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Abstract

Databases play an important role in the storage and manipulation of data. Databases

and database management systems allow for fast and efficient data querying that

has recently become increasingly important in most companies and organizations.

This paper introduces a few of the different types of database management systems

that are in widespread use today. It introduces some important terminology related

to databases and database management systems. This paper also briefly discusses

web user interfaces, highlighting important user interface design principles. Finally,

an inventory management system is implemented for a local stationery store and is

integrated with a web application to serve as the front end.
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CHAPTER 1
Introduction

Humans began to use databases as a means of organizing information long before

the creation of computers. Accountants carried ledgers, librarians created catalogs,

and business owners logged their inventories. In the early 1960’s computers became

affordable to businesses and with it came the automatization of databases. Since

then, databases and database management systems have become an increasingly

popular tool for the storage and handling of data. Today, computer databases have

allowed humans to access and interact with data seamlessly from anywhere around

the world.

The main aim of this research paper is to provide an introduction to database

management systems and discuss their usage in business settings as a method of

managing different types of data. In the software portion of this independent study,

an inventory management system is created for a client that owns a stationery store

in Addis Ababa, Ethiopia. This store functions as both a wholesaler and retailer as

it sells different types of stationery products to individual people as well as other

businesses, schools, and offices. Currently, the business uses excel spreadsheet

files to manage its inventory. When ordered stationery products arrive at the store,

the accountant logs all products on an excel sheet and the products are stocked

in a warehouse. Once the products are stocked, there is currently no method that

1



1. Introduction 2

keeps track of what specific items have been sold. Moreover, the business does not

currently use a point of sale system which makes it difficult to know when it is best

to restock. The client has identified the drawbacks of using this approach and wants

to automate this system to streamline the process of managing inventory within her

business, thus making the process more convenient for her and her employees.

Another portion of this research examines the design of web-user interfaces.

Designing a good web-user interface requires adherence to certain design principles

in terms of usability and visual aesthetics. This study looks at the research that has

been done in terms of how certain design principles contribute to user satisfaction

when visiting a particular website, and how certain design elements motivate users

to re-visit a website. The implemented inventory management system is web-based

and thus requires a certain type of web design. Certain design principles from this

study are used when implementing the user interface of the inventory management

system.

1.1 What is an inventory management system?

An inventory management system is an automated software system used for

monitoring stock levels, product orders, and sales records. There are many different

hardware and software components that make up a fully developed inventory

management system. An inventory management system integrated with a point of

sale system is able to detect when a particular product is sold and automatically

removes that product from stock. When stock levels are low, the system automatically

notifies an employee so that products are reordered. Advanced systems are also able

to automatically reorder products when stock levels are low. Inventory management

systems are very advantageous for businesses as they are used to generate different

types of reports such as sales history reports. Business owners are able to see which
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products are selling well and which items might need to be discounted to prevent

certain types of products from just sitting in stock. This consequently increases

the profitability of a business. Additionally, complex data mining techniques can

be performed on the data that exists in an inventory management system. These

techniques look for certain patterns in the data that is stored and can forecast future

sales for specific products. This allows business owners to understand customer

buying habits and thus enables them to cater more towards their customer demand.

This ultimately increases sales and customer loyalty.

There are various commercial inventory management systems available for

purchase. Some systems also offer cloud-based data storage for their customers.

Some of the more popular systems include QuickBooks Enterprise and Vend.

1.2 Outline of Approach

This paper begins by introducing and exploring certain features of the different

types of databases and database management systems available. More attention

and focus is given to relational database management systems since the inventory

management system software is built on the relational database model. Following

this, the concept of database architecture and database normalization are discussed.

This paper then looks into database security and suggests some best practices for

protecting data stored in a database. For the web design portion of the study,

different types of web-based user interfaces and user interface design principles

are explored. Finally, the software section of this paper explores the programming

languages and web-frameworks used to design and implement the inventory

management system software. An entity-relationship diagram is also implemented

for the underlying relational database, and the user interface design for the web

application is discussed.



CHAPTER 2
Databases and DatabaseManagement Systems

This chapter gives a general overview of databases and database management

systems. It starts by defining terminology that is crucial to the understanding of

databases. It then introduces a few common types of database management systems

and discusses their main features including their applications in the business

environment.

2.1 Databases

A database is a collection of data that is stored on a computer system and can be

used to retrieve and manipulate data in a structured manner. It is often hidden

behind the tools and services used by humans every day. Databases span almost

all areas where computers are in use [32]. This includes areas such as education,

medicine, law, business and many more. Databases are very popular because

they simplify the process of data management, especially when dealing with large

amounts of data due to the systematic storage of the data. Section 2.2 discusses

some of the different methods used to store data. A database can store data with

different formats including textual, audio, graphical and many other data formats.

4



2. Databases and Database Management Systems 5

A collection of data can be called a database if it contains the following three

implicit properties:

– The data stored represents some aspect of the real world. Alterations observed

in the real world are represented in the database

– The data is logically coherent and not a mere random collection

– The database serves a specific purpose to a group of users at some point in the

processing of the stored data [32].

There are no restrictions on how large or small databases can get. It can be as

small as information on everyone in a household and can get as big as billions of

records being stored by companies such as Amazon and Facebook.

Before further discussing databases and database management systems, the

following database terminology needs to be defined:

– Records (Tuples): The rows in a database. Each row stores data for a single

instance

– Fields (Attributes): The columns in a database. Each column stores one type

of data

– Schema: The structure and organization of a database. Specifies what fields a

database contains

– Relation: An individual table in a database. Usually given a name and has a

collection of records

– Query: A specific request for a subset of data within the database

– View: A virtual table that contains specific records resulting from a query.

The virtual table resulting from a view statement is not stored permanently.



2. Databases and Database Management Systems 6

Figure 2.1: Visualization of fields, records and cells

Figure 2.1 is a sample relation that contains 3 fields and 3 records.

The most basic database type is called a flat-file database. This type of database

consists of a single table containing data and its records do not have a structured

relationship. Flat-file databases store data in fields and records. One big advantage

of a flat-file database is its ease of creation, making it a simple and convenient way

to store small amounts of data. However, flat-file databases become increasingly

inefficient when dealing with large amounts of data. Moreover, flat-file databases do

not have the mechanism to prevent data redundancy which is often a key factor in

reducing search times in databases. Data redundancy is the unnecessary duplication

of data which slows down the process of searching and adds unnecessary storage

size to the database. CSV (comma-separated value) files and other spreadsheet files

are common examples of flat-file databases.

2.2 DatabaseManagement Systems

A database management system is software that is used to manage the storage,

manipulation, and retrieval of data from a database. Once a database has been

created, the database management system stores a database catalog containing

descriptive information about the database [32]. This is more commonly known as
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metadata. Metadata contains information such as the database structure and the

different data types contained in the database. Moreover, a database management

system provides a wide range of functionalities to users such as facilitating adminis-

trative operations, data security and data recovery. It serves as an interface between

the database and the application programs that make use of the database. Figure

2.2 contains a simplified version of a database system environment. This figure

shows that end-users are able to access data from a database by use of application

programs. Application programs can access data stored in a particular database by

sending queries to the database management system that is, in turn, able to access

the requested subset of data from the stored database. [32].

Figure 2.2: Simplified version of a database system environment [32]

The following subsections discuss four different types of database management

systems.
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2.2.1 Relational DatabaseManagement System (RDBMS)

A relational database management system (RDBMS) is a software system used

to manage relational databases. A relational database is a type of database that

consists of data that have relationships between them. Often a relational database is

organized in different tables where relationships are made between the tables by

the use of primary keys and foreign keys. Primary keys are unique keys assigned

to each row to help identify each record in a table. Foreign keys are used to create

references between different tables. Foreign keys are defined as primary keys in one

table and exist as a field in the second table to provide the required link between

the two tables. The purpose of foreign keys is to identify a particular record from

the referenced table. Figure 2.3 contains two tables that are connected via a foreign

key. Employee No is a primary key in the Employees table but is a foreign key in

the Orders table. The use of foreign keys to create a link between different tables is

what makes relational databases unique and is an efficient way to help eliminate

the issue of data redundancy. In addition to using foreign keys, a RDBMS removes

data redundancy using a process called normalization (refer to chapter 4).

Figure 2.3: Primary key and foreign key[23]



2. Databases and Database Management Systems 9

A relational database management system allows users to create, read, update

and delete data from a relational database. This functionality also goes by the

acronym ‘CRUD’. Users can perform CRUD functionality by using SQL (Structured

Query Language) [7]. SQL is a language used to communicate with a database and is

also the standard language used for relational database management systems. It is

a declarative language that tells the database what to do, but not how to do it. For

example, to list the customer number and supplier for all orders with a price greater

than $300 in the orders table from figure 2.3, the following SQL query is used:

SELECT CustomerNo , Suppl ier FROM ORDERS WHERE P r i c e > 300

A RDBMS also provides many advanced features such as concurrency control.

Concurrency control is the system’s ability to determine how to handle concurrent

manipulation of data. This usually happens when multiple people are trying to

access and edit the same data from a database at the same time. For example, if two

different people try to reserve the same Airbnb for the same night, the RDBMS has

rules to determine who gets the reservation by properly handling all the concurrent

requests that it receives.

A RDBMS is one of the most commonly used types of database management

systems. This is primarily due to its ease of use. SQL is simple to learn and provides

a high-level of abstraction for its users. This enables users to focus more on what

needs to be done rather than having to worry about the internal processes of the

system. Some of the most popular relational database management systems include

MySQL, Oracle DB, SQLite, PostgreSQL, and SQL Server by Microsoft [7]. While

MySQL, SQLite, and PostgreSQL are all open-source systems, Oracle DB is owned

by Oracle Corporation and can be expensive. Oracle DB is most commonly used in

the banking industry as it includes functionality specifically tailored towards banks

[7]. Microsoft’s SQL Server is also proprietary software that is part of Microsoft’s

data platform suite.
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2.2.1.1 Entity Relationship Diagram (ERD)

An entity-relationship diagram (ERD) is a diagram that illustrates the logical

structure of a database. It helps to visualize the relationships that exist in a relational

database. In this section, some basic terminology of ERD components and their

symbols are presented.

– Entity: An entity is a concept about which we want to store an object [3]. It is

represented by a rectangle. Entities are usually nouns. Ex: Patient, Doctor

– Relationship: A relationship defines how different entities interact with each

other. It is represented by a diamond. Relationships are usually verbs. Ex:

Supervises, registers

– Attribute: An attribute is a property of an entity. One entity consists of

many different attributes. Attributes can be represented as ovals or can be

presented under each entity name. A horizontal line separates the entity from

its attributes.

– Cardinality: A cardinality specifies the type of relationship between different

attributes. Cardinality includes one-to-one, one-to-many and many-to-many

relationships as seen in figure 2.4.

– Ordinality: Ordinality describes the relationship between two entities as

either optional or mandatory. While cardinality specifies the maximum

number of relationships, ordinality specifies the absolute minimum number

of relationships [3].

Various styles can be used to express cardinality and ordinality. Some of these

styles include Chen style, Martin style, and Bachman style. Figure 2.4 shows how

ordinality and cardinality are depicted using the information engineering style.
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Figure 2.4: Cardinality and ordinality presented using information engineering style [3]

2.2.2 Hierarchical DatabaseManagement System (HDBMS)

The hierarchical database management system (HDBMS) is a software system used

to manage hierarchical databases. A hierarchical database employs a tree-like

structure and stores data using the parent-child relationship. The tree-like structure

is made up of nodes and branches. Each node contains different attributes that

describe a record. Each record can contain several fields that in turn house data

values such as floats, texts, integers or even pointers to other records. The node

found at the very top is referred to as the root node and contains dependent nodes

in succeeding levels [5]. A parent node can have one or many children. If the parent

node has only one child, the parent and the child have a one-to-one relationship.

If the parent has more than one child node, the parent and its children have a

one-to-many relationship. Figure 2.5 illustrates the parent-child relationship in the
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tree-like structure where Bank is the root of this database tree. In this example, all

parents have a one-to-many relationship with their respective children.

Figure 2.5: Parent child relationships in the hierarchical database model [5]

A HDBMS can be very complicated to design and use. It is inefficient when

dealing with many-to-many relationships because it often results in data redundancy

[5]. The parent-child relationship of the hierarchical database makes it difficult to

delete nodes that are not leaf nodes. For example, the deletion of a parent node

results in the deletion of all its children. Moreover, if data is inserted at a child node,

the child can only be accessed using its parent which results in an unnecessary

overhead for insertion time [5].

Even though HDBMSs are becoming less popular these days, big companies

such as IBM and Microsoft still use them. For example, Windows registry makes

use of the hierarchical database model. IBM’s information management system

(IMS) uses the hierarchical database model as well [38].
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2.2.3 Object Oriented DatabaseManagement System (OODBMS)

An object-oriented database management system is a software system designed to

manage object-oriented databases. An object-oriented database stores data in the

form of objects. The object-oriented database model extends the approach of the

relational database model by using its table-oriented design and implementing an

object-oriented approach. An OODBMS follows the principles of object-oriented

programming and makes use of classes and objects. Figure 2.6 outlines some

features of the object-oriented database model. This figure visually shows that

object-oriented databases are a combination of relational database features and

object-oriented programming features.

Figure 2.6: Object-oriented database model [40]

Some of the most fundamental features of an object-oriented database include

classes, encapsulation, inheritance, association, and persistence. A class is a template

used for creating objects. An object has many states and behaviors. Each object in

an object-oriented database has a unique object identifier [40]. Inheritance is also an

important object-oriented database feature that is used to create new classes that
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inherit the properties of their respective parent class and add additional properties.

Association is a feature that defines the relationship between different objects in

the database. Associations are defined within classes so all objects created from

the class include that specific association as one of their properties. Persistence

is another object-oriented database feature that enables the creation of persistent

objects. Persistent objects are objects that continue to exist in memory even after

a program completes its execution. Persistent objects are really useful when data

needs to be restored if an application needs to be rerun. It is important in solving

issues related to data recovery and concurrency control [40].

There are many advantages to using an OODBMS. An OODBMS is good at

handling very complex data relationships since complex data can be accessed merely

as objects. If programmers use object-oriented programming to build software, it

is much easier to incorporate an OODBMS than another type of DBMS because of

the object-relational mapping tools available to manipulate object-oriented data in

the database. Data can be accessed as objects from the database when developing

software that needs to interact with a database. Additionally, an OODBMS provides

quick access to information stored in a database. This is because objects are tracked

via their unique object IDs. This eliminates the need for complex foreign key

traversals as in the case for RDBMS’s [35]. An OODBMS also allows users to create

user-defined complex data types. Users can define complex data types since the

type of data stored is not restricted to specific data types as in the case with RDBMSs.

One drawback to using OODBMS is the complexity required to program OODBMS

systems, especially when compared to the techniques used to program RDBMS

systems [35].
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2.2.4 Network DatabaseManagement System (NDBMS)

A network database management system is a software system used to manage

network databases. A network database is a database model that extends the

hierarchical database model and is designed to solve some of the drawbacks to

the hierarchical model. A network database model is a more flexible method of

implementing the parent-child relationship available in the hierarchical database

model. In the network database model, a child can have one or more parents

resulting in a graph structure made up of different nodes. The network model

represents data as a tree of records where records are related to each other through

pointers.

Figure 2.7: Network database model record relationship [1]

Figure 2.7 depicts the relationship between two related records. Relationships

in the network database model are referred to as ‘sets’ [1]. Pointers are used to

access records in this model. The relational database equivalence to sets is the use

of foreign keys. A network database model has a significant advantage here since

there are no columns devoted to relating two different tables. The use of pointers

results in reduced disk space consumption and memory usage. Moreover, the
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querying performance of a network database model is significantly better than its

relational database model counterpart [1]. The network database model provides

key advantages over the hierarchical database model due to its flexibility and its

ease of access to different nodes through the use of pointers. A major drawback to

the network database model is that it is difficult to design, implement and maintain.

Due to this reason, many programmers prefer to use relational and object-oriented

database models instead.

2.3 NoSQL Databases

NoSQL databases have become an increasingly popular method of building and

managing databases. NoSQL, or ‘Not Only SQL’ refers to a group of non-relational

databases that are highly useful when working with big data analytics [37]. With the

rise in our dependence on the world wide web, data gathered by large companies

and corporations is growing at a record pace. At this scale, conventional data

management tools are not able to efficiently handle such large amounts of data.

The main advantage of NoSQL databases is that they are designed to handle and

process large-scale data. Due to this reason, NoSQL databases provide greater

flexibility than their relational database counterpart. NoSQL databases do not

require adherence to a specific schema and thus can be used for semi-structured

and non-structured data [21]. NoSQL databases are also horizontally scalable. This

enables processing efficiency especially when dealing with large-scale datasets.

Horizontal scaling provides the ability to use more resources (machines) to the

already-existing pool of resources which in-turn increases processing capacity.

NoSQL databases have four different classifications. They are key-value stores,

document stores, wide-column stores and graph databases. Key-value stores are

types of databases that assign keys to the items being stored. Its main use is
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in situations where extremely fast and scalable retrieval of data is needed [21].

Document stores are designed to store data that are encoded in a standard exchange

format such as JSON or BSON. This format is used in situations that deal with

semi-structured and unstructured data. Specific use-cases are, for example, in

building content management systems that manage blogs. Each blog has different

components and can be processed without needing to adhere to a specific schema.

Wide-column stores are able to store records with really large numbers of dynamic

columns. This type of database is commonly used by predictive analytics and

large-scale batch data processing [21]. Graph databases use graph structures to store

and navigate relationships between different nodes. Graph databases use nodes

and edges to store data and their relationships with one another. Graph databases

are useful when dealing with data relationships in cases like social networking and

fraud detection [22]. Figure 2.8 shows a visualization of a simple graph database

created that shows how edges and nodes come together to depict the relationships

that Jack has with different people in a social networking site. In this case, the nodes

store data (the names of people) and the edges store the relationship between the

different nodes.

Figure 2.8: Social network graph for Jack [22]



CHAPTER 3
Database Architecture

Different databases are designed according to different database architectures

to meet the specific need of a business or organization. A database architecture

governs how a database management system is accessed and who is able to access it.

A ’tier’ refers to the different layers that exist in a specific type of architecture. When

designing a database it is important to identify what type of database architecture

to use to provide quick and secure access to data. The architecture of a database can

either be single or multi-tier. This chapter introduces and discusses 4 different tiers

of database architecture, namely, 1-tier, 2-tier, 3-tier and N-tier architectures.

3.1 1-tier Architecture

The 1-tier database architecture is the simplest form of database architecture. This is

when the client, the server, and the database all reside on the same machine. While

this design is not commonly used in large scale databases, it is very useful in local

application development where programmers set up a database for testing purposes.

This architecture allows programmers to directly access and communicate with

the database, thus providing a quick way for programmers to access required data

while in the development phase of the database management system [24]. One

18
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major drawback to using this architecture is the security risks it poses. If the server

runs into a problem, communication with the database will be lost. Moreover, the

database is vulnerable to attacks as the client has direct and unrestricted access to

the database, resulting in the possible loss of data [24].

3.2 2-tier Architecture

The 2-tier database architecture consists of an application layer between the end-user

and the database management system [4]. Similar to the client-server architecture,

the 2-tier architecture consists of the client tier and the data (database) tier. The

end-user can only access the database through the application layer. The application

layer, also known as an open database connectivity (ODBC), provides an API that

allows the end-user to make calls to the database management system. The 2-tier

architecture is able to provide extra security as the end-user is unable to directly

access the database. A user’s interaction with the backend database is limited by the

design of the client tier. Figure 3.1 illustrates this representation. In this figure, the

server-side handles the database management system and the client-side handles

the application and client layers [17]. In this particular architecture design, the

application layer serves as an intermediary allowing communication between the

client layer and the database system.
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Figure 3.1: 2-tier architecture representation [4]

3.3 3-tier Architecture

3-tier architecture is the most commonly used database architecture. It consists of a

presentation layer (also known as the graphical user interface layer), an application layer

and a database layer. The user interacts with the presentation layer. For example,

the presentation layer can be a form that the user fills out on their browser. Once

the user submits the form, the data is sent to the application layer for processing

[14]. This technique provides a high level of abstraction because the end-user has

no knowledge of the application layer or the database management system but is

able to generate different types of views from the database by using the provided

graphical user interface. The application layer is responsible for processing the

requests submitted from the presentation layer. It provides validation checks before

sending the request to the database [14]. It is also responsible for retrieving the

requested data from the database and sending that data back to the presentation

layer for the end-user to view. The database layer houses the actual database.

Depending on the specific request from the user, the data contained in the database

layer can be updated, deleted, read or new data can be added. Figure 3.2 depicts
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this representation. Despite the added complexity, using this type of architecture

is advantageous because it provides increased security. The application layer has

specific verification checks in place to ensure that data is not mishandled by the

client. Moreover, the separate layers allow for easy scalability. For example, if

there is a need to scale the database in an organization, this can be done seamlessly

without affecting the other layers in the architecture. Additionally, this architecture

makes it easy for experts to be responsible for implementing and maintaining each

layer of the system. For example, a web-designer can handle the client layer while

the database administrator can be in charge of the database layer. This way, each

layer can be handled with expertise, thus increasing the quality and efficiency of

each separate layer.

Figure 3.2: 3-tier architecture representation [4]
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3.4 N-tier Architecture

An n-tier database architecture refers to multi-tier database architectures. Thus, 2

and 3-tier architectures are classified as n-tier or multi-tier database architectures.

The most common type of n-tier architecture is the 3-tier architecture where the

presentation layer, application layer, and data layer are all separate. Depending

on the size and complexity of the application, these three layers can be placed in

different computers that reside in different locations around the world. There are

many advantages to using the n-tier architecture including enhanced security such

as disaster recovery, as well as easier scalability and maintainability [41].

The n-tier architecture enables the enforcement of security to be different for each

layer in the architecture. Most commonly, the data tier needs to be the most secure

as all data used by an organization lies in the database. Thus, it is possible to add

more security to the data tier without having to make changes in other layers. This

method allows designers to have full control over security at each of the different

layers.

Scalability is an important component when designing applications that make

use of databases. The n-tier architecture enables scalability for each layer in the

architecture without affecting the other layers. For example, if a company decides

to expand its operation globally, the company can add additional databases to the

data tier as can be seen in figure 3.3. The application tier can be scaled by adding

new business rules, and the presentation layer can be expanded so the particular

user interface can be viewed across multiple types of devices. Figure 3.4 illustrates

how the presentation layer can be expanded to support viewing on a computer,

mobile devices, and tablets.
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Figure 3.3: Scaling the data tier [20]
Figure 3.4: Scaling the presentation

tier [20]



CHAPTER 4
Database Normalization

Database normalization is a technique used to organize the way data is stored

in a database. Database normalization is an important part of database design as

it helps eliminate data redundancy. Data redundancy is when multiple copies of

the same data exist in a database. This causes undesirable characteristics such as

insertion, deletion and update anomalies. Additionally, memory space and speed

of data access are also compromised as a result of a database that is unnormalized.

In addition to eliminating data redundancy, normalization also plays a key role in

ensuring the correct logic in the storage of data.

To better explain insertion, deletion and update anomalies the limitations of the

design for table 4.1 are analyzed. This table contains information for a hypothetical

car rental company that stores data on cars and their assigned drivers.

V_ID Make Model Year Driver Rent Start Date Rent End Date
001 Toyota Camry 2012 Katie Rech 08/04/18 08/06/18
002 Mercedes Benz 2008 William Brook 05/15/18 05/16/18
003 Chevrolet Cruze 2010 William Brook 06/20/18 07/02/18
004 Honda Accord 2000 William Brook 10/10/18 10/11/18
005 Audi Q5 2018 Katie Rech 09/01/18 09/20/18
006 Nissan Maxima 2016 William Brook 03/13/18 03/15/18

Table 4.1: Car rental details

24
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An insertion anomaly is when inserting new data is not possible because of

the absence of other data in the insertion process. Suppose the rental company

purchases a new car and wants to enter that information in the table. Unless the

new car is assigned to the driver and has a rental date, the driver and rental date

information will be set to NULL. Moreover, if the new car is assigned to Katie Rech,

her name will need to be inserted in the driver column, increasing data redundancy.

A deletion anomaly occurs when deleting a particular subset of data results

in the unintentional loss of other data stored in the database. For example, if the

rental company decides to sell the Toyota Camry and the Audi Q5 these cars will

be deleted from the database. This will also unintentionally delete the details of a

particular driver, Katie Rech.

Update anomalies arise when a table contains many duplicate fields and an

update to one field does not update all the corresponding fields in the database.

This is known as a partial update and results in data inconsistency. In the table

above, if William Brook changes his first name to James, each and every instance of

the name William Brook must be updated to James Brook. This is a tedious process

and is prone to errors when dealing with large databases.

The following subsections depict how these anomalies can be eliminated by

normalizing a table in different normal forms.

4.1 First Normal Form (1NF)

The first normal form contains a set of fundamental rules for database design. The

formal definition for the first normal form is as follows:

Definition: Let relation r have attributes A1, ..., An of types T1, ..., Tn respectively.

Then r is in the first normal form if and only if, for all tuples t appearing in r, the

value of attribute Ai in t is of type Ti for i = 1, ..., n [30].
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Let table 4.1 be relation r as reference. The attributes for this table are the column

headers, namely, VID, Make, Model, ..., Rent End Date. All the tuples (rows) in this

table do not violate the first normal form because for each tuple, VID is an integer,

Make, Model, and Driver are text types and so on.

Additionally, the table contains only single-valued attributes. This means that

the entries for each column in the table only contain a single value. Having more

than one value is a violation of the first normal form. Moreover, the first normal

form demands that each column should have a unique name. Having two or more

columns with the same name is a violation of the first normal form.

Table 4.2 is a hypothetical record of customers that rented DVDs from a store.

This table violates two rules of the first normal form. The first violation is that

two fields have the same name. The second violation arrises in the Rented Movies

field. Some customers have rented more than one movie. The Rented Movies field

thus contains multiple values for some customers. Table 4.3 below shows how the

violations can be resolved to ensure the relation is in the first normal form.

User No Name Name Rented Movies
001 Fred Calvin Black Panther
002 Kevin Daniel Iron Man 3, Hereditary, The Conjuring
003 James Harry Incredibles 2, Deadpool 2
004 Katherine Oliver Sorry to bother you

Table 4.2: Unnormalized movie rental relation

User No First Name Last Name Rented Movies
001 Fred Calvin Black Panther
002 Kevin Daniel Iron Man 3
003 James Harry Incredibles 2
004 Katherine Oliver Sorry to bother you
002 Kevin Daniel Hereditary
002 Kevin Daniel The Conjuring
003 James Harry Deadpool 2

Table 4.3: Movie Rental relation in 1NF
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4.2 Second Normal Form (2NF)

The second normal form is the second major step in the normalization process of a

database. It is an extension of the first normal form and has the purpose of better

clarifying the database design and continuing to eliminate data redundancy within

the existing relations in a database.

Before a formal definition for the second normal form is given, the following

terms need to be defined:

– Primary Key: One or more attributes that are deemed most suitable to identify

each record in a relationship. Most times, a primary key consists of a single

attribute and is commonly a U_ID attribute (unique identifier) for each record.

A primary key cannot have a null value

– Foreign Key: One or more attributes that are used to link two relationships

together. A foreign key exists as a candidate (or primary) key in one relationship

(known as the parent table) and exists as a foreign key in another relationship

(known as the dependent table) [15]. The foreign key acts as a cross-reference

between two relationships and is an essential element in eliminating data

redundancy

– Candidate Key: The minimum number of attributes necessary to uniquely

identify each record in a relationship. A relationship can have multiple

candidate keys and they can take null values.

– Composite Key: A primary key that consists of two or more attributes

– Super Key: One or more attributes that are used to uniquely identify each

record in a relationship. A super key is different from a candidate key since

the attributes of a super key are not necessarily irreducible. Thus, a candidate

key is indeed a subset of a super key (Super key ⊆ Candidate key)
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– Subkey: A subset of at least one key in a relationship

– Partial Dependency: When non-key attributes in a relation are functionally

dependent on a subset of a candidate key

– Functional Dependency (FD): For a relation r, functional dependency exists

between two or more attributes if the value of one attribute uniquely determines

the value of other attributes. For example if X → Y, then Y is functionally

dependent on X. X is called the determinant and Y is called the dependent.

In table 4.1, the functional dependency {Make} → {Model} holds because

each car model is functionally dependent on a specific make. Additionally,

{V_ID} → {Make,Model} holds as each make and model combination can be

uniquely identified by the V_ID [30].

– Trivial Functional Dependency: The functional dependency X→ Y is trivial

if and only if there is no way the functional dependency can be violated [30].

Given the list of definitions above, the second normal form is defined as follows:

Definition: The relation r is in second normal form if and only if, for every

nontrivial functional dependency X→ Y that holds in R, at least one of the following

is true: (a) X is a super key; (b) Y is a super key; (c) X is not a subkey [30].

In simpler terms, a relation is said to be in the second normal form if it is already

in the first normal form and all partial dependencies are removed from the relation.
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Consider the following relation on student major information:

S_ID First Name Last Name Gender Major Fee ($)
01 Robert Brown Male Physics 1000
02 Karen Martinez Female Economics 700
03 Helen Cranberry Female Neuroscience 1300
04 Louise Lee Female Anthropology 650
05 Karen Martinez Female Psychology 650
06 Jacob Green Male Chemistry 1050
07 Robert Brown Male Mathematics 900
08 Karen Martinez Female Mathematics 900
09 Theodore Putname Male Biology 850

Table 4.4: Student major table

Table 4.4 fulfills all the requirements of the first normal form. However, this

table has lots of duplications and partial dependencies. For example, the fee

attribute is partially dependent on major which is a non-key attribute ({Major} →

{Fee}). Additionally, Gender is partially dependent on First Name and Last Name

({FirstName,LastName} → {Gender}). As the size of this table increases, more and

more duplications will occur causing insertion, deletion and update anomalies. If

the fee for a mathematics major increases, this information needs to be updated on

all its occurrences in this database causing a potential update anomaly.

To put table 4.4 into the second normal form, information needs to be split into

multiple tables. This eliminates partial dependencies in the separate tables. The

first table that needs to be created holds student information. The second table links

students to their respective majors and the third table holds course information.
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S_ID First Name Last Name Gender
01 Robert Brown Male
02 Karen Martinez Female
03 Helen Cranberry Female
04 Louise Lee Female
05 Jacob Green Male
06 Theodore Putnam Male

Table 4.5: Student information table

S_ID Major 1 Major 2 Major 3
01 Physics Mathematics Null
02 Economics Mathematics Psychology
03 Neuroscience Null Null
04 Anthropology Null Null
05 Chemistry Null Null
06 Biology Null Null

Table 4.6: Student major table

Major Fee ($)
Physics 1000
Economics 700
Neuroscience 1300
Anthropology 650
Psychology 650
Chemistry 1050
Mathematics 900
Biology 450

Table 4.7: Major information table

Tables 4.5, 4.6, and 4.7 all comply with the rules of the second normal form. If

specific information about a student or a major needs to be updated, it can be done

easily at one location, eliminating the risk of anomalies. Moreover, all three tables

do not contain partial dependancies. Finally all data is stored such that there is no

data duplication.
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4.3 Third Normal Form (3NF)

The third normal form is the third step in the normalization process of a database.

It is the stepping stone to achieving the Boyce-Codd normal form. The third normal

form extends the second normal form to further eliminate anomalies and data

redundancy. The following term is defined before giving a formal definition of the

third normal form:

Transitive dependency: A non-key attribute that is functionally dependent on

another non-key attribute in the same relation

The third normal form is defined as follows:

Definition: A relation R is in the third normal form if and only if, for every

nontrivial functional dependency X→ Y that holds in R, either (a) X is a super key

or (b) Y is a subkey [30].

For a relation to be in third normal form, it must first fulfill the requirement

for the second normal form. Additionally, it must also eliminate all transitive

dependencies.

Tables 4.5, 4.6, and 4.7 in the previous subsection are all in the third normal form.

However, if table 4.7 is expanded to contain department chairs, then transitive

dependancies will exist in the relation. The following relation contains student

major information including department chairs:

Major Fee ($) Chair_ID Department Chair
Physics 1000 01 Dr. Erik
Economics 700 02 Dr. Jennifer
Neuroscience 1300 03 Dr. John
Anthropology 650 04 Dr. Pierce
Psychology 650 05 Dr. Timothy
Chemistry 1050 06 Dr. George
Mathematics 900 07 Dr. Radu
Biology 450 08 Dr. Deloris

Table 4.8: Major and department chair information table
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In table 4.8 transitive dependancies exist in the Chair_ID and Department Chair

attributes. Department Chair is functionally dependent on Chair_ID which is itself

a non-key attribute. The functional dependency is represented as {Major} →

{Chair_ID} → {DepartmentChair}. Additionally {Major} → {DepartmentChair} →

{Chair_ID} is also another valid transitive dependency. Chair_ID is functionally

dependent on the non-key attribute Department Chair which is in turn dependent on

Major. To eliminate this transitive dependency, table 4.8 needs to be split into two

different tables as follows:

Major Fee ($) Chair_ID
Physics 1000 01
Economics 700 02
Neuroscience 1300 03
Anthropology 650 04
Physchology 650 05
Chemistry 1050 06
Mathematics 900 07
Biology 450 08

Table 4.9: Major information table

Chair_ID Department Chair
01 Dr. Erik
02 Dr. Jennifer
03 Dr. John
04 Dr. Pierce
05 Dr. Timothy
06 Dr. George
07 Dr. Radu
08 Dr. Diloris

Table 4.10: Department chair table

Tables 4.9 and 4.10 are now in third normal form. All of the transitive

dependancies have been eliminated.
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4.4 Boyce-Codd Normal Form (BCNF)

The Boyce-Codd normal form (sometimes referred to as 3.5 normal form) is an

advanced version of the third normal form. While the third normal form is usually

adequate for most relational databases, data redundancy can still be reduced. BCNF

extends the third normal form by ensuring that all data present in a relation provides

a fact about the key, the whole key, and nothing but the key [30]. The Boyce-Codd

normal form was developed by computer scientists Raymond Boyce and Edgar

Codd in 1974 to address some anomalies that the third normal form was unable to

fix.

The formal definition for the Boyce-Codd normal form is given as follows:

Definition: Relation R is in Boyce-Codd normal form (BCNF) if and only if, for

every nontrivial functional dependency X→ Y that holds in R, X is a super key [30].

This means that if Y happens to be a prime attribute, X cannot be a non-prime

attribute. To better explain this concept, relation 4.11 is converted into BCNF.

Student_ID Major Graduation Year Academic Advisor
001 Chemistry 2020 Dr. Clara
002 Math 2022 Dr. Mary
003 Sociology 2020 Dr. Pierce
002 Physics 2020 Dr. Johnston
004 Sociology 2021 Dr. Pierce

Table 4.11: Student major and advisor information

Relation 4.11 contains information on university students and their assigned

academic advisors. This table is in the third normal form as it does not have any

transitive dependancies. However, it is not in BCNF. This is because of the following

functional dependancies:

– {Student_ID,Advisor} → {Major}

– {Major} → {Advisor}
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It is important to note here that Student_ID and Advisor are candidate keys, thus

making them prime attributes. The second functional dependency shows that the

prime attribute Advisor is functionally dependent on the non-prime attribute Major.

Thus, relation 4.11 does not satisfy BCNF. The previous relation can be broken

down into two smaller relations to satisfy BCNF as follows:

Student_ID Graduation Year Academic Advisor
001 2020 Dr. Clara
002 2022 Dr. Mary
003 2020 Dr. Pierce
002 2020 Dr. Johnston
004 2021 Dr. Pierce

Table 4.12: Student advisor and graduation date information

Major Academic Advisor
Chemistry Dr. Clara
Math Dr. Mary
Sociology Dr. Pierce
Physics Dr. Johnston
Sociology Dr. Pierce

Table 4.13: Available majors and advisor information

Relations 4.12 and 4.13 are broken down such that no prime attribute is

functionally dependent on a non-prime attribute. The third column in relation 4.12

could have included student major information instead of academic advisors and

the relations would still fulfill BCNF requirements. It is assumed that students

are not able to have dual majors and no one student can have multiple advisors

for simplicity. While the third normal form is usually sufficient for eliminating

anomalies, the Boyce-Codd normal form is also used to further eliminate anomalies.



CHAPTER 5
Database Security

Database security is an important step in securing the massive amounts of

personal and classified information that companies, governments, educational

institutions, and healthcare providers collect on their users. With the rise in

accessibility of the internet around the world, it is becoming more and more

crucial to ensure information security. It is very important that the data stored in

databases keep their integrity, do not get lost or misplaced, and are accessed only

by authorized services and personnel. Database security comes in many different

forms including the physical security of data centers, using software to prevent

unauthorized intrusions, and implementing administrative controls in the different

types of software interacting with the database systems. It is important to note that

databases that are accessible on the world wide web need more stringent security

infrastructures in place than databases that only provide local services to businesses

without having the need to be connected on the internet.

Currently, the most popular security measure in the industry is the use of

firewalls. Firewalls act as a barrier between the trusted internal network of an

organization and the untrusted internet. Firewalls decide whether or not to allow

incoming and outgoing network traffic between an organization’s network and

the wider internet network. Firewalls, however, are limited in securing a database
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from internal violations in an organization or in cases where unauthorized users

successfully penetrate the firewall and have access to the internal resources of an

organization [27]. According to a U.S. Air Force study on computer crimes, the

majority of database security breaches occur from insiders [27]. This demonstrates

the need to adopt systems that ensure database security from an internal standpoint.

There are many different types of database information security control method-

ologies. This chapter focuses on a few of these practices while also looking at the

concept of SQL injection attacks and their prevention techniques.

5.1 Access Control

Database access control is a security mechanism by which a database user is allowed

access to only a subset of the database that the user can query. Unauthorized data

access is often a major concern in the design of a database management system. This

occurs when a user is able to obtain information that he/she is not entitled to access.

The main objective of access control is to restrict access to database users based on

their specific access privileges. The concept of access control is tightly associated

with the concept of user authorization which determines whether a user is allowed

access to specific types of data and whether or not the user can make modifications

and deletions to the data. Additionally, the issue of confidentiality is also tightly

associated with access control in the case of databases. User data confidentiality

is the method of protecting user data from unauthorized access. There are three

main types of database access control that will be covered in this section. These are

discretionary access control (DAC), mandatory access control (MAC) and role-based

access control (RBAC).
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5.1.1 Discretionary Access Control

Discretionary access control is a type of access control by which access to data

stored in a relational database is based on the user’s identity and the authorization

rules assigned to the user. DAC is used in many commercial database management

systems due to its flexibility in granting users access to data [26]. DAC allows

users to grant authorizations on a specific subset of data to other users. Users can

be granted access rights to specific objects, data files, and records. Additionally,

specific modes of access are assigned such as viewing, inserting and deleting

access [39]. One important aspect of DAC is its authorization administration

policy. The authorization administration policy is a policy that governs how

a user is granted or revoked access to data. Some of the more common types

of authorization administration policies include centralized administration and

ownership administration [26]. Centralized administration is when only certain

users (with higher privilege access) have the authority to grant or revoke permissions

whereas ownership administration insists that only the owner of an object can grant

or revoke a user’s access to a specific object. A user is said to be the owner of the

object if they created that object or if they have higher privileges than the creator

of the object (such as an administrator or any other official higher up in the privilege

rank for a database system). Ownership administration offers additional features for

administration delegation [26]. This is a system by which the owner of an object

can delegate other users to be able to grant or revoke authorizations for the specific

object.

The discretionary access control framework has a few drawbacks. The DAC

framework enables object owners to control access authorizations to specific objects

and this can lead to Trojan horse attack susceptibility. A Trojan horse is a type of

malware designed to inflict harmful action on data stored. Users that have access

to the database but are not authorized to view the contents of a specific object can
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use Trojan horse attacks to copy the contents of that object on behalf of the object

owner [18]. This takes place without the knowledge of the object owner but using

the owner’s access privileges. While there are different models proposed to protect

the discretionary access control policy from Trojan horse attacks, these attacks are

still the biggest drawback to using DAC.

5.1.2 Mandatory Access Control

Mandatory access control is another type of access control developed using a

non-discretionary model. Unlike DAC, the MAC framework assigns access au-

thorizations based on a user’s information clearance. MAC policies are often

defined and controlled by either the database administrator or the security policy

administrator (if a security policy administrator exists within the organization). This

framework is often referred to as the most stringent form of access control. Due to

this reason, MAC is the goto access control mechanism employed by the military,

intelligence agencies and other government offices [25]. Each database user is

classified based on an ordered set of access classes (also known as labels). An access

class is made up of two different components: a security level and a set of categories

[26]. An example of security levels used by intelligence agencies are Top Secret (TS),

Secret (S), Confidential (C), and Unclassified (U). The most dominant class is the

Top Secret class and has access to the most sensitive data stored in a database. Users

that have access authorization to these dominant classes are usually trusted within

their respective organizations. The set of categories, on the other hand, refer to the

different sectors of an organization that a specific user is classified under. In the

case of the US military, the set of categories include departments such as NATO and

the Nuclear Army.
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5.1.3 Role-based Access Control

Role-based access control allows access to data based on the role of a user. This

method of access control is a relatively new innovation and is currently highly

sought after. A user’s role within an organization represents the set of actions

and responsibilities associated with the user [26]. Unlike MAC and RAC, access

authorizations in this model are granted or revoked to specific roles instead of

specific users. When a user needs to complete a task, the user is assigned a role and

thus acquires the access authorization of the role [26]. The RBAC model works by

authorizing users to play certain roles when they need to perform certain actions.

This method of access control is efficient compared to MAC and DAC as all the

roles are predefined and the only thing that needs to be done is to assign a user

to a role depending on the action that needs to be performed. Additionally, the

RBAC method consolidates all the different access authorizations on the database

into organized roles making it easier to manage and modify if necessary. Figure 5.1

depicts three users that are assigned the same role Role 1 and are able to perform

different transactions on Object 1 and Object 2.

Figure 5.1: Role based authorization [25]

One additional security feature provided by RBAC is the separation of duty
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constraints (SoD). SoD constraints enforce that no one user has too many roles and

thus has too many access authorizations. This is because if a user that has too many

authorizations is compromised, that will highly expose the data stored in a database

[26]. SoD constraints can either be static or dynamic. Static SoD constraints restrict

the number of users that can be assigned to one role and also govern whether or

not two different roles can have common users [26]. This fits into the ‘separation of

duties’ principle which states that users should not have more rights than they need

to perform a certain task. Dynamic SoD constraints restrict role access based on the

user’s interaction with their assigned role during previous and current sessions. A

session in this context refers to the duration in which a user requires to complete

one unit of work.

5.2 Encryption

Encryption is the method of converting plaintext into ciphertext by the use of an

encryption algorithm. Encryption algorithms are implemented based on the practice

of cryptography. The plaintext is scrambled using a mathematical algorithm, and

only users with an encryption key are able to unscramble the text. Encryption is

currently extensively being used in e-commerce, banking services, some secure

messaging platforms, and many more industries. Database encryption is a technique

used as an added layer of security for a database. Security measures such as access

control and firewalls provide adequate security to a database but are unable to

protect the data stored if an attacker bypasses their way into a database. As stated

at the beginning of this chapter, the majority of database security breaches occur

from insiders. Thus, it would be trivial for insiders such as system administrators

and database administrators to have access to a database system. Database-level

encryption protects data stored on a database by ensuring that only authorized users
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are able to read the stored data. If database encryption is correctly implemented,

data obtained by an attacker is meaningless without the proper key to decrypt it.

Additionally, an attacker would not be able to modify the database by adding records

because the information would be illegitimate when the database is decrypted for

use [31].

While encryption is an effective way of protecting data, database encryption must

satisfy specific constraints. The following list discusses a few of these constraints:

– The encryption algorithm used must be adequate enough to require an

extremely high work factor (the effort required to break into a crypto-system).

In order to achieve this level, difficult mathematical problems are used in

encryption algorithms.

– Encryption and decryption must be fast so as to not heavily impact the perfor-

mance of the database system. If the process of encrypting and decrypting

data is slow, this technique would introduce issues related to the speed and

performance of the system.

– The size of the encrypted data is not significantly greater than the size of the

data before encryption.

– The encryption algorithm used must be able to encrypt and decrypt single

records (single rows) without regard to their physical and logical position in

the database. A single record would be able to provide all data for a single

entity and thus encryption must be implemented on the record-level.

– The encryption algorithm must be able to handle logical subschemas. Sub-

schemas are different subsets of the schema for a database. Different users of

the database might want to view different subschemas thus obtaining different

subsets of data stored on the database. Decrypting different subschemas must

present the stored data correctly.
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– The database management system must be able to identify and properly handle

records that are attempted to be created or updated using false encryption keys.

An authorized user must be able to identify false records when decrypting

records.

– The encryption mechanism must not demand that duplicate copies of data

be created to allow subschema representations as this introduces storage,

performance and integrity issues.

– The encryption scheme must allow data to be decrypted from incomplete

records the same way it is decrypted from fully complete records [31].

This list is by no means an exhaustive list of constraints. It is, however, an

accumulation of some of the most important requirements to consider when

designing and implementing database encryption algorithms.

Protecting database encryption keys is as important as encrypting the database

itself. Since cryptography relies on keys to encrypt and decrypt data, database

encryption is only as good as the protection of the encryption keys [33]. Encryption

key management is the process of administering and protecting cryptographic keys.

Database administrators need to determine where to store the encryption keys and

what access restrictions to impose on these keys. One method currently being used

is to store the keys in a restricted database table and encrypt that table with a master

key [33]. The master key gets stored on the database server. The disadvantage of

this approach is that the database administrators and other administrators with

privileged permissions are able to access this master key and use it to decrypt data

stored on the database.

An alternate approach to database encryption is to use a hardware security

module (HSM), a hardware device designed to protect and store digital keys, to store

the master encryption key. Hardware security modules provide crypto-processing
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functionalities that allow the encrypted keys stored in a server to be dynamically

decrypted. These decrypted keys are then removed from server memory once the

intended database operations are completed [33].

Another solution is to have a separate server that takes care of security-related

tasks. In the security server, encryption keys are stored using the hardware security

module. Additionally, the security server manages users, groups, privileges and

encryption policies [33]. Figure 5.2 is a high-level diagram depicting the separated

database and security servers. The database server includes a security module that

is responsible for communicating with the security engine in the security server to

provide the key to encrypt and decrypt data. The security server is also responsible

for authenticating users, and ensuring that user privileges are being enforced.

Figure 5.2: Security server implementation [33]

5.3 SQL Injection

SQL injection is a technique used in databases to access information that is not

intended to be displayed. Malicious SQL queries are injected into a database
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and can result in displaying sensitive and private data to an unauthorized user.

SQL injections are also used to delete or manipulate data from a database. This

vulnerability can have far-reaching consequences for organizations as these attacks

threaten the integrity and privacy of data stored in a database. SQL injection attacks

are most common in web applications that contain a database in the backend.

The following user input demonstrates how an unauthorized user is able to inject

malicious code into a database to display all user information from an unprotected

database system If a user inputs ’105 OR 1=1’ as a UserId, the following SQL query

is generated:

SELECT ∗ FROM Users WHERE UserId = 105 OR 1=1;

[13]

This SQL query displays all the tuples in the Users table stored in the database

because ’1=1’ will always return true. Depending on what fields are available in

the Users table, the SQL injection described above can compromise private user

information such as passwords, and home addresses.

The use of SQL injections to penetrate through database systems is very

widespread and has been identified as the top ten most critical web applica-

tion security risks in 2007 and 2010 [29]. In relation to web applications, there are

three main avenues where SQL injection attacks occur. These are through cookies,

server variables and through physical user input [29]. Cookies are packets of data

that store state information on a user’s machine. They are very useful as they

allow websites to perform long-term user recognition. Cookie-based SQL injections

(also known as Cookie Poisoning) occur when a hacker modifies a cookie by injecting

malicious code. This is done by intercepting an HTTP request before it reaches a

server and adding malicious SQL statements in its cookie field [12]. This enables

the hacker to impersonate a valid user and gain information on behalf of the hacked

user.
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The most common type of SQL injection attack occurs through server variables.

Server variables are all the variables that define an HTTP request such as the GET

and POST submission methods. Additionally, HTTP headers and HTTP cookie

parameters are also used as an avenue to inject malicious SQL queries. Malicious

queries are entered into the client-side of the web application or specific requests

containing malicious SQL queries are made to the server [29].

Physical user input is another avenue used in SQL injections. Websites that use

user input directly in an SQL query are most vulnerable to this type of attack. There

must be a specific mechanism in place that validates user input before passing it into

an SQL query. It is important to note that malicious SQL code can also be injected

through the form of barcodes (if there are barcode input fields in the website) and RFID

tags [29].

SQL injection attacks can be classified into three different types, namely, in-band,

inferential and out-of-band attacks [29]. In-band attacks refer to the type of attacks

where the same communication channel is used to send an SQL injection attack and

gather the results. This is the simplest form of SQL injection. Inferential attacks

relate to methods of injection where the hacker does not directly receive data in

response to the injection attempt. Instead, the hacker reconstructs the database

structure based on the response of the web application after sending payloads [6].

Out-of-band attacks are uncommon and occur when the data is retrieved through a

different channel than was used to send the attack. This method is used in cases

where information retrieval in a web application is limited [29].

5.3.1 Prevention Techniques

Extensive research has been and is currently being done to develop different

techniques to protect systems against SQL injection attacks. However, there is

currently no one technique that fully immunizes systems from injection attacks.
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Developers must use a variety of different tools and programming practices to make

it as difficult as possible for an attacker to access a database system.

SQL prevention methods can be static, where developers work towards sealing

up all vulnerabilities before deploying an application [29]. There are also dynamic

techniques that work towards identifying and blocking SQL injection attempts

while a particular application is providing service.

Parameterizing queries (also known as a prepared statement with parameter binding)

is a static technique used to prevent SQL injection attacks by allowing a developer to

specify the structure of SQL queries before passing parameters to those queries. This

prevents unsanitary user input from modifying the query structure, thus ensuring

that the intent of a query remains unchanged. For example, if an attacker inputs ’105

OR 1=1’ as a UserId, the parameterized query will look for a UserId that matches

the entire string ’105 OR 1=1’ instead of exposing all the information stored in the

User table.

Using an SQL DOM is another static technique that prevents SQL injection

attacks. The SQL DOM gives the responsibility of database connectivity and

database manipulation to a set of classes that are strongly correlated to a database

schema. This allows the developer to generate SQL queries through the use of

the classes instead of string manipulation [29]. This is important as it alters the

query-building process from an unregulated one that uses string concatenation to a

systematic one that uses a type-checked API [36]. The type-checked API applies

certain security procedures such as input filtering. This prevents malicious SQL

queries from affecting the system. The main drawback of using the SQL DOM is

that it reduces the performance of the database system and requires developers to

learn this new programming paradigm.

A dynamic approach that can be used is a machine learning-based anomaly SQL

injection detection and prevention technique. This technique studies the behavior
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of normal database operations and detects an attack by identifying uncommon

behaviors. There are three steps that need to be carried out to use this technique.

Initially, normal database behavior is defined and parameterized. Next, a model is

created and is trained to detect abnormal behaviors. Finally, a process of prevention

is defined so that a machine learning model can correctly deal with the identified

abnormal behaviors [29]. Research has shown that clustering and outlier detection

techniques are most effective when used in developing these machine learning

algorithms. Additionally, support vector machines (supervised machine learning

classification algorithms) are shown to have high confidence intervals in correctly

classifying malicious SQL code that can be used for injection attempts.

5.4 Best Practices

Database security is a major topic and there are many different approaches to

protecting data residing in a database. Extensive research is being done to advance

the method of database security and ensure data integrity. The best practices for

securing a database range from physical modes of security to securing systems

through software and have more or less become standard in the current industry.

Making sure that the physical machines hosting the database are kept in a secured

and well-ventilated area is an important physical security measure. Physical

damage done to the machine hosting a database can result in permanent loss of

data. Additionally, the machines hosting the database need to be under supervision

to prevent unauthorized entry.

It is advised to keep the database server separate from the web server. The

database server should be kept behind a firewall to prevent an attacker from having

access to data even if the attacker was to break into the web server. Separating the

database server from the web server enables developers to implement different
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types of security measures to the two different servers. Encrypting the database

together with any backups that might be available is also equally important.

A web application firewall (WAF) is a type of firewall that secures web applica-

tions by filtering and monitoring HTTP traffic. Using this type of firewall not only

protects the web application but also the underlying database in the backend from

the likes of SQL injection attacks. When designing web applications, developers

need to minimize their use of third-party apps. Third-party apps make it easy for

developers to add functionality to their websites, but also come with the risk of

the security of the database, especially when dealing with third-party apps that

pull information from the database. Developers need to make sure that third-party

apps being utilized are being updated and continuously supported to minimize the

security risk they pose.

Database activity monitoring (DAM) is a technology that monitors all the activity

being carried out on a particular database. This technology can be highly effective

at protecting a database as it logs and provides reports on all the activity done

on a database. Real-time alerts are sent out if the technology detects a threat or

a violation of policy and authorized personnel can handle the issue immediately.

DAM is only responsible for monitoring and alerting violations but does not handle

the elimination of the threat. Thus, DAM needs to be used in conjunction with other

security measures.

This chapter touched on some important concepts about database security and

approaches that can be taken to minimize the risk of database security breaches. It

is important to note that the approach to securing a database can vary depending

on the nature of the data stored including the size of the data, and the level of

confidentiality that is required by the data. While no one approach can guarantee a

fully secure database system, employing multiple security measures as discussed in

this chapter can provide adequate protection for a database system.



CHAPTER 6
User Interface Design

With the rise in popularity of web-based services, user interface design has

become a major topic of interest amongst developers and web designers. User

interface design has become a strategic component for many businesses and

organizations as websites are often the first point of contact between a particular

user and a business. If the business website or application is correctly designed it

might motivate the user to easily perform their required task, thus increasing the

user’s satisfaction with the service they are receiving. This is a huge advantage to

the success of the business itself.

Current user interface usability studies have focused more on identifying the

type of user accessing the website and also the type of service that the user interface

intends to provide. Identifying these key components is crucial as it enables the

designer to focus on enabling the user to navigate through the website and complete

tasks as quickly and efficiently as possible while preserving a decent aesthetic for

the particular interface. This chapter explores some of the research being done

regarding web-based user interfaces while explaining some of the fundamental

design principles that web designers need to consider when designing for the web.

49
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6.1 Web-Based User Interfaces

More and more businesses and organizations place great importance on their web

presence. While providing access to millions of users worldwide, the web has

allowed businesses to provide service to their customers remotely. Advancements

made in the UI (user interface) and UX (user experience) of websites are major reasons

the web has such a huge presence in business settings. Web-based user interface

design focuses on the interaction between a user and the web application. Web

designers are responsible for how a web application looks and the amount of

convenience it provides for its users. A common trend in web design is the concept

of simplicity. The famous French writer, Antonie de Saint-Exupery said, ‘Perfection

is achieved, not when there is nothing more to add, but when there is nothing left to

take away [19]. The concept of simplicity in web user interface design relates closely

to Antonie’s quote. Simplicity refers to a user interface with a clean layout that

does not contain unnecessary elements and has adequate white space. Simplicity is

important as it improves legibility, and allows developers to guide their users to

the important parts of the website. This can be done through the systematic use of

specific colors and shapes [19]. Simplicity leads to more productivity and a better

first impression of a website.

Figure 6.1 is the homepage for Craigslist and is an example of a poor user

interface design. Craigslist is an advertisement website with many different

segments including job vacancies and cars for sale. It is evident that simplicity has

not been taken into consideration when designing this homepage as it is cluttered

with many different links and lacks the visual appeal that customers are used

to receiving in other web services. The number of different categories that are

presented at the homepage can be unpleasant for the eye and makes the design look

bloated and inconvenient to navigate.
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Figure 6.1: Poor web user interface design [8]

6.2 User Interface Design Principles

In his book, ‘GUI Bloopers 2.0’ Jeff Johnson identifies the following nine basic user

interface design principles. This section looks into the first three design principles

identified in the list below [34]:

– Focus on the users and their tasks, not on the technology

– Consider function first, presentation later

– Design for responsiveness

– Don’t distract users from their goals

– Try it out on users, then fix it!

– Conform to the users’ view of the task

– Design for the common case

– Facilitate learning
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– Deliver information, not just data

The first principle is identified as the main principle from which all the other

principles are derived from. During the pre-design process, web designers need

to understand their target users and what they would be using the website for.

Designers need to recognize what specific problems they intend to solve through

the use of their website. Additionally, the types of skills of their target audience

need to be taken into consideration. Is the general user tech-savvy? How well

does the user know about the product/service being offered by the app? These

types of questions need to be investigated by identifying and surveying potential

users whose demographics make them an attractive target market [34]. This allows

designers to learn about the tasks that the user intends to complete using the website.

Designers can then decide which tasks they want to support and design the specific

steps that need to be taken to complete these tasks.

Before UI designers start designing the website’s user interface, they need to

focus on designing the functionality of the application. Designers need to define

how their users will be interacting with the data and also decide which users can

access and manipulate certain pages of the website. Developing a conceptual model

is an important part of this process. Conceptual models are models that organize the

knowledge generated by investigating the website’s functionality [34]. A designer

can model a representation of the website in a way that facilitates the successful

completion of a user’s intended task. It is important to note that the conceptual

model is not a UI design. Rather it is a model that explains the functionality of

the application and the concepts that users need to understand to use the website

efficiently [34]. Once the conceptual model is complete, designers can move on to

thinking about the specific UI component to include to help provide the intended

functionality.

Research in the UI field has shown that a website’s responsiveness is the single
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most important factor in determining user satisfaction [34]. Responsiveness refers

to how long it takes a website to react to user input. Responsiveness in this context

should not be confused with performance because applications have two kinds

of speed: real speed and perceived speed [28]. While responsiveness relates to

perceived speed, performance is closely associated with real speed. A responsive

website provides feedback to a user’s request even if it needs time to process the

request. Responsive designs include elements such as progress bars to let the

user know how long a request will take to process. Research has shown that poor

responsive designs often negatively impact worker satisfaction. Graph 6.2 below

shows the effect of a website’s response time on a user’s productivity. The longer

the response wait time, the lower the worker productivity. While performance is

very important to user productivity, responsive designs can be used to communicate

the process to the user, thus increasing user satisfaction.

Figure 6.2: Effect of response time on user productivity [34]



CHAPTER 7
Software

The software section of this independent study implements an inventory man-

agement system for a local stationery shop located in Addis Ababa, Ethiopia. A

web application is designed and developed to allow the stationery store employees

to automate the process of inventory management.

This chapter focuses on presenting the underlying relational database model

that is designed and implemented in the backend of the web application software.

There is also a discussion of the user interface design as well as the web framework,

templating engine, and database management system used to code the inventory

management system.

7.1 Database management systems andweb frameworks

Python is the programming language chosen for implementing the software. The

main reason for using this language is due to my experience using Python, and

because of the Django web framework that is only available for Python. Additionally,

Python is a language that can achieve lots of functionality with few lines of code as

compared to the likes of C++ and Java. As mentioned above, Django is used as the

chosen web framework for this software. SQLite is used for the relational database

54



7. Software 55

management system and the Django template language as a templating engine. The

following subsections look into these different frameworks and how they are used

in the implementation of the inventory management system web application.

7.1.1 Django

Django is an open-source python-based web framework that is an extremely popular

choice for creating web applications. Django is very effective as it takes care of many

of the nuisances that relate to web development. This allows the web developer to

focus on creating a functional web-app without needing to reinvent the wheel [11].

Django comes with a plethora of built-in components that take care of security, user

registration, model creation, and many more additional functionalities. Django is

most famous for its versatility, security, and scalability.

Django uses object-relational mapping (ORM). ORM is a technique used to

convert data between two incompatible type systems. Django uses ORM to

encapsulate database tables and database functionality through models and Python

classes. This technique is very helpful for web developers as it saves time and

allows them to write database queries using the object-orient paradigm of Python.

Figure 7.1 shows how the order header relation is implemented using Djangos ORM

functionality. Each relation is encapsulated in a class that uses Django’s models

API. Each database field is specified as a class attribute. Within each attribute, all

the unique requirements of a database field are specified. The ‘order_flag’ attribute

is a flag that employees use to identify if a specific order has been invoiced, (the

customer has paid for the order), voided (the customer does not need the order anymore), or

is in progress (the customer has placed an order but has not yet paid for it). These choices

appear as a drop-down list in the front-end. All the relations for the inventory

management system are creating using this approach.
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Figure 7.1: Implementation of the order header relation

Django has a built-in class-based views API that developers can utilize to create

their different views to handle GET, POST, PUT and DELETE HTTP methods. Class-

based views are a great way to handle HTTP requests as it allows developers to

respond to different types of HTTP requests with different class methods instead of

using nested conditional statements that can become messy. Another advantage of

using class-based views is their ability to extend their functionality through the use

of Mixins. Mixins are an easy way to combine different behaviors and functionality

from multiple parent classes. Figure 7.2 implements a create view for creating new

employees to the database system. In this figure, the EmployeeCreateView inherits

Djangos CreateView class that is responsible for displaying a form for creating an

object and finally saving the object. This class also inherits two built-in Mixins,

namely LoginRequiredMixin and PermissionRequiredMixin. The LoginRequiredMixin

ensures that users are logged in before they can access the form to create new

employee objects. The PermissionRequiredMixin handles user permissions and

ensures that only users that have the permission to add employees can access the

form. The permission_required variable only allows users with the add_employee

permission to be able to access the employee creation form. As can be seen in this

figure, Mixins are very useful and take care of much of the security aspect related to
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creating forms, helping the developer focus more on adding functionality to the

forms.

Figure 7.2: Class-based view implementation for creating new employees

Django includes a Python module dedicated to handling URL configurations.

When a new Django project is created, a module named ‘urls.py’ is automatically

created. This module maps specific URL paths with Python views. Figure 7.3

depicts the URL path configurations for CRUD operations on customers. Updating

and deleting customers requires specific customer primary keys. Django’s URL con-

figuration allows developers to dynamically handle this by using <int:pk> attribute.

In this example, CustomerListView, CustomerDetailView, ... , CustomerDeleteView are

all class-based views that are implemented in a separate module. Django has a

method called as_view() that allows classes to be converted to views before passing

them to a URL path configuration. The name variable for each of the different paths

specify the name of the page that each view is routed to.

Figure 7.3: Mapping urls with class-based views
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Another powerful tool that Django provides is its admin site. Django admin is

a web-based approach to conduct different administrative functions. The admin

interface allows authorized users to handle other users, models, and group per-

missions just to name a few of its functionalities. The admin page can be accessed

by administrators to add or remove permissions and organize users into different

groups to allow users to inherit group permissions. This approach saves time when

developing the web-app as it allows developers to quickly test their models without

having to create views for their models. Figure 7.4 shows the admin page for the

inventory management system that is implemented. All of the models, as well as

the different users and groups created, can easily be accessed and manipulated

using this interface. Django admin can only be accessed by select users that have

staff status enabled or users that are created as a superuser. When this inventory

management system is deployed, only the web administrator will be able to access

this page.

Figure 7.4: Django admin page
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Unlike many other web frameworks, Django includes its own templating engine.

Similar to the popular Jinja2 templating engine, the Django template language DTL

allows developers to generate HTML content dynamically. Django allows users to

switch out its default templating engine with other engines such as Jinja2 if need be,

but the built-in engine was sufficient for the scope of the web-app created in this

project. DTL is a powerful yet simple engine that provides a wide range of features.

Figures 7.5 and 7.6 show some of the instances in which DTL is used. Figure 7.5

is the HTML code for the signup page. This module extends master.html which

includes the base structure for the web-app. Crispy forms is a Django application

that allows developers to render elegant Django forms in addition to providing full

control over the different fields in the form. Variables are surrounded by double

curly brackets. In figure 7.6, {{ form | crispy }} is a variable that contains the signup

form. The vertical line used is a filter that tells Django to use crispy forms to render

the signup form. Tags ({% ... %}) are used for arbitrary logic. The for-loop in the

code loops through all the fields in the form and if a specific field has a help text, it

is displayed in gray color. DTL syntax is very similar to python except indentation

is not required and the for and if blocks need to be closed using endfor and endif.

Django used cross-site request forgery protection (CSRF protection) as a security

measure when rendering forms. CSRF tokens protect websites from cross-site

request forgery attacks. CSRF attacks occur when a logged-in user visits another

website that contains a malicious link or Javascript that performs an unauthorized

action on the web-app using the credentials of the logged-in user [9]. To protect

against CSRF attacks, GET, POST, PUT and DELETE methods need to be protected

using a CSRF token. CSRF tokens are unique and unpredictable tokens that are

automatically generated by the server-side application. When the client makes

an HTTP request, this token is sent to the client. The server-side application then

validates all requests made by the client using this token, and any request that does
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not include this unique token is rejected [16]. To use CSRF protection, the tag {%

csrf_token %} is used.

Figure 7.5: Sign up page

In addition to using the PermissionRequiredMixin to ensure user permissions,

additional filter tags can be used to hide links that are not supposed to be active

for specific users based on their permissions. For example, in figure 7.6 {%

perms.web_inv.add_employee %} ensures that the button that provides the form to add

new employees is hidden from users that do not have the add_employee permission.

Figure 7.6: Permissions using Django template language
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7.1.2 SQLite

SQLite is used to handle the database side of the web-application. SQLite is one of

the many relational database management systems that are widely used. Unlike

other database management systems such as MySQL and PostgreSQL, SQLite is not

a client-server database engine and thus does not require a server to run. SQLite has

what is known as a ‘server-less architecture’ and uses the database files stored on the

disk to read and write to the database [2]. Due to this reason, SQLite is lightweight

and is very easy to set up and operate. Figure 7.7 is a simplified diagram of the

client-server architecture employed by relational database management systems

like MySQL. In contrast, SQLite uses the server-less architecture as seen in figure

7.8.

Figure 7.7: Client server architecture [2]

Figure 7.8: Server-less architecture of SQLite [2]

Depending on its specific use, SQLite has a few disadvantages. While SQLite

emphasizes reliability, simplicity, and efficiency, it is mainly used in situations where
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there is low HTTP request traffic. Additionally, SQLite is not as powerful as other

database management systems and is not scalable if an organization decides to

expand. In the case of the inventory management system implemented, SQLite

is sufficient as the stationery store that will use this system is very small, and this

system is to be used solely internally in the stationery store. Additionally, Django

makes it really simple to switch database management systems if need be. Figure

7.9 shows the section that needs to be switched in the Django settings module if a

different database management system deems more appropriate.

Figure 7.9: Django settings for the DBMS used

7.2 User interface design

User interface design is an important component of the inventory management

system web application. As discussed in chapter 6, user interface design has become

a strategic component for many businesses. While this web application is meant for

in-house use and the user interface design is not as important, certain elements have

been put in place to increase user satisfaction when interacting with the system.

This section looks into some of these components and the front-end frameworks

that are used to design the user interface.
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7.2.1 Bootstrap 4

Bootstrap is one of the most popular open-source tools that are used to create

responsive web applications. Responsive web applications are able to automatically

adjust to fit different screen sizes. This enables the user to view all the contents

of a website in a comfortable and organized manner on any screen size. With the

dramatic rise in popularity of web browsing on smartphones and tablets, designing

responsive web applications is crucial as it allows a wide range of users to seamlessly

access content provided by a web application. Bootstrap offers a wide variety of

components such as buttons, forms, and navigation bars. Figure 7.10 is a Bootstrap

form that is used to enter a new stationery item into the database. The Bootstrap

template used offers a clean and modern user interface.

Figure 7.10: Form to create a new item
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7.2.2 Order Page

The order page allows authorized employees to create and process orders. To create

an order, a customer is selected from the customer table and an order header is

created for the customer. One order can include one or many different items with

different quantities. Figure 7.11 depicts the order page for a customer that is buying

two different items of different quantities. By clicking on the ‘Add Item To Order’

button, an employee can add additional items to the order. This page dynamically

updates the subtotal, VAT (value-added tax), and total as additional items are added

or removed. By default the order flag is set to ‘O’ (meaning the order is in progress

and not yet completed). Once the customer is ready to pay for the order, the ‘Invoice

Order’ button is clicked and an invoice is generated. This automatically updates the

order flag to ‘I’ (meaning the order has been invoiced). If the customer decides not to

complete the order, the ‘Void Order’ button is clicked to successfully void the order.

Additional checks are put in place to make sure that the quantity ordered is not

more than what is available in the store. If a quantity greater than is available is

requested, an error message lets the employee know that the requested amount

is more than the available amount and the requested amount is capped at the

maximum available quantity for the item in-store. Figure 7.12 shows the error

message that is generated. Visual cues are generated using Django’s messages

framework. The messages framework provides functionality for creating flash

messages that disappear after a certain time. The messages have different tags

such as ‘success’, ‘warning’ and ‘error’ that correspond to the type of flash message

intended to be displayed.
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Figure 7.11: Order page view

Figure 7.12: Visual queues to depict error

7.3 Reporting and Invoicing

Reporting and invoicing are a few of the features that the inventory management

system includes. As mentioned in the previous section, an invoice is generated

once the customer is ready to pay for the order. Figure 7.13 shows a sample order

invoice. The customer information is fetched from the customer table through the

use of foreign keys. A print button is also available on this page to allow employees

to easily print the invoice.
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Figure 7.13: Invoice for order

The reporting feature generates an end-of-day report for the orders processed

throughout the day. This includes a sales report that presents month-to-date sales,

year-to-date sales, and sales made during the current day. It also includes a low

stock report. A list of items with low inventory is generated to remind authorized

employees to order additional products. When an item is created, the quantity

on hand and the minimum quantity are logged together with the item detail. If

the quantity on hand is lower than the minimum quantity, the item is flagged and

displayed as a low stock item. Figure 7.14 presents an example end-of-day report

generated by an employee.
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Figure 7.14: End of day report

7.4 UserManagement

User management is an important component of this inventory management system

software. Django handles most of the user authentication, user groups, and user

permissions to perform certain tasks. Django allows the creation and manipulation

of user objects. The web administrator creates user objects for all employees

authorized to use the inventory management system. This allows the user to be

able to login to the system. Additionally, each user is assigned to a user group

that has predefined permissions. For example, an accountant will have their own

user object and will be assigned to an accountant group. The accountant group is

assigned specific permissions for viewing, editing and deleting different forms in

the system. The web administrator handles the creation of all user objects including

user groups and permissions through Django’s admin site. Figure 7.4 in section

7.1.1 shows the admin page that web administrator uses to assign users to groups

and assign group permissions.
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7.5 InventoryManagement System ERD

An introduction to entity-relationship diagrams is presented in section 2.2.1.1. In

this section, an entity-relationship diagram for the inventory management database

is provided as seen in figure 7.15. Cardinality and ordinality are presented using

the information engineering style. The relational database for the web application

is built using this underlying structure.

Figure 7.15: Entity relationship diagram for inventory management database

‘Django User’ is a built-in Django relation that handles user objects. The ‘Order

Header’ relation includes the name of the employee that created the order and thus

uses a foreign key to reference the ‘Django User‘ relation. The relation depicted by

the diagram shows that one ‘Order Header’ can be created by one and only one

‘Django User’. ‘Order Header’ and ‘Order Detail’ has a one-to-many relationship.

When a new ‘Order Header’ object is created, it initially has no items added to the
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order. The employee can then add items to the order by creating new ‘Order Detail’

objects that are assigned to the ‘Order Header’.

‘Django User’ is related to Django’s built-in user groups and user permissions

relations but the relationship is not depicted in figure 7.15 as Django handles these

components by default. While Django allows the creation of custom user and group

models, the default functionality that Django provides out the box is sufficient for

the requirements of this inventory management system.



CHAPTER 8
Conclusion

This paper studies different types of databases and database management

systems. It introduces and discusses theoretical aspects of the relational database

model including database architecture and normal forms. Designing a database

model for an organization is challenging because of all the different components that

need to be put in place to enable the system to provide efficient service. Database

developers first need to determine the purpose and context of the database being

created. This allows them to organize the data received into logical structures.

This is the most important and challenging part of the database design process

as it lays the foundational framework for the storage, manipulation, and retrieval

of data stored in the database. This paper extensively discusses normal forms,

which is an important concept in the design of data tables and data relationships.

Eliminating data redundancy plays a key role in ensuring data consistency, data

integrity, query execution efficiency, and in upholding high performance. With

the rise of the cloud computing industry, tech giants are offering cloud database

solutions for businesses, organizations, and governments from all around the world.

This is a very advantageous solution for clients of all sectors since the burden of

data storage, scalability, performance, and security is taken care of by the cloud

database providers.

70



8. Conclusion 71

Our interconnected world raises big threats to the vast amounts of personal

data stored in databases. Database security has been and will continue to be one

of the major challenges database systems face as hackers constantly develop new

methods to breach existing security systems. This paper investigates database

security threats and provides solutions and best practices for keeping the stored

data as secure as possible from external and internal attacks. With the current rise in

interest for the Internet of Things (IOT), more and more personal data will be stored

and thus the need for stronger database security mechanisms is incumbent upon

the database designer. Additionally, efficiently accommodating the large volumes

of unstructured data generated from a wide variety of IoT sources pose challenges

to database developers as they need to adapt existing systems to handle this type of

data.

The software portion of this independent study implements an inventory

management software system for a small stationery store in Ethiopia. The software

is a web application that allows different types of employees to access the system

to store, edit and retrieve data from the database. A web user interface is built to

provide employees with a clean and organized structure to enable them to efficiently

carry out daily tasks. While the system provides basic functionality to automate the

management of inventory, it still has lots of potential for future improvement as

will be discussed in the upcoming section.

8.1 Limitations and Future Improvements

During the process of designing and implementing the inventory management

system software, various limitations have been identified and methods for future

improvement have been considered. The software system created is a simplistic

but functional model for properly and efficiently managing inventory. One major
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limitation of this software is its reporting feature. Currently, the reporting feature is

meant to be run at the end of the day to show sales statistics for the current day. It

also lists the items that are low in stock. Future improvements to this area include the

option to generate sales statistics for specific time periods and improve the reporting

feature by adding dynamic graphs and charts to help the client visualize trends in

sales and inventory. The software currently has month-to-date and year-to-date

sales, but it would be helpful to give the user more control with viewing sales

statistics for user specified time periods.

Another major area for future improvement relates to the concept of concur-

rency control. Currently, the stationary business is small enough that concurrent

manipulation of the same data is unlikely to happen at the same time. However, if

this does happen, there are currently no concurrency control mechanisms to ensure

the proper handling of concurrent access and manipulation of data. Additionally,

concurrency control will be necessary when the business expands in the near future.

Development in this area includes the implementation of a locking mechanism in

the database management system. Lock-based protocols help synchronize access to

the database items by concurrent transactions. When a specific transaction is being

made to data stored in a specific part of the database, the transaction obtains a lock

on the object before beginning its operation. This prevents any other transaction

from manipulating the object. Once the operation is complete, the data is unlocked

for future transactions [10].

The user interface for the system also has some limitations. Currently, a user

needs to visit more pages to create a full order than is necessary. For example, figure

7.11 shows the user interface for the order page. When the ‘Add Item To Order’

button is clicked, the user is taken to another page to pick the item. This process can

be eliminated by the use of inline formsets that allow a small form to be generated
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on the same page rather than switch between different pages. This increases the

speed by which orders are processed.

Finally, another limitation of this software is the lack of alerting features. Cur-

rently, the only method to check for low stock is by running the end of day report.

However, a more efficient method is to alert the proper employee either through

email or by implementing a notification system on the web application. This method

allows users to immediately be notified in cases of low stock so low inventory can

be quickly be restocked for items in high demand.

With the addition of the features described above, the inventory management

system that is implemented has the capacity to fully replace the manual method of

inventory management employed by the business today. The developed system

requires constant technical support to scale the system as the stationery business

grows and requirements change. Inventory management is a major concern for the

stationery business and migrating to an automated approach can help the business

identify its strengths and weaknesses to serve its customers more efficiently, thus

generating more revenues and customer satisfaction.
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