age, as a factor of intelligibility. Due to the compensation for the hearing loss provided 

at least partially by amplification, hearing aids were found to result in a reduction in listening effort 

(Hornsby, 2013; Picou, Ricketts, & Hornsby, 2013).  
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 Several studies have investigated objective and subjective measures of listening effort in both 

quiet and noisy environments, for both normal hearing and hearing-impaired listeners. Gatehouse & 

Noble (2004) created the Speech, Spatial & Qualities of Hearing Scale (SSQ) in an effort to quantify 

listening effort in various real-world situations, with participants giving answers on a scale of 0-10. The 

Amsterdam Checklist for Hearing & Work (Kramer et al., 2006) was another attempt to quantify listening 

effort and fatigue in noisy situations. These subjective methods, along with other questionnaires or self-

rating scales, provided either immediate or retrospective data regarding the amount of effort perceived 

by the subject during a task (Ohlenforst et al., 2017).  

Objective measures have also been used to quantify listening effort. In the case of Larsby et al. 

(2005), listening effort was measured using reaction times on speech-recognition tasks, as well as 

subjective ratings.  Zekveld and Kramer (2014) investigated objective measures of listening effort by 

observing subjects’ pupil dilations during a word-recognition task, using subjective ratings of listening 

effort as a cross-check method. Larger pupil dilations were found to be associated with a larger cognitive 

load, while subjects were asked to rate themselves 0-10 on questions such as “How much effort did you 

put into this task?” “How many sentences do you think you perceived correctly?” and “How often did 

you give up trying to understand the sentences?” 

 Listening effort is an emerging area of research as hearing aid technology continues to improve. 

Both objective and subjective measures of listening effort should continue to be investigated as a 

potential means of exploring cognitive load and hearing aid technology’s effects on speech perception in 

difficult listening environments.  

 

Rationale for the Current Study 

Based on the existing understanding of directional microphones and their role in digital speech 

processing and noise reduction, the current study seeks to examine the performance of one particular 
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processing algorithm created by the manufacturer Unitron. This processing algorithm, called 

SpeechZone2, combines three approaches for detecting speech in noise (Rule et al., 2017). 

Speech Locator, its spatial component, uses multiple microphones and beamforming techniques 

to locate different sound sources and uses binaural technology to determine the location of speech.  

Speech Focus, its directional component, applies adaptive directionality principles to focus on 

the determined direction of speech. For instance, if speech is determined to be coming from in front of 

the listener, the algorithm uses the maximum setting of its adaptive directionality system to focus in on 

the speech and works to reduce noise sources at the sides or behind the listener. On the other hand, for 

speech sources determined to be coming from the side, the algorithm will use a “binaurally coordinated 

asymmetric response” (Rule et al., 2017) and will focus on that side with more intensity than it will for 

the other side, front, or back.  For speech sources determined to be coming from the back, beamforming 

techniques will still be used, but the beam will focus on the back while also maintaining some front 

audibility, although it reduces that by approximately 10 dB relative to the target speech at the back.  

Dynamic Spatial Awareness, its third component, restores the natural localization cues that 

suffer when the hearing aid uses the aggressive directional responses of Speech Locator and Speech 

Focus. When speech is located to be either in the front or back of the listener, both ears will receive the 

same frequency response modification, making it sound “normal.” However, when the signal is found to 

be coming from the side, DSA will attenuate the contralateral side, thereby enhancing the head shadow 

effect and making speech sound more natural (Rule et al., 2017). 

 

SpeechZone 2 also uses binaural spatial processing to determine the exact location of speech, 

depending on the location of the speech source (front, back, left, or right). Based on the determination 

of the speech source location, the hearing aid pair automatically selects a symmetric or asymmetric 

microphone strategy to ensure the best speech understanding in noisy environments. This is all done 
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automatically when classification within Unitron’s SoundNav automatic program is either the 

“Conversation in a crowd” or “Conversation in noise” listening environments. When speech is 

determined to be arriving from the front of the hearing aid, the microphone response is a symmetric 

multi-band adaptive directionality. If the speech is from the side, the microphone response becomes 

asymmetric, applying omnidirectional with Pinna Effect on the side from the speech side and adaptive 

directionality on the side with noise. When speech is located from the back of the hearing aid, the 

microphone response becomes symmetric, with both hearing aids in omnidirectional mode. It is 

important to note that in order for the SpeechZone2 algorithm to work efficiently, the hearing aid user 

needs to wear a pair of hearing aids that are programmed to synchronize and wirelessly communicate 

with each other (Howard, 2014). 

 

 The goal of this study is to evaluate the capabilities of the SpeechZone2 processing algorithm, 

combined with the benefits of adaptive directionality, compared to a traditional omnidirectional 

microphone setting with no additional processing algorithm. In addition, the current study will evaluate 

the claim that SpeechZone 2 can reduce listening effort in difficult listening environments.  
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CHAPTER II 

METHODS 

Participants 

 Seven adults (2 male, 5 female) with previously diagnosed, mild to severe sloping symmetrical 

sensorineural hearing loss served as participants in the present study. Mean hearing thresholds with 

standard deviations of the participants are shown in Figure 3. Data for the left and right ears at octave 

frequencies between 250 to 8000 Hz are depicted using “X” and “O” symbols, respectively. Symmetry 

between the two ears was defined as a difference between hearing thresholds of no more than 20 dB at 

any octave frequency between 500 Hz to 4000 Hz (Pittman & Stelmachowicz, 2003). Air conduction 

hearing thresholds were tested as a part of the research protocol, and normal middle ear functioning 

was assessed by verifying the presence of a type ‘A’ tympanogram.   Participants ranged in age from 25 

to 81 years (mean age = 64.6 years). 

 

 

Figure 3. Mean audiometric thresholds at octave frequencies for the right (O) and left ear (X). Error bars 

represent ±1 standard deviation from mean.  



19 
 

 

The participants’ experience with hearing aids ranged from 2 years to 45 years.  Subjects were 

recruited via fliers posted around the university and at the university audiology clinic, as well as at local 

retirement facilities. A mass email was also sent out to JMU faculty with the eligibility information.   

 

Preparation 

The test duration was approximately two hours, including short breaks. If necessary, the test 

was divided into two sessions to accommodate subjects’ needs or schedules. Subjects were 

compensated $10 per hour of their time in this study.  

All subjects underwent air-conduction threshold audiometry to confirm the degree of their 

hearing loss. Tympanometry was performed on all patients to ensure there was no conductive 

component to the hearing loss. A brief case history was also taken, in which the subject was asked to 

detail how long they had had a hearing loss and how long they had been wearing hearing aids.  

After the audiogram was completed, a pair of Unitron Flex digital hearing aids with closed 

domes were programmed to the participant’s hearing loss. In the hearing aid software, two separate 

programs were created. Program 1 was the “omnidirectional” mode, in which SpeechZone 2 was turned 

off. Program 2 was the “adaptive” mode, in which SpeechZone 2 was turned on. In-situ verification of 

the hearing aids’ output was performed before proceeding to the Hearing-In-Noise Test (HINT). Starting 

condition (either Program 1 or Program 2) was counterbalanced across participants to minimize any 

learning effect. 

 

Stimuli 

Pre-recorded sentences from Hearing in Noise Test (HINT), an adaptive procedure that tests 

speech understanding in the presence of background noise, was used to evaluate the effect of 

SpeechZone 2. This study utilized background babble rather than speech-shaped noise used in the 
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original HINT. Subjects were required to repeat sentences of varying intensity in the presence of 

background babble, which was kept at a constant intensity level of 70 dBA. 

The first sentence the subject repeated was increased in intensity until the subject was able to 

repeat the entire sentence correctly in the babble. The next four sentences were described as 

“practice.” If the subject repeated the sentence correctly, the intensity level of the speech was 

decreased by 4 dB HL. If the subject repeated the sentence incorrectly, the intensity was increased by 4 

dB HL.  

After the four “practice” sentences were completed, the subject repeated six more sentences 

following the same procedure, but with the step size reduced to 2 dB. This created a total of ten 

sentences repeated by the subject. This comprised one “set” of HINT sentences.  

 

Test Setup 

All testing took place in the Hearing Aid Research Laboratory. There were five speakers arranged 

in a circle, 90 degrees apart from each other. Background babble was presented from four speakers (0, 

90, 180, 270 degrees) while the speech was delivered from a separate speaker located at 0 degrees 

azimuth. The subject began the test seated in a chair that had the ability to swivel 360 degrees. Hearing 

aids were randomly programmed either for Program 1 or Program 2 for the first condition. The subject 

began facing forward, so that speech was delivered at 0 degrees azimuth, as seen in Fig. 4 shown below. 
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Figure 4. Schematic representation of speech and noise sources in the study. Separate loudspeakers 

were used for speech and noise at 0 degree azimuth to simulate a real world situation (speech 

originating from a separate location). 

 

The subject repeated ten sentences with speech at 0 degrees azimuth, to complete one “set”. 

The subject then rotated to face the speaker at 90 degrees, so that speech was presented from the left 

side (270 degrees azimuth), and completed another set of ten sentences. Two more sets were 

completed, with the subject rotating in 90 degree steps. These four sets in total comprised one test 

block. 

After the first test block was complete, the subject was given a short questionnaire with items 

adapted from several other questionnaires. These included the Speech, Spatial and Qualities of Hearing 

Scale (Gatehouse & Noble, 2004), the Amsterdam Checklist for Hearing and Work (Kramer et al., 2006), 

and studies by Hornsby (2013), Koelewijn et al. (2011), and Zekveld & Kramer (2014).  The short 

questionnaire used in the current study included five questions about listening effort, required 
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concentration, perceived speech understanding, giving up, and a final question about listening fatigue. 

The subject was asked to answer the questions based on the test block they had just completed.  

After the subject had completed all four sets with either Program 1 or Program 2, the subject 

was turned to face 0 degrees azimuth again. The hearing aids were changed to the other program and 

the second test block was completed in the same way. Afterward, a second copy of the questionnaire 

was administered, with the subject asked to base their answers to the questions on the second test 

block. The participant was blinded to the hearing aid programming. 

 

 

 

Figure 5. Image of actual test setup. 
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Data Analysis 

A repeated-measures Analysis of Variance (ANOVA) was conducted to examine the differences 

in HINT scores for subjects (n=7) between the conditions of SpeechZone2 OFF and ON. SpeechZone 2 

(two levels) and speech source azimuth (four levels) were used as within-subject variables.  

Planned pairwise comparisons with Bonferroni correction were performed for degrees of 

azimuth between conditions (omnidirectional vs. SpeechZone 2 for 0 degrees of azimuth, 90 degrees, 

etc.).  
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CHAPTER III 

RESULTS 

 

Speech reception thresholds (HINT score) are shown as a function of speech source location for 

omnidirectional and adaptive directionality + SpeechZone2 in Figure 6. The error bars represent ±1 

standard error of mean.  Lower HINT scores indicate better performance.  There was large 

intersubjective variability observed in this small sample size (n=7). The effect of adaptive directionality 

and SpeechZone2 processing was examined by a repeated measure ANOVA (α=0.05). Results indicated 

that there was a trend of improved speech understanding with these features turned on. However, 

statistical significance was not observed (F(1,6) =1.723; p = 0.237). 

 

Figure 6. Mean HINT scores for Omnidirectional (blue bars) and Adaptive directional with SpeechZone2 

(red bars) for different speech source locations (0, 90, 180, and 270 degree azimuth). Error bars indicate 

±1 SE of mean. A lower HINT score indicates better performance.  
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Pairwise comparison with Bonferroni corrections (α=0.0125) indicated that there was a 

significant improvement only when speech was presented from 270 degree azimuth (p=0.002). The 

ANOVA also revealed a significant effect of the speech source location (F(3,18)= 5.62; p=0.02). Regardless 

of the directionality and speech processing, the participants performed better when speech was 

presented from the sides (900 and 2700). 

 

Individual Performance  

As evidenced in the standard error bars in Figure 6, there were large differences across 

individual performances. Each participant’s speech reception threshold (HINT score) is shown in 

individual panels in Figure 7 below.  A lower HINT score indicates better performance. The performance 

of participant 2 was different from the rest of the group. First they needed much more favorable signal 

to noise ratio (SNR) to understand speech, and second, their HINT score increased (worsening 

performance) with the adaptive directionality+SpeechZone2 condition. Since there was large variation in 

the HINT scores across the seven participants, the difference in HINT scores between the 

omnidirectional and the adaptive programs were calculated from individual participants. Figure 8 shows 

the difference (omnidirectional – adaptive) for each participant. A positive difference in Figure 8 

indicates better performance with adaptive directionality + SpeechZone2 program.  
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Figure 7. Individual HINT scores for the two test conditions – omnidirectional (black) and adaptive 

directionality+SpeechZone2 (gray).  The range on the y-axis is shifted to fit the wide range of individual 

scores. A lower HINT score indicates better performance. 
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Figure 8. Individual differences in performance between the omnidirectioanl and the adaptive 

directional + SpeechZone2 conditions. Positive values indicate a better speech understanding with the 

adaptive program. Mean scores are shown in the dashed line. 

 

 

Listening Effort 

 Mean self-reported scores on a 10-point Likert scale for five different questions are shown in 

Figure 9. A higher rating indicates greater effort or concentration for the first two sets of bars. The third 

question explored how much the participants “gave up” during the test. A lower score indicates that the 

participants reported not giving up while responding to the speech in noise. The fourth question on 

speech understanding evaluated the overall feeling of how well a participant perceived to have 

performed on the speech understanding task. A higher score indicates that the participants self-

reported that they understood the sentences in the presence of the background noise. The final 

question was on the overall fatigue a participant experiences at the end of the day. This question was 

included as a measure of internal consistency for each subject as there should not be any significant 
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difference in the self-reported overall fatigue at the end of the day irrespective of the hearing aid 

programming they listened to in the current session. A Wilcoxon signed-rank nonparametric test 

showed that there was no significant difference in the self-reported scores in the listening effort 

questionnaire (Z = 0.637, p = 0.39).  

 

 

Figure 9. Mean subjective rating of perceived concentration, listening effort, speech understanding, and 

quitting between the two conditions. Error bars indicate ±1 SD from mean. The right panel shows 

average ratings provided by the participants to one item on the questionnaire (how fatigued do you 

usually feel at the end of the day because of your listening demands?). A rating of 10 on the y-axis 

indicates greater self-reported difficulty in each area.  
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CHAPTER IV 

DISCUSSION 

 

The two claims that the study was aiming to assess were the advantage for speech 

understanding in noise provided by SpeechZone 2, as well as the reported reduction in listening effort 

required to understand speech in noise. These claims were put forth by the manufacturer, and several 

universities were involved in this pilot study to investigate. It was discovered that neither claim put forth 

by the manufacturer has significant support from the data collected in this study.  

When investigating the reported improvement in speech understanding in the presence of 

background noise, the HINT test was used with SpeechZone 2 off and then on. HINT sentence scores 

were compiled to provide an assessment of subjects’ speech understanding in noise with and without 

the processing algorithm, among four degrees of azimuth. While there was a general trend toward 

improved speech understanding when SpeechZone 2 was enabled, statistical analysis indicated that this 

trend was not significant overall. Additionally, a trend toward speech recognition was noted when 

speech was presented from 90 and 270 degrees of azimuth, for both conditions tested. It should be 

noted that this trend was also not statistically significant and should not be taken as indicative of any 

benefit provided by the hearing aid processing algorithm. Rather, this improvement in speech 

recognition from 90 and 270 degrees of azimuth is the demonstrated phenomenon of the head shadow 

effect. This advantage has been demonstrated in multiple studies (Shaw, 1974; Bronkhorst & Plomp, 

1989).  

Additionally, the SpeechZone 2 processing algorithm was not shown to have a significant impact 

on lessening listening effort, in contradiction to claims made by the manufacturer. A comparison of 

subjects’ responses to the questionnaire created for this study showed no significant differences 

between the conditions for reported concentration, listening effort, speech understanding, or the need 
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to “give up” listening during the tasks. This indicates that when SpeechZone 2 was enabled, subjects did 

not perceive a significant difference in the amount of effort they had to expend during the HINT, 

compared to when SpeechZone 2 was turned off and the speech was processed by omnidirectional 

microphones alone. A trend toward increased concentration was noted when SpeechZone 2 was turned 

off, but again this is not a statistically significant finding.   

 Prior to this study, Unitron had reported some preliminary findings of SpeechZone 2 through 

white papers and field validation studies. These preliminary findings dealt principally with localization 

ability with SpeechZone 2, but as discussed in the introduction, localization ability can play a role in 

speech understanding in background noise. Rule et al. (2017) compared localization abilities of subjects 

wearing amplification with traditional directional microphones and amplification with Dynamic Spatial 

Awareness, the algorithm created by Unitron to focus in on the direction of the desired signal in the 

presence of background noise. Recall that Dynamic Spatial Awareness is one of three components of the 

SpeechZone 2 algorithm and is concerned in part with restoring natural localization cues that come from 

the head shadow effect (Figure 10).  

Rule et al. (2017) used 30 subjects between 32-87 years old (mean age = 68). A mix of 

experienced and inexperienced hearing aid users were utilized; however, the definition of an 

“experienced” hearing aid user was not provided. All subjects had mild to moderate sensorineural 

hearing loss. Testing was performed in a room with 8 speakers arranged in a circle around the subject, 

45 degrees apart. For this study, babble noise was presented at a fixed SNR of -3 dB, meaning that the 

noise was 3 dB louder than the speech. Subjects were required to perform a localization task, 

determining where among the 8 speakers the speech was presented. Subjects were not required to 

perform any word recognition tasks. Subjects were scored on their ability to correctly identify the 

direction of the speech source, from 0-100%. It was noted that subjects’ localization abilities improved 

when the speech signal originated from 90 and 270 degrees azimuth, compared to 0 or 180 (Figure 11). 
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It is known that localization ability can influence speech understanding in noise for individuals with 

hearing loss (Gardner & Gardner, 1973) but overall this study did not examine the effect of localization 

on speech recognition in background noise. 

 

 

 

Figure 10. Frequency response from both ears is noted in dark blue, while frequency response from right 

and left ears individually are noted in red and light blue, respectively. Rule et al. (2017) demonstrates 

the ability of Dynamic Spatial Awareness to adaptively attenuate the frequency response of the ear 

contralateral to the source of the desired signal, depending on the direction of speech. Notice that when 

speech comes from either the front or the back, DSA does little to attenuate the frequency response. 

However, when speech comes from the right, note the reduction in the response from the left side, and 

vice versa.  

 



32 
 

 

 

Figure 11. Adapted from Rule et al. (2017). The difference in localization scores (0-100%) for traditional 

directional microphones vs. Dynamic Spatial Awareness (DSA), over a period of three weeks. Note that 

in both initial fitting and three weeks post, localization abilities trend toward improvement compared to 

traditional directional microphones. However, with the omission of error bars, findings cannot be taken 

as significant.  

 

In contrast to the Rule et al. (2017) study, the current study assessed word recognition in 

background noise for DSA, as well as listening effort. 7 subjects were used, ranging in age from 25-81 

years old (mean = 65). All subjects were experienced hearing aid users, with “experienced” being 

defined as having worn amplification for at least 4 weeks prior to participating in the study. All subjects 

had diagnosed sensorineural hearing loss, but the range of losses was quite a bit broader than in the 

Rule et al. (2017) study, with configurations ranging from mild to moderately-severe or severe.  

Four speakers were used to present background noise, rather than eight. This choice was made 

in part due to the fact that localization tasks were not a part of the study’s rationale; therefore, speech 

presentation from more specific degrees of azimuth was not crucial to the study. Additionally, rather 
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than a fixed SNR of -3 dB, the current study used an adaptive SNR due to the nature of the HINT as the 

vehicle for assessing word recognition ability.  A localization task was not used in the current study.  

In general, a similar trend to the manufacturers’ was observed, in that there was a head shadow 

advantage when speech was presented at 90 and 270 degrees of azimuth. However, this finding can 

only be attributed to speech awareness, rather than speech recognition, as the tasks differed between 

studies. 

The current study’s results differ from the manufacturer’s for several reasons. As previously 

discussed, the paradigms used differed between studies. Rule et al. (2017) used a localization task to 

assess the advantage of SpeechZone 2 in focusing on speech signals in a constant level of background 

noise, while the current study used a word recognition task to assess the advantages of SpeechZone 2 in 

an adaptive level of background noise. As the current study is part of a pilot investigation to examine the 

abilities of SpeechZone 2 as a whole, the rationale used to design the studies differs as a consequence. 

Additionally, the use of four speakers in the current study as opposed to eight resulted in a broader 

physical separation between the sources of signal and noise in the current study. This may have 

influenced the results obtained in the current study; however, due to the difference in design this is not 

currently possible to investigate further. 

Based on an extensive search, limited literature exists regarding the effects of SpeechZone 2. 

References are made to “SpeechPro” in both field validation studies (Sinclair, 2018) and trials with 

normal hearing individuals (Hayes, 2014); however, it is unclear whether this research is focused on 

earlier versions of this processing algorithm. Therefore, these findings were not included in the 

literature review. 

Based on the results of the current study, this algorithm does not appear to improve speech 

understanding in noise or lessen listening effort, both of which were claims by the manufacturer. While 

no significant results were observed, this study maintains clinical relevance as it demonstrates that 
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these hearing aids should not be recommended solely for the purpose of attempting to reduce listening 

effort. While amplification has been shown to assist with lightening the load of concentrating on speech, 

particularly in noisy environments, it is not advisable at this time to recommend this type of 

amplification on the strength of the manufacturer’s claim that listening effort will be significantly 

reduced.  

While the current study did not find any significant benefit of SpeechZone 2 for speech 

recognition in the presence of background noise, there are several limitations that may have 

contributed. First, the subject pool for the current study (n=7) is much smaller than for the Rule et al. 

(2017) study. The power analysis performed with the preliminary data for the current study indicated 

that a minimum sample size of twelve adults was needed. A larger sample size may have provided more 

information and produced different results. Additionally, without a localization task implemented in the 

current study, there is no way to directly compare the results of the Rule et al. (2017) study with the 

current investigation. Thus, it is difficult to cross-check the manufacturer results and determine some 

commonality of data. 

It is not known whether the use of more speakers, providing a wider variation of degrees of 

azimuth, would have influenced the results of the study. Additionally, due to the small pool of subject 

data, degree of hearing loss could not be assessed as a variable in its own right. It is unknown the effects 

of SpeechZone 2 on word recognition for a certain degree of hearing loss.  

 

Conclusion 

1. There was no improvement in the speech reception threshold (HINT score) with the adaptive 

SpeechZone 2 algorithm in the commercially available Unitron hearing aids. These results are 

not in agreement with the manufacturer advertisements and product brochures. 
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2. There was no difference between the omnidirectional program and the adaptive SpeechZone 2 

algorithm as measured by the self-reported listening effort and four other related questions 

(listening related concentration, giving up while listening to speech, perceived speech 

understanding performance, and overall fatigue). 

3. These results are based on a small sample of seven experienced hearing aid users. The findings 

of this study should be interpreted with caution due to the small sample size.   
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Appendix B: Consent form 

Consent to Participate in Research 

Identification of Investigators & Purpose of Study   

You are being asked to participate in a research study conducted by Abigail Compton from James 

Madison University. The purpose of this study is to assess the performance of a new hearing aid 

algorithm when participants are listening to speech in background noise. This study will contribute to 

the researcher’s completion of her Doctor of Audiology dissertation research.  

Research Procedures 

Should you decide to participate in this research study, you will be asked to sign this consent form once 

all your questions have been answered to your satisfaction. This study consists of several tests of speech 

understanding in noise, which be administered to individual participants in HBS 5008. In these tests, you 

will be asked to listen to and repeat sentences that are presented in various conditions. You will also be 

given two short questionnaires to rate your preference on a rating scale.  

Time Required 

Participation in this study will require approximately 2 hours of your time. The testing is broken up into 

two one-hour long sessions: in the first, your hearing status will be evaluated using standard clinical 

protocol. A pair of hearing aids will be programmed to fit your exact degree of hearing loss. The second 

session is comprised of a speech understanding test in four different conditions. You have the option of 

completing both session in the same day, or returning a different day for the second session.  

Risks  

The investigator does not perceive more than minimal risks from your involvement in this study (that is, 

no risks beyond the risks associated with everyday life). A potential risk may include fatigue from the 

effortful listening required during the speech recognition tasks, however this risk will be minimized by 

allowing you to take both restroom and water breaks between each of the four listening conditions. 

Benefits 

The results of this study could potentially be beneficial to the field of clinical audiology by informing us how 
directional microphones perform in real world situations. The participants will receive a free hearing test 
and get experience of evaluating a new hearing aid technology.  
 
Incentives 
The participant will receive $10 per hour in financial compensation for participation in this study, leading to 
a maximum of $20 in participation fees. The participant will also receive a free hearing test. 
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Confidentiality  

The results of this research will be presented at a conference and at the researcher’s doctoral 

dissertation defense. The results of this project will be coded in such a way that the respondent’s 

identity will not be attached to the final form of this study. The researcher retains the right to use and 

publish non-identifiable data. While individual responses are confidential, aggregate data will be 

presented representing averages or generalizations about the responses as a whole. All data will be 

stored in a secure location in the Hearing Aid Research Laboratory accessible only to the researcher and 

her research advisor.  

Upon completion of the study, all information that matches up individual participants with their 

answers, including the transcription of the repeated sentences, will be shredded.  

Participation & Withdrawal  

Your participation is entirely voluntary. You are free to choose not to participate. Should you choose to 

participate, you can withdraw at any time without consequences of any kind. 

 

Questions about the Study 

If you have questions or concerns during the time of your participation in this study, or after its 

completion or you would like to receive a copy of the final aggregate results of this study, please 

contact: 

 

Abigail Compton    Ayasakanta Rout 

Communications Sciences and Disorders Communications Sciences and Disorders 

James Madison University   James Madison University 

comptoe@dukes.jmu.edu    Telephone: 540-568-3874 

routax@jmu.edu 

Questions about Your Rights as a Research Subject 

Dr. David Cockley  

Chair, Institutional Review Board 

James Madison University 

(540) 568-2834 

cocklede@jmu.edu 

mailto:cocklede@jmu.edu
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Giving of Consent 

I have read this consent form and I understand what is being requested of me as a participant in this 

study.  I freely consent to participate.  I have been given satisfactory answers to my questions.  The 

investigator provided me with a copy of this form.  I certify that I am at least 18 years of age. 

 

______________________________________     

Name of Participant (Printed) 

 

______________________________________    ______________ 

Name of Participant (Signed)                                   Date 

______________________________________    ______________ 

Name of Researcher (Signed)                                   Date 
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Appendix C: Mean HINT scores and data analysis excluding outlier  

 

 As seen in Figures 7 and 8, participant #2 performed different compared to the rest of the 

participants. A separate analysis was performed after excluding participant 2 from the raw data. Mean 

HINT scores for omnidirectional and adaptive with SpeechZone2 are shown in Figure 12 below. Error 

bars represent standard error. A repeated measure ANOVA showed significant improvement with 

SpeechZone2 processing compared to omnidirectional microphone mode without SpeechZone2 (F(1,5) = 

20.84, p = 0.006) when the data from Subject#2 were removed. There was also a significant main effect 

of speech source location (F(3,15) = 4.85,   p = 0.015). However, no interaction between processing 

strategy and speech source location was observed (F(3,15) = 1.42, p = 0.27) 

 

Figure 12. Mean HINT scores without participant 2 for Omnidirectional (solid bars) and Adaptive 

directional with SpeechZone2 (hatched bars) for different speech source locations (0, 90, 180, and 270 

degree azimuth). Error bars indicate ±1 SE of mean. A lower HINT score indicates better performance. 
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