
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2020

Assessing the vulnerabilities and securing MongoDB and Assessing the vulnerabilities and securing MongoDB and

Cassandra databases Cassandra databases

sindhu gadhiraju
gadhirajusindhura@gmail.com

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
gadhiraju, sindhu, "Assessing the vulnerabilities and securing MongoDB and Cassandra databases"
(2020). Culminating Projects in Information Assurance. 107.
https://repository.stcloudstate.edu/msia_etds/107

This Starred Paper is brought to you for free and open access by the Department of Information Systems at
theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information
Assurance by an authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/346450161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/107?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

Assessing the vulnerabilities and securing MongoDB and Cassandra databases

by

Sindhu Gadhiraju

A starred paper

Submitted to the Graduate Faculty of

St. Cloud State University

In Partial Fulfillment of Requirements

for the Degree of

Master of Science

In Information Assurance

 May 2020

Committee members:

Abdullah Abu Hussein

Mark B. Schmidt

Balasubramanian Kasi

 2

Abstract

Due to the increasing amounts and the different kinds of data that need to be stored in the

databases, companies, and organizations are rapidly adopting NoSQL databases to compete.

These databases were not designed with security as a priority. NoSQL open-source software was

primarily developed to handle unstructured data for the purpose of business intelligence and

decision support. Over the years, security features have been added to these databases, but they

are not as robust as they should be, and there is a scope for improvement as the sophistication of

the hackers has been increasing. Moreover, the schema-less design of these databases makes it

more difficult to implement traditional RDBMS like security features in these databases. Two

popular NoSQL databases are MongoDB and Apache Cassandra. Although there is a lot of

research related to security vulnerabilities and suggestions to improve the security of NoSQL

databases, this research focusses specifically on MongoDB and Cassandra databases. This study

aims to identify and analyze all the security vulnerabilities that MongoDB and Cassandra

databases have that are specific to them and come up with a step-by-step guide that can help

organizations to secure their data stored in these databases. This is very important because the

design and vulnerabilities of each NoSQL database are different from one another and hence

require security recommendations that are specific to them.

3

Table of Contents

 Page

List of Tables.……………………………………………………………………………………6

List of Figures.…………………………………………………………………….…………….7

Chapter

I. Introduction……………………………………………………………………...……………8

Introduction ..8

Definition of Terms……………………………………………………………………..11

Problem Statement……...14

Nature and Significance of the Problem ...14

Objective of the Research……………………………………………………………....15

Study questions…………………………..…………………………………………......15

Summary………………………………………………………………………………..16

II. Background And Review Of Literature…………………………………………………..…17

Introduction ..17

Literature Related to the Problem...25

Security issues or vulnerabilities in NoSQL databases in general………………….….31

Security issues or vulnerabilities in MongoDB…………………………………..…....33

Security issues or vulnerabilities in Cassandra………………………………………...38

Recommendations provided by Other Researchers……………………………….…...41

Summary………………………………………………………….…………………....53

III. Methodology ……………………………………………….………………………….......54

4
Introduction ..54

Design of the Study…………………………………………………………………….54

Information Collection …...54

Software Environment………………………………………….………………………54

Methodology…………………………………………….……………………………...55

Summary………………………………………………………………………………..56

IV. Data Presentation And Analysis………………………………..…………………………..58

 Introduction………………………………………………………………………...…..58

 Data Presentation…………………………………………………………………….....58

 Data Files……………………………………………………………………….………58

 Client-Server Communication………………………………………..…………….…..59

 Authentication…………………………………………………………………….……60

 Authorization…………………………………………………………………….……..60

 Auditing…………………………………………………………………………….…..61

 Injection Attacks……………………………………………………………………….61

 Data Analysis…………………………………………………………………………..62

 Summary…………………………………………………………………………….....62

V. Results, Conclusion & Recommendations………………………………………………….63

 Introduction…………………………………………………………………………….63

 Results………………………………………………………………………………….63

 Considerations and Statuses…………………………………………..………………..63

 Cassandra……………………………………………………………………………….63

 MongoDB………………………………………………………………………………66

5
 Step by Step Recommendations…………………………………………………..….68

 MongoDB……………………………………..………………..…………..………...68

 Cassandra…………………………………………………………………….………72

 Conclusion………………………………………………………………….………..75

Future Work……………………………………………………………….…………75

References..76

6

List of Tables

Table Page

1. Considerations and Statuses……………………………………….………………...….56

2. Cassandra’s Considerations and Statuses…………………………………...…………..63

3. MongoDB’s Considerations and Statuses………………………..…..............................66

7

List of Figures

Figure Page

1. Structure of MongoDB………………………………………………..............................….9

2. Key-value database…………………………………………………………………….…...18

3. Document database………………………………………………………………..……......20

4. Column based database………………………………………….……………………..…...22

5. Graph database………………………………………………………………………...........23

6. Cassandra nodes………………………………………………………………………..…...25

7. CSRF via NOSQL REST APT……………………………………………………..……....28

8. Architecture of a PHP web application…………………………….………………….…...37

9. Architecture of SecureNoSQL ………………………………………………………….…43

10. Proposed architecture………………………………………………………………….…...45

11. System architecture………………………………………………………………….……..49

12. The proposed architecture of DB-SECaaS system over a………………………….……...51

Document oriented database hosted in cloud

13. Security elements for NoSQL database………………………….………………….…….52

14. An error that indicates that the authentication worked…………..…………………….....70

15. Output when only open SSH is allowed……………………………………………….….71

8

Chapter I: Introduction

Introduction

 NoSQL (i.e., non-SQL or not only SQL) database is a database design, which is not

based on SQL (Structure query language). Essentially, NoSQL databases are not relational. They

are designed with looser consistency models than RDBMS and usually do not have a schema.

NoSQL databases do not rely on schemas, tables, rows, or columns to organize and retrieve data.

NoSQL databases are particularly useful to store semi-structured and unstructured data.

NoSQL is being adopted by companies as a complement to RDBMS to address new use cases

because of the increasing volumes, speed, variety (semi-structured and unstructured) of

information that companies need to store on a daily basis and the need for frequent updates and

features as the business requirements change in this digital and competitive economy is

becoming more and more difficult with the existing traditional database management tools.

Some examples of NoSQL databases are MongoDB, Cassandra, CouchDB, Redis, and HBase.

Two of the top-rated NoSQL databases are MongoDB and Cassandra (Cooke, 2018).

MongoDB is a document-oriented database, which means the data is stored in the form of

a document. Each database consists of collections, which in turn consist of documents. Each

document consists of different number of fields, size, and content. Each document has an ID

field, which is used as a primary key (Saran, Sai Baba, Jayanthi & Soundararanjan, 2015). The

structure of MongoDB is shown in the below figure. MongoDB does not have to have a schema

that is defined beforehand. The records (i.e., fields) can be created on the fly. MongoDB has its

own query language, which is called Mongo query language.

9

Figure 1

Structure of MongoDB

Note. A representation of the structure of MongoDB (Saran et al., 2015)

The documents in MongoDB are JSON like, i.e., documents are represented in a binary-

encoded format, which is called BSON (Binary JSON). BSON is an extension of the JSON

model to provide ordered fields and additional data types.

The default configuration of MongoDB allows full access of the database to anyone.

MongoDB databases have a history of theft, and MongoDB servers have been held for a ransom

10

(McCallion, 2017). Since December of 2016, ransomware attacks have been happening on

MongoDB databases, where attackers wipe off the database and ask for a ransom to get the data

back. In 2018, the California Voter database, which contained information of over 19 million

voters in California, was exposed online due to an unsecured MongoDB database (Cimpanu,

2018). The database contained personal information like names, contact information, addresses,

registrant ID, etc. An attacker used an automated script that scanned the internet for open

MongoDB database and deleted its content and left a ransom note behind asking for 0.2 bitcoin

as payment to get the data. It is unclear who owned the database, but it is suspected that it could

be the state government, a contractor, or another hacker who stole the database from the state’s

real database.

Apache Cassandra is a wide-column store database. It was developed at Facebook

originally for inbox search. It was designed to manage and handle large amounts of data across

many servers. It can very quickly ingest as well as process very large amounts of data. It is a

distributed, decentralized, highly scalable, available tuneably consistent, and fault-tolerant

database. It has identical nodes that are clustered together in order to eliminate bottlenecks and

single points of failure. Cassandra uses a peer-to-peer distribution model in order to distribute

data. All nodes in Cassandra play an identical role, communicating with each other equally

unlike the master slave model. Cassandra database is being used by some of the biggest

companies such as Twitter, Cisco, eBay, Facebook, Netflix etc. CQL (Cassandra query

language) is used to query the Cassandra database. Although Cassandra has much better security

than most NoSQL databases, there are some vulnerabilities that can be exploited. For example,

11

the default configuration of some versions is vulnerable to remote code execution. The security

of these databases needs to be improved because some organizations also store sensitive

information in these databases.

Definition of Terms

• NoSQL: Non-SQL /non-relational/not only SQL is a schema-less database where data is

stored in forms other than tabular relations unlike relational databases.

• SQL: Structured query language is a programming language used to manage data in the

relational database management system (RDBMS)

• RDBMS: Relational database management system (RDBMS) is a database management

system that is based on the relational model.

• Confidentiality: Confidentiality means the data is accessible only to the people who are

authorized to access it based on a set of rules. It limits access to the data.

• Integrity: Integrity means making sure that the data is consistent, accurate, and

trustworthy over its entire life cycle.

• Availability: Availability ensures that authorized people have reliable access to the data

at all times.

• JavaScript: JavaScript is a high level, multi-paradigm, and interpreted programming

language, which is an essential part of web applications as it enables interactive web

pages.

• PHP: Personal home page is a scripting language on the server-side and used for web

development.

12

• JSON: JavaScript object notation is a file format derived from JavaScript and is language

independent. It transmits data objects that contain attribute-value pairs and array data

types. It transmits them in human-readable text.

• NoSQL injection: NoSQL injection is a vulnerability in the NoSQL database that allows

an attacker to control the database queries with the help of unsafe user input. It can be

used to modify data, change privileges, expose sensitive information, or take down the

entire application.

• CSRF: Cross-site request forgery is a type of cyber-attack that tricks an end-user into

executing malicious actions on a web application that they are authenticated in.

• DOS: Denial of service attack is a type of cyber-attack in which an attacker makes the

system or network resource unavailable to the intended users by disrupting services either

temporarily or indefinitely.

• MD5: Message digest algorithm is a popular hashing function that produces a 128-bit

hash value. It is mainly used to prove the integrity of the data.

• RESTful API: RESTful API is an API (Application program interface) that uses HTTP

requests in order to PUT, GET, POST and DELETE data.

• Password brute force attacks: A password brute force attack or brute force attack is an

attack where the attacker submits a list of passwords and checks all of them

systematically to find the correct one.

• Man in the middle attacks: A man in the middle attack is a kind of cyber-attack where

an attacker relays and alters the communication between two parties secretly while they

believe they are communicating with each other.

13

• Authorization: Authorization is a process that determines what permissions a user has,

which determines what a user can see and do.

• Authentication: Authentication is a process that confirms a user’s identity, mainly with

the help of usernames and passwords so that only authorized users have access to a

system, resource, or data.

• Encryption: Encryption is a process of encoding the message or data in such a way that

only authorized people can access it using a predetermined key.

• TLS/SSL: Transport layer security and Secure Sockets layer are cryptographic protocols

that provide security for communications over a computer network (SSL is a deprecated

predecessor of TLS).

• Plain-text: Plain text / Clear text is data that is readable without any encryption or

graphical representation.

• POST: POST is an HTTP supported request method used by the WWW (World Wide

Web). The request is for the webserver to accept data that is enclosed in the body of the

request message. It is mainly used when submitting a completed web form or uploading a

file.

• HTML: Hypertext markup language is the standard markup language that is used to

create web pages and web applications.

• Cluster: In databases, clusters are a collection of databases that connect together to

provide a service.

14

Problem Statement

Security of NoSQL databases is weak when compared to the relational database

management systems as security was not a priority while designing these databases. NoSQL

databases are vulnerable to various attacks and are weak in fine-grained authentication and

access controls due to the lack of a structure or schema.

With the increasing attacks and sophistication of hackers, NoSQL databases need better

security enhancements to protect the sensitive information stored in them. With many companies

adopting NoSQL databases to meet availability, better performance, and scalability, it has to be

made sure that the security of NoSQL databases is at least comparable to traditional relational

database management systems (RDBMS) if not more.

There seems to be a lack of comprehensive studies of security risks and vulnerabilities

and security recommendations that are associated with the most recent versions of MongoDB

and Cassandra.

Nature and Significance of the Problem

 Securing a relational database is different from securing a NoSQL database. The security

features that are used in relational databases like access control systems, integrity, and encrypted

communication are difficult to be implemented in the NoSQL database because of their design.

This research is important because there seems to be a lack of a step by step guide for securing

MongoDB and Cassandra and this research would benefit small companies and organizations

that are planning to use NoSQL databases to store semi-structured and unstructured data.

15

Objective of the Study

 The objective of the study is to identify and analyze all the security vulnerabilities that

MongoDB and Cassandra databases have that are specific to them and come up with a step by

step guide for each database that can help organizations to secure their data stored in these

databases.

Study Questions

The following are the study questions for this research:

1. What are the security vulnerabilities of NoSQL databases?

2. What are the security vulnerabilities of MongoDB and Cassandra NoSQL databases?

3. What are the current security features that MongoDB and Cassandra provide?

4. Are these security features enough to guarantee the security of these databases, and if not,

how can these be improved?

5. What can companies that use MongoDB and Cassandra databases do to secure their data

in these databases?

16

Summary

 In this chapter, a brief introduction for NoSQL databases, MongoDB database, and

Apache Cassandra database has been given along with an example of a ransomware attack on a

MongoDB database. This chapter explains

the problem, why the research is important, and the objectives of the research.

17

Chapter II: Background and Review of Literature

Introduction

The schema of NoSQL databases is dynamic, unlike SQL databases that have a pre-

defined schema. NoSQL databases provide high scalability, performance, low latency, and

flexibility. These databases use unstructured query language, whose syntax differs from database

to database.

NoSQL databases are classified based on how they store data. There are basically five different

types of NoSQL databases based on how data is stored (Vishwakarma, 2017). They are:

(i) Key-Value Store: These are used to store keys and their associated paired values.

Because of its simplicity, the querying is fast. Some use cases of key-value databases are:

To store user session data, to store user preferences, to store shopping cart data, and to

maintain schema-less user profiles.

Some popular Key-Value based NoSQL databases are Dynamo and Riak. Some of the

popular companies that use Key Value-based NoSQL databases are Twitter, Coinbase

and Pinterest.

The diagram below shows a key-value database for customer orders. The CustomerID is

the key, and the value stores the customer name, billing address, and order details like

shipping address, order payment, and order item.

18

Figure 2

Key value database

Note. An example of key-value database (Sadalage, 2014)

19

(ii) Document-based store: These are similar to key-value store databases, but instead of

values, these store documents associated with the keys. The type of documents stored are

JSON, XML, or BSON. In these databases, the documents are stored in the value part of

the key-value store database. Some use cases of document store databases are blogging

platforms, analytics platforms, content management systems, and E-commerce platforms.

Some popular document-based NoSQL databases are CouchDB and MongoDB. Some of

the popular companies that use Document-based NoSQL databases are Cisco and SEGA.

The below shows an example of a document written in JSON. In the document store

database, this document can be retrieved by referring to the ‘customerid’.

20

Figure 3

Structure of MongoDB

Note. An example of Document database (Sadalage, 2014)

(iii) Column-based store: In Column based NoSQL database, the data is stored in columns

instead of rows. Each column is associated with a column key. Unlike RDBMS, which

reads and writes rows of data, a column-based store is designed for reading and writing

columns of data. Some use cases of column databases are blogging platforms, content

management systems, and systems that maintain counters.

21

Some popular column-based NoSQL databases are Cassandra and HBase. Some of the

popular companies that use Column based NoSQL databases are Facebook and Spotify.

The below diagram shows an example of a column store database. The columns in each

row here are contained within that particular row, and each row can have a different

number of columns, and they can be in a different order and data types, etc.

22

Figure 4

Column bases database

 Note. An example of Column based database (Sadalage, 2014)

(iv) Graph-based: These are used to store information about interconnected data like

networks. This database is based on nodes and relationships. Some use cases of graph-

based NoSQL databases are Social networks, graph-based search, fraud detection, and

network and IT operations.

23

Some popular graph-based NoSQL databases are Neo4J and Allergo. Some of the

popular companies that use Graph-based NoSQL databases are Walmart and Cisco.

The below diagram shows an example of a graph-based NoSQL database. The rectangles

are nodes and contain data. The arrows represent the relationships between the nodes.

Figure 5

Graph database

Note. An example of Graph database (Sadalage, 2014)

24

MongoDB is a schema-free, distributed, and highly available and scalable NoSQL

document-based database (Dayley, 2014). It contains one or more collections of JSON style

documents (BSON). A document is a collection of fields. MongoDB is open-source, and its

scripting was done in C++ programming language. It can access big data at very high speeds. It

can handle complex data types. MongoDB has its own query language called Mongo query

language. It is used by some of the big companies like Craigslist, MTV Networks and The New

York Times.

Apache Cassandra is one of the leading NoSQL distributed database management system

that can manage large amounts of data across many commodity servers (Fedak, 2018). It can

provide high scalability, flexibility, performance, and availability. Cassandra uses its own query

language called Cassandra query language (CQL). Apache Cassandra has multiple nodes that

play an identical role, unlike in a master-slave model, as shown in the below figure. Big

companies like Apple, Spotify, Uber, and Netflix are using Apache Cassandra.

25

Figure 6

Cassandra Nodes

Note. A representation of Cassandra nodes

Literature Related to the Problem

(Dadapeer, Indravasan & Adarsh, 2016) in “ A survey on security of NoSQL Databases “

have discussed the issues in the NoSQL database security in general and the security issues

specific to popular NoSQL databases like Cassandra, MongoDB, Redis, CouchDB, and HBase.

They have also provided suggestions on mitigating two major types of attacks on NoSQL

databases, i.e., injection attack and the REST API exposure and CSRF attacks.

26

(Dindoliwala & Morena, 2017) in “ Survey on security mechanisms in NoSQL

databases” have explained the various data storage models for NoSQL and discussed the security

features that are provided by Cassandra, MongoDB, Gemstone, db4o, and Objectivity/DB. They

have concentrated mainly on data encryption, authentication, authorization, and auditing

features. They have briefly discussed the security challenges in NoSQL databases. According to

the paper, because the NoSQL databases are schema-free, fine-grained access control and role-

based access control are difficult to implement. Also, there is no security feature for embedding

security within the database. They have suggested embedding security in the middleware.

(Chahal, Kharb & Gupta, 2017) in “ Challenges and Security issues in NoSQL databases”

have discussed data in rest, data in motion, data in use, various types of authentication, different

levels of authorizations, and data encryption, which they suggest focusing on before selecting a

NoSQL database for the organization. They have also discussed major NoSQL database

vulnerabilities such as connection pooling, key Brute-forcing, HTTP REST API, and the Denial

of Services (DOS) attack. They have also briefly described the problem with MongoDB older

version not designed to bind itself from the localhost, which leads to data leakage. The paper

states that MongoDB and Cassandra databases lack file encryption, have weak authentication

and simple authorization, and are vulnerable to injections and DOS attacks.

(Okman, Gal-Oz, Gonen, Gudes, & Abramov, 2011) in “Security issues in NoSQL

databases” have discussed two most popular NoSQL databases: MongoDB and Cassandra and

given an overview of their security features and security issues. They have also provided their

27

recommendations for how to mitigate the security issues that arise from the vulnerabilities in

these databases. They have concluded that the common problems that both databases have are a

lack of data files encryption, weak authentication, simple authorization, lack of support for

RBAC, and susceptible to injections and denial of service attacks.

(Aviv, Shulman-Peleg & Bronshtein, 2015) in “No SQL, No injection? Examining

NoSQL Security” have demonstrated in the paper how the JSON format, which is used to

represent the queries and data in MongoDB database, allows for new types of injection attacks.

They have discussed how PHP array injections can allow a hacker to log into an application

without any authentication. They have also demonstrated Javascript encryption and explained

how the exposure of HTTP REST API, which is a common feature of NoSQL databases to

query the database from client applications, could expose the database to CSRF attacks, as

shown in the below figure. They have also recommended some injection mitigation techniques

like running dynamic application security testing (DAST) and static code analysis to find

injection vulnerabilities in the code, controlling requests, and limiting the format to protect

against risks from API exposure and using access control and authentication.

28

Figure 7

CSRF via NoSQL REST API

Note. A depiction of how CSRF can be performed via NoSQL REST API (Aviv et al., 2015)

29

(Noiumkar & Chomsiri, 2014) in “A comparison the level of security on Top 5 open

source NoSQL databases” have used five security factors: Data file encryption, Client/Server

Authentication/Encryption, Inter-cluster Authentication/Encryption, Script injection and denial

of service attacks to evaluate and compare the security of top five open-source NoSQL databases

which are: MongoDB, Cassandra, CouchDB, Hypertable and Redis. According to the paper, all

five databases do not have data file encryption, MongoDB and CouchDB are vulnerable to script

injection, Cassandra and CouchDB are vulnerable to denial of service attacks and CouchDB is

the only one having a good client/server authentication/encryption and inter-cluster

authentication/encryption. The researchers have given some recommendations on encrypting

data in application level and using a tunnel to provide safer communication for servers in order

to make these databases more secure.

(Zahid, Masood & Shibli, 2014) in “Security of Sharded NoSQL databases: A

comparative analysis” have discussed the assessment criteria for evaluating the security of

sharded NoSQL databases. The criteria that they used are based on authentication, access

controls, secure configurations, data encryption, and auditing. Based on these criteria, they have

analyzed six different NoSQL sharded databases in terms of security features. They have done

that by using three metric values for each factor of security criteria as Low, Medium, and High.

They have illustrated comparative results for the six different NoSQL sharded databases for each

factor of security criteria using the metrics with the help of bar graphs.

(Hou, Qian, Li, Shi, Tao & Liu, 2016) in “MongoDB NoSQL injection analysis and

detection” have demonstrated experimental testing of NoSQL injections on a MongoDB

30

database using JavaScript and PHP to examine its security. To demonstrate the attack, they have

used the example of a library system that uses MongoDB database to store all books related

information. They demonstrated NoSQL injections on the database in two ways. One is by using

the input boxes to inject, and the other is injecting by URL. They have also suggested two

methods to mitigate these types of injections in code level. They suggested that developers add a

JavaScript code in order to limit the input boxes in the system/software building state. They

suggested using a parameterized statement to check and filter the variables. They also suggested

using security layers, such as a malicious feature detection system that can detect whether the

system/software has any features that are not secure.

(Shahriar & Haddad, 2017) in “Security vulnerabilities of NoSQL and SQL databases for

MOOC Applications” have compared traditional SQL databases and NoSQL databases and

discussed the vulnerabilities that are inherent to the two most popular NoSQL databases that are:

MongoDB and Cassandra. MOOC (Massive open online courses) provide free or inexpensive

access to online educational courses for learners. As these courses are deployed on open source

database management systems, which are shifting rapidly towards NoSQL databases due to an

increase in data generated, the authors want to increase awareness of threats that arise when

interacting online with platforms that deploy NoSQL databases. The authors have compared

SQL and NoSQL databases in terms of the data model, schema, normalization, scalability, data

manipulation, and integrity. They have given an overview of MongoDB and Cassandra and

summarized the issues in NoSQL databases as encryption, inter-node communications,

authentication, authorization, audit, and data consistency. They have discussed these issues for

31

MongoDB and Cassandra as well. They have also given examples of NoSQL injection, DoS, and

XSS attacks on MongoDB and CQL injection, DoS, and XSS attacks on Cassandra. They have

also discussed the vulnerabilities and attacks on the MySQL database. They have suggested

creating standards and implementing encryption to protect NoSQL databases.

From the above literature, the vulnerabilities and issues can be summarized as:

Security issues or vulnerabilities in NoSQL databases in general:

(i) As the NoSQL database is schema free, it is very difficult to implement fine-grained

access control or enforce role-based access control. This, combined with a lack of central

control, makes it very difficult to enforce integrity constraints (Dindoliwala & Morena,

2017).

(ii) Security has to be imposed in the middleware by the developers for NoSQL databases as

there is no feature to embed security within the database (Dindoliwala & Morena, 2017).

(iii) NoSQL databases have distributed nodes, which creates an increased attack surface that

makes it difficult to secure these databases. If one node is compromised, the entire system

can be compromised. In a NoSQL database, data is shared between thousands of nodes.

This means there would be multiple entry points associated with each node, which

increases the possibility of unauthorized access (Kadebu, Prudence, & Mapana, 2014).

32

(iv) NoSQL databases that use JavaScript and PHP on the server-side for the purpose of

enhancing database performance are vulnerable to query injection attacks (Shahriar &

Haddad, 2017).

(v) NoSQL databases have very fewer security measures within the database when compared

to traditional SQL databases. For example, traditional SQL databases have built-in data

integrity and encryption features, whereas NoSQL databases store data in plain text and

lack in such inbuilt security features. External security mechanisms must be implemented

to secure these databases (Dindoliwala & Morena, 2017).

(vi) NoSQL databases are prone to password brute force attacks, replay attacks, and man in

the middle attacks due to inefficient password storage mechanisms and authentication

techniques (Dindoliwala & Morena, 2017).

(vii) NoSQL databases mainly use REST as their communication protocol, which is prone to

injection attacks, cross-site request forgery, and cross-site scripting attacks (Dindoliwala

& Morena, 2017).

(viii) NoSQL databases lack authentication mechanisms that can be enforced across all the

nodes of the cluster. The current authentication mechanisms work on a local node level

(Shahriar & Haddad, 2017).

33

(ix) In NoSQL databases, authorization is applied on a per-database level and not on a

collection level. Also, authorization is applied at higher levels rather than lower levels

(Dadapeer et al., 2016).

(x) As NoSQL databases may contain sensitive data, the inefficient security mechanisms

make the database vulnerable to insider attacks as well. This is made more problematic

by the fact that most NoSQL databases lack good logging, auditing and log analysis

mechanisms (Dadapeer et al., 2016).

(xi) A lot of NoSQL databases lack network transport layer encryption over the TLS/SSL on

both server and client- side. This leads to insecure communication between the server and

the clients (Shahriar & Haddad, 2017).

(xii) In key-value NoSQL databases, it is very important to protect the key. As NoSQL

databases are schema-free, there is no need to find the schema, and this makes it easy for

an attacker to find or decrypt the key using key brute forcing attack (Chahal et al., 2017).

Security issues or vulnerabilities in MongoDB:

(i) MongoDB does not have the facility to automatically encrypt files that are written to the

database. They are stored in plain-text. This means that if a hacker is able to get into the

system, he or she can easily read these files (Dadapeer et al., 2016).

34

(ii) Authentication can be enabled in standalone mode, but when using sharded mode in

MongoDB, authentication is not supported. The authentication provided in standalone

mode uses a key that is hashed in MD5 before it is stored in the key file. This is relatively

secure, but if the attacker cracks the MD5, he/she can crack the key if they get a hold of

the key file. The enterprise edition for MongoDB does provide an additional service for

Kerberos, but the authentication is not supported in sharded mode (Noiumkar &

Chomsiri, 2014).

(iii) By default, in MongoDB, authorization is disabled. The authorization is provided on a

per-database level, and it follows a role-based approach. Also, the roles are limited to a

few (Shahriar & Haddad, 2017).

(iv) The internal scripting language used in MongoDB is JavaScript, which is not a secure

scripting language and is vulnerable to a scripting injection attack (Aviv et al., 2015).

(v) MongoDB uses JSON format for data and queries. Although JSON format is considered

more secure than SQL in terms of conducting an injection attack, it does allow for new

types of injection attacks. It is vulnerable to PHP array injections, JavaScript injection,

and cross-site request forgery attacks due to exposure of HTTP REST API (Aviv et al.,

2015).

35

(vi) MongoDB has a feature of exposing HTTP REST API, which lets the client applications

to query the database. This feature makes the database vulnerable to CSRF attacks that

allow bypassing firewalls and other external perimeter defenses by the attacker. In a

secured network, when the database exposes REST API, anyone with access to the

network can query the database using HTTP, which lets queries to be initiated from the

browser. This is a huge vulnerability as an attacker can inject a website with an HTML

form, and spear fishing can be used by an attacker controlling a malicious website to trick

an employee of a company into browsing on that website. If the employee does that, the

HTML form can be submitted with an action URL of an internal MongoDB database.

The action will succeed as the employee has access to the network from within (Aviv et

al., 2015).

(vii) MongoDB does not have any facilities for auditing actions that are performed in the

database. For each instance of MongoDB, there is, however, an HTTP console that

displays information about the system and the clients that connect. This would be of no

use though if authorization is disabled (Shahriar & Haddad, 2017).

(viii) MongoDB’s internal HTTP server does not support SSL for client node communication,

which means the client communications are not secure unless the enterprise edition is

used or the whole MongoDB is recompiled with “-sl” option (Shahriar & Haddad, 2017).

36

(ix) MongoDB uses a binary wire-level protocol for client interfaces on TCP port 27017, and

the feature RESTful is used for managing the server on port 28017. No data encryption is

performed for these ports, which means that the client-server communication is not

secure (Noiumkar & Chomsiri, 2014).

(x) MongoDB version 2.4.0-2.4.4 has a vulnerability of uninitialized pointer, which allows

an attacker to perform a denial of service attacks (Chahal et al., 2017).

PHP array injection: MongoDB databases are prone to PHP array injections because there is a

built-in feature in PHP for associative arrays that allows an attacker to send malicious payloads

(Aviv et al., 2015). To explain that, let us take an example of a web application that works with

PHP backend that encodes the requests into JSON format. This format is then used to query the

MongoDB data store.

37

Figure 8

Architecture of a PHP web application

Note: A representation of the architecture of a PHP web application (Aviv et al., 2015)

If the PHP application needs authorization through username and passwords and they are

sent from an HTTP POST from the user’s web browser, then the POST payload would be:

Username=sindhu&password=Scsu

The PHP client would then process and query the MongoDB database as:

db- >logins -

>find(array(“username”=>$_POST[“username”],”password”=>$_POST[“password”]));

This is same as the following in Mongo query language:

db.logins.find({ username: ‘sindhu’, password: ‘Scsu’ })

38

The issue is that PHP allows sending the following malicious payload:

username[$ne]=1&password[$ne]=1

PHP would encode this in JSON as:

Array(“username” => array(“$ne” => 1), “password” => array(“$ne” => 1));

This is encoded in mongo query as:

db.logins.find({ username: { $ne: 1 }, password: { $ne: 1 } })

The $ne operator in MongoDB is a “not equals” condition. This means that all the entries in the

collections called logins, where usernames not equal to 1 and passwords not equal to 1, will be

returned.

JavaScript injection: Some operations in MongoDB are vulnerable and allow an attacker to run

arbitrary JavaScript expressions in place of the user input on the server. Some of these operators

are $Where, Map-reduce, group, and db.eval(). When the attack string is evaluated,

concatenated, or parsed into NoSQL API calls, the NoSQL injection attacks will be executed.

The $Where operator is especially vulnerable because it operates as a filter in the SQL query. It

can take in sophisticated JavaScript functions in order to filter the data. The attacker can pass

arbitrary code into the $Where operator as a part of the query.

Security issues or vulnerabilities in Cassandra:

(i) Cassandra has a weak authentication. There is no authentication and authorization

between the client and the Cassandra cluster by default. When a malicious user with

access to the network bypasses the client authentications, then the user can extract data

(Shahriar & Haddad, 2017).

39

(ii) The data stored in Cassandra is not encrypted in open-source version. The data is not

encrypted since there is no automatic mechanism in Cassandra to encrypt the data files.

So, if an attacker accesses the data, he/she can directly extract the data since the data is in

plain text (Dadapeer et al., 2016).

(iii) Cassandra does not provide encryption for communications that take place between the

database and its clients. If an attacker tries to monitor the network traffic, then he will be

able to get all the data that is being transmitted in the network. It is also easy for the

attacker to get the credentials of the users since the username and password of the user

are is transmitted in the network as plain text (Dadapeer et al., 2016).

(iv) Cassandra uses Cassandra Query Language(CQL), but it is vulnerable to injection, just

like SQL (Dadapeer et al., 2016).

(v) Cassandra does not have a time out a mechanism for inactive connections. Even though

there are connections that are inactive, Cassandra does not close the connections for those

clients. This is a vulnerability for a denial of service. An attacker will be able to make

fake connection attempts, which consumes resources and makes the server unavailable

for the new client connections (Noiumkar & Chomsiri, 2014).

40

(vi) Passwords stored in Cassandra uses MD5 hash. The MD5 hashing algorithm is a basic

technique that is not cryptographically secure enough (Dadapeer et al., 2016).

(vii) Cassandra’s open-source version does not support inline auditing or logging (Shahriar &

Haddad, 2017).

(viii) Cassandra has an authorization mechanism called IAuthority, which comes into play

when there is a read or write on each column or when a keyspace is modified. IAuthority

has two implementations, which are: A pass-through and SimpleAuthority. The pass-

through implementation gives full permissions to all users, and SimpleAuthority uses a

flat-file that has a list of usernames and the associated permissions (Dadapeer et al.,

2016). The security issues with these are:

• The authorization is implemented only on existing column families, and hence for

newly added columns and column families, there is no security.

• SimpleAuthority does not reload the flat-file after every access, which means that

the Cassandra process needs to be restarted before changing the effective

permissions.

• The permissions that are granted to a user are based on the flat file stored on the

cluster member to which the connection is established, and hence if the files for

all cluster members in the cluster are not synchronized, it can be a security issue.

41

(ix) Cassandra has an authentication mechanism called IAuthenticate. It has two

implementations, which are: default implementation and SimpleAuthenticator (Dadapeer

et al., 2016). The default implementation turns off the database authentication

requirement, and the SimpleAuthenticator allows you to set up a list of users and

associated passwords using a flat-file. The passwords can either be stored in plain-text or

in hashes using the MD5 hashing algorithm. The security issues with these are:

• Even though the passwords are stored as MD5 hashes, the communications

between the database and the clients involve sending the password in plain-text.

An attacker that can sniff the network can easily find out the password for

authentication.

• The MD5 hashing algorithm is not considered secure anymore because of the

available rainbow tables and pre-calculated lists online that can match a hash to

the associated plain-text.

Recommendations provided by Other Researchers:

(Ahmadian, 2017) in “Secure query processing in cloud NoSQL” has proposed a security

scheme named “SecureNoSQL”, which secures querying over encrypted cloud NoSQL

databases. The paper also introduces a security plan using a descriptive language based on JSON

notations. The security plan describes the security parameters and maps the crypto-modules to

the data elements. The architecture of the proposed SecureNoSQL is shown in the below figure.

42

SecureNoSQL acts as a secure proxy that allows access to the cloud server and uses

cryptographic techniques for the query, response, and encryption/decryption of data. In the

system, the applications on client-side issue JSON queries, the SecureNoSQL proxy encrypts and

decrypts the query based on the security plan and the unmodified NoSQL DBMS processes the

server-side query.

43

Figure 9

Architecture of SecureNoSQL

Note: A depiction of the architecture of SecureNoSQL (Mohammad Ahmadian, 2017)

44

(Priyadharshini & Rajmohan, 2017) in “Analysis on database security model against

NoSQL injection” have described the model of NoSQL attack in databases, the NoSQL injection

vulnerabilities in MongoDB, and Cassandra, and they have proposed an architecture to secure

the NoSQL databases against NoSQL injections as shown in the below figure. In their proposed

architecture, they have suggested using the Kerberos authentication protocol. They have also

provided an algorithm to explain how the architecture works and have suggested extending

Kerberos to provide auditing services to provide additional security.

45

Figure 10

Proposed Architecture

Note: A representation of proposed architecture proposed an architecture to secure the NoSQL

databases against NoSQL injections (Priyadharshini & Rajmohan, 2017)

46

(Karavasilev & Somova, 2018) in “Overcoming the security issue in NoSQL databases”

have discussed some of the NoSQL security issues in general such as lack of authorization

features, transport encryption and client drivers, lack of built-in database encryption features,

NoSQL injection and CSRF attacks, cluster desynchronization issues and virtualization leaks and

disk theft risks. They have also suggested remedies to mitigate risks. They have practically

analyzed the MongoDB database security and suggested enforcing authorization, performing

auditing, sanitizing input data, encrypting communications, limiting network exposure, and

applying data storage encryption. They have evaluated the costs in terms of performance and

storage that result from implementing end to end encryption.

(Colombo & Ferrari, 2015) in “Enhancing MongoDB with fine-grained context-aware

access control” have stated the drawbacks of MongoDB’s role-based access control (RBAC)

model as having poor granularity level of access control and an absence of enforcement

mechanisms that are context-aware. They have suggested enhancing the RBAC model along

with proper support for fine-grained policies that are context-aware and also developing an

enforcement monitor that is efficient. They have presented a research road map that they plan to

follow in order to integrate the proposed context-aware fine-grained access control features into

the MongoDB.

(Cuzzocrea & Shahriar, 2017) in “Data masking techniques for NoSQL database security:

A systematic review” have given an overview of the security vulnerabilities of MongoDB and

Cassandra NoSQL databases along with examples for the attacks. They have explained how

useful data masking can be to protect sensitive information in the database. They have explained

47

the five principles of data masking, which must be taken into account when developing a data

masking technique. They have also explained two popular types of data masking architectures:

In-Situ data masking architecture and on the fly server-to-server architecture. They have also

discussed several different types of data masking techniques such as substitution, shuffling,

number and date variance, nulling out or deletion, masking out, hashing, encrypting files and

documents, and encrypting computers that may be used to secure the data. They have concluded

that it is difficult to secure NoSQL databases while in operation, and hence they require

additional security provided by data masking and policies in order to secure the data stored in

such databases.

(Amreen & Dadapeer, 2016) in “A survey on robust security mechanism for NoSQL

databases” have presented a reversible watermarking algorithm to secure NoSQL databases. The

reversible watermarking algorithm has already been proposed and used for relational databases,

which used histogram expansion. This technique was not robust enough to guard against heavy

attacks. The authors propose an algorithm that provides appropriate watermark bandwidth that

would ensure good robustness. They have provided an overview of the prediction error

expansion watermarking technique and the difference expansion watermarking technique. The

main purposes of the proposed algorithm are identifying theft of data, data alterations, and

ensuring the right of ownership. The architecture for the proposed algorithm is shown in the

below figure, where data in the form of a key-value pair is stored in a table, and the HMAC-

SHA1 algorithm is used to calculate a unique watermark. The watermark is then embedded with

the data, and a different table is used to store the embedded watermark and data. The same

48

algorithm is then used to calculate a new watermark. In order to check for any security violation,

the old watermark is extracted from the data and compared with the new watermark. Four

modules are used in this architecture: NoSQL data insertion, NoSQL data extraction, feature

extraction, and watermark insertion.

49

Figure 11

System Architecture

Note: System architecture for reversible watermarking algorithm (Amreen & Dadapeer, 2016)

50

(Ghazi, Masood, Rauf, Shibli, & Hassan 2016) in “DB-SECaaS: a cloud-based protection

system for document-oriented NoSQL databases” have proposed a database security-as-a-service

(DB-SECaaS) system for document-based databases hosted in the cloud. The architecture of the

prosed system is in the below figure. The system provides authentication, fine-grained

authorization, and encryption of database objects while making sure that data access is provided

to authorized users in a strict need to know basis. In the system, the identities of database users

and inter-system requesting parties are done using the authentication service, which includes

strong authentication (SA), Identity management (IDM), and Certificate authority(CA) services.

The fine-grained authorization service is used to protect data from unauthorized access. The

services include policy administration point (PAP), Policy enforcement point (PEP), and Policy

decision point (PDP). The data in the system is encrypted through a collection key before being

stored in the collection. This is done using the collection confidentiality service. This service

includes a key distribution service and encryption service. The authors have also done an

evaluation of the services using NIST standards and a proper analysis of the proposed system

using the Scyther model checker.

51

Figure 12

The proposed architecture of DB-SECaaS system

Note. The proposed architecture of DB-SECaaS system over a document-oriented database

hosted in the cloud (Ghazi et al., 2016)

(Kadebu, Prudence, & Mapana, 2014) in “A security requirements perspective towards a

secured NoSQL database environment” have discussed various security issues in general for

52

NoSQL databases in great detail. According to the paper, several elements need to be combined

to achieve NoSQL database security. They have portrayed these elements by using a model for

the NoSQL database security, as shown in the below figure. The security mechanisms that the

proposed are firewalls, logging, and auditing, authentication, input validation, access control,

segregation of duties, and encryption. They have described these in detail in the paper.

Figure 13

Security elements for NoSQL database

Note. A depiction of security elements for NoSQL database (Kadebu, Prudence & Mapana,

2014)

53

Summary

 This chapter has discussed the different types of NoSQL databases, and a brief

introduction of MongoDB and Cassandra databases. This chapter has discussed the literature

related to the security vulnerabilities of NoSQL databases and the technical solutions proposed

by other researchers. To my best knowledge, there is no research published that has a secure

architecture that is specific to MongoDB and Cassandra databases. Most papers discuss the

security of NoSQL databases in general, vulnerabilities in different NoSQL databases, and

propose secure architectures for NoSQL databases. These papers helped me to get an overview

of these topics.

54

Chapter III: Methodology

Introduction

 This chapter covers the design of the study, the method for information collection, the

software environment, and the methodology that will be used to solve the problem.

Design of the Study

 My plan is to use a qualitative approach to learn all the vulnerabilities and security

features of MongoDB and Cassandra databases in detail and research security mechanisms that

can be applied for MongoDB and Cassandra databases. This knowledge would help me come up

with ideas for security recommendations that will be used to create a step by step guide for

securing MongoDB and Cassandra databases.

Information Collection

 The information collected in this study is from various different research papers,

conference papers, white papers, journals, books, and relevant websites. This data helped me to

understand the various different aspects needed to solve the problem.

Software Environment

To learn how MongoDB and Cassandra work in-depth and to get well acquainted with

their architecture, I would need the following software:

55

(i) VMware Workstation (version 12)

(ii) Ubuntu (18.10) iso an image. Two virtual machines will be created using this

image. One will be used to install MongoDB, and the other will be used to install

Apache Cassandra.

Methodology:

To solve the problem, I will use the following steps:

Step 1: Identify and analyze all the security vulnerabilities of MongoDB and Cassandra

databases.

Step 2: List the security considerations for each database and write the associated status for that.

The main considerations would be data files, authentication, authorization, auditing, injection

attacks, and client-server communication. The associated status would explain what security

features are available, are not available, or are not robust enough, etc. The following is an

example of what it would look like:

56

Table 1

Considerations and statuses

Consideration Status

Data files Not encrypted

Client-Server communication Not encrypted

Authentication The available feature is not robust

enough

Authorization The available feature is not robust

enough

Auditing Not available

Injection attacks possible

 Note. An example of Considerations and Statuses

57

Step 3: Based on the considerations and the statuses, I will come up with a step by step

recommendations that lists the steps that developers can follow in small companies and

organizations to secure the open-source versions of MongoDB and Cassandra databases.

Summary

The information collection approach and the methodology with a three-step mechanism

for the study have been identified and defined. The next chapter covers the definitions of all the

considerations and statuses.

58

Chapter IV: Data Presentation and Analysis

Introduction

 This chapter covers the definitions of considerations and associated statuses used in the

study.

Data Presentation

The considerations and the associated statuses that were identified to get the overall breadth

of security features in MongoDB and Cassandra databases are explained below. These

considerations and statuses are later used in the study to evaluate the security of these databases.

1. Data Files: Data files are operating system files that are used to store data within a

database or a computer system.

Data files need to be properly secured with encryption to prevent information theft and

intentional corruption by an attacker.

Statuses:

• Encrypted: The data in the data files is encoded by converting plain text to

ciphertext.

59

• Not encrypted: The data in the data files is not encoded, which means it is stored

in plain text. Hence if an attacker gets his/her hands on the data, they can make

malicious use of the information.

2. Client-Server Communication: Client-Server communication is a process where clients

(a program) send requests for services or resources to the server (another program), and

the server responds back to the client requests (Sullivan, 2019). In most cases, there are

multiple clients and a single server.

Securing the communications between clients and servers is very important because

client-server communications also involve the exchange of credentials when

authentication is taking place. If the communications are not encrypted, an attacker

monitoring the network traffic can get a hold of the information and use it for malicious

purposes. Also, the clients and servers need to be authenticated using a protocol such as

TLS (Transport layer security) to guarantee the integrity and confidentiality of the

information that is exchanged.

Statuses:

• Encrypted: The data that is exchanged between the Clients and the Server is

encrypted.

• Not Encrypted: The data that is exchanged between the Clients and the Server is

not encrypted.

60

3. Authentication: Authentication is the process of validating that only an authorized

person is given access to the database (Chahal et al., 2017).

A weak authentication mechanism can expose the database to replay attacks or man-in-

the-middle attacks

Statuses:

• The available feature is robust: The available authentication feature is strong and

is very hard to bypass

• The available feature is not robust enough: The available authentication feature is

weak and is easy to bypass and is vulnerable to attacks.

4. Authorization: Authorization is a process of giving permission to users to access the

data depending on their role (Chahal et al., 2017).

A lack of authorization features compromises the overall application security and is a

loophole for hostile access from an attacker.

Statuses:

• The available feature is robust: The available authorization feature is strong and is

very hard to bypass

• The available feature is not robust enough: The available authorization feature is

not strong enough.

61

5. Auditing: Data auditing is a process designed to let an administrator understand who

looked at what and when who had changed what and when (Yehuda, 2018). It provides a

way to log user activity occurring on a database.

Many companies and organizations have internal security policies and external mandates

that require auditing. Hence, auditing is a very important tool that can be used to

investigate what happened if an attack were to happen.

Statuses:

• Available: Auditing features are available in the open-source version.

• Not available: Auditing features are not available in the open-source version.

6. Injection attacks: NoSQL injection is a security vulnerability where an attacker makes

malicious use of user input to take control of the database queries, which in turn

compromises the databases. Using this technique, an attacker can expose the

unauthorized information, make changes to the data, escalate the privileges, or take down

the whole application.

Statuses:

• Possible: The database is not very secure against injection attacks.

• Very difficult: The database is well secured against injection attacks.

62

Data Analysis

 A qualitative method was used to analyze all the vulnerabilities and come up with a set of

considerations and statuses that best describe the security issues with open source versions of

MongoDB and Cassandra databases. These considerations and statuses were further analyzed in

a qualitative manner to come up with a step by step recommendations that can be used to secure

the open-source versions of these databases.

Summary

This chapter covered a detailed description of the considerations and the associated

statuses used in the study. The results of the study are explained in the next chapter.

63

Chapter V: Results, Conclusion and Recommendations

Introduction

This chapter clearly identifies and analyzes the security vulnerabilities of MongoDB and

Cassandra databases and gives step by step recommendations to secure the open-source versions

of these databases.

Results

After following the methodology discussed in the previous chapter, I came up with the

following considerations and statuses for Cassandra and MongoDB databases:

Considerations and Statuses

Cassandra

Table 2

Cassandra’s considerations and statuses

Consideration Status

Data files Data in storage is not automatically

encrypted. It is stored in plain text by

default.

64

Table 2 Continued

Client-Server communication Not encrypted. An attacker can monitor

the database traffic to see all

communication.

Authentication The available feature is not robust enough.

The authentication is turned off by default.

Using SimpleAuthenticator, users and

passwords can be set with a flat-file with a

password in MD5 hash, but the password

is still transmitted in plain text by the

client interface.

authorization The available feature is not robust enough.

The IAuthority interface allows full

permissions to all users and the

SimpleAuthority uses a flat-file and not a

maintained file across the cluster.

65

Table 2 Continued

auditing Not available. Inline auditing is not

supported.

Injection attacks Possible. Cassandra query language is a

parsed language vulnerable to injection

attacks.

Note. A list of Cassandra’s Considerations and Statuses

66

MongoDB

Table 3

MongoDB’s considerations and statuses

Consideration Status

Data files Data in storage is not automatically

encrypted. It is stored in plain text by

default.

Client-Server communication Not encrypted. An attacker can monitor

the database traffic to see all

communication.

authentication The available feature is not robust

enough in standalone mode. In the

Sharded mode, authentication is not

supported.

67

Table 3 Continued

authorization The available feature is not robust

enough. A basic role-based access control

model is supported, but the access control

is enforced at an inappropriate granularity

level.

auditing Not available in open-source version

Injection attacks Possible. The internal scripting language

is JavaScript, which is an interpreted

language with a potential for injection

attacks.

Note. A list of MongoDB’s considerations and statuses

Based on the above security considerations and statuses for each database, I came up with the

below step by step recommendations for securing the open-source versions of MongoDB and

Cassandra databases:

68

Step by Step Recommendations

MongoDB

Step 1: The access control is not enabled by default in MongoDB. When initializing

the MongoDB shell, the –auth keyword can be used to enable authorization. Setting

up authorization reduces the risk of account breaches. To create users with roles, the

following command can be used:

Use admin

Db. createUser(

{

User: “sindhu”,

Pwd: “securepassword”,

roles: [{role:”useAdminAnyDatabase”,db:”admin”}]

}

)

Step 2: In most cases, hackers first scan the default port numbers before they attack

(Paramathmuni, 2018). Hence, change the default port numbers in the MongoDB configuration

file: mongo.config

69

Step 3: Authentication can be enabled by navigating to the #security section in the MongoDB

configuration file “Mongod.conf”. Remove the “#” in front of security to enable it.

Security:

 Authorization: “enabled”

 Restart MongoDB now

To test the authentication, the show dbs command can be used. If the authentication

worked, an error should show up like below:

70

Figure 14

Error that indicates that the authentication worked

 Note. An example of an error that indicates that the authentication worked

Step 4: Automated scripts can detect MongoDB instances that are not protected by a firewall.

Verify the status of the firewall using the command:

sudo ufw status

If the status says inactive, activate it using the following command:

host$ sudo ufw enable

Also, make allow SSH using the command:

host$ sudo ufw allow OpenSSH

The output should indicate that only OpenSSH is allowed:

71

Figure 15

Output when only OpenSSH is allowed

 Note. An example of output when only OpenSSH is allowed

Step 5: If remote access needs to be allowed, we can restrict that access to a specific host for the

default port 27107 using the following command:

host$ sudo ufw allow from client_ip_address to any port 27107

For each additional client who needs access, re-runs this command using the IP address.

Step 6: A replication keyfile can be enabled to automatically enable authentication and ensure

data encryption. Using this method, only hosts that have this file installed

72

will be able to join the replica set. A keyfile can be generated using any preferred method. Once

it is generated, copy the keyfile to the replica set members, enable the access control and start the

replica set

In order to enable the replication keyfile, add the following to the MongoDB configuration file

(mongo.conf):

Security:

Keyfile: <path to keyfile>

Step 7: Although auditing features are available in some versions of MongoDB, there are none

available for the open-source version. Also, there is no third-party tool that can be installed in the

MongoDB open-source version to generate audit logs. This can be an improvement in the future

where MongoDB releases auditing features for the open-source version, or a third-party tool is

developed that can generate audit logs for the open-source version of MongoDB.

Step 8: In order to prevent any injection attacks, a RESTful API can be developed that connects

to the database with a limited account only. In addition, the data input can be sanitized, and

strong authentication can be used. Also, allow only direct connections from the API and network

or system firewalls that can be used to block all the native client communications.

Cassandra

Step 1: Cassandra does not automatically encrypt the data.

73

We can enable inter-node encryption by navigating to the server_encryption_option

section in Cassandra.yaml. The default for internode_encryption is set as none.

Change this to either rack, dc, or all.

Step 2: We can also enable Client to Node Encryption by navigating to the

client_encryption_options section in Cassandra.yaml. The two primary options for enabling

encryption here are “enabled” and “optional”.

If both are set as false, the client connections are unencrypted. ‘

If both are set as true, the same port supports both encrypted and unencrypted connections.

If enabled is set as true and optional is set to false, all the client connections are then secured.

Choose this option for better security.

Step 3: In Cassandra.yaml file, turn the authentication option from AllowAllAuthenticator

(default authentication which does not perform any authentication checks and requires no

credentials) to PasswordAuthenticator, that can be used to enable username and password

authentication.

 Authenticator: PasswordAuthenticator

Restart the node after this.

Step 4: In order to prevent any security breaches, change the default superuser, which is

‘Cassandra’ to another superuser:

74

CREATE ROLE <new_super_user> WITH PASSWORD = ‘<provide a strong

password here>’

AND SUPERUSER = true

AND LOGIN = true;

Step 5: Authorization can be enabled by changing the authorizer setting in the Cassandra.yaml

file. By default, it is set as AllowAuthorizer. This setting grants all permissions to all the roles.

Change this to CassandraAuthorizer, which allows for full permissions management.

Authorizer: CassandraAuthorizer

Once authorization is turned on, statements such as GRANT PERMISSION,

REVOKE PERMISSION, etc. can be used to set the access privileges for the clients.

Restart the node after this.

Step 6: As auditing features are only available for the enterprise versions, a third-party tool such

as ecAudit can be installed to get the auditing functionality for the open-source version of

Apache Cassandra.

Depending on the version of Cassandra, a compatible ecAudit version can be installed. ecAudit

requires a JVM that is Java 8 compatible.

To begin the setup, put the ecaudit jar file in the directory: $CASSANDRA_Home/lib/ directory

In order to enable the plug-in, the following settings need to be changed in Cassandra.yaml file:

Authenticator: com.ericson.bss.cassandra.ecaudit.auth.AuditAuthenticator

75

Authorizer: com.ericson.bss.cassandra.ecaudit.auth.AuditAuthorizer

Role manager: com.ericson.bss.cassandra.ecaudit.auth.AudiRoleManager

All the audit logs are stored in the audit.yaml file in Cassandra’s configuration

directory.

Conclusion

This study provides and discusses a comprehensive list of vulnerabilities of NoSQL

databases in general and vulnerabilities that are specific to MongoDB and Cassandra databases.

The study also identifies and describes a set of security considerations for each database and

provides recommendations that can be used to secure the MongoDB and Cassandra databases.

Future Work

 The research work done for this study can be expanded further to help make the open-

source versions of NoSQL databases such as MongoDB and Cassandra more robust in security

like their RDBMS counterparts.

76

References

Ahmadian, M. (2017). Secure query processing in cloud NoSQL. 2017 IEEE

International Conference on Consumer Electronics (ICCE).

doi:10.1109/icce.2017.7889242

Amreen, & Dadapeer. (2016). A survey on robust security mechanism for NoSQL

databases. International Journal of Innovative Research in Computer and Communication

Engineering,4(4), 7662-7666. doi:10.15680/IJIRCCE.2016.0404265

Aviv, R., Shulman-Peleg, A., & Bronshtein, E. (2015). NO SQL, No Injection?

 Examining NoSQL Security.

Chahal, D., Kharb, L., & Gupta, M. (2017). Challenges and Security issues in

NoSQL databases. International Journal of Scientific Research in Computer Science,

Engineering and Information Technology,2(5).

Cimpanu, C. (2018, August 07). California Voter Database Compromised in

MongoDB Incident. Retrieved from

https://www.bleepingcomputer.com/news/security/california-voter-database-

compromised-in-mongodb-incident/

Colombo, P., & Ferrari, E. (2015). Enhancing NoSQL datastores with fine-

grained context-aware access control: A preliminary study on MongoDB. International

Journal of Cloud Computing,6(4), 292. doi:10.1504/ijcc.2017.090197

Cooke, A. (2018, May 08). Top Rated NoSQL Databases for 2018 I TrustRadius.

Retrieved from https://www.trustradius.com/buyer-blog/top-rated-nosql-databases-2018/

77

Cuzzocrea, A., & Shahriar, H. (2017). Data masking techniques for NoSQL

database security: A systematic review. 2017 IEEE International Conference on Big Data

(Big Data). doi:10.1109/bigdata.2017.8258486

Dadapeer.,Indravasan, M., & G, Adarsh. (2016). A Survey on Security of NoSQL

Databases. International Journal of Innovative Research in Computer and

Communication Engineering,4(4). doi:10.15680/IJIRCCE.2016. 0404194

Dayley, B. (2014, September 18). Informit. Retrieved from

 http://www.informit.com/articles/article.aspx?p=2247310

Dindoliwala, V. J., & Morena, R. D. (2017). Survey on Security Mechanisms In

NoSQL Databases. International Journal of Advanced Research in Computer

Science,8(5).

Fedak, V. (2018, March 02). Top 5 reasons to use the Apache Cassandra

Database – Towards Data Science. Retrieved from https://towardsdatascience.com/top-5-

reasons-to-use-the-apache-cassandra-database-d541c6448557

Ghazi, Y., Masood, R., Rauf, A., Shibli, M. A., & Hassan, O. (2016). DB-SECaaS:

A cloud-based protection system for document-oriented NoSQL databases. EURASIP

Journal on Information Security,2016(1). doi:10.1186/s13635-016-0040-5

Hou, B., Qian, K., Li, L., Shi, Y., Tao, L., & Liu, J. (2016). MongoDB NoSQL

Injection Analysis and Detection. 2016 IEEE 3rd International Conference on Cyber

Security and Cloud Computing (CSCloud). doi:10.1109/cscloud.2016.57

Kadebu, Prudence., & Mapana, I. (2014). A security requirements perspective towards a

78

secured NoSQL database environment. 2014 International Conference of Advance

Research and Innovation (ICARI)

Karavasilev, T., & Somova, E. (2018). Overcoming the security issue in NoSQL

 databases. 2018 TechSys conference

McCallion, J. (2017). 26,000 unsecured MongoDB servers hit by ransomware. (2017, September

06). Retrieved from https://www.itpro.co.uk/security/27885/26000-unsecured-mongodb-

servers-hit-by-ransomware

Noiumkar, P., & Chomsiri, T. (2014). A comparison the level of security on Top 5

open source NoSQL databases. 2014 The 9th International Conference on Information

Technology and Applications

Okman, L., Gal-Oz, N., Gonen, Y., Gudes, E., & Abramov, J. (2011). Security

Issues in NoSQL Databases. 2011IEEE 10th International Conference on Trust, Security

and Privacy in Computing and Communications. doi:10.1109/trustcom.2011.70

Paramathmuni, P. (2018, October 31). MongoDB security tips. (2018, October

31). Retrieved from developer.rackspace.com website:

https://developer.rackspace.com/blog/MongoDB-Security-Tips/

R, Rajmohan., & S, P Priyadharshini. (2017). Analysis on Database Security Model Against

NOSQL Injection. l Journal of Scientific Research in Computer Science, 2(2). Retrieved

from http://ijsrcseit.com/paper/CSEIT172229.pdf

Sadalage, P. (2014, October 3). NoSQL Databases: An Overview. Retrieved from

https://www.thoughtworks.com/insights/blog/nosql-databases-overview

ttps://www.itpro.co.uk/security/27885/26000-unsecured-m
https://developer.rackspace.com/blog/MongoDB-Security-Tips/
http://ijsrcseit.com/paper/CSEIT172229.pdf
https://www.thoughtworks.com/insights/blog/nosql-databases-overview

79

Saran, R., M, Sai Baba., S, Jayanthi., & E, Soundararanjan. (2015). Storing of Unstructured data

into MongoDB using Consistent Hashing Algorithm. International Journal of Emerging

Technologies in Engineering Research,3(3).

Shahriar, H., & Haddad, H. M. (2017). Security Vulnerabilities of NoSQL and

SQL Databases for MOOC Applications. International Journal of Digital Society (IJDS),

8(1), 1244-1250.

Sullivan, J. (2019, April). client-server model (client-server architecture).

Retrieved from searchnetworking.techtarget.com website: Retrieved from

searchnetworking.techtarget.com website:

https://searchnetworking.techtarget.com/definition/client-server

Vishwakarma, R. (2017, May 16). The Different Types of NoSQL Databases.

Retrieved from https://opensourceforu.com/2017/05/different-types-nosql-databases/

Yehuda, yaniv. (2018, March 21). Database Audits: Why You Need Them and

 What Tools to Use. Retrieved from www3.dbmaestro.com website:

https://www3.dbmaestro.com/blog/database-audits-why-you-need-them-what-tools-to-

use

Zahid, A., Masood, R., & Shibli, M. A. (2014). Security of sharded NoSQL

databases: A comparative analysis. 2014 Conference on Information Assurance and

Cyber Security (CIACS). doi:10.1109/ciacs.2014.6861323

80

	Assessing the vulnerabilities and securing MongoDB and Cassandra databases
	Recommended Citation

	tmp.1590600705.pdf.Zfz0_

