
St. Cloud State University St. Cloud State University 

theRepository at St. Cloud State theRepository at St. Cloud State 

Culminating Projects in Information Assurance Department of Information Systems 

5-2020 

DETECTING APPLICATION ANOMALIES: MACHINE LEARNING DETECTING APPLICATION ANOMALIES: MACHINE LEARNING 

APPROACH APPROACH 

Lakshmipriya Thaduri 
lakshmithaduri@gmail.com 

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds 

Recommended Citation Recommended Citation 
Thaduri, Lakshmipriya, "DETECTING APPLICATION ANOMALIES: MACHINE LEARNING APPROACH" 
(2020). Culminating Projects in Information Assurance. 108. 
https://repository.stcloudstate.edu/msia_etds/108 

This Starred Paper is brought to you for free and open access by the Department of Information Systems at 
theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information 
Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact 
tdsteman@stcloudstate.edu. 

https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/108?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu


Detecting Application Anomalies: Machine Learning Approach 

by 

LakshmipriyaThaduri 

 

 

 

A Starred Paper 

Submitted to the Graduate Faculty of  

St. cloud State University 

in Partial Fulfillment of the Requirements  

for the Degree of 

Master of Science 

In Information Assurance 

 

 

 

May, 2020 

 

 

 

 

 

 

Starred Paper Committee: 

Abdullah Abu Hussein 

Lynn Collen 

Balasubramanian Kasi 



2 
 

 
 

Abstract 

In the modern era, the world has completely relied on software technology. As software 

applications became highly demanded, security concerns have arrived. Application security has 

become one of the chief concerns where companies have to protect their systems from 

vulnerabilities. Various other securities include mobile or end-point security, operating system 

security, and network security. All these security categories are intended to protect their users 

and clients from malicious intents and hackers. Application security became a prime 

requirement. Security risks of the applications are enveloped and lead to a direct threat to the 

available business. All the application vulnerabilities take the advantage to compromise the 

software application security. Once a flaw has been found, and private data access is determined, 

the attacker will have the capability to exploit the software application vulnerability to facilitate 

cyber crimes. The confidentiality of the data, availability, and integrity of resources are targeted 

by cybercrimes(“What is Application Security?” 2019). Overall, more than 13% of the reviewed 

sites were compromised with the web application security vulnerabilities, and they are not 

completely extinct even with the traditional security methodologies(Application Security 

Vulnerability, 2014). In order to resolve these numerous common security issues, few of the 

detection, remediation, and prevention techniques are to be used, which includes defensive 

programming, sophisticated input validation, dynamic checks, and static source code analysis. In 

this paper, the runtime environment framework has been introduced. This research study 

extracted a few publications. All the publications considered various approaches to resolve the 

issue. In this research paper framework,machine learning is utilized for training and predicting 

the output. Firstly, a sample java code is executed in various CPU cores, and the generated 

output files are collected. These output files are then used to train machine learning. Machine 

learning results are then compared with actual output for the decision statement. 

 

 

 

 

 

 

 

 



3 
 

 
 

Table of Contents 

                                                                                                                                                    Page 

List of Figures …………………………………………………………………………………… 5 

Chapter 

I. Introduction…………………...………...…………………………………………………8 

Introduction......................................................................................................8 

Problem Statement ….......................................................................................8 

Nature and Significance of the Problem............................................................. 8 

Objective of the Research…….....……………………………………………… 10 

Research Questions and/or Hypotheses…...……..……………………………    10 

Definition of Terms............................................................…………………… 10 

Summary…...……………………………………….......................................... 12 

II. Background and literature review……..……………………………..………………..... 13 

Introduction……………………………………………..................................... 13 

Background Literature Related to the Problem….................................................13 

Literature Related to the Methodology ……………...…………………………. 24 

III. Methodology……………….……………………………………................................... 39 

Introduction …………………………………………...........................................39 

Design of Study ……………………………………….........................................39 

The architecture of the Framework ……….…………………………….…..…...39 

Summary …………………………...…………....................................................43 

IV. Implementation of framework…………….…………………………………..................44 



4 
 

 
 

Introduction …………………………………………........................................44   

Demonstration Steps ……………………………………………………..…….. 44 

Implementation process…………………………………………........................44 

Graph Plot between Predicted vs. Actual……………………………...……….. 94 

Results Analysis ……………………………………….....................................94 

V. Future work……..………………………………………………………........................96 

VI. Conclusion…….…………………………………………….........................................97 

References........................................................................................................................... 98 

Appendix A……………………………………………………………...…………………….. 104 

 

 

 

 

 

 

 

 

 



5 
 

 
 

List of Figures 

Figure                                                                                                                                       Page  

1. Neural representation-learning approach to source code classification………………..28 

2. A framework for using deep learning to detect vulnerabilities………………………...30 

3. Security Goal Indicated Tree………………………………………...…………………32 

4. Data flow model to identify vulnerabilities I…………………………………...………34 

5. Data flow model to identify vulnerabilities II………………………….……………….35 

6. Analysis engine to determine whether the potential vulnerability is vulnerable……….36 

7. Data Collection and Preparation………………………………………………………...39 

8. Data Training……………………………………………………………….……………40 

9. Data Prediction………………………………………………………………………… 40 

10. Compare and prepare decision statement……………………………………………… 41 

11. Three Ubuntu Instances……………………………………………………….……….. 65 

12. Notebook Instance Settings, Permission and Encryption details…………….………… 70 

13. Notebook instance status……………………………………………………………….  71 

14. Upload option in Notebook Instance………………………………………..………….. 71 

15. Notebook type – conda_python3…………………………………………...…………    72 

16. File uploaded in Jupyter Python Notebook – PredictData_Instance……..…………….  72 

17. Read CSV file into a dataframe………………………………….……………………..  73 

18. Import matplotlib…………………...…………………………………………………    73 

19. Dataframe for Graph plot between Dependent and Independent columns I…………     74 



6 
 

 
 

20. Graph plot between Dependent and Independent columns I………………………….. 75 

21. Dataframe for Graph plot between Dependent and Independent columns II…………  76 

22. Graph plot between Dependent and Independent columns II………….……………….77  

23. Independent variable assignment……………………………………………………… 77 

24. Dependent variable assignment……………………………………..…………………..78 

25. Independent variable assignment……………………………………..…………………78 

26. Independent train variable………………………………………….…………………...78 

27. Independent train variable data……………………..…………………………………...79 

28. Independent test variable with data……………………………………………………. 80 

29. Dependent train variable……………………….………………………………………. 81 

30. Dependent test variable………………………………………………………………...  82 

31. LinearRegression Import……………………………………..………………………… 82 

32. Prediction of Independent test variable I…………………..…………………………… 83 

33. Prediction of Independent test variable II……………….……………………………...  84 

34. Prediction of Independent test variable III………………..…………………………….. 85 

35. Prediction of Dependent test variable……………….………………………………….  86 

36. Numpy package import………………………………………………………………...   86 

37. Prediction of Dependent test variable I………………………………………………...   87 

38. Prediction of Dependent test variable II……….……………………………………….  88 

39. Prediction of Dependent test variable III………………………………………………   89 

40. Actual Vs Predicted score………………………………………………………………  90 

41. Predicted Graph plot between CPU and Dependent variables…………………………90 



7 
 

 
 

42. Predicted Graph plot between Memory and Dependent variables……………………..91 

43. Actual Graph plot between CPU and Dependent variables…….………………………92 

44. Actual Graph plot between Memory and Dependent variables………………………..93 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 
 

Chapter I - Introduction 

Introduction 

This project focuses on detecting the vulnerabilities in the existing software application 

code by considering the metrics of the three distinct Linux machines, train machine learning, and 

predict the result in order for decision statement. 

Problem Statement 

The objective of this research project is to detect software application vulnerability using 

machine learning. As my interest inclined towards the development field, and as a developer, it is 

beneficial to have exposure on how to detect and able to find a solution to resolve the 

vulnerability issues using machine learning.  

Nature and Significance of the Problem 

In our daily lives, software applications play a vital role. Irrespective of the location, 

whether at the workplace or home, the usage of software for various purposes, which includes 

communicating with people, staying advanced with the activities happening around the globe, 

which serves as entertainment, doing work, and much more. Besides, they are also real threats in 

terms of security. Though the security has tightened its privileges, hackers still hit upon new 

customs to bypass security resistance. In addition, there is a high probability of performance 

issues when resources go down. So in order to track the organization's response to certain 



9 
 

 
 

challenges, the solution to detect various described problems are monitored and hence possible 

solutions are been constructed to address these issues. 

In the current trend, applications make huge money. According to the researchStatistics, 

claims that the worth of applications market range $189B by 2020. Back in 2017, the availability 

of Google Play Store is 2.8 million. Whereas in the Apple app store, it has crossed 2.2 million. 

Other than smartphones, tablets, pods, and other devices prolong to advance, and the apps count 

has increased; at the same time, thousands of websites and apps are createdon a daily basis. 

Excluding the benefits, the apps also pose challenges. In specific, the electronically connected 

devices with the software application installed have become an objective for hackers. They 

actively look for new and utilize old techniques to steal, modify, and delete private and business 

data. Research Akamai says, in 2017, count of attacks on applications grew by over 60%, and 

about 75% of security risks were application breaches by Alert Logic. 

Hence in order to protect the data from risks and breaches, application security has to be 

considered primarily. In consideration of application creation and release, developers must 

continue to monitor, detect, secure, and prevent vulnerabilities. So, there should be effective 

methods utilized to detect the bugs in software applications. In this paper, machine learning is 

used to train, construct an algorithm based on the given data as input, and predict. With machine 

learning, the systems are trained with data, identify patterns, and show results to make decisions 

with the least human involvement. 

 



10 
 

 
 

Objective of the Research 

• The main objective is to detect application anomalies using machine learning. 

• Train and predict the output from machine learning. 

• In an attempt to catch the post-deployment phase anomalies. 

Project Questions/Hypothesis 

1. Will machine learning help to detect software application anomalies? 

2. How can Machine learning be trained? How can it be predicted? 

3. Does machine acts intend? 

Definition of Terms 

• Machine Learning: Machine learning is a way of analyzing data that automatically analyzes 

the model building. In other words, machine learning is defined as a science of training 

computers to perform by itself without being overly programmed. It is a branch of artificial 

intelligence. In this field, the systems are trained with data, identify patterns and show results 

to make decisions with least human involvement(“Machine Learning | Coursera,” 2019). 

• Java:Java is one of the computer programming languages. Java is fast, secure, and reliable. 

The code written in Java is platform-independent. The code needs to be compiled once and 

executed many times irrespective of OS. The code, when compiled, is converted into binary 

code, which is the combination of 0’s and 1’s. In detail, the.java file is compiled to produce a 

.class file, which is basically a compiled code. In this research study, various OS platforms 



11 
 

 
 

have been used. A small piece of java code will be executed in distinct OS’s then compared 

in order to test the anomalies. 

• IP Fragmentation: IP is an internet protocol, and fragmentation is a process of breaking 

down packets into small chunks of data (fragments), in such a way that the resulting piece is 

allowed to pass through a link with smaller MTU (maximum transmission unit) than the 

original packet size. 

• Vulnerabilities:It is a weakness of the system; it is performed by an attacker by accessing 

unauthorized data in the system or gaining sensitive information or any unauthorized action 

on a computer. 

• Anomalies:Anomalies are basically problems. Poor planning or un-organization (un-

normalized) of data in the database is the main cause ofanomalies. 

• Artificial Intelligence:It is a contrast of natural intelligence. Artificial Intelligence is the 

intelligence of machines; sometimes, it is referred to as machine intelligence. Research says 

that without human involvement, the decisions are taken by machines, and the environment 

is perceived by any device that maximizes the probability of achieving the goals(“Artificial 

intelligence,” 2019). 

• Deployment phase:The final stage of SDLC is the deployment phase. The product which has 

been developed is now ready for real-time use in the production environment. The product 

once it is deployed and successful, all end users are allowed to utilize the benefits of the 

product(Deployment Phase in SDLC - Video & Lesson Transcript | Study.com, n.d.). 



12 
 

 
 

• Breaches:A security breach is known as a security violation. It is incident fallouts to the 

activities which include unauthorized access of services, data, networks, applications, or any   

Summary 

So far, the main objective of the research project, along with the purpose and importance 

of application security, will be described in this chapter. In the following lessons, the reader will 

get more idea ofhow distinct researchersapproach in order to resolve the issue. In addition, the 

following contents will include a literature review on the problem and a literature review of the 

solution. 

 

 

 

 

 

 

 

 

 



13 
 

 
 

Chapter II - Background and Literature Review 

Introduction: 

This chapter describes the information about background research related to the problem, 

introduction, challenges, and causes of vulnerabilities. 

Background literature related to the problem: 

Introduction: 

As we know, software application vulnerability remainsa serious issue. Numerous 

companies, organizations, and end-users faced the software vulnerabilities issue. For a few years, 

it is observed that there were several vulnerability attacks reported which occurred with high 

distressing effects on users. With this, the need to focus on software vulnerability detection 

implementation tools and techniques has raised. Due to the necessity of software security 

detection tools, many software developers have invented various tools andmethods which detect 

the vulnerabilities in the system and also report the issues which cause a threat to system and 

user data. (Amankwah, Kudjo, &Antwi, 2017) In 2003, the CERT/CC (Computer emergency 

response team Coordination Center) reported that there were about 6.66 US dollars economic 

loss caused by the intrusion attacks. And still, the value of the numbers has increased with the 

time passage. The real scenario relevant to the economic loss is, in 2007, the total vulnerabilities 

are 7236, and by the end of half year in 2008, the total vulnerabilities in the system incremented 

to 4110 (Aboud, 2009). 



14 
 

 
 

The term vulnerability has been described in a broad sense as it is an activity that violates 

any security policy. The violation activities can be occurred due to any errors in the software 

code or might be due to the weak security rules. In theory, all systems have anomalies, but the 

vulnerability effect relies on the damage they cause to the system. 

Many authors did tremendous research to know and define vulnerabilities. According to 

MITRE’s definition, a vulnerability is a state in which an attacker is allowed to execute 

commands, access data which has specified restrictions, pretend as another entity, to conduct 

DOS (Denial of Service)(Software vulnerabilities, n.d.). 

Though there is no standard definition for software vulnerability, researcher studies 

earlier have given various definitions. Software Vulnerability is defined as “fault that can be 

viciously used to harm the security of software systems” by Kauang et al. 

Author Krsul(Victor Krsul, 2011)defines software vulnerability as “a defect that allows an 

attacker to violate an explicit or implicit security policy to achieve some impact”. 

 In another research article, define the terminology as “software vulnerability as a flaw, 

weakness or even an error in the system that can be exploited by an attacker in order to alter the 

normal behavior of the system” (Jimenez, Mammar & Cavalli, 2010). Schultz et al.(Jr. Schultz, 

Brown, & Longstaff, 1990) say software vulnerability as ‘‘a defect, which enables an attacker to 

bypass security measure”. Finally, OIS (Organization of Internet Safety) defines security 

vulnerability as “a flaw within a software system that can cause it to work contrary to its 

documented design and could be exploited to cause the system to violate its documented security 

policy”. By examining all these above-defined statements by various authors clearly indicates 



15 
 

 
 

that the main cause for information security breaches is due to software errors. The report 

generated in 2010 by software application security researchers and specialists is evident that 

organizations of international cybersecurity say about 25 highly malicious software errors led to 

cyber-crime. These software errors were classified into three categories as described below; 

1. Software Error based on insecure interaction among components 

2. Software Error based on unsafe resource management  

3. Software Error based on Porous Defenses. 

 The cyber attacks on organizations such as Google, SMEs, home users, governmental 

organizations, banks, and universities were all affected by the above software errors based on 

defined categories.Thus faults are the main cause of software vulnerability. These vulnerabilities 

are defined based on the weakness, fault, defects, errors, and failures which arise in 

software.Apart from these, there are few other most common causes of software vulnerability. 

Analyzing the probable causes can trim down the vulnerabilities in software applications.Krsul et 

al. (Krsul et al., 1998) did some research over the past few decades in the investigation and 

presented a few common effects of vulnerabilities. The common attacks include IP 

Fragmentation and Buffer overflow. Buffer overflow takes place when a program copies some 

data from an object into the other object, during the process program does not check whether the 

destination object has enough space to contain the source object's content. A buffer overflow 

occurred in 2001 caused vulnerability in Microsoft IIS Web Server, reported by e-Eye Digital 

security (Shaneck, 2003). IP Fragmentation – IP is an internet protocol, and fragmentation is a 

process of breaking down a packet into small chunks of data (fragments), in such a way that the 

resulting piece is allowed to pass through a link with smaller MTU (maximum transmission unit) 



16 
 

 
 

than the original packet size. Later these fragments are reassembled by the host, which receives 

the data. The vulnerabilities which occur during the process/design of the protocol and IP 

fragmentation are known as teardrop (“IP fragmentation,” 2018). 

In 2015, the ICS-CERT (The Industrial Control system Cyber emergency response team) had 

reported the major causes of vulnerabilities affected by the organizations [11]. 

1. Insufficient Entropy: This type of vulnerability occurs by random guess by the attacker. 

So when the attacker randomly guesses numbers generated by the system to gain access, 

which is not authorized to a system. 

2. Using cryptographic weak ping: This usually occurs in the cryptographic context, non-

cryptographic PING is used. By this, the cryptography is exposed to certain sorts of 

attacks. 

3. Spoofing with authentication bypass: Due to the improper implementation authentication 

scheme, there will be a possibility of a spoofing attack. 

4. And also due to improper check for exceptional conditions or even unusual conditions. 

Based on the report generated by research experts in 2010 on 25 extremely dangerous software 

errors are caused due to the below software vulnerabilities identified. 

A. Software Error based on insecure interaction among components 

• Uploading a dangerous file that does not have restrictions. 

• Redirecting URL to the site which is not trusted. 

• Utilization of special elements in an SQL command which are not properly 

neutralized. 



17 
 

 
 

• During web page generation, improper neutralization of input. 

• Utilization of special elements in an OS command which are not properly 

neutralized. 

• Cross-site request forgery 

B. Software Error based on unsafe resource management  

• Including functionality from a control sphere that is not trusted. 

• Using a probable highly dangerous function. 

• To a restricted directory, there is no proper boundary of a path. 

• Wrap around or integer overflow. 

• Calculation errors of buffer size. 

• Creating a buffer copy without checking the size of an input. 

• Format string, which is not controlled. 

C. Software Error based on Porous Defenses. 

• Assignments of unauthorized permissions for critical resources. 

• Missing validation for significant function. 

• Authorization errors 

• Utilizing one-way hash without salt. 

• Misplaced encryption of sensitive data. 

• Utilization of cryptographic algorithm which is not working. 

• Unnecessary privilege executions. 

• Unrestricted access to excessive unauthorized attempts. 



18 
 

 
 

• While security decisions, dependence on untrusted inputs. 

• Utilization of hardcoded identifications and credentials. 

 In addition, there are additional eight vulnerability causes reported by the National 

vulnerability database as follows, 

1. Exceptional Condition Error Handling 

2. Input Validation Error 

3. Environmental Error 

4. Configuration Error 

5. Race Condition Error 

6. Access Validation Error 

7. Design Error 

8. Others: nonstandard errors 

So far, the probable causes for Software vulnerabilities have been discussed in the paper, and 

now in order to resolve the issues, there is a need to detect vulnerabilities in software. 

Researchers came up with various vulnerability detection methods in order to prevent anomalies 

in the software application. Detecting vulnerability is like finding 50% of the solution. When we 

are able to detect a problem in a system, finding a solution will become easier. 

Vulnerability Detection Methods: 

In detail, the analysis of tools and techniques utilized to detect vulnerabilities in software 

applications have been described in this section of the paper. These tools help to detect the 



19 
 

 
 

system gaps, which can be capitalized by the hacker. With the attack, the security of the system 

or where the system platform runs will get compromised. 

I. Fuzzing:  

It is one of the vulnerabilities detection methods. The random or invalid inputs are 

entered in the software application, and the unexpected output behaviors, errors 

identified, and expected vulnerabilities have been captured. These methods are important 

because software applications hold some level of vulnerabilities that have to be detected. 

Data generation is key to fuzzing. In this technique, significant tests are conducted in 

order to break down the source code and to opt suitable tool to supervise the procedure. 

However, in order to detect vulnerabilities, currently, developers analyze executable 

codes rather than source code. Fuzzed data generation can be executed in two ways: 

white box and black box fuzzing. In black-box fuzzing, there is no requirement of 

application details. It can be generated by random modification of correct data. This 

method of fuzzing is known as Black Box Fuzzing.Whereas for White Box Fuzzing, 

complete knowledge of software application codeand also the behavior is assumed for 

generating tests. Gray Box Fuzzing is a third type fuzzing, which is the combination of 

bothwhite and black box fuzzing. Gray box take the benefits of both the fuzzing tests. 

The minimum behavior target knowledge has been utilized in Gray box fuzzing. 

According to the fuzzing key – data generation methods are categorized as generation-

based, random, direction-based, and mutation-based fuzzing.Among the above-listed 

fuzzing techniques, random fuzzing is the simplest technique. In this technique, a stream 

of random data is sent as an input for testing. The input data can be sent either as network 



20 
 

 
 

packets, command lines, or events. This fuzzing is useful when a program reacts to huge 

or unacceptable input data. Severe vulnerabilities can be detected by this random fuzzing, 

whereasmodern fuzzing has a detailed understanding of an input. 

 

The testing tool in mutation-based will have format knowledge about the program 

input. The algorithm improves the efficiency of mutation-based fuzzing, which acts as a 

key. Program inputs are generated according to the specifications in Generation based 

fuzzing. While testing, generation based attains more coverage compared to random 

based fuzzing. 

 

Program control flow has been utilized in direction based fuzzing in order to 

direct the testing flow. This is also known as test case generation fuzzing. SAGE is one of 

the types of direction based fuzzing. Firstly, the initial and valid inputs IN0 are given to 

the program P, the symbol execution engine monitors path and processes which is in the 

form of logical formulae; Secondly, during the execution of the path which is negated 

will be encountered then a new constraint will be solved and a new input IN1 will be 

created (varied from input IN0). Finally, the new process input IN1 is allowed to follow 

the same three previous procedures.Apart from the above listed fuzzing methods, there 

are many other fuzzing tools invented. The other few research tools on fuzzing are Peach, 

Sulley, SPIKE, and others. 

II. Web Application Scanners 



21 
 

 
 

It is a type of scanner which examines web applications automatically for security 

vulnerabilities. As web security is monitored through public networks, it is difficult to 

handle. As web security takes the requests through HTTP (hypertext transfer protocol), it 

makes the processing complicated. The testing in web application security is carried out 

in two ways for vulnerability detection: white box and black box testing. White box 

testing is the process of analyzing the source code manually with the utilization of tools 

such as Pixy, FORTIFY, or Ounce. Because of the complexity of coding, it is not an easy 

task with the manual process. And sometimes, with this complexity and manual 

procedure, the vulnerabilities might not be detected effectively. 

In the black-box testing process, in order to detect vulnerabilities, the scanner uses 

the fuzzing technique. It is also known as penetration testing. Penetration testing is 

famously known as ethical hacking/pen-testing. It is a process of testing a web 

application, network, or system to detect vulnerabilities that an attacker can make use of. 

It is an automated process of software application testing, or it can also be executed 

manually(“What is pen test (penetration testing)?” 2018). 

The scanners in the web application are mostly applied in the development stage 

of testing. This is also capable of doing below functionalities, 

• Low false positives ratio will be generated 

• Detect vulnerabilities in web applications 



22 
 

 
 

• It generates an output (causes of vulnerabilities), a report which is to be carried 

out in order to protect the system from vulnerabilities. 

 In addition to the above-described scanners, there are few commercial scanners 

which detect vulnerabilities in web application. The scanners include WebKing, 

Appscan, and WebInspectNTOspider(Fong & Okun, 2007). 

III. Brick 

 This is an integer-based vulnerability scanner that detects at run time. It is one of 

the effective approaches which results in less false positives and false negatives. This 

process comprises into three stages as follows, 

1. Convert the binary code into a dynamic binary instrumented framework 

(intermediate representation) on Valgrind(Nethercote & Seward, 2007). 

2. Capture statements relevant to integers at run time, and also, it records the 

required data. 

3. Identify and spot out the vulnerabilities with a set checking format. 

 

IV. CRED:C Range Error Detector 

It is also one of the vulnerability detectors but is not capable of detecting 

Dynamic Buffer Overrun applications. It is unable to such programs because of its power 

lack to guard against buffer overrun attacks, breaking existed code, and also due to 

production of high overhead. It has been proved that this is the only tool to protect 



23 
 

 
 

against 20 distinct buffer overflow attacks. CRED is an effective tool for detecting known 

vulnerabilities in programs that are attacked with buffer overrun(Wilander & Kamkar, 

2003). 

V. Static Analysis Techniques 

As we know, the importance and usage of software applications have grown 

tremendously high. Unfortunately, the security issues in software applications lead to 

gaps and weaknesses for attacks. The report generated regarding the web application 

security statistics states that over 60% of assessed websites are vulnerable. Each 

application is affected by a minimum of 6 unsolved flaws (Gupta & Sharma, 2012). The 

report generated in 2013 proved that Common Vulnerabilities and Exposures (“CVE - 

Home,” 2007) and Open Web Application Security Project specifythat the attacks: SQLi 

(SQL injection), XSS (cross-site scripting) are the most two severe attacks in top ten 

attacks occurred in web-based applications in a system. 

Static analysis is one of the vulnerabilities detecting technique. It is the most 

defensive as well as preventive technique. The chief goal of this technique is to recognize 

the defects in the source code prior to the first execution in the user’s environment.This 

technique assists in identifying vulnerabilities early enough in its case, financial damage. 

This approach is useful in performing the below-described activities: 

• Be pertaining to any particular algorithm or set of rules which are known as 

inference. 



24 
 

 
 

• Assess the input code. 

• Generates program vulnerabilities list. 

 Buffer overflow is also an effective attack famous in web applications. The static 

analysis technique is one of the effective techniques which detects the errors prior to the 

program execution. The errors such as Buffer overflow. Numerous static analysis 

techniques have been invented by researchers to detect Buffer overflow vulnerabilities 

(Dor, Rodeh & Sagiv, n.d.), (Hackett, Das, Wang & Yang, 2006). The various distinct 

approaches are classified as:  

• Analysis of sensitivity 

• Soundness 

• Language 

• Interference technique 

• Analysis granularity 

Literature Related to the Methodology: 

 Below are the articles and research work methodologies of various publications. The 

distinct researcher’s approaches on how to solve the vulnerability issues have been described in 

this section. 

1. An article named “Automatic detection and correction of web application vulnerabilities 

using data mining to predict false positives” written by authors: Ibéria Medeiros, Nuno F. 

Neves, and Miguel Correiain 2014. This article is about the detection of anomalies and 

https://dl.acm.org/author_page.cfm?id=81100035691&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81100035691&coll=DL&dl=ACM&trk=0
https://dl.acm.org/author_page.cfm?id=81100398333&coll=DL&dl=ACM&trk=0


25 
 

 
 

correction of them in a web application in order to predict false positives utilizing data 

mining. As we all know, security has become very important in the internet field. The 

main problem arises with the developers who are not proficient insecure coding and leave 

the built applications with anomalies.In order to solve this problem, the best approach 

believed by the authors in this paper is to use static analysis to detect bugs. But 

unfortunately, these tools produce false positives results, which the intern makes the job 

complicated in finding bugs in the application. So the authors in this paper found a 

solution on how to detect vulnerabilities with fewer false positives using hybrid methods. 

In order to achieve that, the initial step in this paper utilizes taint analysis to detect 

candidate anomalies and then utilize the data mining method to reduce false positives. 

Authors in this paper came up with two opposite approaches: one is about humans 

program in regard to vulnerabilities, and the other is obtaining automatic knowledge from 

machine learning for data mining. With these approaches, more specific detection can be 

implemented, which corrects and fix the source code automatically. This approach is 

implemented through the WAP tool, and with the huge set of PHP source applications, 

code evaluation has been performed(Medeiros et al., 2014). 

 

2. Article “Vulnerability detection with deep learning” written by Fang Wu, Jiqiang Liu, 

Jiqiang Wang, and Wei Wang in 2017. As the protection of software systems against 

vulnerabilities has become a very important issue. So, in this paper, the authors came up 

with the methodology to detect vulnerabilities. In this paper, in order for vulnerability 

detection, three deep learning methods were proposed. The three deep learning models 

https://ieeexplore.ieee.org/author/37292860000


26 
 

 
 

for vulnerability detection, namely, long short term memory (LSTM), convolution neural 

network (CNN), and convolution neural network – long short term memory (CNN-

LSTM). Nine thousand eight hundred seventy-two sequences of method calls, which 

represent the features of the binary code patterns for the execution, were gathered in 

order to check the performance of their methodology approach. After applying these deep 

learning models to predict the anomalies, the results obtained show that it is accurate to 

83.6%. This approach is more effective than traditional methods like multi-layer 

perception (MLP)(Wu, Wang, Liu & Wang, 2017). 

 

3. “Discovering software vulnerabilities using data-flow analysis and machine learning,” 

written by Arjen Hommerson, JorritKronjee, and Harald P. E. Vranken. In their approach, 

vulnerability detection, specifically SQL injection (SQLi) and Cross-Site Scripting 

(XSS), is done in PHP applications. Authors came up with a novel method for static type 

analysis, which combines machine learning with data-flow analysis. The vulnerable PHP 

code, along with the solved solution versions, is collected from the assembled dataset of 

the National Vulnerability Database and the SAMATE project. Data-flow techniques, 

which include reaching constants, taint analysis, reaching definitions analysis, were 

applied in order to extract the features from the samples provided by the code. 

Additionally, these features were utilized in their methodology to train the machine 

learning with a variety of probabilistic classifiers.  



27 
 

 
 

Once the machine learning is trained, they constructed a tool named WIRECAML for the 

effectiveness of their approach. Then results obtained are then allowed to compare their 

tool with the other tools for the detection of PHP code vulnerability detection. Results 

show better performance of their tool in the detection of SQLi and XXS anomalies. With 

the experiment performed on other open source applications, previously unknown 

vulnerabilities were also detected in a photo-sharing web application (Kronjee et al., 

2018). 

4. (Russell, Kim, Hamilton, Lazovich, Harer, Ozdemir, Ellingwood & McConley, 2018)In 

the article “Automated Vulnerability Detection in source code Using Deep 

Representation Learning” written by authors - Rebecca L. Russell, Louis Kim, Lei H. 

Hamilton, TomoLazovich, Jacob A. Harer, OnurOzdemir, Paul M. Ellingwood and Marc 

W. McConley. As numerous software anomalies were detected, reported, or discovered 

openly or secretly in proprietary code. Such type of anomalies poses severe risk exploit 

and leads to the various issues such as DOS (denial of service), information leaks, system 

compromise, etc., Authors in this papers research methodology, utilize benefits of C and 

C++ open-source code which is available and capable to detect huge-scale function-level 

vulnerability detection system. This methodology used millions of open-source functions 

in order to substitute existing labeled vulnerability datasets. Those data-sets are then 

marked with carefully-selected outputs of three distinct static analyzers that point toward 

potential exploits. The data-setswhich are marked were available at https://osf.io/d45bw/. 

These data-sets were utilized to develop tools that are capable of detecting rapid and 

https://osf.io/d45bw/


28 
 

 
 

scalable vulnerabilities. The tool is based on deep learning featured, which can interpret 

the leaked source code. Researchers evaluated their tool from both data-sets NIST SATE 

IV benchmark and also the real software packages. This research demonstration 

illustrates that deep feature learning with respect to source code is a more effective and 

trustable detection approach for software applications. 

The below figure demonstrates the approach of neural representation learning with 

respect to the source code. 

Figure 1 

Convolutional neural representation-learning approach to source code classification 

(Russell et al., 2018) 

 

5. (Li, Zou, Xu, Jin,  Zhu, Y & Chen, n.d.)Authors - Zhen Li, Deqing Zou, Shouhuai Xu, 

Hai Jin, Senior Member, IEEE, Yawei Zhu, and Zhaoxuan Chen, worked on a research 

article named “A Framework for Using Deep Learning to detect software vulnerabilities”. 

In this paper, the importance of vulnerability detection, which has to be handled as 



29 
 

 
 

apparently various vulnerabilities reported on a daily basis, was described. Consequently, 

the purpose of automating anomaly detection machines such as machine learning was 

discussed. As it is known that deep learning usage is very attractive for vulnerability 

detection as human involvement is very less to manually define the features.Although 

there is a tremendous success history behind the deep learning in some domains, still the 

vulnerability detection is undetermined. Soauthors in this article focus on how to fill the 

void. Hence they first proposed the systematic framework for the detection of 

vulnerabilities using deep learning.This framework focuses mainly on obtaining 

representations of the program, which contain syntax and semantic content relevant to 

vulnerabilities. This can be obtained by dubbing Syntax, Semantic, and Vector 

representations (SySeVR, 2018) based. With the help of this framework, authors able to 

detect 15 unreported vulnerabilities in the National Vulnerability Database. 

 

 

 

 

 

 

 



30 
 

 
 

Figure 2 

A framework for using deep learning to detect vulnerabilities (Li et al., n.d.) 

 

The experiments were conducted with four software products, and the results demonstrate 

the usefulness of the architecture. Among 15 detected but unreported vulnerabilities, 

seven are unknown but have been reported to the vendors, whereas the remaining eight 

have been “silently” patched. 

 

6. (Jimenez et al., 2010)In the article named “Software vulnerabilities, Prevention and 

Detection Methods: A Review 1,” authored by Willy Jimenez, AmelMammar, and Ana 

Cavalli. The importance of software applications in the current society and about their 

complexity development in different programming languages have been described. The 

main purpose of vulnerabilities and code errors cause has been described by the authors. 

Usually, the programmer’s mistakes would become the major cause of generating 

software vulnerabilities. This will be the best approach for the attacker to attain privileges 



31 
 

 
 

to access private data in the system. This states that the vulnerabilities are the possible 

doorway for the attacker to access the system. Though it is clear that the vulnerabilities in 

the current date still a mounting tendency in the software applications, still regardless, the 

demand for software applications never got down. So, in order to detect and catch the 

vulnerabilities in the software production field, there is a need for tools which can help 

developers to detect the vulnerabilities in the code. Consequently, this research on 

anomaly detection presents an outline of vulnerabilities and the respective methods for 

detecting them. The below figure shows their methodology of the research on 

vulnerability detection. 

 

 

 

 

 

 

 

 

 



32 
 

 
 

Figure 3 

Security Goal Indicated Tree (Jimenez et al., 2010) 

 

7. (Daymont, 2017) In the article “Software vulnerabilities detection system and methods”, 

the author invented reveals a scheme and technique of detecting software anomalies in a 

computer program. One of the invention methods compiled software has been used for 

every single instruction. Basically, this invented compiled software was used to examine 

both the properties of data and control flow of the target program.In this article's 

methodology, a comprehensive instruction model has been utilized for every instruction 



33 
 

 
 

of the compiled code. This code is complemented by a graph. The graph is a control flow 

model that contains all potential instruction flow paths. Essentially, the data flow models 

are used to save the data flow record of unsafe data during the program execution. During 

this process, the system analyzes the data flow pattern and generates results 

corresponding to each execution, which calls unsafemethods/functions. And thus, the 

retrieved results are aggregated along with the related debug information, 

recommendations, and all other correlated instructions information that are triggered have 

been added in a security report. 

 

 

 

 

 

 

 

 

 

 



34 
 

 
 

Figure 4 

Data flow model to identify vulnerabilities (Daymont, 2017) 

 

 

 

 

 



35 
 

 
 

Figure 5 

Data flow model to identify vulnerabilities (United States Patent No. US9715593B2, 

2017) 

 

8. Weber, Shah, & Ren, 2008) An article named “Systems and methods for detecting 

software security vulnerabilities”, describes the embodiment of the current innovation 



36 
 

 
 

related to software application methods and systems for static analysis.According to the 

personification, this framework includes a scanner which has already been programmed 

and is coupled to the analysis engine. The program scanner is used to identify the 

numerous software program patterns of vulnerabilities. It also generates a list of 

vulnerabilities in the output file. In order to test the vulnerability potentiality, the analysis 

engine is configured to apply additional rules to determine the vulnerable resistance. 

Figure 6 describes the framework of the work. 

Figure 6  

Analysis engine to determine whether the potential vulnerability is vulnerable (United 

States Patent No. US7392545B1, 2008) 

 

9. (Letychevskyi, 2018)The author – Oleksandr Letychevskyi published an article name 

“Algebraic methods for detection of Vulnerabilities in software systems” presented an 



37 
 

 
 

approach for detecting vulnerabilities in a program with an algebraic algorithm. The 

vulnerabilities in this research framework are found by the sequence of processor 

instructions as an input. In a particular methodology, formulas have been used as a logic 

language. These formulae are presented as logic and are achieved by transforming the 

code into an algebraic specification. Along with the algebraic specifications, symbolic 

models were utilized in order to detect vulnerability cases which are represented in the 

form of logic language. But with this algebraic approach, the usage of this framework in 

order to solve and prove the systems integration along with the Algebraic Programming 

system will be anticipated. 

 

10. (Tevis & Hamilton, 2004)In a few published articles, authors did great research about the 

vulnerable attacks on software applications. Their profound research helped them to find 

the major reasons, and the necessity to build software has become a dominant goal in the 

field of software development. Accordingly, researchers in this software field found that 

the users can also be the reason for exploiting the software by their malicious inputs, and 

as a result, researchers found a way to fix these issues. In addition to these solutions, in 

order to partially mechanize the tasks which perform a security analysis of a program, 

researchers also constructed various source codes that automatically check software 

applications. Even though researchers came up with immense advances, still the core 

issue of how to secure the software applications from vulnerabilities still exists. All in all, 

the author’s solution to this problem could transform from imperative to functional 



38 
 

 
 

programming techniques. This solution may be the key approach to get rid of software 

vulnerabilities altogether. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

 
 

Chapter III - Methodology 

Introduction: 

 This chapter describes the approach and the plan to address the issues discussed in 

chapter 2. 

Design of the Study: 

 As we know, security for software applications has become a real threat. This framework 

implementation is to achieve the following goals, 

• Firstly, be able to see if the system acts intended or not 

• Enable users to monitor if program execution is consuming more resources in terms of 

memory, CPU, network bandwidth, disk usage, IO requests, etc. 

• And with the known resource information such as CPU, RAM, we can predict program 

performance on any machine which helps in problem identification. 

The architecture of the Framework: 

Figure 7 

Data Collection and Preparation 

 



40 
 

 
 

Figure 8 

Data Training 

 

Figure 9 

Data Prediction 

 

 

 

 

 

 



41 
 

 
 

Figure 10 

Compare and prepare decision statement 

 

The construction of this framework comprises of 4 phases as follow: 

1. Data Collection and Preparation 

2. Data Training 

3. Data Prediction 

4. Compare and Prepare Decision Statement 

Phase 1: Data Collection and Preparation 

 In the first phase - Data Collection and Preparation, a piece of java code is executed in 3 

different configurations let’s say A (vCPU 1, Memory 1GiB); B (vCPU 4, Memory 16GiB); C 

(vCPU 16, Memory 32GiB). The outputs generated in these respective machines are saved as 

OutputA.txt, OutputB.txt, and OutputC.txt, respectively. The output file has the eightmetrics 

captured while programming execution. It captures the CPU performance and memory 



42 
 

 
 

consumption by the specific machine for each java statement. Below are the 11 metrics collected 

in .txt files, 

Metrics 

• FreeCommittedVirtualMemorySize 

• TotalSwapSpaceSize 

• FreeSwapSpaceSize 

• ProcessCpuTime 

• FreePhysicalMemorySize 

• TotalPhysicalMemorySize 

• OpenFileDescriptorCount 

• MaxFileDescriptorCount 

• SystemCpuLoad 

• ProcessCpuLoad 

• ProcessedTimeForEachStatement 

Phase 2: Data Training: 



43 
 

 
 

 In this second phase - All three or more collected output.txt files in phase1 are appended 

together and saved in CSV format. This CSV file is given as an input to the Machine Learning, 

and it is trained. An algorithm is generated by machine learning according to the data given for 

training. Among the given feed, only 70% of the data is given as feed for training. And the 

remaining 30% data’s independent values and the dependent values are expected as output. 

Phase 3:Data Prediction: 

 In the third phase – Data in CSV file, among which only 70% of the data is given as feed 

for training and the remaining 30% data’s independent columns, and the dependent columns are 

expected as output. This is known as predicted data by Machine Learning Algorithm. 

Phase 4: Compare and Prepare Decision Statement: 

 In this last phase of the framework – Compare and Prepare Decision Statement, both 

predicted data, the one which is generated by the ML algorithm, and the actual result set are 

allowed to compare. If the result predicted by machine learning is similar or reaches its threshold 

point, then that particular machine is acting intended; if not, the machine is vulnerable. 

Summary:  

 The research plan, which comprises 4 phases, have been constructed and described in this 

chapter. The following chapter demonstrates the implementation steps to address this issue. 

 

 



44 
 

 
 

Chapter IV - IMPLEMENTATION OF FRAMEWORK 

Introduction: 

 This chapter shows the implementation steps, an approach to address the anomaly 

detection in any system.  

Demonstration steps: 

1. Login to 3 distinct instances  

2. Collect data of 11 metrics for Java code 

3. Data Prep 

4. Train and Predict Data in SageMaker Notebook instance 

5. Plot a graph between Actual and Predicted results 

Implementation Process: 

Phase 1: Data Collection and Preparation 

 Steps for connecting to Linux Instance from Windows Using PuTTY. (Connecting to 

Your Linux Instance from Windows Using PuTTY - Amazon Elastic Compute Cloud, n.d.) 

 Make sure EC2 instance is running before attempt connecting through PuTTY. In order 

to start the instance, complete the following steps. 

1. Login to AWS console 

2. Launch an Instance 

3. Generate private key 

4. Connect to the Instance through PuTTY 



45 
 

 
 

➢ Login to AWS console, 

• Go to “My Classrooms” 

 

• Scroll down to the desired course and click on “Go to classroom.” 

 

• Select AWS Console under “Your Classroom Account Status”  

 

• Scroll down services, under compute – EC2 services 

 



46 
 

 
 

 

 

➢ Launch an Instance: 

 

• Click on the dropdown arrow – Launch instance -> Launch instance, as shown in the 

above screenshot. 

• Below are the steps to be completed to launch an instance 

 

• Step 1: Choose an Amazon Machine Image (AMI) 



47 
 

 
 

• Check “Free tier only.” 

 

 

 

• Select an instance with desired configurations 

 

 

• Step 2: Choose an instance type -> Review and Launch 

 



48 
 

 
 

• Select an Instance to run 

 

• Below are the properties and respective configurations 

 

 

 

As the instance is running, now try connecting through putty. In order to connect 

through putty, complete the below steps. 

• Make sure PuTTY is installed in your local machine. 

• If not, download the latest version and install PuTTY. 

• Also, Install PuTTYgen to convert the private key. 



49 
 

 
 

• Once you launch an instance in AWS services, download .pem file on to your local 

by creating a key pair, as shown below. 

➢ Generate private key: 

 

 



50 
 

 
 

 

• Once you have PEM key downloaded in Downloads, start converting .pem to .ppk 

using PuTTYgen. 

• Steps to get .ppk file. Do the following steps. 

• Open PuTTYgen application, which is installed in your machine. 

• In Type of key to generate: select RSA radio button and for Number of bits in a 

generated key: 2048 bits 

 

• In Actions, Load an existing private key file  



51 
 

 
 

 

• Open the file – browse the .pem key, which is in the Downloads folder. 

 

• Select - Load at Load an existing private key file. 

 

• Select Ok when the PuTTygen Notice box is populated. 



52 
 

 
 

 

• Choose to Save private key button under Save generated key option. 

 

• Accept the PuTTYgen Warning message. 

 

➢ Connect to the instance through PuTTY: 



53 
 

 
 

• Make sure instance is running

 

• copy Public DNS (IPv4) from Description  

 

• Paste above-copied IPv4 in the Host Name section, Port 22, and connection type is 

SSH.  



54 
 

 
 

 

 Alternatively, if the chosen instance has an IPv6 address, the hostname can be 

user_name@ipv6_address. 

For user_name, be sure to specify according to the AMI as listed below, 

1. Amazon Linux 2 or the Amazon Linux AMI: ec2-user 

2. CentOS: centos 

3. Debian: admin or root 

4. Fedora: ec2-user or fedora 

5. RHEL: ec2-user or root 

6. SUSE: ec2-user or root 

7. Ubuntu: ubuntu 



55 
 

 
 

8. If any issues connecting instance with the given ec2-user and root, check with the 

AMI provider. 

On the left section under Category -> SSH -> Auth. Browse, open converted .ppk file 

from Downloads. 

 

• Accept PuTTY Security Alert, as shown below. 



56 
 

 
 

 

• Ubuntu shell will be opened, now login with “ubuntu” user. 

 

• Once you successfully login to the instance, make sure java is installed. To verify, 

follow the below commands. 

 

 



57 
 

 
 

 

 

As java is installed successfully, check version as shown below 

 

 

 

Now we have java 8 version installed. In order to run a java program, we need to 

copy the java program into our ec2 instance using WinSCP. 

Below steps will show how to copy files from local to ec2 instance. 

• Start, WinSCP, open application. Before make sure this application is download and 

installed in your local. If not, get the latest application installed. 



58 
 

 
 

 

• Fill below details: 

hostname: ec2-52-55-246-37.compute-1.amazonaws.com 

User name: ubuntu 

For password: Click on the Advanced button. On your left, select authentication under 

SSH. 

 

In authentication parameters, browse the private key file and OK 



59 
 

 
 

 

 

 

Below the left window is a local directory, and the right is ubuntu. Copy respective files 

from the left window and paste it in the right window. 

 

Once files copied, right-click on the respective .java file, go to properties and grant 

permission “777” which means read, write and execute permissions to owner, group, and 

others  



60 
 

 
 

 

 

Now we have .java file in ubuntu instance root folder with all required permissions. 

Java code: 

Lets drive into java code, andthe name of the file is – MemoryCalculations.java 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.PrintStream; 

import java.lang.management.ManagementFactory; 

import java.lang.management.OperatingSystemMXBean; 

import java.lang.reflect.Method; 

import java.lang.reflect.Modifier; 

 

public class MemoryCalculations { 

 

public static void main(String[] args) throws IOException { 

boolean append = true; 

booleanautoFlush = false; 

PrintStream out = new PrintStream(new FileOutputStream("/home/ubuntu/Output.txt", 

append), autoFlush); 

System.setOut(out); 

System.out.println("**********Console Output**********"); 



61 
 

 
 

long startTime1 = System.currentTimeMillis(); 

printUsage(); 

long stopTime1 = System.nanoTime(); 

long elapsedTime1 = stopTime1 - startTime1; 

System.out.println("Time calculated in millisecond : " + elapsedTime1); 

System.out.println("-------------"); 

long startTime2 = System.currentTimeMillis(); 

int x = 10; 

int y = 10; 

printUsage(); 

long stopTime2 = System.nanoTime(); 

long elapsedTime2 = stopTime2 - startTime2; 

System.out.println("Time calculated in millisecond : " + elapsedTime2); 

System.out.println("-------------"); 

long startTime3 = System.currentTimeMillis(); 

int z = x + y; 

printUsage(); 

long stopTime3 = System.nanoTime(); 

long elapsedTime3 = stopTime3 - startTime3; 

System.out.println("Time calculated in millisecond : " + elapsedTime3); 

System.out.println("-------------"); 

long startTime4 = System.currentTimeMillis(); 

enhancedLoop(); 

printUsage(); 

long stopTime4 = System.nanoTime(); 

long elapsedTime4 = stopTime4 - startTime4; 

System.out.println("Time calculated in millisecond : " + elapsedTime4); 

System.out.println("-------------"); 

long startTime5 = System.currentTimeMillis(); 

printUsage(); 

long stopTime5 = System.nanoTime(); 

long elapsedTime5 = stopTime5 - startTime5; 

System.out.println("Time calculated in millisecond : " + elapsedTime5); 

System.out.println("-------------"); 

 

} 

public static String printUsage() { 

OperatingSystemMXBeanoperatingSystemMXBean = 

ManagementFactory.getOperatingSystemMXBean(); 

for (Method method :operatingSystemMXBean.getClass().getDeclaredMethods()) { 

method.setAccessible(true); 

if (method.getName().startsWith("get") &&Modifier.isPublic(method.getModifiers())) { 

Object value; 



62 
 

 
 

try { 

value = method.invoke(operatingSystemMXBean); 

} catch (Exception e) { 

value = e; 

} // try 

System.out.println(method.getName() + " = " + value); 

} // if 

} // for 

 

return ""; 

} 

public static void enhancedLoop() { 

System.out.println("Using regular for loop."); 

for (int i = 0; i< 50; i++) { 

System.out.println(i); 

 

} 

} 

} 

 

Code Description: 

1. First, all necessary packages were imported. 

2. Get into the public class, which has 3 methods - main(), printUsage()  and 

enhancedLoop(). 

3. The first method main() throws IOException. This method has mainly divided into 

sixparts: 

• Part1 (L14 - L18): Created an object “out” from PrintStream class in order to save 

executed console Output to the Output.txt file in the given directory. 

• Part2 (L20 – L25) : Simply callingprintUsage() method to see the performance 

metrics. Performance is calculated by doing elapsed time is the time difference 

between after and before the execution of code. 



63 
 

 
 

In Simple way, elapsed time = stopTime - startTime 

• Part3 (L27 – L33): Assign two integer values to two different variables x and y. 

• Part4 (L35 – L41): Perform the addition of x and y, and then assign addition value to 

variable z. 

• Part5 (L43 – L49) : Calling enhancedLoop(). 

• Part6 (L51 – L56) : No additional execution of code, just calling performance 

calculation method printUsage(). 

4. Second method – printUsage() will result all various performance calculation metrics of 

the resources as listed below, 

getCommittedVirtualMemorySize 

getTotalSwapSpaceSize 

getFreeSwapSpaceSize 

getProcessCpuTime 

getFreePhysicalMemorySize 

getTotalPhysicalMemorySize 

getOpenFileDescriptorCount 

getMaxFileDescriptorCount 

getSystemCpuLoad 

getProcessCpuLoad 

Time calculated in millisecond 



64 
 

 
 

5. Third method – enhancedLoop(). This is an enhanced forloop which prints 1 to 49 

integers. 

 As .java file is in place and ready to execute in the ubuntu instance, now execute above 

.java file as shown below, 

 

Compile java code with javac MemoryCalculations.java 

 

 

Once compiled, now execute .class file as java MemoryCalculations 

 

After code is executed, we see the Output.txt file generated. This .txt has the console 

output of the executed file, as shown below. 



65 
 

 
 

 

Similarly, repeate same process for other two instances. Figure 11 shows all the three 

instances with respective configurations. 

Figure 11 

Three Ubuntu Instances 

 

Three instance configuration details are described below, 



66 
 

 
 

1. t2.micro: 

• Instance type: Ubuntu 

• vCPUs: 1 

• Memory (GB) : 1 

2. t2.xlarge: 

• Instance type: Ubuntu 

• vCPUs: 4 

• Memory (GB) : 16 

3. t2.2xlarge: 

• Instance type: Ubuntu 

• vCPUs: 8 

• Memory (GB) : 32 

 The above-described java code has been executed in the above listed three instances. As 

shown, three output files generated in three different machines are micro_freetier.txt, 

Highconfig_Output.txt, and 2xLarge_Output.txt files, respectively. These .txt files details 

described below, 

1. micro_freetier.txt - Contains Run1 to Run10 with 11 performance metrics for fivelines of 

Java code. 

2. HighConfig_Output.txt - Contains Run1 to Run10 with 11 performance metrics for five 

lines of Java code. 



67 
 

 
 

3. 2xLarge_Output.txt - Contains Run1 to Run10 with 11 performance metrics for five lines 

of Java code. 

 The data collected in these files are used to train machine learning and expect to generate 

an algorithm out of it. So, in order to train Machine Learning, these .txt files are modified from 

horizontal records to vertical retrieving records and saved in .xlsx format as described below, 

1. micro_freetier.xlsx - Contains columnar based values of micro_freetier.txt  

 

2. HighConfig_Output.xlsx - Contains columnar based values of HighConfig_Output.txt  

 

3. 2xLarge_Output.xlsx - Contains columnar based values of 2xLarge_Output.txt   

 All data from the above.txt files are gathered together and prepared table and saved in 

DataPrep.xlsx and this file format is converted to .csv as Notebook instance accepts .csv file 

formats. Columns which have similar values are eliminated. After similar value columns 

elimination, DataPrep.xlsx contains below columns, 

1. CPU 

2. Memory 

3. Int_CommittedVirtualMemorySize 

4. Int_ProcessCpuTime 

5. Int_FreePhysicalMemorySize 

6. Int_TotalPhysicalMemorySize 



68 
 

 
 

7. Int_SystemCpuLoad 

8. Int_ProcessCpuLoad 

9. Int_Time 

10. Var_CommittedVirtualMemorySize 

11. Var_ProcessCpuTime 

12. Var_FreePhysicalMemorySize 

13. Var_TotalPhysicalMemorySize 

14. Var_SystemCpuLoad 

15. Var_ProcessCpuLoad 

16. Var_Time 

17. Sum_CommittedVirtualMemorySize 

18. Sum_ProcessCpuTime 

19. Sum_FreePhysicalMemorySize 

20. Sum_TotalPhysicalMemorySize 

21. Sum_SystemCpuLoad 

22. Sum_Time 

23. loop_CommittedVirtualMemorySize 

24. loop_ProcessCpuTime 

25. loop_FreePhysicalMemorySize 

26. loop_TotalPhysicalMemorySize 

27. loop_SystemCpuLoad 

28. loop_ProcessCpuLoad 



69 
 

 
 

29. loop_Time 

30. final_CommittedVirtualMemorySize 

31. final_ProcessCpuTime 

32. final_FreePhysicalMemorySize 

33. final_TotalPhysicalMemorySize 

34. final_Time 

Access AWS SageMaker – Notebook Instance 

Amazon SageMaker is one of the Machine Learning Services, where data can be feed as 

input for the ML Algorithm to train and predict. Create a Notebook Instance in the SageMaker 

where the set of commands can be executed to test and train data.  

Below are the instructions which are followed to create Notebook Instance: 

Once you access Amazon SageMaker, scroll down to Notebook services, and select 

Notebook Instance. Once you get into the page, create new Instance with the  details shown in 

Figure 12. 

 

 

 

 

 



70 
 

 
 

Figure 12  

Notebook Instance Settings, Permission and Encryption details 

 

Once Instance is created, under Actions -> select Open Jupyter and wait until the status 

shows InService in Figure 13. 

 



71 
 

 
 

Figure 13 

Notebook instance status 

 

Once Jupyter Notebook is opened, upload DataPrep.csv file into the instance as shown in 

Figure 14. 

Figure 14  

Upload option in Notebook Instance 

 

Also, create a conda_python3 shell to execute commands. For that, select dropdown button 

New > conda_python3 as shown in Figure 15. 

 

 

 

 

 

 



72 
 

 
 

Figure 15 

Notebook type – conda_python3 

 

Figure 16  

File uploaded in Jupyter Python nNotebook – PredictData_Instance 

 

Few testing sheets were created to test the code. The actual results were captured in 

PredictData_Instance.ipynb. DataPrep.csv is the file uploaded that contains data for training and 

prediction. 



73 
 

 
 

Phase 2 – Data Training 

Import “pandas” package to read DataPrep.csv and save the data in the panda's data 

frame “df” As shown in Figure 17. 

df.head () prints the contents of the data frame.(Machine Learning Tutorial Python—7: Training 

and Testing Data—YouTube, 2018) 

Figure 17  

Read CSV file into a dataframe 

 

 Import matplotlib.pyplot, this package will plot graphs across X and Y-axis variables 

assigned are shown in Figure 18. (Py/train_test_split.ipynb at master · codebasics/py · GitHub, 

2018) 

Figure 18 

Import matplotlib 

 



74 
 

 
 

 The graph is plotted with the below variables CPU on X-axis and the contents of data 

frame on Y-axis which is shown in Figure 19. 

Figure 19 

Dataframe for Graph plot between Dependent and Independent columns I 

 

 Below graph is been plotted between CPU and one of the dependent columns as shown in 

Figure 20. 



75 
 

 
 

Figure 20 

Graph plot between Dependent and Independent columns I 

 

Similarly, the additional graph is plotted between one of the independent (Memory) and 

the dependent columns as shown in Figure 21. 

 

 

 

 

 

 

 

 

 

 



76 
 

 
 

Figure 21 

Dataframe for Graph plot between Dependent and Independent columns II 

 

Graph is been plotted between Memory and one of the dependent columns as shown in Figure 

22. 

 



77 
 

 
 

Figure 22 

Graph plot between Dependent and Independent columns II 

 

CPU and Memory are two independent variables that are saved like an array and assigned 

to independent_var as derived in Figure 23. 

Figure 23 

Independent variable assignment 

 

All other 32 columns are dependent variables that are saved like an array and assigned to 

dependent_var as derived in Figure 24. 

 

 

 



78 
 

 
 

Figure 24 

Dependent variable assignment 

 

In Figure 25, 30% of data is taken out for testing machine learning for prediction whereas 

70% of data is to feed data for training. 

Figure 25 

Independent variable assignment  

 

The random data picked up by the ML algorithm for training is shown in Figure 26 and Figure 

27: 

Figure 26 

Independent train variable 

 

 

 

 



79 
 

 
 

 

Figure 27 

Independent train variable data  

 

Figure 28 is the 30% of the data that is given for ML to test. We are not feeding this data 

as to not have any clue for the prediction. Figure 28 shows  is the actual output predicting from 

ML output. 

 



80 
 

 
 

Figure 28 

Independent test variable with data 

 

Figure 29 represents dependent_var_train is the dataset used to train ML 

 

 

 

 

 

 

 

 



81 
 

 
 

Figure 29 

Dependent train variable 

 

dependent_var _test here refers to the expected output needs to be predicted by the ML algorithm 

for the input given from dependent_var _test as represented in Figure30. 

 

 

 

 

 

 

 



82 
 

 
 

Figure 30 

Dependent test variable 

 

 Linear regression is a linear approach to modeling the relationship between a scalar 

response (or dependent variable) and one or more explanatory variables (or independent 

variables). This package is imported as shoen in Figure 31.(Linear regression—Wikipedia, n.d.) 

Figure 31  

LinearRegression Import 

 

Phase 3 - Data Prediction: 



83 
 

 
 

 With the regression variable, the prediction is performed to get independent values when 

dependent values are fed as input in Figure 32, Figure33, Figure 34. 

Figure 32 

Prediction of Independent test variable I 

 



84 
 

 
 

Figure 33 

Prediction of Independent test variable II 

 



85 
 

 
 

Figure 34 

Prediction of Independent test variable III 

 



86 
 

 
 

Figure 35 shows  actual dataset of dependent test variable. 

 

Figure 35 

Prediction of Dependent test variable 

 

dependent_var _test_predict is predicted dataset variable formatting the data type to be suitable 

with the actual data type. 

Figure 36 shows the Numpy package import is to change the datatype format to float. 

Figure 36 

Numpy package import 

 



87 
 

 
 

With the regression variable, the prediction is performed to get independent values when 

dependent values are fed as input in Figure 37, Figure38, Figure 39. 

Figure 37 

Prediction of Dependent test variable I 

 

 

 

 

 



88 
 

 
 

Figure 38 

Prediction of Dependent test variable II 

 

 

 



89 
 

 
 

Figure 39  

Prediction of Dependent test variable III 

 

Output match of datasets between actual and predicted is 99.72%. this can be seen in Figure 40. 

 



90 
 

 
 

Figure 40 

ActualVs Predicted score 

 

Phase 4 - Comparison and Decision statement: 

Below graphs are been plotted between Actual and Predicted values. 

Figure 41 shows the graph plotted between CPU and Dependent variables. 

Predicted results: 

Figure 41 

Predicted Graph plot between CPU and Dependent variables  

 

Graph is been plotted between Memory and Dependent variables as shown in Figure 42. 

 



91 
 

 
 

Figure 42  

Predicted Graph plot between Memory and Dependent variables 

 

 

 

 

 

 

 

 

 

 

 



92 
 

 
 

Actual results: 

Figure 43 

Actual Graph plot between CPU and Dependent variables 

 

Actual results of CPU Vs Dependent variables are shown in Figure 43. 

 

 



93 
 

 
 

Figure 44  

Actual Graph plot between Memory and Dependent variables 

 

Figure 44 showns the graph which is been plotted between Memory and Dependent variables.  

 

 



94 
 

 
 

Graph Plot between Predicted vs. Actual 

 

Result Analysis: 

As we notice, actual and predicted results are within the threshold; by this, we can say 

System is acting intended. In the graph plots, the score of the actual and prediction results are 

99% accurate.  



95 
 

 
 

With this result analysis, if the predicted values by ML are not tallied, then we can 

predict the existence of anomaly in one or the other form. By this, developers can beneficial from 

the ML predictictions towards the post deployment failures ahead of time. Also, with known 

system configurations’ like CPU and Memory of any machine’s performance metrics can be 

achieved with this framework. 

In addition, users are enabled to see if program execution consumes more than required 

resources in terms of CPU, memory, network bandwidth or disk IO requests. 

 

 

 

 

 

 

 

 

 

 



96 
 

 
 

Chapter V - Future work 

This framework enables us to identify if any vulnerability exists in the system. Also 

enables users to identify program performance if the system key configurations are known. In 

addition, this frameworks helps enable users to see the required resources are been utilized by the 

program or not with the known configuration details such as CPU, memory, network bandwidth, 

etc. Though the identification of anomalies are been successful, still the specification  of 

anomaly type and the solution towards the issue could not be achieved with this framework. The 

research work performed in this paper in order to resolve the issue is limited. 

Further findings of the issue type and the possible solutions to resolve certain anomaly 

will still be continued. Future work of this research extension will first include identifying the 

type of anomaly in the system when the metrics prediction do not meet the threshold values. 

Secondly, work on possible solutions in order to address the issue. 

 

 

 

 

 

 



97 
 

 
 

Chapter VI - Conclusion 

 As software applications hold high demand, application security should be considered as 

a chief goal. With the help of this machine learning approach, application anomalies can be 

detected with minimal human involvement. Main goal of this framework is to identify anomalies 

in Software applications by calculating performance metrics with  the systems key 

configurations.  With the trained data to the ML, systems performance resources can be captured. 

After the demonstration of the project, the predicted results are achieved with an accuracy of 

about 99%. Systems performance metrics were successfully able to be achieved with the known 

resourcs like CPU, Memory, network bandwidth..  

 

 

 

 

 

 

 

 

 



98 
 

 
 

References 

Aboud, S. (2009, June 1). Protection of e-commerce Using Hybrid Tools. 

Application Security Vulnerability: Code Flaws, Insecure Code. (2014, February 2). Veracode. 

https://www.veracode.com/security/application-vulnerability 

Artificial intelligence. (2019). In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=Artificial_intelligence&oldid=891515233 

Beal, V. (n.d.). What endpoint security? Webopedia Definition. Retrieved April 8, 2019, from 

https://www.webopedia.com/TERM/E/endpoint_security.html 

Connecting to Your Linux Instance from Windows Using PuTTY - Amazon Elastic Compute 

Cloud. (n.d.). Retrieved April 21, 2020, from 

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/putty.html 

Cross-site scripting. (2019). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Cross-

site_scripting&oldid=889687114 

CVE - Home. (2007). Retrieved April 9, 2019, from https://cve.mitre.org/cve/ 

Cybercrime – what it is and how to defend against it | Avast. (n.d.). Retrieved April 8, 2019, 

from https://www.avast.com/c-

cybercrime?hsSkipCache=true&hs_ungate__cos_renderer_combine_all_css_disable=tru

e 



99 
 

 
 

Data-flow analysis. (2019). In Wikipedia. https://en.wikipedia.org/w/index.php?title=Data-

flow_analysis&oldid=884254867 

Daymont, J. M. (2017). Software vulnerabilities detection system and methods (United States 

Patent No. US9715593B2). https://patents.google.com/patent/US9715593/en 

Denial-of-service attack. (2019). In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=Denial-of-service_attack&oldid=890075244 

Deployment Phase in SDLC - Video & Lesson Transcript | Study.com. (n.d.). Retrieved April 1, 

2019, from https://study.com/academy/lesson/deployment-phase-in-sdlc.html 

Dor, N., Rodeh, M., & Sagiv, M. (n.d.). Semantics, Program analysis. 

Fong, E., & Okun, V. (2007). Web Application Scanners: Definitions and Functions. 

Proceedings of the 40th Annual Hawaii International Conference on System Sciences, 

280b–. https://doi.org/10.1109/HICSS.2007.611 

Gupta, S., & Sharma, L. (2012). Exploitation of Cross-Site Scripting (XSS) Vulnerability on 

Real World Web Applications and its Defense. International Journal of Computer 

Applications (0975 – 8887), 60, 28–33. https://doi.org/10.5120/9762-3594 

Hackett, B., Das, M., Wang, D., & Yang, Z. (2006). Modular checking for buffer overflows in 

the large. Proceeding of the 28th International Conference on Software Engineering  - 

ICSE ’06, 232. https://doi.org/10.1145/1134285.1134319 



100 
 

 
 

Input Validation. (n.d.). Retrieved April 8, 2019, from 

https://www.whitehatsec.com/glossary/content/input-validation 

IP fragmentation. (2018). In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=IP_fragmentation&oldid=874793315 

Jimenez, W., Mammar, A., & Cavalli, A. (2010). Software Vulnerabilities, Prevention and 

Detection Methods: A Review 1. 

Kronjee, J., Hommersom, A., & Vranken, H. (2018). Discovering software vulnerabilities using 

data-flow analysis and machine learning. 1–10. 

https://doi.org/10.1145/3230833.3230856 

Krsul, I., Spafford, E., & Tripunitara, M. (1998). An Analysis of Some Software Vulnerabilities. 

Letychevskyi, O. (2018). Algebraic methods for detection of vulnerabilities in software systems. 

2018 IEEE 9th International Conference on Dependable Systems, Services and 

Technologies (DESSERT), 198–201. https://doi.org/10.1109/DESSERT.2018.8409127 

Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2018). SySeVR: A Framework for Using 

Deep Learning to Detect Software Vulnerabilities. 13. 

Linear regression—Wikipedia. (n.d.). Retrieved April 21, 2020, from 

https://en.wikipedia.org/wiki/Linear_regression 

Machine Learning | Coursera. (2019). Retrieved April 8, 2019, from 

https://www.coursera.org/learn/machine-learning 



101 
 

 
 

Machine Learning Tutorial Python—7: Training and Testing Data—YouTube. (2018). Retrieved 

April 21, 2020, from https://www.youtube.com/watch?v=fwY9Qv96DJY&t=10s 

Machine Learning: What it is and why it matters. (n.d.). Retrieved April 8, 2019, from 

https://www.sas.com/en_us/insights/analytics/machine-learning.html 

Medeiros, I., Neves, N. F., & Correia, M. (2014). Automatic Detection and Correction of Web 

Application Vulnerabilities Using Data Mining to Predict False Positives. Proceedings 

of the 23rd International Conference on World Wide Web, 63–74. 

https://doi.org/10.1145/2566486.2568024 

Nethercote, N., & Seward, J. (2007). Valgrind: A Framework for Heavyweight Dynamic Binary 

Instrumentation. 12. 

Programming Concepts: Static vs. Dynamic Type Checking | Aaron Krauss. (2015). Retrieved 

April 8, 2019, from https://thesocietea.org/2015/11/programming-concepts-static-vs-

dynamic-type-checking/ 

Py/train_test_split.ipynb at master - codebasics/py - GitHub. (2018). Retrieved April 21, 2020, 

from 

https://github.com/codebasics/py/blob/master/ML/6_train_test_split/train_test_split.ipyn

b 

 



102 
 

 
 

Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood, P., & 

McConley, M. (2018). Automated Vulnerability Detection in Source Code Using Deep 

Representation Learning. 2018 17th IEEE International Conference on Machine 

Learning and Applications (ICMLA), 757–762. 

https://doi.org/10.1109/ICMLA.2018.00120 

Security pattern. (2019). In Wikipedia. 

https://en.wikipedia.org/w/index.php?title=Security_pattern&oldid=888650717 

Shaneck, M. (2003). An Overview of Buffer Overflow Vulnerabilities and Internet Worms. 8. 

Software vulnerabilities. (n.d.). Retrieved April 9, 2019, from 

https://encyclopedia.kaspersky.com/knowledge/software-vulnerabilities/ 

Tevis, J.-E. J., & Hamilton, J. A. (2004). Methods for the Prevention, Detection and Removal of 

Software Security Vulnerabilities. Proceedings of the 42Nd Annual Southeast Regional 

Conference, 197–202. https://doi.org/10.1145/986537.986583 

tutorialspoint.com. (n.d.). Operating System Security. Www.Tutorialspoint.Com. Retrieved April 

8, 2019, from https://www.tutorialspoint.com/operating_system/os_security.htm 

Victor Krsul, I. (2011). Software Vulnerability Analysis. ETD Collection for Purdue University. 

Weber, M. D., Shah, V. R., & Ren, C. (2008). Systems and methods for detecting software 

security vulnerabilities (United States Patent No. US7392545B1). 

https://patents.google.com/patent/US7392545/en 



103 
 

 
 

What is a Security Breach? - Definition from Techopedia. (2017). Techopedia.Com. Retrieved 

April 2, 2019, from https://www.techopedia.com/definition/29060/security-breach 

What is Application Security? - Definition from Techopedia. (2019). Techopedia.Com. Retrieved 

April 1, 2019, from https://www.techopedia.com/definition/13567/application-security 

What Is Network Security? (n.d.). Cisco. Retrieved April 8, 2019, from 

https://www.cisco.com/c/en/us/products/security/what-is-network-security.html 

What is pen test (penetration testing)? - Definition from WhatIs.com. (2018). SearchSecurity. 

Retrieved April 9, 2019, from 

https://searchsecurity.techtarget.com/definition/penetration-testing 

What is SQL Injection (SQLi) and How to Prevent It. (n.d.). Acunetix. Retrieved April 8, 2019, 

from https://www.acunetix.com/websitesecurity/sql-injection/ 

What Is Static Analysis (Static Code Analysis)? | Perforce. (2020). Retrieved April 8, 2019, from 

https://www.perforce.com/blog/qac/what-static-code-analysis 

Wilander, J., & Kamkar, M. (2003). A Comparison of Publicly Available Tools for Dynamic 

Buffer Overflow Prevention£. 14. 

Wu, F., Wang, J., Liu, J., & Wang, W. (2017). Vulnerability detection with deep learning. 2017 

3rd IEEE International Conference on Computer and Communications (ICCC), 1298–

1302. https://doi.org/10.1109/CompComm.2017.8322752 

 

https://doi.org/10.1109/CompComm.2017.8322752


104 
 

 
 

Appendix A 

Below is the data of three VM instances (Ubuntu) 11 metrices 10 runs of each instance. All the 

data is been gathered for feeding as an input to the ML for training 70% and prediction 30% 

(random data). 

CPU Memory Int_CommittedVirtualMemorySize Int_ProcessCpuTime 

1 1 2208010240 60000000 

1 1 2208010240 60000000 

1 1 2208010240 60000000 

1 1 2208010240 60000000 

1 1 2208010240 50000000 

1 1 2208010240 60000000 

1 1 2208010240 60000000 

1 1 2208010240 50000000 

1 1 2208010240 50000000 

1 1 2208010240 50000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 50000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

4 16 6732087296 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 

8 32 11468390400 60000000 



105 
 

 
 

Int_FreePhysicalMemorySize Int_TotalPhysicalMemorySize Int_SystemCpuLoad 

143585280 1038839808 0.003497052 

142438400 1038839808 0.003321757 

142774272 1038839808 0.003302004 

143343616 1038839808 0.003305015 

145678336 1038839808 0.003308768 

142438400 1038839808 0.003299414 

142184448 1038839808 0.003302786 

142397440 1038839808 0.003306789 

143708160 1038839808 0.003310753 

142295040 1038839808 0.003290851 

15030235136 16825704448 0.012338837 

15029694464 16825704448 0.01167598 

15028113408 16825704448 0.011650133 

15030075392 16825704448 0.011629428 

15032500224 16825704448 0.011610898 

15029145600 16825704448 0.011602982 

15030718464 16825704448 0.011587859 

15029895168 16825704448 0.011572471 

15030919168 16825704448 0.011551093 

15029383168 16825704448 0.011534571 

33294262272 33737129984 0.001489881 

33293635584 33737129984 0.001438163 

33294704640 33737129984 0.001437085 

33295187968 33737129984 0.00143661 

33295400960 33737129984 0.001434442 

33294458880 33737129984 0.001432256 

33295233024 33737129984 0.001433931 

33294299136 33737129984 0.001431869 

33294565376 33737129984 0.001428878 

33295867904 33737129984 0.001426366 

 

 

 

 



106 
 

 
 

Int_ProcessCpuLoad Int_Time Var_CommittedVirtualMemorySize Var_ProcessCpuTime 

0.00000399 1.352E+13 2208010240 60000000 

3.7754E-06 1.435E+13 2208010240 60000000 

0.000003748 1.447E+13 2208010240 60000000 

3.7458E-06 1.448E+13 2208010240 60000000 

3.7451E-06 1.448E+13 2208010240 60000000 

3.7275E-06 1.456E+13 2208010240 60000000 

3.7263E-06 1.456E+13 2208010240 60000000 

3.1044E-06 1.457E+13 2208010240 60000000 

0.00000372 1.457E+13 2208010240 60000000 

0.00000308 1.47E+13 2208010240 60000000 

7.8061E-06 3.73E+11 6732087296 60000000 

7.3805E-06 4.838E+11 6732087296 60000000 

7.3564E-06 4.905E+11 6732087296 60000000 

7.3372E-06 4.958E+11 6732087296 60000000 

7.3201E-06 5.006E+11 6732087296 60000000 

7.3074E-06 5.042E+11 6732087296 60000000 

7.2918E-06 5.086E+11 6732087296 60000000 

7.2767E-06 5.128E+11 6732087296 70000000 

0.000007258 5.181E+11 6732087296 60000000 

7.2423E-06 5.226E+11 6732087296 60000000 

1.09664E-05 7.529E+11 11468390400 70000000 

8.9979E-06 7.173E+11 11468390400 60000000 

8.9168E-06 7.097E+11 11468390400 60000000 

1.03141E-05 7.025E+11 11468390400 70000000 

8.7555E-06 6.942E+11 11468390400 60000000 

8.6803E-06 6.868E+11 11468390400 60000000 

8.6208E-06 6.808E+11 11468390400 60000000 

0.00000854 6.726E+11 11468390400 70000000 

8.4716E-06 6.655E+11 11468390400 60000000 

8.3904E-06 6.569E+11 11468390400 60000000 

 

 

 

 



107 
 

 
 

Var_FreePhysicalMemorySize Var_TotalPhysicalMemorySize Var_SystemCpuLoad 

143585280 1038839808 1 

142438400 1038839808 0 

142774272 1038839808 0 

143343616 1038839808 1 

145678336 1038839808 1 

142438400 1038839808 0 

142184448 1038839808 1 

142397440 1038839808 1 

143708160 1038839808 1 

142295040 1038839808 1 

15029981184 16825704448 0 

15029239808 16825704448 1 

15028113408 16825704448 0 

15029821440 16825704448 0 

15032246272 16825704448 0.5 

15029145600 16825704448 0 

15030718464 16825704448 0 

15029641216 16825704448 1 

15030919168 16825704448 0 

15029129216 16825704448 0.5 

33293881344 33737129984 0 

33293635584 33737129984 0 

33294704640 33737129984 0 

33295187968 33737129984 0.25 

33295400960 33737129984 0 

33294458880 33737129984 0.5 

33294852096 33737129984 0 

33294299136 33737129984 0 

33294565376 33737129984 0 

33295867904 33737129984 0 

 

 

 

 



108 
 

 
 

Var_ProcessCpuLoad Var_Time Sum_CommittedVirtualMemorySize 

0 1.3517E+13 2208010240 

0 1.4354E+13 2208010240 

0 1.447E+13 2208010240 

0 1.448E+13 2208010240 

0 1.4483E+13 2208010240 

0 1.4559E+13 2208010240 

0 1.4564E+13 2208010240 

0 1.4568E+13 2208010240 

0 1.4573E+13 2208010240 

0 1.4698E+13 2208010240 

0 3.7301E+11 6732087296 

0 4.8383E+11 6732087296 

0 4.9048E+11 6732087296 

0 4.9583E+11 6732087296 

0 5.006E+11 6732087296 

0 5.0415E+11 6732087296 

0 5.0856E+11 6732087296 

0 5.1281E+11 6732087296 

0 5.1814E+11 6732087296 

0 5.2262E+11 6732087296 

0 7.5292E+11 11468390400 

0 7.1728E+11 11468390400 

1 7.097E+11 11468390400 

0 7.0245E+11 11468390400 

0 6.942E+11 11468390400 

0 6.8678E+11 11468390400 

0 6.8082E+11 11468390400 

1 6.7258E+11 11468390400 

0 6.6549E+11 11468390400 

0 6.5692E+11 11468390400 

 

 

 

 



109 
 

 
 

Sum_ProcessCpuTime Sum_FreePhysicalMemorySize Sum_TotalPhysicalMemorySize 

60000000 143458304 1038839808 

60000000 142438400 1038839808 

60000000 142774272 1038839808 

60000000 143216640 1038839808 

60000000 145551360 1038839808 

60000000 142311424 1038839808 

60000000 142184448 1038839808 

60000000 142270464 1038839808 

60000000 143708160 1038839808 

60000000 142295040 1038839808 

60000000 15027757056 16825704448 

60000000 15027142656 16825704448 

60000000 15025905664 16825704448 

60000000 15027724288 16825704448 

70000000 15030022144 16825704448 

60000000 15027048448 16825704448 

60000000 15028621312 16825704448 

70000000 15027400704 16825704448 

70000000 15028695040 16825704448 

60000000 15026905088 16825704448 

70000000 33291800576 33737129984 

60000000 33291411456 33737129984 

70000000 33292607488 33737129984 

70000000 33293090816 33737129984 

70000000 33293303808 33737129984 

60000000 33292234752 33737129984 

60000000 33292754944 33737129984 

70000000 33292042240 33737129984 

60000000 33292341248 33737129984 

60000000 33293643776 33737129984 

 

 

 

 



110 
 

 
 

Sum_SystemCpuLoad Sum_Time loop_CommittedVirtualMemorySize 

0 1.3517E+13 2208010240 

1 1.4354E+13 2208010240 

0 1.447E+13 2208010240 

0 1.448E+13 2208010240 

0 1.4483E+13 2208010240 

1 1.4559E+13 2208010240 

0 1.4564E+13 2208010240 

0 1.4568E+13 2208010240 

0 1.4573E+13 2208010240 

0 1.4698E+13 2208010240 

0 3.7301E+11 6732087296 

0 4.8383E+11 6732087296 

0 4.9048E+11 6732087296 

0 4.9583E+11 6732087296 

0 5.0061E+11 6732087296 

0 5.0415E+11 6732087296 

0 5.0856E+11 6732087296 

0 5.1281E+11 6732087296 

0 5.1814E+11 6732087296 

0 5.2262E+11 6732087296 

0 7.5292E+11 11468390400 

0 7.1728E+11 11468390400 

0 7.0969E+11 11468390400 

0 7.0245E+11 11468390400 

0 6.942E+11 11468390400 

0 6.8678E+11 11468390400 

0 6.8082E+11 11468390400 

0 6.7258E+11 11468390400 

0 6.6549E+11 11468390400 

0 6.5692E+11 11468390400 

 

 

 

 



111 
 

 
 

loop_ProcessCpuTime loop_FreePhysicalMemorySize loop_TotalPhysicalMemorySize 

60000000 143458304 1038839808 

70000000 142438400 1038839808 

60000000 142774272 1038839808 

70000000 143216640 1038839808 

60000000 145551360 1038839808 

60000000 142311424 1038839808 

70000000 142184448 1038839808 

60000000 142270464 1038839808 

60000000 143708160 1038839808 

70000000 142295040 1038839808 

70000000 15027757056 16825704448 

60000000 15027142656 16825704448 

60000000 15025905664 16825704448 

60000000 15027724288 16825704448 

70000000 15030022144 16825704448 

70000000 15027048448 16825704448 

60000000 15028621312 16825704448 

70000000 15027400704 16825704448 

70000000 15028695040 16825704448 

60000000 15026905088 16825704448 

70000000 33291800576 33737129984 

70000000 33291411456 33737129984 

70000000 33292607488 33737129984 

70000000 33293090816 33737129984 

70000000 33293303808 33737129984 

70000000 33292234752 33737129984 

60000000 33292754944 33737129984 

70000000 33292042240 33737129984 

70000000 33292341248 33737129984 

60000000 33293643776 33737129984 

 

 

 

 



112 
 

 
 

loop_SystemCpuLoad loop_ProcessCpuLoad loop_Time 

0 0 1.3517E+13 

0 0 1.43541E+13 

1 0 1.44704E+13 

0 0 1.448E+13 

0 0 1.4483E+13 

0 0 1.45588E+13 

0 0 1.45636E+13 

0 0 1.45683E+13 

0 0 1.45731E+13 

0 0 1.4698E+13 

0 1 3.73012E+11 

0 0 4.83828E+11 

0.5 0 4.90482E+11 

0 0 4.95835E+11 

0 0 5.00606E+11 

0 0 5.04156E+11 

1 0 5.08562E+11 

0 0 5.12812E+11 

1 0 5.18146E+11 

0 0 5.22624E+11 

0 0 7.52923E+11 

0 0 7.17278E+11 

0 0 7.09693E+11 

1 0 7.02452E+11 

0 0 6.94199E+11 

0 0.5 6.86782E+11 

0 0 6.80815E+11 

0 0 6.72578E+11 

0.5 0.5 6.65488E+11 

0 0 6.56918E+11 

 

 

 

 



113 
 

 
 

final_CommittedVirtualMemorySize final_ProcessCpuTime final_FreePhysicalMemorySize 

2208010240 60000000 143458304 

2208010240 70000000 142438400 

2208010240 60000000 142774272 

2208010240 70000000 143216640 

2208010240 60000000 145551360 

2208010240 70000000 142311424 

2208010240 70000000 142184448 

2208010240 60000000 142270464 

2208010240 60000000 143708160 

2208010240 70000000 142295040 

6732087296 70000000 15027757056 

6732087296 60000000 15027142656 

6732087296 60000000 15025905664 

6732087296 70000000 15027724288 

6732087296 70000000 15030022144 

6732087296 70000000 15027048448 

6732087296 60000000 15028621312 

6732087296 70000000 15027400704 

6732087296 70000000 15028695040 

6732087296 60000000 15026905088 

11468390400 70000000 33291800576 

11468390400 70000000 33291411456 

11468390400 70000000 33292607488 

11468390400 70000000 33293090816 

11468390400 70000000 33293303808 

11468390400 70000000 33292234752 

11468390400 70000000 33292754944 

11468390400 70000000 33292042240 

11468390400 70000000 33292341248 

11468390400 60000000 33293643776 

 

 

 

 



114 
 

 
 

final_TotalPhysicalMemorySize final_Time 

1038839808 1.3517E+13 

1038839808 1.4354E+13 

1038839808 1.447E+13 

1038839808 1.448E+13 

1038839808 1.4483E+13 

1038839808 1.4559E+13 

1038839808 1.4564E+13 

1038839808 1.4568E+13 

1038839808 1.4573E+13 

1038839808 1.4698E+13 

16825704448 3.7301E+11 

16825704448 4.8383E+11 

16825704448 4.9048E+11 

16825704448 4.9584E+11 

16825704448 5.0061E+11 

16825704448 5.0416E+11 

16825704448 5.0856E+11 

16825704448 5.1281E+11 

16825704448 5.1815E+11 

16825704448 5.2262E+11 

33737129984 7.5292E+11 

33737129984 7.1728E+11 

33737129984 7.0969E+11 

33737129984 7.0245E+11 

33737129984 6.942E+11 

33737129984 6.8678E+11 

33737129984 6.8081E+11 

33737129984 6.7258E+11 

33737129984 6.6549E+11 

33737129984 6.5692E+11 

 

 

 


	DETECTING APPLICATION ANOMALIES: MACHINE LEARNING APPROACH
	Recommended Citation

	tmp.1591152418.pdf.8vGKU

