
St. Cloud State University St. Cloud State University

theRepository at St. Cloud State theRepository at St. Cloud State

Culminating Projects in Information Assurance Department of Information Systems

5-2020

A Comparison of Kernel Memory Protection for Docker Containers A Comparison of Kernel Memory Protection for Docker Containers

Across Host Operating Systems Across Host Operating Systems

Li Dai
dali0802@go.stcloudstate.edu

Follow this and additional works at: https://repository.stcloudstate.edu/msia_etds

Recommended Citation Recommended Citation
Dai, Li, "A Comparison of Kernel Memory Protection for Docker Containers Across Host Operating
Systems" (2020). Culminating Projects in Information Assurance. 101.
https://repository.stcloudstate.edu/msia_etds/101

This Thesis is brought to you for free and open access by the Department of Information Systems at theRepository
at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Information Assurance by an
authorized administrator of theRepository at St. Cloud State. For more information, please contact
tdsteman@stcloudstate.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St. Cloud State University

https://core.ac.uk/display/346450155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.stcloudstate.edu/
https://repository.stcloudstate.edu/msia_etds
https://repository.stcloudstate.edu/iais
https://repository.stcloudstate.edu/msia_etds?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.stcloudstate.edu/msia_etds/101?utm_source=repository.stcloudstate.edu%2Fmsia_etds%2F101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:tdsteman@stcloudstate.edu

A Comparison of Kernel Memory Protection for Docker Containers Across Host

Operating Systems

by

Li Dai

A Thesis

Submitted to the Graduate Faculty of

St. Cloud State University

in Partial Fulfillment of the Requirements

for the Degree of

Master of Science in

Information Assurance

 May 2020

Thesis Committee:
Dennis Guster, Chairperson

Erich Rice
Balasubramanian Kasi

2

Abstract

Object oriented programming concepts have been widely adopted by the modern
design of enterprise applications, which relies on heap memory mapping, and re-use of
pre-coded class libraries. Computing resource sharing such as containerization, is a
popular way to effectively reduce operation overhead by enlarging the scale of kernel
accessibility among distributed computer systems. Thus, proper isolation between
processes, containers and host operating systems is a critical task to assure system
wide information security. This is a study designed to compare kernel level memory
management and protection effectiveness for Docker container systems maintained on
top of Ubuntu Linux and Microsoft Windows as the host operating system. Literature
research aims to study the fundamentals of kernel memory management designs,
policies and modules in place for enforcement. As well as container architectures based
on the variation of the host operating systems. The experimental design focuses on
whether the discovery of unauthorized access is possible between containers, kernel
spaces and file systems. Research results are targeted to determine a better approach
for securing Docker container system implementations and code deployment.

3

Table of Contents

 Page

List of Tables ...5

List of Figures...6

Chapter

 I. Introduction .. 7

 Introduction ... 7

 Problem Statement ... 8

 Nature and Significance of the Problem .. 8

 Objective of the Study ... 9

 Research Questions .. 9

 Definition of Terms ... 9

 Summary .. 10

 II. Background and Review of Literature .. 11

 Introduction ... 11

 Background and Current Research ... 11

 Literature Related to the Methodology .. 24

 Summary ... 25

 III. Methodology .. 27

 Introduction ... 27

 Design of the Study ... 27

 Test-bed Scenarios and Purposes ... 28

4

Chapter Page

 Data Collection .. 30

 Hardware and Software Environment .. 30

 Tools and Techniques ... 31

 Summary .. 31

 IV. Data Presentation and Analysis ... 32

 Introduction ... 32

 Data Presentation ... 32

 Data Analysis .. 55

 Summary .. 56

 V. Results, Conclusion, and Recommendations ... 57

 Introduction ... 57

 Results .. 57

 Conclusion .. 59

 Future Work .. 59

References ... 61

Appendices

 A. Dockerfile Source Code ... 66

 B. Java Program Source Code ... 67

5

List of Tables

Table Page

 1. Kernel Memory Policies relevant to this research ……….....................................16

 2. Windows memory space partitioning and tuning with a 4GB memory sample18

 3. Test 1 Data Summary …………………………………………………………………55

 4. Test 2 Data Summary …………………………………………………………………55

 5. Test 3 Data Summary …………………………………………………………………55

 6. Test 4 Data Summary …………………………………………………………………55

6

List of Figures

Figure Page

1. MMU – Memory address translation ………………………………………………… 13

2. Page Cache ……………………………………………………………………………. 14

3. Direct Memory Access ………………………………………………………………... 15

4. Copy-on-Write Protection …………………………………………………….………. 19

5. Creating of a PID namespace ………………………………………………………... 22

6. Memory control group configuration …………………………………………………. 23

7. Virtualization & Containerization ……………………………………………………... 24

7

Chapter I: Introduction

Introduction

Traditionally, enterprise applications ran on their own operating system and at

times, standalone physical servers. While the separation of software on specific

hardware fulfills not only reliability, but also basic data security requirements, this

method also generates a huge computing resource waste, especially when utilizing

today’s hardware capabilities (“IBM Cloud Education”, 2019). Varieties of virtualization

technologies have been researched and developed since the 1960s (Douglis & Krieger,

2013), to enable the possibility of multi-tenancy for applications running on singular

hardware. Computing capital sharing among distributed systems is becoming more

popular for many reasons such as, immense resource overhead, reducing high utility

costs, and cloud adoption strategies just to name a few. Virtual zones, virtual machines,

and containers are some of the ways that allow systems to utilize hardware resources

more efficiently together.

With the greater effectiveness of computer hardware capacity distribution, such

as with memory in a shared virtualized environment, security problems and threats that

comes with it are sometimes overlooked (Zahedi, 2014). Typical virtual machines may

use software-based memory virtualization to share memory resources from a physical

host machine (“vSphere Documentation”, n.d.). The Docker engine applies LXC-like

namespaces to share and separate memory allocations for each container run on the

host, and because of this design, its memory content protection relies heavily on the

host operating system’s kernel memory management operations. This thesis will review

8

the current research in this discipline, create appropriate test-beds to compare the

differences on how kernel memory management and protection is provided to Docker

containers among various host operating systems, and conclude with results to show

better security approaches when deciding on which host operating system to use for

new Docker container system design and implementation.

Problem Statement

The greater computing resource sharing is employed, the more it can lead to a

variety of security concerns and problems. In containerized systems, kernel resources

like system memory, are often shared in between one another. A particular problem

rises on how to properly separate the host operating system level shared kernel

memory space. And to provide information assurance, in case of any individual

container or host machine itself is compromised, while efficiently providing sufficient

memory allocation spaces for the container engine daemon.

Nature and Significance of the Problem

Kernel memory has been an attack surface for many reasons. Advanced memory

level attacks can cause significant service damage to applications or entire computing

environments. Different base operating systems adopt diversified kernel level memory

management techniques, therefor the attack prevention provided will also vary. Poorly

designed or implemented memory protection mechanisms can directly lead to

vulnerable systems and security threats.

9

Objective of the Research

This thesis will explore fundamental kernel memory management functions and

policies, discover methodologies which different container host operating systems

utilize, compare the security solutions provided to possible memory vulnerabilities and

conclude with an answer for the potential secure combination while deploying with

Docker containers using current technology.

Research Questions

1. How does kernel memory management work on Microsoft Windows or

Ubuntu Linux?

2. Can a misused Docker container become a tool for unauthorized permission

escalation? How do reactions differ between operating systems?

3. Are memory mappings of running Docker containers readable or writeable by

sidecar containers? How do reactions differ between operating systems?

4. Can kernel memory management tools be misused by non-root users within a

Docker container for hacking? How are kernel reactions different?

Definition of Terms

Kernel: Kernel is the core of a computer operating system software, which

oversees every connection between software and hardware. It is one of the first portions

to start up during boot and is the primary handler of all system resources. (Israeli &

Feitelson, 2010)

10

Virtualization: According to VMware.com, it is: “the process of creating a

software-based, or virtual, representation of something, such as virtual applications,

servers, storage and networks.” (“Virtualization”, n.d.)

Docker Container: A lightweight execution environment developed by Docker,

Inc. which provides shared host operating system kernel resources but isolates running

processes.

Object-oriented programming: Program procedure formed by code, written based

on the “object” concept, which is constructed by its properties (“Object-oriented

programming”, n.d.)

Heap: Index of memory locations of objects for a program written with object-

oriented language.

Summary

 With the brief background information introduced, it is not difficult to see that a

well-built memory management mechanism is fundamental for securing Docker

containers, and the host operating system is one that provides the functionalities.

Chapter II will provide an in-depth review of current research literature on this topic,

seeking possible tool sets to build a test bed, answers or solutions to research

questions defined, and discovering areas where more research contribution can be

made.

11

Chapter II: Background and Review of Literature

Introduction

 Current research literature is explored to better understand operating system

fundamentals that make Docker container technology possible, its history and future,

and what they provide for computing security prerequisites. As well as, how this

research is designed methodology wise.

 A considerable amount of literature review for this research is conducted with

operating system documentation, such as referencing “The Linux Kernel v5.6.0-rc6” by

“The kernel development community” at www.kernel.org and “Windows Kernel-Mode

Driver Architecture” from Microsoft Dev Center at docs.microsoft.com. These kernel

module documentations are primary sources to understand kernel functionalities and

policies regarding their operating system principles.

Background and Current Research

Physical and Virtual Memory. Physical memory, that is, memory hardware

actually installed in a computer, is an essential yet limited resource in traditional

computing hardware design. Even though some of today’s technology agrees to hot-

pluggable memory, there is always a hard boundary of the maximum size of memory

one computer can expand to. (“The Linux Kernel”, n.d.) Random-access memory is a

popular form factor of physical memory, it enables reading and writing data by using the

same amount of time regardless of where data is physically located on a hardware chip,

which shows significant speed advantage compared to limitations of direct-access

12

memory / storage devices (Azimane, 2006). Therefore, physical memory is usually

accessed by dedicated yet random assigned address ranges (page frames), frame size

also depends on the implementation of hardware architectures. With how physical

memory access works as explained, not much effort is necessary to see that direct

interaction with physical memory is not an easy task for operating systems and

application developers, and to avoid this complication virtual memory was developed.

Physical memory is usually divided into pages, which are often to be sized to 4 Kbytes,

but is dependent on architecture specifications. With virtual memory in place, every

single memory access handle is given a virtual address. Multiple virtual memory pages

are possible to be mapped to each single physical page frame and are structured with a

hierarchical design. Memory management unit (MMU) is the hardware that passes all

memory references through and translates a virtual memory address to physical

memory address (Pichai & Hsu & Bhattacharjee, 2015). In modern hardware platforms,

MMU is often integrated within the computer’s central processing unit (CPU) on its

critical processing path. The translation look-aside buffer (TLB) built in MMU caches

freshly obtained page table entries (PTE), this reduces address lookup frequency. This

way, memory paging is able to deliver a high-performance memory allocation and

address translation (Gandhi & Karakostas & Ayar & Cristal & Hill & McKinley &

Nemirovsky & Swift & Unsal, 2016). Virtual memory holds abstract data residing in

physical memory, which allows only essential portions of application runtime data and

shared objects’ virtual address among processes in the physical memory space.

13

Access, Control and Protection to Virtual Memory of Linux Kernel. Memory

paging control and protection mechanisms are also implemented within virtual memory

by operating system kernels, and are usually performed during kernel build time, by

defining relevant kernel configurations. In the hierarchical design of virtual memory

paging, higher level ones often contain physical addresses of pages belong to their

immediate lower ones, the lowest table thus contains the physical address of actual

pages utilized by a given application. A pointer of the top-level address table is entered

into a register, when virtual addresses are translated by MMU, such register is then

used to access the top-level address table. Since the physical addresses of lower level

pages are indexed starting with the top-level downwards, the kernel is then able to

access data pages in each layer. As physical memory is volatile memory, a typical way

 MMU

(CPU)

TLB Cache

Virtual

Memory

(Pre PID)

 Physical

Memory

Figure 1. MMU – Memory address translation

14

to ship data in and out of them relies on read or write of files on storage hardware, such

as a hard drive, solid state drive and possible RAID arrays, which is rather slow in I/O

speed compared to memory chips. To minimize this process, page caching is

developed to gain adequate data transfer workflow. The size of cache at various level is

inversely proportional to its speed. Memory pages are cached both ways regardless of

reading or writing and are re-useable if the kernel detects and decides to. A

synchronization function is built into the kernel module, which ensures updated data in

page cache when it is to be reused.

System

Memory

 Caching Levels

 Page

Cache

L3 CPU

 L2

 L1

Storage

Figure 2. Page cache

Direct memory access (DMA) is a frequently used method to allow different controllers

in a computer system to directly read or write to main system memory. DMA not only

15

allows peripherals to communicate between various buses, but also avoid interaction

with MMU, which in cases where MMU is integrated with the CPU, it saves CPU cycles

(Markatos & Katevenis, 1997). Therefore, in practice, DMA helps lower CPU load and

boosts overall system performance.

 CPU System

Memory

 DMA

Controller

 Peripheral

Controller1

 Peripheral

Controller2

Figure 3. Direct Memory Access

Although memory page reuse among application processes or implementation of DMA

provides performance gains, restrictions on the memory page address of a particular

process or device can access, has been put in place for multiple security purposes.

Thus, devices are not allowed to access all addressable memory pages on the same

system. System kernel categorizes memory pages to targets zones, and aims to

prevent accidental or unauthorized cross process, device memory access, as well as

making sure the kernel itself has enough memory allocation available to perform

essential tasks. Non-Uniform Memory Access (NUMA) is developed and has

continuously been improved to assist multi-processor systems. It is designed to handle

16

latencies caused by the distance between each processor or processor core and

physical memory. Processor cores and banks of memory pages are paired into nodes,

that then practices memory management policies and tasks independently. Table 1

below, shows a brief list of memory policies that are relevant to this research.

Table 1

Kernel Memory Policies relevant to this research

Name Coverage Scope

System

Default

All page

addresses

A government of all memory pages ensures

overall system memory sufficiency and

quality.

Task /

Process

Optional/

Per-task

Similar usage as system default policy and

applied only when individually defined by

task.

VMA Task

specific

VMA

Governs Virtual Memory Area of a specific

task and ensures page allocation is

explicit for such task.

Shared Shared

objects

Ensures memory objects shared between

tasks are only available to specified

ones, regulates above policies among

shared memory area.

Many applications are written in a way that allocates all memory space it would possibly

need upfront. It provides a good measure for application reliability from minimizing risk

of running out of memory, but also creates a waste of memory resources because it

only consumes all allocated memory in rare cases. The system kernel usually over-

commits virtual memory compared to what it physically has, knowing this application

behavior can offer more efficient use of memory. However, if some applications are

under heavier load at the same time frame, the system can eventually run out of

17

memory. (Chase, 2013) Kernel tool “Out-Of-Memory” (OOM) killer offers a way to

ensure minimum memory is always available for operating system functionality by

terminating other applications. Processes can be run with a dynamically assigned and

adjustable oom_score, which is a ranking in case something needs to be stopped to

release memory. The adjustability of this ranking could also give hackers a possible way

to initiate a “Denial of Service” attack by shutting down production applications.

Memory Management – Microsoft Windows. The kernel memory management

design of Microsoft Windows operating systems also utilizes virtual memory address

spacing. According to kernel documents found at “Microsoft Dev Center”, in a traditional

32-bit architecture, each process within such a system is entitled to a maximum of 4

gigabytes of memory space, multi-threading capable code is allowed to share its

memory data within all of associated processor threads, although access to virtual

memory addresses of unrelated processes is prohibited to prevent memory corruption.

Virtual memory address space is partitioned into higher and lower portions, default

policy divides the useable memory space evenly, however, and there are available

tuning options that a system administrator can enable for performance optimization.

Table 2 illustrates memory space partitioning and tuning with a 4GB memory sample.

Examples demonstrate a 32-bit system architecture, with limited memory allowance for

process, however, a more modern 64-bit system is able to handle up to 8 terabytes of

memory space below Windows version 8 and 128 terabytes currently starting from

Windows 8.1.

18

Starting from earlier versions of Windows, such as Windows XP, Microsoft has

developed Data Execution Prevention (DEP) as a potential road blocker for memory

buffer overflow attacks. DEP supports the system to assign pages of memory as non-

executable, stopping any malicious code that resides there from being initiated

(Stojanovski & Gusev & Gligoroski & Knapskog, 2007). When an application makes

attempts to start code from any of the protected pages, such application will receive

“STATUS_ACCESS_VIOLATION” returned and technically bring the application to halt.

These pages include but are not limited to heap range, stack range or other designated

memory pools. DEP is started during the operating system boot process and applies

settings according to policy, system function “GetSystemDEPPolicy” and

“SetProcessDEPPolicy” can be called from an application to check for current applied

policies and make changes. By default, memory allocations for heap that is assigned via

“malloc” or “HeapAlloc” functions are non-executable, therefore running code from the

process heap is prevented.

Table 2

Windows memory space partitioning and tuning with a 4GB memory sample

Location Address Range Size Usage Tuning

Low 0x00000000 - 0x7FFFFFFF 2GB Proc None

(Default) High 0x80000000 - 0xFFFFFFFF 2GB OS

Low 0x00000000 - 0xBFFFFFFF 3GB Proc 4-gigabyte

tuning High 0xC0000000 - 0xFFFFFFFF 1GB OS

Low 0x00000000 - Megabytes 2-3GB Proc Dynamic

(/USERVA) High Megabytes+1 -0xFFFFFFFF 1-2GB OS

19

 When programming applications intended to run in Windows environments, the

Dynamic Link Library (DLL) must be well known. Like most other libraries in

programming languages, DLLs offer numerous common functionalities (Kari, 1993),

thus it promotes code reuse, modularization and memory usage optimization. According

to default Windows memory management policy, virtual memory address space

allocated for a DLL is only accessible to the process which called such DLL. At times

where multiple application processes are calling the same DLL, the virtual memory

pages will be mapped to same physical memory pages, for sharing among all

processes to start with.

Once any of those processes are started to commit new data to the shared page, such

page will then be re-allocated to a dedicated physical memory space. A kernel level

protection “Copy-on-Write”, updates those processes associated with a virtual memory

address accordingly to make compliance of a no cross-process memory access policy.

Process A Physical

Memory

 Process B

Before:

Page 1 Page A Page 1

Page 2 Page B Page 2

Page 3 Page C Page 3

Page 4 Page D Page 4

After:

Page 1 Page A Page 1

Page 2 Page B Page 2

Page 3 Page C Page 3

Page 4 Page D Page 4

 Page E

Figure 4. Copy-on-Write Protection

20

This lazy evaluation technology makes more efficient physical memory use and saves

MMU (CPU cycle) by reducing address translation until necessary. (“Microsoft Docs”,

2017)

Process, Heap and Hierarchical Design. When researching today’s software

frameworks and memory related topics, Object-Oriented Programing (OOP) and the

heap memory architecture is a hard-to- avoid area. Heap corruptions can cause

software issues that easily become difficult to diagnose (Pravat & Hewardt, 2007). In

common operating systems, each running piece of program, is assigned with a process

ID (PID), which represents as the logical address of such code in memory (Bouffard &

Lackner & Lanet & Johannes, 2015). The kernel as the core of the operating system

manages these memory segments. Today, enterprise applications are often designed

with an object-oriented framework (Mohamed & Douglas, 1997), and the concept goes

back at least twenty years and has proven its advantages like reuse of code, well-

structured programs and clear transition from design analysis to production

implementation for software development (Guimaraes, 1995). A heap is mandatory for

this structure, hierarchically at the top of allocated virtual memory space, and acts as an

index of all objects which architects the program. Historically, computer software

architectures took advantage of hierarchical design, which benefits effectively

organizing and efficiently processing data. However, it does create a single point of

attack surface at the top, which then potentially leads to catastrophic failure of the

hierarchy (Dai & Guster & Rice, 2019). Therefore, to protect the heap from being

21

tampered with, it is an important task included to ensure confidentiality, integrity and

availability of such program.

Virtualization, “Containerization” and Cloud Enabling. Advanced computing

with virtualization technology started in the era of mainframe machines, and has since

been intensely researched and continuously developed by technology giants such as

VMware, Oracle, Citrix and Microsoft (“Brief History of Virtualization”, 2012). The

success of today’s cloud computing environments proves the benefits from effective

virtualization technologies (Ferreira & Pedretti, Bridges & Brightwell & Fiala & Mueller,

2012). Moreover, virtualization platforms enable the possibility to install and run various

types of operating systems (virtual machines) independently on top of one physical

computer with a hypervisor like VMware vSphere or Microsoft Hyper-V, thus computing

resources such as memory can be shared among them (“IBM Cloud Education”, 2019).

While this methodology has its strengths, virtual machines also operate with a heavier

overhead, especially if only a single dedicated service is intended to reside on the

virtual machine which is an unnecessary drawback.

Containerization, an old bottled new wine, has its roots from the early days of

Linux, which provides the ability to isolate running processes with shared Linux native

kernel features (Osnat, 2018). Two main kernel features that are combined to a

container are namespaces and cgroups. At the operating system level, namespaces

control and separates system resources to process or process groups, basically

isolating processes down to their own space (Evans, 2016). There are various available

namespaces that come with a Linux installation. For example, PID namespaces, which

22

assigns pid from 1 for the processes running inside; networking namespace, works with

iptables and allows processes to have independent IPv4 or IPv6 addresses, ports or

firewall rules from their host operating system. And under the same idea, user

namespace creates users and groups with dedicated UID and GID, and mount

namespace permits processes to mount or unmount its own filesystem. Creating names

can be as easy as executing the command “unshare” with intended option flags. Figure

5 demonstrates the creation of a new PID namespace.

ldai@thesis:~$ ps -aux | grep bash

ldai 1689 0.0 0.0 21492 5096 pts/0 Ss 21:01

0:00 -bash

ldai 1701 0.0 0.0 21496 5068 pts/0 S 21:01

0:00 -bash

ldai 1808 0.0 0.0 13136 1036 pts/0 S+ 21:28

0:00 grep --color=auto bash

ldai@thesis:~$ sudo unshare -f -p --mount-proc bash

[sudo] password for ldai:

root@thesis:~# ps -aux

USER PID %CPU %MEM VSZ RSS TTY STAT START

TIME COMMAND

root 1 0.0 0.0 21276 4916 pts/0 S 21:22

0:00 bash

root 9 0.0 0.0 38376 3476 pts/0 R+ 21:23

0:00 ps -aux

root@thesis:~# exit

exit

Figure 5. Creating of a PID namespace

In this case, new process “bash” inside the newly created PID namespace immediately

started with PID 1 instead of 1689 from the host, and the user became root. With

another terminal shell, the “nsenter” command can be used to access existing

namespaces. Cgroups, an abbreviation of control groups, sets limitations to resources

like memory and CPU time that one process can use. Control groups can be manually

23

created with a command from the “cgroup-tools” package, called “cgcreate”. Figure 6

shows a sample memory control group setup.

Install cgcreate with: sudo apt install cgroup-tools

Create cgroups with 64mb memory limit:

ldai@thesis:~$ sudo cgcreate -a ldai -g memory:64mb

ldai@thesis:~$ ls -l /sys/fs/cgroup/memory/64mb/

ldai@thesis:/sys/fs/cgroup/memory/64mb$ cat

memory.limit_in_bytes

9223372036854771712

ldai@thesis:/sys/fs/cgroup/memory/64mb$ sudo echo 64000000 >

memory.limit_in_bytes

ldai@thesis:/sys/fs/cgroup/memory/64mb$ cat

memory.limit_in_bytes

64000000

Executing Java code which take 65Mbytes to run.

ldai@thesis:~$ sudo cgexec -g memory:64mb java memoryeater

Exception in thread "main" java.lang.OutOfMemoryError: Java

heap space

 at memoryeater.main(memoryeater.java:10)

Figure 6. Memory control group configuration

In 2013, Docker as a container platform provider, helped popularized the concept of

containerization, and according to Docker over 3.5 million applications have been

“containerized” with their Docker engine (“Docker eWeek”, n.d.). Figure 7 below

describes a basic idea of how a Docker container differs from a regular virtualization

platform. Docker as an open source container solution provider, offers unique answers

to application level virtualizations, which makes applications run without dependencies

to host operating systems and hardware configurations. In the article “Linux Kernel

Vulnerabilities: State-of-the-art Defenses and Open Problems”, that Chen, Mao, Wang,

Zhou, Zeldovich and Kaashoek (2011) explained that “Missing pointer checks”, “buffer

24

overflow” and “Memory mismanagement” are typical kernel vulnerabilities, unauthorized

or intended heap modifications will lead to failure of associated code runtime.

Architectural security is rather challenging today, with the larger amount of resource

sharing and scaling playing an important role in cloud computing environments

(Manikandasaran & Raja, 2018).

App1 App2 App3 App1 App2 App3

Env Env Env Env Env Env

Guest

OS

Guest

OS

Guest

OS

 Docker Engine

Hypervisor Shared Host OS Kernel

Host Operating System

Hardware Hardware

Figure 7. Virtualization & Containerization

Literature Related to the Methodology

Research Foundation. A previous research study by Dai, Guster and Rice

(2019), stated that the key for tracking where objects reside is to reference their

memory locations, which then leads to the heap. However, acquiring heap memory

addresses of a running process in Linux only requires essential tools that comes with

most Linux distributions. The research also identified that the heap of a non-root-user

initiated process resides in user memory space and has permissions which allows a

user level to read and write but is isolated from other processes with a “private” flag.

Though a root level process would certainly be able to overwrite it. The article also

stated that, after Java code is being packaged inside a Docker container, the memory

locations were observed and not accessible with user level permissions anymore.

25

Though it added another layer of abstraction to protect the heap, the authors were able

to clobber the heap process of the docker daemon to demonstrate a denial of service

attack with little evidence left in log files. It will be interesting to discover how much

damage, a Docker container which has mounted to host /proc directory, can do to host

level user processes, root processes (docker daemon) or even filesystem.

Tools in Windows. In the operating system world of Microsoft Windows, there

are also a number of native, as well as third-party debugging tools that are capable of

searching through process data; such as for list related open files – Windows Process

Explorer or to view memory or edit with custom values by – WinDbg (Microsoft

Documentation, 2017). However, the way Docker containers operate in Windows is

much different than how they do in Linux. For example, the Windows version of Docker

engine, exposes system APIs through DLL files instead of Linux syscalls, and

containers need at least some Windows kernel level DLLs to support operating system

level API calls. And that means, the separation of application containers cannot be

completely done away from system services and other DLL files, and it does not matter

what language the containerized program is written in (Walker, 2018).

Summary

From system architecture to kernel memory management functionalities and

policies, heap protection seems to be well thought out. Development and

implementation of Docker containers is still strongly undergoing change, and current

research literature relies more on basic functionalities of the operating systems

themselves. However, with a similar set of tools offered in Windows as compared to

26

Linux, tests are ready to be done in a similar way to illustrate the possibilities of a denial

of service attack initiated from a clobbered heap and compare both operating systems.

Moreover, with these research conclusions and documentation of system level tooling,

the purpose of this research and design of the methodology are clearly defined.

27

Chapter III: Methodology

Introduction

 To provide accurate and understandable results of this comparison study, it is

necessary to build, and test Docker container environments based on different host

operating systems. The goal is to determine based on which host operating system a

given Docker container engine is running, which containerized program has minimum to

no impact from possible attack on the host. Various attacks will be simulated like a side

channel attack, buffer overflow attack and direct content modifications all done on the

memory level.

Design of the Study

 In the literature review section, the research methodology introduced becomes a

foundation of the design to this test bed. To accomplish the study goal, four testing

scenarios are created, in consideration of multiple techniques to distribute possible

negative impact to running code from a sidecar Docker container. One or more

containers are pulled or configured for each stage. In Test 1, the container is built with

Ubuntu Linux 18.04 base image and the “nano” program added on top, which offers

access to a shell and text editor for potential required changes. Test 2 requires two

containers, one built with an official OpenJDK base image, and wraps java code

“stayrunning”, which is intended to keep providing a timestamp on stdout (screen) until

interruption. The second container is built from Ubuntu Linux with debugging tools

installed, in this case, it’s built with GUN Debugger. The container “stayrunning” and

“test2” are re-used in Test 3, and a new container “memoryeater” is created based on

28

OpenJDK packaging a java code that runs and keeps consuming memory and aims to

verify OOM practice of the system kernel. Lastly, a container with docker-cli interface

will be created to have the basic ability to interact with a mounted host docker daemon

socket. Within the host operating system, users ldai (uid 1000) and user (uid1001) are

created, both users are added to group docker (gid 999) which has permission to

execute commands to interact with docker daemon, however, only user ldai has sudo

permission to run root level commands. Docker container instruction scripts and source

code of java programs can be seen in Appendices A and B. In these test scenarios, the

host operating system will be the changing variable, one being Ubuntu Linux, the other

being Microsoft Windows 10, and the Docker engine version, Docker container

packaged simple programs, and all other dependencies will remain the same.

Test-bed Scenarios and Purposes

Test 1: User ldai (uid 1000) has a plain text file stored in its home directory, with

permission to read and write only by owner. User (uid 1001) tries to initiate unauthorized

file system access of ldai’s home directory by bind mounting “/home/ldai” into container

“test1”. This test checks the possibility of one getting elevated access with root

permission via Docker container, which not only implies kernel namespace security

effectiveness but also becomes an essential requirement proceeding to following tests.

Test 2: With container “stayrunning” activated by ldai (uid 1000), user (uid 1001)

is normally not permitted to access memory mappings and heap segments of such code

without being the owner of it or having root permissions. This test utilizes “test2”

container, with flags turned on to bind mount “/proc” directory, PID namespace and

29

privileges from the host system. This test checks if the system kernel prevents a user

with elevated root access beyond PID namespace and overwrite memory segments of

other processes.

 Test 3: With container packaged java code “stayrunning” initiated in the

background, user (uid 1001) executes containerized “memoryeater” code, which

exhausts memory space by continuously consuming it, and tests will be conducted with

smaller chunks and relatively larger pages for a comparison of kernel reaction.

Container “test2” will also be used to gain access to “/proc” directory of “stayrunning”

container process, tests are to be continued by overwrites to “oom_score_adj” with a

larger number, and manually trick kernel to initiate OOM kill by passing “f” flag to file

“/proc/sysrq_trigger”. This test verifies effectiveness of OOM kernel memory policy

implementation and potential security threats.

Test 4: Again, with “stayrunning” container functioning, user (uid 1001) tries with

container “test4” which has host docker daemon socket mounted and interacts with host

docker daemon to stop other running containers. Proposal of container with mounted

docker daemon socket might seem to be an unusual way to use container technology

overall, but it is a proper method to test if host docker daemon can be controlled with a

sidecar container, and how would kernel namespace prevent these activities? How are

log files going to keep track of them?

The above tests are to be conducted on both operating system variations,

targeting for a thorough comparison of reactions from kernel policies implementations

and effectiveness of functionalities supporting them.

30

Data Collection

 Data collection is crucial to this study, there is one data collection table designed

for each test described above. Tables are aimed to accurately record test results and

represent them in an easy-to-read fashion. The step-by-step test processes are to be

recorded by shell command tables or screenshots, whichever applies better.

Hardware and Software Environment

Dell XPS 9360 – Specification:

CPU: Intel i7 8550U (1.80Ghz)

RAM: 16.0 GB (15.7 usable)

SSD: 512 GB M.2 NVMe

OS: Windows 10 (Version 1903)

 Virtual Machine:

i. Ubuntu server: 18.04

ii. Microsoft Windows 10

31

Tools and Techniques

Ubuntu Linux. GDB: GNU Debugger, debugging tools which allows examination

and modification to memory content of given running program in Linux.

Windows. Process Explorer: Displays basic information of a running process,

such as PID and associated open DLL files.

RAMMap: Displays memory usage, priority information and physical range of

given process ID.

WinDbg: Debugging tool for use in Windows, similar to GDB in Linux.

Summary

 The test stages of this study are designed to step one on top of each other. The

lower lever tests are essential for the next process. These tests should go through

smoothly in a Linux environment. However, they are not guaranteed to work in all

Windows environments, because some of the testing tools developed for Windows are

developed with a Graphical User Interface, where Docker container for Windows runs in

a command line interface or tends to be ran on a service like “head-less” mode.

32

Chapter IV: Data Presentation and Analysis

Introduction

 In the “Data Presentation” section, a step-by-step testing process will be listed as

in either shell command line records in tables, or screenshots of user interfaces. The

following tables will summarize results of each test in a “Data Analysis” section.

Data Presentation

Ubuntu Linux Test-bed Configuration

ldai@thesis:~$ uname -a

Linux thesis 4.15.0-91-generic #92-Ubuntu SMP Fri Feb 28

11:09:48 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux

Operating System Details

ldai@thesis:~$ id

uid=1000(ldai)gid=1000(ldai)groups=1000(ldai),4(adm),24(cdrom

),27(sudo),30(dip),46(plugdev),108(lxd),999(docker)

ldai@thesis:~$ id user

uid=1001(user)gid=1001(user)groups=1001(user),999(docker)

user@thesis:~/test2$ sudo cat

user is not in the sudoers file. This incident will be

reported.

User Details

ldai@thesis:~$ ls -la aaa

-rw------- 1 ldai ldai 29 Mar 26 20:34 aaa

ldai@thesis:~$ cat aaa

There is only one line here.

Plain Text File owned by ldai with 600 permission

ldai@thesis:~$ docker -v

Docker version 19.03.5, build 633a0ea838

ldai@thesis:~$ docker-compose -v

docker-compose version 1.25.3, build d4d1b42b

Docker Engine Version

Microsoft Windows 10 Test-bed Configuration

33

Windows Version Details Content of “aaa.txt”

User lidai has full permission User is no permission

PS C:\Users\lidai\thesis\os> docker -v

Docker version 19.03.5, build 633a0ea

34

Docker Engine Version

Test 1 – Ubuntu Linux

ldai@thesis:/$ su user

Password:

user@thesis:/$ ls -la /home

total 16

drwxr-xr-x 4 root root 4096 Feb 3 21:40 .

drwxr-xr-x 25 root root 4096 Mar 25 20:29 ..

drwxr-xr-x 6 ldai ldai 4096 Mar 26 20:34 ldai

drwxr-xr-x 5 user user 4096 Feb 9 16:33 user

user@thesis:/$ ls -la /home/ldai/aaa

-rw------- 1 ldai ldai 29 Mar 26 20:34 /home/ldai/aaa

user@thesis:/$ cat /home/ldai/aaa

cat: /home/ldai/aaa: Permission denied

Verify if other user (1001) can access ldai (1000)’s file

user@thesis:~$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

user@thesis:~$ docker images

REPOSITORY TAG IMAGE ID

CREATED SIZE

user@thesis:~$ docker build -t test1:latest .

Sending build context to Docker daemon 18.94kB

Step 1/2 : FROM ubuntu:18.04

18.04: Pulling from library/ubuntu

5bed26d33875: Pull complete

f11b29a9c730: Pull complete

930bda195c84: Pull complete

78bf9a5ad49e: Pull complete

Digest:

sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392b7546b43a0

51853a341d

Status: Downloaded newer image for ubuntu:18.04

 ---> 4e5021d210f6

Step 2/2 : RUN apt update && apt -y install nano

 ---> Running in 4892ac1b7b56

Removing intermediate container 4892ac1b7b56

 ---> f63075002cd4

Successfully built f63075002cd4

35

Successfully tagged test1:latest

user@thesis:~$ docker images

REPOSITORY TAG IMAGE ID

CREATED SIZE

test1 latest f63075002cd4

56 seconds ago 93.5MB

ubuntu 18.04 4e5021d210f6 6

days ago 64.2MB

user@thesis:~$ docker run -it --mount

type=bind,source=/home/ldai,target=/test/ldai test1

root@1cd82de03972:/# cd /test/ldai

root@1cd82de03972:/test/ldai# ls -la aaa

-rw------- 1 1000 1000 29 Mar 27 01:34 aaa

root@1cd82de03972:/test/ldai# cat aaa

There is only one line here.

root@1cd82de03972:/test/ldai# echo 'NOW! There are TWO

lines!' >> aaa

root@1cd82de03972:/test/ldai# cat aaa

There is only one line here.

NOW! There are TWO lines!

root@1cd82de03972:/test/ldai# exit

exit

user@thesis:~$

User (1001) successfully elevated permission then accessed and modified ldai

(1000)’s file with a container.

user@thesis:~$ exit

exit

ldai@thesis:/$ cd

ldai@thesis:~$ cat aaa

There is only one line here.

NOW! There are TWO lines!

ldai@thesis:~$ stat aaa

 File: aaa

 Size: 55 Blocks: 8 IO Block: 4096

regular file

Device: 802h/2050d Inode: 1572867 Links: 1

Access: (0600/-rw-------) Uid: (1000/ ldai) Gid: (

1000/ ldai)

Access: 2020-03-26 21:28:42.859029240 -0500

Modify: 2020-03-26 21:28:39.947011864 -0500

Change: 2020-03-26 21:28:39.947011864 -0500

36

 Birth: -

File aaa still has same metadata associated.

Test 1 – Microsoft Windows 10

Verify user cannot access file aaa.txt

PS C:\thesis\test1> docker build -t test1:latest .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:18.04

18.04: Pulling from library/ubuntu

5bed26d33875: Pull complete

f11b29a9c730: Pull complete

930bda195c84: Pull complete

78bf9a5ad49e: Pull complete

Digest:

sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392b7546b43a0

51853a341d

Status: Downloaded newer image for ubuntu:18.04

 ---> 4e5021d210f6

Step 2/2 : RUN apt-get update && apt-get -y install nano

 ---> Running in e559d10ea86d

Removing intermediate container e559d10ea86d

 ---> dc6be42f2de9

Successfully built dc6be42f2de9

Successfully tagged test1:latest

SECURITY WARNING: You are building a Docker image from

Windows against a non-Windows Docker host. All files and

directories added to build context will have '-rwxr-xr-x'

permissions. It is recommended to double check and reset

permissions for sensitive files and directories.

Building container “test1” (Notice above warning)

37

PS C:\thesis\test1> docker run -it --mount

type=bind,source=c:/thesis,target=/test test1

root@db3d0b5ce994:/# cd test

root@db3d0b5ce994:/test# ls

Dockerfile os stayrunning.class test1 test2 test3 test4

root@db3d0b5ce994:/test# cd os

root@db3d0b5ce994:/test/os# ls

root@db3d0b5ce994:/test/os# ls -la

total 0

drwxrwxrwx 1 root root 0 Mar 28 01:26 .

drwxrwxrwx 1 root root 4096 Mar 28 01:26 ..

“test1” container started after allowing mount by clicking “Share it”

Root user inside container was not able to see “aaa.txt” but was able to see other files

with access permission.

PS C:\thesis\test1> docker run mcr.microsoft.com/windows:1903

Unable to find image 'mcr.microsoft.com/windows:1903' locally

1903: Pulling from windows

38

af1a530dff54: Downloading [====================>

] 1.517GB/3.657GB

c0f80931c4bb: Downloading

[==================================>]

1.623GB/2.367GB

Digest:

sha256:bbb680fb17fa5c93a95fcf97f6ea81bee4494ff405cf31f859686f

6ca9e761be

Status: Downloaded newer image for

mcr.microsoft.com/windows:1903

Microsoft Windows [Version 10.0.18362.720]

(c) 2019 Microsoft Corporation. All rights reserved.

C:\>

PS C:\thesis\test1>

Getting “windows” container, because license issues, this study cannot run

microsoft/nanoserver or Microsoft/servercore images.

PS C:\thesis\test1> docker run -it --mount

type=bind,source=c:\thesis,target=c:/test

mcr.microsoft.com/windows:1903 powershell

Windows PowerShell

Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform PowerShell https://aka.ms/pscore6

PS C:\> echo "there is now two lines" >> c:\test\os\aaa.txt

PS C:\>

Using powershell command to edit text file.

39

File edited successfully.

Test 2 – Ubuntu Linux

ldai@thesis:~$ java stayrunning

This sample program should stay running ==> Thu Mar 26

21:48:35 CDT 2020

This sample program should stay running ==> Thu Mar 26

21:48:55 CDT 2020

This sample program should stay running ==> Thu Mar 26

21:49:15 CDT 2020

This sample program should stay running ==> Thu Mar 26

21:49:35 CDT 2020

This sample program should stay running ==> Thu Mar 26

21:49:55 CDT 2020

This sample program should stay running ==> Thu Mar 26

21:50:15 CDT 2020

Running Java code “stayrunning” on raw host by ldai (1000)

user@thesis:~/test2$ ps -aux | grep jaca

user 12051 0.0 0.0 13136 1108 pts/1 S+ 21:57

0:00 grep --color=auto jaca

user@thesis:~/test2$ ps -aux | grep java

ldai 12002 0.3 0.5 4748916 41820 pts/0 Sl+ 21:55

0:00 java stayrunning

user 12053 0.0 0.0 13136 1032 pts/1 S+ 21:57

0:00 grep --color=auto java

user@thesis:~/test2$ cd /proc/12002

user@thesis:/proc/12002$ cat maps | grep heap

cat: maps: Permission denied

User (1001) does not have permission to view memory mapping of such running java

code.

user@thesis:~/test2$ docker build -t test2:latest .

Sending build context to Docker daemon 2.048kB

Step 1/2 : FROM ubuntu:18.04

 ---> 4e5021d210f6

Step 2/2 : RUN apt update && apt -y install libc6-dbg gdb

valgrind

 ---> Running in 98729dfbc0d2

Removing intermediate container 98729dfbc0d2

 ---> 1d2dbc59adc4

40

Successfully built 1d2dbc59adc4

Successfully tagged test2:latest

Building test2 container image with debugging tools installed.

user@thesis:~/test2$ docker run -it --mount

type=bind,source=/proc,target=/test/proc test2

root@9bbd6b210161:/# cd /test/proc/12002

root@9bbd6b210161:/test/proc/12002# cat maps

cat: maps: Permission denied

root@9bbd6b210161:/test/proc/12002# cat pagemap

cat: pagemap: Permission denied

root@9bbd6b210161:/test/proc/12002# cat stack

cat: stack: Permission denied

root@9bbd6b210161:/test/proc/12002# exit

exit

Still not able to access virtual memory mappings, with elevated root permission.

ldai@thesis:~$ docker build -t stayrunning:latest .

Sending build context to Docker daemon 105kB

Step 1/3 : FROM openjdk:latest

latest: Pulling from library/openjdk

cd17e56c322c: Pull complete

ecdd73bb9922: Pull complete

e742458088f5: Pull complete

Digest:

sha256:85e34d6934d5b00048e31e93ee7abef73307cf0524d4205dcce4c9

b2a5870128

Status: Downloaded newer image for openjdk:latest

 ---> e2b050e4e3da

Step 2/3 : COPY ./stayrunning.class .

 ---> 5d0c5d201dea

Step 3/3 : CMD java stayrunning

 ---> Running in 6649376d29c7

Removing intermediate container 6649376d29c7

 ---> d8b148a44480

Successfully built d8b148a44480

Successfully tagged stayrunning:latest

ldai@thesis:~$ docker run -it stayrunning

This sample program should stay running ==> Fri Mar 27

03:26:40 GMT 2020

This sample program should stay running ==> Fri Mar 27

03:27:00 GMT 2020

41

This sample program should stay running ==> Fri Mar 27

03:27:20 GMT 2020

This sample program should stay running ==> Fri Mar 27

03:27:40 GMT 2020

Build docker container image and run java code “stayrunning”

user@thesis:~/test2$ ps -aux | grep java

root 19665 0.1 0.4 4783940 39024 pts/0 Ssl+ 22:44

0:04 java stayrunning

root 20721 0.2 0.4 4783940 38200 pts/0 Ssl+ 23:19

0:01 java stayrunning

user 21681 0.0 0.0 13136 1004 pts/1 S+ 23:28

0:00 grep --color=auto java

user@thesis:~/test2$ docker run -it --mount

type=bind,source=/proc,target=/test/proc --pid=host --

privileged test2

root@b0d26312a293:/# cd /test/proc/20721

root@b0d26312a293:/test/proc/20721# cat maps | grep heap

023a8000-023c9000 rw-p 00000000 00:00 0

[heap]

root@b0d26312a293:/test/proc/20721# gdb --pid 20721

GNU gdb (Ubuntu 8.1-0ubuntu3.2) 8.1.0.20180409-git

Copyright (C) 2018 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type

"show copying"

and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online

at:

<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

Attaching to process 20721

[New LWP 20767]

[New LWP 20776]

[New LWP 20777]

42

[New LWP 20778]

[New LWP 20779]

[New LWP 20780]

[New LWP 20781]

[New LWP 20782]

[New LWP 20783]

[New LWP 20784]

[New LWP 20785]

[New LWP 20786]

[New LWP 20787]

[New LWP 20788]

[New LWP 20795]

[New LWP 20796]

[New LWP 20797]

warning: Expected absolute pathname for libpthread in the

inferior, but got target:/lib64/libpthread.so.0.

warning: Unable to find libthread_db matching inferior's

thread library, thread debugging will not be available.

warning: Target and debugger are in different PID namespaces;

thread lists and other data are likely unreliable. Connec

warning: Expected absolute pathname for libpthread in the

inferior, but got target:/lib64/libpthread.so.0.

warning: Unable to find libthread_db matching inferior's

thread library, thread debugging will not be available.

0x00007f8996170017 in pthread_join () from

target:/lib64/libpthread.so.0

(gdb) dump memory ~/gdbheap 0x023a8000 0x023a8f00

(gdb) set {char [3840]} 0x023a8000 = "The heap is now

clobbered!!!!"

(gdb) dump memory ~/gdbheap_2 0x023a8000 0x023a8f00

(gdb) detach

Detaching from program: target:/usr/java/openjdk-14/bin/java,

process 20721

(gdb) q

root@b0d26312a293:~# ls

gdbheap gdbheap_2

root@b0d26312a293:~# cat gdbheap

43

!0▒:!P▒:p▒:!java!stayrunning1/usr/java/openjdk-

14/bin/java!P▒:p▒:1A/usr/java/openjdk-

14/lib/server/libjvm.soA/usr/java/openjdk-

14/lib/serverlibjvm.so▒▒▒▒!/lib64/libm.so.6!/lib64libm.so.6AP

▒:0z▒▒▒{▒P▒:0z▒▒▒{▒q▒▒:▒Y{▒▒T{▒P▒:0z▒▒▒{▒▒▒:▒Y{▒▒T{▒P▒:0z▒▒▒{

▒!▒▒▒!▒▒▒!▒▒▒!▒▒▒Q▒▒▒▒P

`▒:!@▒:▒▒▒▒▒:▒▒▒▒P▒:▒▒{▒▒▒:▒:▒▒▒▒▒▒▒▒▒▒▒▒h▒▒▒8▒▒▒▒▒▒غ▒▒躭

▒H▒▒▒(▒▒▒ػ▒▒軭
▒Ȼ▒▒Ⱥ▒▒▒▒▒▒▒▒▒(▒▒▒▒▒x▒▒▒h▒▒▒X▒▒▒H▒▒▒▒▒8▒▒▒X▒▒▒@▒▒▒▒▒%H▒:▒:▒:▒

P͢▒P▒D͢▒A▒▒▒▒▒▒▒▒,P▒:▒▒▒`E▒▒p▒▒{▒H▒l@▒H▒:eO)&▒▒▒▒▒▒▒▒▒ȃ▒▒▒T
{▒Ѝ▒▒▒▒▒▒▒▒▒▒▒▒@=

▒:@n▒/usr/java/openjdk-14/lib/server/libjvm.so▒`r▒▒▒:▒m▒▒▒

▒▒▒:P▒:▒:▒m▒▒▒n▒▒▒n▒▒

n▒▒@n▒▒Pn▒▒▒n▒▒▒n▒▒▒n▒▒`n▒▒pn▒▒▒m▒▒▒m▒▒▒m▒▒▒n▒▒▒n▒▒▒m▒▒n▒▒▒m▒

▒n▒▒o▒▒0o▒▒ o▒▒o▒▒▒n▒▒Po▒▒@o▒▒0n▒▒@`r▒P▒r▒"▒▒:▒▒:P?:

0▒r▒ dr▒؍:libm.so.6aK▒▒▒q▒N▒▒{▒H▒l`@▒:e`&Ё:{r▒P▒:{r▒p

▒▒▒▒ ▒▒▒▒ui ▒▒▒▒i▒▒▒ii

▒▒▒▒▒▒▒▒ui ܯ▒▒w▒▒▒rii ܯ▒▒
▒▒▒root@b0d26312a293:~# xxd gdbheap

bash: xxd: command not found

root@b0d26312a293:~# ls

gdbheap gdbheap_2

root@b0d26312a293:~# cat gdbheap_2

The heap is now clobbered!!!!root@b0d26312a293:~#

User 1000 was able to attach host PID namespace and by using -–privileged flag, to

access and overwrite given heap address.

This sample program should stay running ==> Fri Mar 27

04:37:46 GMT 2020

This sample program should stay running ==> Fri Mar 27

04:38:06 GMT 2020

This sample program should stay running ==> Fri Mar 27

04:38:26 GMT 2020

This sample program should stay running ==> Fri Mar 27

04:38:46 GMT 2020

This sample program should stay running ==> Fri Mar 27

04:39:06 GMT 2020

A fatal error has been detected by the Java Runtime

Environment:

44

SIGSEGV (0xb) at pc=0x00007f89956e8cdf, pid=1, tid=23

JRE version: OpenJDK Runtime Environment (14.0+36) (build

14+36-1461)

Java VM: OpenJDK 64-Bit Server VM (14+36-1461, mixed mode,

sharing, tiered, compressed oops, g1 gc, linux-amd64)

Problematic frame:

C

[error occurred during error reporting (printing problematic

frame), id 0xb, SIGSEGV (0xb) at pc=0x00007f8995cd21c5]

Core dump will be written. Default location: Core dumps may

be processed with "/usr/share/apport/apport %p %s %c %d %P

%E" (or dumping to //core.1)

An error report file with more information is saved as:

//hs_err_pid1.log

If you would like to submit a bug report, please visit:

https://bugreport.java.com/bugreport/crash.jsp

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[error occurred during error reporting (), id 0xb, SIGSEGV

(0xb) at pc=0x00007f8995bccbb7]

[Too many errors, abort]

[Too many errors, abort]

[Too many errors, abort]

[Too many errors, abort]

[Too many errors, abort]

45

[Too many errors, abort]

[Too many errors, abort]

[Too many errors, abort]

 [Too many errors, abort]

Container packaged java code is no longer running.

Test 2: Microsoft Windows 10

PS C:\thesis> docker build -t stayrunning:latest .

Sending build context to Docker daemon 10.24kB

Step 1/3 : FROM openjdk:latest

 ---> 6adc576f6a58

Step 2/3 : COPY ./stayrunning.class .

 ---> Using cache

 ---> c3727279bb9f

Step 3/3 : CMD java stayrunning

 ---> Using cache

 ---> 6e23da6cbf17

Successfully built 6e23da6cbf17

Successfully tagged stayrunning:latest

SECURITY WARNING: You are building a Docker image from

Windows against a non-Windows Docker host. All files and

directories added to build context will have '-rwxr-xr-x'

permissions. It is recommended to double check and reset

permissions for sensitive files and directories.

PS C:\thesis> docker run -it stayrunning

This sample program should stay running ==> Sat Mar 28

15:51:05 GMT 2020

This sample program should stay running ==> Sat Mar 28

15:51:07 GMT 2020

This sample program should stay running ==> Sat Mar 28

15:51:09 GMT 2020

This sample program should stay running ==> Sat Mar 28

15:51:11 GMT 2020

This sample program should stay running ==> Sat Mar 28

15:51:13 GMT 2020

Built and started “stayrunning” container by lidai

PS C:\Users\user> docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

46

bed1fa8adbcd stayrunning "/bin/sh -c 'java

st…" About a minute ago Up About a minute

zealous_curie

PS C:\Users\user> Get-Process -Name vmwp

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI

ProcessName

------- ------ ----- ----- ------ -- -- ---

 370 18 6584 20412 8712 0

vmwp

PS C:\Users\user> Stop-Process -ID 8712

Stop-Process : Cannot stop process "vmwp (8712)" because of

the following error: Access is denied

At line:1 char:1

+ Stop-Process -ID 8712

+ ~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : CloseError:

(System.Diagnostics.Process (vmwp):Process) [Stop-Process],

ProcessCommandEx

 ception

 + FullyQualifiedErrorId :

CouldNotStopProcess,Microsoft.PowerShell.Commands.StopProcess

Command

User can list running docker containers process ID of “Virtual Machine Worker

Process” but cannot stop such container due to lack of permission.

PS C:\Program Files\Docker\Docker> .\DockerCli.exe -

SwitchDaemon

 error during connect: Get

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/json:

open //./pipe/docker_engine: The system cannot find the file

specified. In the default daemon configuration on Windows,

the docker client must be run elevated to connect. This error

may also indicate that the docker daemon is not running.

PS C:\Program Files\Docker\Docker> docker ps

error during connect: Get

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/json:

open //./pipe/docker_engine: The system cannot find the file

specified. In the default daemon configuration on Windows,

the docker client must be run elevated to connect. This error

may also indicate that the docker daemon is not running.

47

PS C:\Program Files\Docker\Docker> PS C:\Users\user> docker

ps

Get-Process : A positional parameter cannot be found that

accepts argument 'docker'.

At line:1 char:1

+ PS C:\Users\user> docker ps

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

 + CategoryInfo : InvalidArgument: (:) [Get-

Process], ParameterBindingException

 + FullyQualifiedErrorId :

PositionalParameterNotFound,Microsoft.PowerShell.Commands.Get

ProcessCommand

User tris to switch from Docker Linux container mode to Windows container mode via

PowerShell command line interface but interrupted (crashed) docker daemon.

This sample program should stay running ==> Sat Mar 28

16:35:04 GMT 2020

This sample program should stay running ==> Sat Mar 28

16:35:06 GMT 2020

This sample program should stay running ==> Sat Mar 28

16:35:08 GMT 2020

This sample program should stay running ==> Sat Mar 28

16:35:10 GMT 2020

time="2020-03-28T11:35:12-05:00" level=error msg="error

waiting for container: unexpected EOF"

PS C:\thesis> docker run -it stayrunning

C:\Program Files\Docker\Docker\resources\bin\docker.exe:

error during connect: Post

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/create

: open //./pipe/docker_engine: The system cannot find the

file specified. In the default daemon configuration on

Windows, the docker client must be run elevated to connect.

This error may also indicate that the docker daemon is not

running.

See 'C:\Program Files\Docker\Docker\resources\bin\docker.exe

run --help'.

Running “stayrunning container” crashes and refuses to restart after daemon

interruption.

48

However, docker desktop application is still running

PS C:\thesis> docker run -it stayrunning

This sample program should stay running ==> Sat Mar 28

17:06:53 GMT 2020

This sample program should stay running ==> Sat Mar 28

17:06:55 GMT 2020

This sample program should stay running ==> Sat Mar 28

17:06:57 GMT 2020

Restarted docker daemon and “stayrunning” container

PS C:\Users\user> docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

d624e2b49317 stayrunning "/bin/sh -c 'java

st…" 3 minutes ago Up 3 minutes

unruffled_blackburn

PS C:\Users\user> docker exec -it d624 /bin/sh

sh-4.2# ps

sh: ps: command not found

sh-4.2# cd /proc/22

sh-4.2# cat maps | grep heap

01d46000-01d88000 rw-p 00000000 00:00 0

[heap]

User is still able to find heap memory allocation information. But would not have

enough tools around unless a Windows container switch can be done while the Linux

container is running.

Test 3: Ubuntu Linux

ldai@thesis:~$ docker run -it stayrunning

This sample program should stay running ==> Fri Mar 27

04:53:16 GMT 2020

49

This sample program should stay running ==> Fri Mar 27

04:53:36 GMT 2020

This sample program should stay running ==> Fri Mar 27

04:53:56 GMT 2020

Start “stayrunning” container

user@thesis:~/test3$ docker build -t memoryeater:latest .

Sending build context to Docker daemon 4.096kB

Step 1/3 : FROM openjdk:latest

 ---> e2b050e4e3da

Step 2/3 : COPY ./memoryeater.class .

 ---> 8d27609c1c06

Step 3/3 : CMD java memoryeater

 ---> Running in ab989c51b079

Removing intermediate container ab989c51b079

 ---> 255067894aaf

Successfully built 255067894aaf

Successfully tagged memoryeater:latest

Build “memoryeater” container

user@thesis:~/test3$ docker run -it memoryeater

free memory: 67834240

free memory: 91081408

free memory: 90557120

free memory: 90557120

free memory: 221104896

free memory: 155568896

free memory: 90557184

free memory: 351141072

free memory: 285605072

free memory: 220593360

free memory: 480634248

free memory: 415622536

free memory: 350610824

free memory: 611175872

free memory: 545639872

free memory: 480628160

free memory: 741196656

free memory: 675660656

free memory: 610648944

free memory: 785241144

free memory: 719705144

free memory: 654693432

50

free memory: 590207696

free memory: 524671696

free memory: 459659984

free memory: 395167280

free memory: 329631280

free memory: 264619568

free memory: 200127696

free memory: 134591696

Exception in thread "main" java.lang.OutOfMemoryError: Java

heap space

 at memoryeater.main(memoryeater.java:10)

Above container is designed to take up 650 megabytes until memory exhausts.

user@thesis:~/test3$ docker build -t memoryeater:latest .

Sending build context to Docker daemon 4.096kB

Step 1/3 : FROM openjdk:latest

 ---> e2b050e4e3da

Step 2/3 : COPY ./memoryeater.class .

 ---> b23a94ff4fc1

Step 3/3 : CMD java memoryeater

 ---> Running in f105de607315

Removing intermediate container f105de607315

 ---> 84a7b0d75fa9

Successfully built 84a7b0d75fa9

Successfully tagged memoryeater:latest

user@thesis:~/test3$ docker run -it memoryeater

free memory: 721088880

Exception in thread "main" java.lang.OutOfMemoryError: Java

heap space

 at memoryeater.main(memoryeater.java:10)

Above container is modified to take up 1 gigabyte until memory exhausts.

This sample program should stay running ==> Fri Mar 27

05:07:36 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:07:56 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:08:16 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:08:36 GMT 2020

“Stayrunning” container is still running as intended.

51

user@thesis:~$ docker run -it --mount

type=bind,source=/proc,target=/test/proc --pid=host test2

root@b61bcf4e752d:/# ps -aux | grep java

root 19665 0.1 0.4 4783940 39356 pts/0 Ssl+ 03:44

0:08 java stayrunning

root 21920 0.1 0.4 4783940 38656 pts/0 Ssl+ 04:53

0:01 java stayrunning

root 22714 0.0 0.0 11464 1008 pts/0 S+ 05:08

0:00 grep --color=auto java

root@b61bcf4e752d:/# cd /test/proc/21920

root@b61bcf4e752d:/test/proc/21920# cd ..

root@b61bcf4e752d:/test/proc# echo f > sysrq-trigger

“oom_score_adj” is overwritten to high number, and “f” flag overwritten to “sysrq-

trigger” to manually trigger OOM Kill.

This sample program should stay running ==> Fri Mar 27

05:10:16 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:10:37 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:10:57 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:11:17 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:11:37 GMT 2020

This sample program should stay running ==> Fri Mar 27

05:11:57 GMT 2020

Killed

ldai@thesis:~$

Java code in “stayrunning” container is killed

Test 3: Microsoft Windows 10

This sample program should stay running ==> Sat Mar 28

17:33:13 GMT 2020

This sample program should stay running ==> Sat Mar 28

17:33:15 GMT 2020

This sample program should stay running ==> Sat Mar 28

17:33:17 GMT 2020

This sample program should stay running ==> Sat Mar 28

17:33:19 GMT 2020

52

Container “stayrunning” is up

PS C:\thesis\test3> docker build -t memoryeater:latest .

Sending build context to Docker daemon 5.12kB

Step 1/3 : FROM openjdk:latest

 ---> 6adc576f6a58

Step 2/3 : COPY ./memoryeater.class .

 ---> 8728ff2dbf13

Step 3/3 : CMD java memoryeater

 ---> Running in 039283c91ada

Removing intermediate container 039283c91ada

 ---> d68398122600

Successfully built d68398122600

Successfully tagged memoryeater:latest

SECURITY WARNING: You are building a Docker image from

Windows against a non-Windows Docker host. All files and

directories added to build context will have '-rwxr-xr-x'

permissions. It is recommended to double check and reset

permissions for sensitive files and directories.

Built “memoryeater” container

PS C:\thesis\test3> docker run -it memoryeater

Exception in thread "main" java.lang.OutOfMemoryError: Java

heap space

 at memoryeater.main(memoryeater.java:10)

Container “memoryeater” cannot be started due to lack of memory space for Java

heap.

OOM kill test cannot be accomplished due to a lack of tooling without “Windows”

container mode.

Test 4: Ubuntu Linux

ldai@thesis:~$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

ldai@thesis:~$ docker run -it stayrunning

This sample program should stay running ==> Fri Mar 27

21:08:55 GMT 2020

53

This sample program should stay running ==> Fri Mar 27

21:09:15 GMT 2020

This sample program should stay running ==> Fri Mar 27

21:09:35 GMT 2020

Container “stayrunning” started with no others running.

user@thesis:~/test4$ docker build -t test4:latest .

Sending build context to Docker daemon 2.048kB

Step 1/5 : FROM ubuntu:18.04

 ---> 4e5021d210f6

Step 2/5 : RUN apt-get update && apt-get -y install nano

apt-transport-https ca-certificates curl gnupg-

agent software-properties-common

 ---> Running in 3633cbc67518

Removing intermediate container 3633cbc67518

 ---> 1fd07e1a075d

Step 3/5 : RUN curl -fsSL

https://download.docker.com/linux/ubuntu/gpg | apt-key add -

 ---> Running in 44f16f014df4

Warning: apt-key output should not be parsed (stdout is not a

terminal)

OK

Removing intermediate container 44f16f014df4

 ---> 55ec00a945aa

Step 4/5 : RUN add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubuntu $(lsb_release -cs)

stable"

 ---> Running in 824b3008755b

Removing intermediate container 824b3008755b

 ---> 6f47cae8997b

Step 5/5 : RUN apt-get update && apt-get -y install

docker-ce docker-ce-cli containerd.io

 ---> Running in 437c2bb47874

Removing intermediate container 437c2bb47874

 ---> 932153a3db81

Successfully built 932153a3db81

Successfully tagged test4:latest

Building container “test4” with docker-cli installed

user@thesis:~/test4$ docker run -it --mount

type=bind,source=/var/run/,target=/var/run/ test4

root@f1372aa74231:/# docker ps

54

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

f1372aa74231 test4 "/bin/bash"

4 seconds ago Up 2 seconds

dazzling_sutherland

8612a3174684 stayrunning "/bin/sh -c 'java

st…" 8 minutes ago Up 8 minutes

xenodochial_gould

root@f1372aa74231:/# docker kill 8612a

8612a

root@f1372aa74231:/#

Stopping “stayrunning” container with no error.

This sample program should stay running ==> Fri Mar 27

21:18:55 GMT 2020

This sample program should stay running ==> Fri Mar 27

21:19:15 GMT 2020

This sample program should stay running ==> Fri Mar 27

21:19:35 GMT 2020

ldai@thesis:~$ docker ps

CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS

NAMES

f1372aa74231 test4 "/bin/bash" 3

minutes ago Up 3 minutes

dazzling_sutherland

“Stayrunning” stopped without user ldai (1000)’s acknowledgement.

Mar 27 16:19:53 thesis dockerd[1186]: time="2020-03-

27T16:19:53.613022943-05:00" level=warning

msg="8612a3174684532f60991620bb84aa41f8523584c0de3f0faed6919a

11e4fd5c cleanup: failed to unmount IPC: umount

/var/lib/docker/containers/8612a3174684532f60991620bb84aa41

Mar 27 16:28:26 thesis dockerd[1186]: time="2020-03-

27T16:28:26.831996811-05:00" level=info msg="ignoring event"

module=libcontainerd namespace=moby topic=/tasks/delete

type="*events.TaskDelete"

One record found in docker daemon log about stopped container, nothing indicating

which user has done so.

Test 4: Microsoft Windows 10

55

Test cannot be conducted due to lack of stability issue of Windows version docker

daemon and “Windows” container mode.

Data Analysis

Table 3

Test 1 Data Summary

 Mounting Filesystem Root Access File Readable File Writeable

Linux Y Y Y Y

Windows Y Y Y Y

Table 4

Test 2 Data Summary

 Mounting
Filesystem

/proc/maps
Access

Heap
Readable

Heap
Writeable

Negative
Impact

Linux Y Y Y Y Y

Windows Y Y N/A N/A Y

Table 5

Test 3 Data Summary

 “memoryeater”
starting

Kernel OOM
Kill

Negative
impact

Manual
OOM Kill

Negative
Impact

Linux Y Y N Y Y

Windows N Y N N/A N/A

Table 6

Test 4 Data Summary

 Mounting Host
Docker Daemon

Host Docker Daemon
Interaction

Negative
impact

Log File
Record

Linux Y Y Y N

Windows N/A N/A N/A N/A

56

Summary

 This chapter covers a majority of the testing process which happened in both

operating system environments. Attempted trials and detailed steps have been

recorded, as accurately as possible, in the data collection section and a summary of test

results are presented after the data analysis process.

57

Chapter V: Results, Conclusion, and Recommendations

Introduction

 This chapter serves as an overview of the thesis research which has been done.

A representation of research outcomes, an explanation of how such data reflects to the

purpose of this thesis, and any feasible future works are described in the sections of

Results, Conclusion and Future Work.

Results

 From a high-level point of view, the overall methodology of this research started

with learning from kernel documentation (i.e. manuals), with the knowledge of how

kernel manages memory for applications. The tests were designed with a hierarchical

mind set, each stage’s steps move forward and practices kernel functions. Results

obtained from the study are clear and answered the following research questions.

Q: How does kernel memory management work on Microsoft Windows or Ubuntu

Linux?

A: Both kernel software researched by this thesis, showed which centralized memory

management is key to provide policy enforcement consistency, where the kernel defines

memory allocation policies based on system reliability and security, and kernel modules

like malloc or mbrlenare are there to offer assistance for code developing, and Out-Of-

Memory like functions are in place to enforce policy.

Q: Can a misused Docker container become a tool for unauthorized permission

escalation? How do reactions differ between operating systems?

58

A: According to Test 1 in this study, user accounts with group access to docker daemon

are capable of unauthorized permission escalation to root, in both operating system

kernels, by simply starting a new Docker container. Such that a user essentially

becomes root within their own namespace, but this permission is carried over to a host.

Q: Are memory mappings of running Docker containers readable or writeable by sidecar

containers? How do reactions differ between operating systems?

A: As Test 2 has proven, that in a Linux kernel, mapping information of code in a

current running container, is not accessible by a non-root user other than the processes

they own unless such user has docker group permission to start a container within the

same daemon. The heap memory allocation is readable and writable by unauthorized

users in this way and can bring down running code. This activity technically grants that

user root permission to at least the same namespace, which the docker daemon is

hosting all its containers on by default. However, this test cannot be completely done

with Microsoft Windows, because of instability of docker daemon when switching

operation mode and lack of essential command line debugging tools for Windows

PowerShell.

Q: Can kernel memory management tools be misused by non-root users within a

Docker container for hacking? How are kernel reactions different?

A: Kernel functions such as OOM kill is in place to prevent malicious or poorly written

code to overly allocate system memory, so foundational system can function stably.

59

Test 3 identifies that, OOM kill helped providing reliable memory resources to running

code while new malicious program takes an unreasonable amount of memory.

However, OOM kill function can be manually initiated to targeted processes if a regular

user has elevated to root access, which is made available with Docker containers.

Unfortunately, this test also cannot be conducted with Windows equipped virtual

machines, again because of instability of its docker daemon.

Conclusion

 In conclusion, this study learned that, even though, kernel software offers

impressive central resource management and policies, and preventative modules are in

place to ensure reliable operation, there are always vulnerabilities or security threats if

tools are used for an inappropriate purpose. While virtualization and containerization

accelerate effective and efficient computing resource sharing, information security and

protection is still a valid concern for computer users, especially enterprise users who

provide services or hold data for the general public.

 In other words, it is never wrong for software or DevOps engineers to wait on

product, infrastructure development, or adopting new technologies until they fully

understand how it fundamentally operates. Always following good security practices

while developing is another key to lowering risk and avoiding threats.

Future Work

 Some of the designed tests could not be conducted during this research,

primarily because of the lack of available tools and stability concerns. Some are well

60

worth studying in the future if new tools can be developed to allow researchers to

ascertain the desired results and these findings would promote good security practices

and patching vulnerabilities.

61

References

Bouffard, G., Lackner, M., Lanet, J., & Loinig, J. (n.d.). Heap . . . Hop! Heap Is Also

Vulnerable. 8968 2015. https://doi.org/10.1007/978-3-319-16763-3_2

Brief History of Virtualization. (2012). In Oracle.com. Retrieved from

https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html

Chase, R. (2013). IT Infrastructure, Technical Article, Oracle. How to Configure the

Linux Out-of-Memory Killer. Retrieved from https://www.oracle.com/technical-

resources/articles/it-infrastructure/dev-oom-killer.html

Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, N., & Kaashoek, M. F. (2011).

Linux Kernel Vulnerabilities: State-of-the-art Defenses and Open Problems.

Asia-Pacific Workshop on Systems. Shanghai, China.

Dai, L., Guster, D., & Rice, E. (2019). Protection Effectiveness and Vulnerabilities of

the heap within Docker container systems. Poster presented at the 2019

Midwest Instruction and Computing Symposium, Fargo, ND.

Douglis, F., & Krieger, O. (2013). Virtualization. IEEE Internet Computing, 17(2), 6–9.

https://doi.org/10.1109/MIC.2013.42

Evans, J. (2016). What even is a container: namespaces and cgroups. In jvns.ca

Retrieved from: https://jvns.ca/blog/2016/10/10/what-even-is-a-container/

62

Fayad, M., & Schmidt, D. (1997). Object-oriented application frameworks. 40(10), 32–

38. https://doi.org/10.1145/262793.262798

Ferreira, K. B., Pedretti, K., Bridges, P. G., Brightwell, R., Fiala, D., & Mueller, F.

(2012). Evaluating Operating System Vulnerability to Memory. International

Workshop on Runtime and Operating Systems for Supercomputers.

Guimaraes, J. (1995). The Object Oriented Model and its Advantages. ACM

SIGPLAN OOPS Messenger, 40-49.

IBM Cloud Education. IBM Cloud Learn Hub. Virtualization. (2019). Retrieved from:

https://www.ibm.com/cloud/learn/virtualization-a-complete-guide.

Israeli, A., & Feitelson, D. (2010). The Linux kernel as a case study in software

evolution. The Journal of Systems & Software, 83(3), 485–501.

https://doi.org/10.1016/j.jss.2009.09.042

Kari, R. (1993). Dynamic link libraries in Windows 3.x. Journal of Chemical Education,

70(3), 248–. https://doi.org/10.1021/ed070p248

Kerner, S. (2018). eWeek, Docker, Inc. Docker Turns 5: A look at How the

Technology Popularized Containers. Retrieved from:

https://www.docker.com/node/17907

63

M. Azimane, "High-Quality Memory Test," 2006 IEEE International Workshop on

Memory Technology, Design, and Testing (MTDT'06), Taipei, 2006, pp. xviii-

xviii.

Manikandasaran, S.S. & Raja, s. (2018). Secure Architecture for Virtual Machine to

Container Migration in Cloud Computing. Journal of Physics: Conference

Series. 1142. 012017. 10.1088/1742-6596/1142/1/012017.

Markatos, E. P. & Katevenis, M. G. H. (1997). User-level DMA without operating

system kernel modification. Proceedings Third International Symposium on

High Performance Computer Architecture, pp. 322- 331. Retrieved from:

https://doi.org/10.1109/HPCA.1997.569696

Memory Management. (n.d.) The Linux Kernel (5.6.0-rc7). Kernel.org. Retrieved

From: https://www.kernel.org/doc/html/latest/admin-guide/mm/index.html

Microsoft Docs, Hardware Dev Center. (2017). Overview of Windows Memory Space.

Retrieved from: https://docs.microsoft.com/en-us/windows-

hardware/drivers/kernel/overview-of-windows-memory-space

Object-oriented programming. (n.d.), In Wikipedia. Retrieved from:

https://en.wikipedia.org/wiki/Object-oriented_programming

64

Osnat, R. (2018). A Brief History of Containers: From the 1970s to 2017. Retrieved

from https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-

to-docker-2016

Pichai, B., Hsu, L., & Bhattacharjee, A. (2015). Address Translation for Throughput-

Oriented Accelerators. IEEE Micro, 35(3), 102–113.

https://doi.org/10.1109/MM.2015.44

Pravat, D.,Hewardt, M. (2007). Advanced Windows Debugging: Memory Corruption

Part II—Heaps. Inform IT. Retrieved from:

https://www.informit.com/articles/article.aspx?p=1081496&seqNum=2

Stojanovski, N., Gusev, M., Gligoroski, D., & Knapskog, S. (2007, April). Bypassing

Data Execution Prevention on MicrosoftWindows XP SP2. 1222–1226.

https://doi.org/10.1109/ARES.2007.54

Virtualization. (n.d.), In VMware.com. Retrieved from:

https://www.vmware.com/solutions/virtualization.html

VMware, Inc. (2010). In vSphere 5 Documentation, Retrieved from:

https://pubs.vmware.com/vsphere-

50/topic/com.vmware.vcli.getstart.doc_50/cli_about.html

65

Windows Debugging tools. (n.d.) Microsoft Documentations. Retrieved from:

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/memory-

window

Walker, J. (2018). A short introduction to Windows Containers. Retrieved from:

https://medium.com/jettech/a-short-introduction-to-windows-containers-

db5adc0db536

Zahedi, S. (2014). Virtualization Security Threat Forensic and Environment

Safeguarding. At 2014-01-16, B3033, Universitetsplatsen 1, 352 52, Växjö,

Retrieved from: https://core.ac.uk/display/151389563

66

Appendix A: Dockerfile Source Code

FROM ubuntu:18.04

RUN apt-get update \

 && apt-get -y install nano

Container “Test1”

FROM openjdk:latest

COPY ./stayrunning.class .

CMD java stayrunning

Container “Stayrunning”

FROM ubuntu:18.04

RUN apt update \

 && apt -y install libc6-dbg gdb valgrind

Container “Test2”

FROM openjdk:latest

COPY ./memoryeater.class .

CMD java memoryeater

Container “memoryeater”

FROM ubuntu:18.04

RUN apt-get update \

 && apt-get -y install nano \

 apt-transport-https \

 ca-certificates \

 curl \

 gnupg-agent \

 software-properties-common

RUN curl -fsSL https://download.docker.com/linux/ubuntu/gpg |

apt-key add -

RUN add-apt-repository "deb [arch=amd64]

https://download.docker.com/linux/ubun$

RUN apt-get update \

 && apt-get -y install docker-ce docker-ce-cli

containerd.io

Container “Test4”

67

Appendix B: Java Program Source Code

import java.util.Calendar;

public class stayrunning {

 public static void main(String args[]) {

 stayrunning object = new stayrunning();

 object.waitMethod();

 }

 private synchronized void waitMethod() {

 while (true) {

 System.out.println("This sample

program should stay running ==> " +

Calendar.getInstance().getTime());

 try {

 this.wait(20000);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 }

}

stayrunning.java

import java.util.Vector;

public class memoryeater

{

 public static void main(String[] args)

 {

 Vector v = new Vector();

 while (true)

 {

 byte b[] = new byte[1073741824];

 v.add(b);

 Runtime rt = Runtime.getRuntime();

 System.out.println("free memory: " + rt.freeMemory()

);

 }

 }

}

Memoryeater.java

	A Comparison of Kernel Memory Protection for Docker Containers Across Host Operating Systems
	Recommended Citation

	tmp.1588610399.pdf.lZCPs

