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Abstract 

Object oriented programming concepts have been widely adopted by the modern 
design of enterprise applications, which relies on heap memory mapping, and re-use of 
pre-coded class libraries. Computing resource sharing such as containerization, is a 
popular way to effectively reduce operation overhead by enlarging the scale of kernel 
accessibility among distributed computer systems. Thus, proper isolation between 
processes, containers and host operating systems is a critical task to assure system 
wide information security. This is a study designed to compare kernel level memory 
management and protection effectiveness for Docker container systems maintained on 
top of Ubuntu Linux and Microsoft Windows as the host operating system. Literature 
research aims to study the fundamentals of kernel memory management designs, 
policies and modules in place for enforcement. As well as container architectures based 
on the variation of the host operating systems. The experimental design focuses on 
whether the discovery of unauthorized access is possible between containers, kernel 
spaces and file systems. Research results are targeted to determine a better approach 
for securing Docker container system implementations and code deployment. 
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Chapter I: Introduction 

Introduction 

Traditionally, enterprise applications ran on their own operating system and at 

times, standalone physical servers. While the separation of software on specific 

hardware fulfills not only reliability, but also basic data security requirements, this 

method also generates a huge computing resource waste, especially when utilizing 

today’s hardware capabilities (“IBM Cloud Education”, 2019). Varieties of virtualization 

technologies have been researched and developed since the 1960s (Douglis & Krieger, 

2013), to enable the possibility of multi-tenancy for applications running on singular 

hardware. Computing capital sharing among distributed systems is becoming more 

popular for many reasons such as, immense resource overhead, reducing high utility 

costs, and cloud adoption strategies just to name a few. Virtual zones, virtual machines, 

and containers are some of the ways that allow systems to utilize hardware resources 

more efficiently together.  

With the greater effectiveness of computer hardware capacity distribution, such 

as with memory in a shared virtualized environment, security problems and threats that 

comes with it are sometimes overlooked (Zahedi, 2014). Typical virtual machines may 

use software-based memory virtualization to share memory resources from a physical 

host machine (“vSphere Documentation”, n.d.). The Docker engine applies LXC-like 

namespaces to share and separate memory allocations for each container run on the 

host, and because of this design, its memory content protection relies heavily on the 

host operating system’s kernel memory management operations. This thesis will review 
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the current research in this discipline, create appropriate test-beds to compare the 

differences on how kernel memory management and protection is provided to Docker 

containers among various host operating systems, and conclude with results to show 

better security approaches when deciding on which host operating system to use for 

new Docker container system design and implementation.  

Problem Statement  

The greater computing resource sharing is employed, the more it can lead to a 

variety of security concerns and problems. In containerized systems, kernel resources 

like system memory, are often shared in between one another. A particular problem 

rises on how to properly separate the host operating system level shared kernel 

memory space. And to provide information assurance, in case of any individual 

container or host machine itself is compromised, while efficiently providing sufficient 

memory allocation spaces for the container engine daemon. 

Nature and Significance of the Problem   

Kernel memory has been an attack surface for many reasons. Advanced memory 

level attacks can cause significant service damage to applications or entire computing 

environments. Different base operating systems adopt diversified kernel level memory 

management techniques, therefor the attack prevention provided will also vary. Poorly 

designed or implemented memory protection mechanisms can directly lead to 

vulnerable systems and security threats. 
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Objective of the Research  

This thesis will explore fundamental kernel memory management functions and 

policies, discover methodologies which different container host operating systems 

utilize, compare the security solutions provided to possible memory vulnerabilities and 

conclude with an answer for the potential secure combination while deploying with 

Docker containers using current technology. 

Research Questions  

1. How does kernel memory management work on Microsoft Windows or 

Ubuntu Linux? 

2. Can a misused Docker container become a tool for unauthorized permission 

escalation? How do reactions differ between operating systems? 

3. Are memory mappings of running Docker containers readable or writeable by 

sidecar containers? How do reactions differ between operating systems? 

4. Can kernel memory management tools be misused by non-root users within a 

Docker container for hacking? How are kernel reactions different?  

Definition of Terms 

Kernel: Kernel is the core of a computer operating system software, which 

oversees every connection between software and hardware. It is one of the first portions 

to start up during boot and is the primary handler of all system resources. (Israeli & 

Feitelson, 2010) 



10 
 

 
 

Virtualization: According to VMware.com, it is: “the process of creating a 

software-based, or virtual, representation of something, such as virtual applications, 

servers, storage and networks.” (“Virtualization”, n.d.) 

Docker Container: A lightweight execution environment developed by Docker, 

Inc. which provides shared host operating system kernel resources but isolates running 

processes. 

Object-oriented programming: Program procedure formed by code, written based 

on the “object” concept, which is constructed by its properties (“Object-oriented 

programming”, n.d.) 

Heap: Index of memory locations of objects for a program written with object-

oriented language. 

Summary 

 With the brief background information introduced, it is not difficult to see that a 

well-built memory management mechanism is fundamental for securing Docker 

containers, and the host operating system is one that provides the functionalities. 

Chapter II will provide an in-depth review of current research literature on this topic, 

seeking possible tool sets to build a test bed, answers or solutions to research 

questions defined, and discovering areas where more research contribution can be 

made. 
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Chapter II: Background and Review of Literature 

Introduction  

 Current research literature is explored to better understand operating system 

fundamentals that make Docker container technology possible, its history and future, 

and what they provide for computing security prerequisites. As well as, how this 

research is designed methodology wise. 

 A considerable amount of literature review for this research is conducted with 

operating system documentation, such as referencing “The Linux Kernel v5.6.0-rc6” by 

“The kernel development community” at www.kernel.org and “Windows Kernel-Mode 

Driver Architecture” from Microsoft Dev Center at docs.microsoft.com. These kernel 

module documentations are primary sources to understand kernel functionalities and 

policies regarding their operating system principles.  

Background and Current Research  

Physical and Virtual Memory. Physical memory, that is, memory hardware 

actually installed in a computer, is an essential yet limited resource in traditional 

computing hardware design. Even though some of today’s technology agrees to hot-

pluggable memory, there is always a hard boundary of the maximum size of memory 

one computer can expand to. (“The Linux Kernel”, n.d.) Random-access memory is a 

popular form factor of physical memory, it enables reading and writing data by using the 

same amount of time regardless of where data is physically located on a hardware chip, 

which shows significant speed advantage compared to limitations of direct-access 
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memory / storage devices (Azimane, 2006). Therefore, physical memory is usually 

accessed by dedicated yet random assigned address ranges (page frames), frame size 

also depends on the implementation of hardware architectures. With how physical 

memory access works as explained, not much effort is necessary to see that direct 

interaction with physical memory is not an easy task for operating systems and 

application developers, and to avoid this complication virtual memory was developed. 

Physical memory is usually divided into pages, which are often to be sized to 4 Kbytes, 

but is dependent on architecture specifications. With virtual memory in place, every 

single memory access handle is given a virtual address. Multiple virtual memory pages 

are possible to be mapped to each single physical page frame and are structured with a 

hierarchical design. Memory management unit (MMU) is the hardware that passes all 

memory references through and translates a virtual memory address to physical 

memory address (Pichai & Hsu & Bhattacharjee, 2015). In modern hardware platforms, 

MMU is often integrated within the computer’s central processing unit (CPU) on its 

critical processing path. The translation look-aside buffer (TLB) built in MMU caches 

freshly obtained page table entries (PTE), this reduces address lookup frequency. This 

way, memory paging is able to deliver a high-performance memory allocation and 

address translation (Gandhi & Karakostas & Ayar & Cristal & Hill & McKinley & 

Nemirovsky & Swift & Unsal, 2016). Virtual memory holds abstract data residing in 

physical memory, which allows only essential portions of application runtime data and 

shared objects’ virtual address among processes in the physical memory space.  
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Access, Control and Protection to Virtual Memory of Linux Kernel. Memory 

paging control and protection mechanisms are also implemented within virtual memory 

by operating system kernels, and are usually performed during kernel build time, by 

defining relevant kernel configurations. In the hierarchical design of virtual memory 

paging, higher level ones often contain physical addresses of pages belong to their 

immediate lower ones, the lowest table thus contains the physical address of actual 

pages utilized by a given application. A pointer of the top-level address table is entered 

into a register, when virtual addresses are translated by MMU, such register is then 

used to access the top-level address table. Since the physical addresses of lower level 

pages are indexed starting with the top-level downwards, the kernel is then able to 

access data pages in each layer. As physical memory is volatile memory, a typical way 
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Figure 1. MMU – Memory address translation 
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to ship data in and out of them relies on read or write of files on storage hardware, such 

as a hard drive, solid state drive and possible RAID arrays, which is rather slow in I/O 

speed compared to memory chips. To minimize this process, page caching is 

developed to gain adequate data transfer workflow. The size of cache at various level is 

inversely proportional to its speed. Memory pages are cached both ways regardless of 

reading or writing and are re-useable if the kernel detects and decides to. A 

synchronization function is built into the kernel module, which ensures updated data in 

page cache when it is to be reused.  

 
System 

Memory 

   Caching Levels   

   

 Page 

Cache 

  

L3 CPU 

   L2    

  L1 

  

   

 

Storage  

Figure 2. Page cache 

Direct memory access (DMA) is a frequently used method to allow different controllers 

in a computer system to directly read or write to main system memory. DMA not only 



15 
 

 
 

allows peripherals to communicate between various buses, but also avoid interaction 

with MMU, which in cases where MMU is integrated with the CPU, it saves CPU cycles 

(Markatos & Katevenis, 1997). Therefore, in practice, DMA helps lower CPU load and 

boosts overall system performance.  
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Figure 3. Direct Memory Access 

Although memory page reuse among application processes or implementation of DMA 

provides performance gains, restrictions on the memory page address of a particular 

process or device can access, has been put in place for multiple security purposes. 

Thus, devices are not allowed to access all addressable memory pages on the same 

system. System kernel categorizes memory pages to targets zones, and aims to 

prevent accidental or unauthorized cross process, device memory access, as well as 

making sure the kernel itself has enough memory allocation available to perform 

essential tasks. Non-Uniform Memory Access (NUMA) is developed and has 

continuously been improved to assist multi-processor systems. It is designed to handle 
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latencies caused by the distance between each processor or processor core and 

physical memory. Processor cores and banks of memory pages are paired into nodes, 

that then practices memory management policies and tasks independently. Table 1 

below, shows a brief list of memory policies that are relevant to this research. 

Table 1  

Kernel Memory Policies relevant to this research 

Name Coverage Scope 

System 

Default  

All page 

addresses 

A government of all memory pages ensures 

overall system memory sufficiency and 

quality.  

Task / 

Process 

Optional/ 

Per-task 

Similar usage as system default policy and 

applied only when individually defined by 

task. 

VMA Task 

specific 

VMA 

Governs Virtual Memory Area of a specific 

task and ensures page allocation is 

explicit for such task. 

Shared Shared 

objects 

Ensures memory objects shared between 

tasks are only available to specified 

ones, regulates above policies among 

shared memory area. 
 

 

Many applications are written in a way that allocates all memory space it would possibly 

need upfront. It provides a good measure for application reliability from minimizing risk 

of running out of memory, but also creates a waste of memory resources because it 

only consumes all allocated memory in rare cases. The system kernel usually over-

commits virtual memory compared to what it physically has, knowing this application 

behavior can offer more efficient use of memory. However, if some applications are 

under heavier load at the same time frame, the system can eventually run out of 
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memory. (Chase, 2013) Kernel tool “Out-Of-Memory” (OOM) killer offers a way to 

ensure minimum memory is always available for operating system functionality by 

terminating other applications. Processes can be run with a dynamically assigned and 

adjustable oom_score, which is a ranking in case something needs to be stopped to 

release memory. The adjustability of this ranking could also give hackers a possible way 

to initiate a “Denial of Service” attack by shutting down production applications.   

Memory Management – Microsoft Windows. The kernel memory management 

design of Microsoft Windows operating systems also utilizes virtual memory address 

spacing. According to kernel documents found at “Microsoft Dev Center”, in a traditional 

32-bit architecture, each process within such a system is entitled to a maximum of 4 

gigabytes of memory space, multi-threading capable code is allowed to share its 

memory data within all of associated processor threads, although access to virtual 

memory addresses of unrelated processes is prohibited to prevent memory corruption. 

Virtual memory address space is partitioned into higher and lower portions, default 

policy divides the useable memory space evenly, however, and there are available 

tuning options that a system administrator can enable for performance optimization. 

Table 2 illustrates memory space partitioning and tuning with a 4GB memory sample. 

Examples demonstrate a 32-bit system architecture, with limited memory allowance for 

process, however, a more modern 64-bit system is able to handle up to 8 terabytes of 

memory space below Windows version 8 and 128 terabytes currently starting from 

Windows 8.1.  
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Starting from earlier versions of Windows, such as Windows XP, Microsoft has 

developed Data Execution Prevention (DEP) as a potential road blocker for memory 

buffer overflow attacks. DEP supports the system to assign pages of memory as non-

executable, stopping any malicious code that resides there from being initiated 

(Stojanovski & Gusev & Gligoroski & Knapskog, 2007). When an application makes 

attempts to start code from any of the protected pages, such application will receive 

“STATUS_ACCESS_VIOLATION” returned and technically bring the application to halt. 

These pages include but are not limited to heap range, stack range or other designated 

memory pools. DEP is started during the operating system boot process and applies 

settings according to policy, system function “GetSystemDEPPolicy” and 

“SetProcessDEPPolicy” can be called from an application to check for current applied 

policies and make changes. By default, memory allocations for heap that is assigned via 

“malloc” or “HeapAlloc” functions are non-executable, therefore running code from the 

process heap is prevented.   

Table 2 

Windows memory space partitioning and tuning with a 4GB memory sample 

Location Address Range Size Usage Tuning 

Low 0x00000000 - 0x7FFFFFFF 2GB Proc None 

(Default) High 0x80000000 - 0xFFFFFFFF 2GB OS 

Low 0x00000000 - 0xBFFFFFFF 3GB Proc 4-gigabyte 

tuning High 0xC0000000 - 0xFFFFFFFF 1GB OS 

Low 0x00000000 - Megabytes 2-3GB Proc Dynamic 

(/USERVA) High Megabytes+1 -0xFFFFFFFF 1-2GB OS 
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 When programming applications intended to run in Windows environments, the 

Dynamic Link Library (DLL) must be well known. Like most other libraries in 

programming languages, DLLs offer numerous common functionalities (Kari, 1993), 

thus it promotes code reuse, modularization and memory usage optimization. According 

to default Windows memory management policy, virtual memory address space 

allocated for a DLL is only accessible to the process which called such DLL. At times 

where multiple application processes are calling the same DLL, the virtual memory 

pages will be mapped to same physical memory pages, for sharing among all  

processes to start with. 

Once any of those processes are started to commit new data to the shared page, such 

page will then be re-allocated to a dedicated physical memory space. A kernel level 

protection “Copy-on-Write”, updates those processes associated with a virtual memory 

address accordingly to make compliance of a no cross-process memory access policy. 

Process A  Physical 

Memory 

 Process B 

Before:     

Page 1  Page A  Page 1 

Page 2  Page B  Page 2 

Page 3  Page C  Page 3 

Page 4  Page D  Page 4 

     

After:     

Page 1  Page A  Page 1 

Page 2  Page B  Page 2 

Page 3  Page C  Page 3 

Page 4  Page D  Page 4 

  Page E   

 

Figure 4. Copy-on-Write Protection 
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This lazy evaluation technology makes more efficient physical memory use and saves 

MMU (CPU cycle) by reducing address translation until necessary. (“Microsoft Docs”, 

2017) 

Process, Heap and Hierarchical Design. When researching today’s software 

frameworks and memory related topics, Object-Oriented Programing (OOP) and the 

heap memory architecture is a hard-to- avoid area. Heap corruptions can cause 

software issues that easily become difficult to diagnose (Pravat & Hewardt, 2007). In 

common operating systems, each running piece of program, is assigned with a process 

ID (PID), which represents as the logical address of such code in memory (Bouffard & 

Lackner & Lanet & Johannes, 2015). The kernel as the core of the operating system 

manages these memory segments. Today, enterprise applications are often designed 

with an object-oriented framework (Mohamed & Douglas, 1997), and the concept goes 

back at least twenty years and has proven its advantages like reuse of code, well-

structured programs and clear transition from design analysis to production 

implementation for software development (Guimaraes, 1995).  A heap is mandatory for 

this structure, hierarchically at the top of allocated virtual memory space, and acts as an 

index of all objects which architects the program. Historically, computer software 

architectures took advantage of hierarchical design, which benefits effectively 

organizing and efficiently processing data. However, it does create a single point of 

attack surface at the top, which then potentially leads to catastrophic failure of the 

hierarchy (Dai & Guster & Rice, 2019). Therefore, to protect the heap from being 



21 
 

 
 

tampered with, it is an important task included to ensure confidentiality, integrity and 

availability of such program.  

Virtualization, “Containerization” and Cloud Enabling. Advanced computing 

with virtualization technology started in the era of mainframe machines, and has since 

been intensely researched and continuously developed by technology giants such as 

VMware, Oracle, Citrix and Microsoft (“Brief History of Virtualization”, 2012). The 

success of today’s cloud computing environments proves the benefits from effective 

virtualization technologies (Ferreira & Pedretti, Bridges & Brightwell & Fiala & Mueller, 

2012). Moreover, virtualization platforms enable the possibility to install and run various 

types of operating systems (virtual machines) independently on top of one physical 

computer with a hypervisor like VMware vSphere or Microsoft Hyper-V, thus computing 

resources such as memory can be shared among them (“IBM Cloud Education”, 2019). 

While this methodology has its strengths, virtual machines also operate with a heavier 

overhead, especially if only a single dedicated service is intended to reside on the 

virtual machine which is an unnecessary drawback.  

Containerization, an old bottled new wine, has its roots from the early days of 

Linux, which provides the ability to isolate running processes with shared Linux native 

kernel features (Osnat, 2018). Two main kernel features that are combined to a 

container are namespaces and cgroups. At the operating system level, namespaces 

control and separates system resources to process or process groups, basically 

isolating processes down to their own space (Evans, 2016). There are various available 

namespaces that come with a Linux installation. For example, PID namespaces, which 
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assigns pid from 1 for the processes running inside; networking namespace, works with 

iptables and allows processes to have independent IPv4 or IPv6 addresses, ports or 

firewall rules from their host operating system. And under the same idea, user 

namespace creates users and groups with dedicated UID and GID, and mount 

namespace permits processes to mount or unmount its own filesystem. Creating names 

can be as easy as executing the command “unshare” with intended option flags. Figure 

5 demonstrates the creation of a new PID namespace.  

ldai@thesis:~$ ps -aux | grep bash 

ldai       1689  0.0  0.0  21492  5096 pts/0    Ss   21:01   

0:00 -bash 

ldai       1701  0.0  0.0  21496  5068 pts/0    S    21:01   

0:00 -bash 

ldai       1808  0.0  0.0  13136  1036 pts/0    S+   21:28   

0:00 grep --color=auto bash 

ldai@thesis:~$ sudo unshare -f -p --mount-proc bash 

[sudo] password for ldai: 

root@thesis:~# ps -aux 

USER        PID %CPU %MEM    VSZ   RSS TTY      STAT START   

TIME COMMAND 

root          1  0.0  0.0  21276  4916 pts/0    S    21:22   

0:00 bash 

root          9  0.0  0.0  38376  3476 pts/0    R+   21:23   

0:00 ps -aux 

root@thesis:~# exit 

exit 

Figure 5. Creating of a PID namespace 

In this case, new process “bash” inside the newly created PID namespace immediately 

started with PID 1 instead of 1689 from the host, and the user became root. With 

another terminal shell, the “nsenter” command can be used to access existing 

namespaces. Cgroups, an abbreviation of control groups, sets limitations to resources 

like memory and CPU time that one process can use. Control groups can be manually 
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created with a command from the “cgroup-tools” package, called “cgcreate”. Figure 6 

shows a sample memory control group setup. 

Install cgcreate with: sudo apt install cgroup-tools 

Create cgroups with 64mb memory limit: 

ldai@thesis:~$ sudo cgcreate -a ldai -g memory:64mb 

ldai@thesis:~$ ls -l /sys/fs/cgroup/memory/64mb/ 

ldai@thesis:/sys/fs/cgroup/memory/64mb$ cat 

memory.limit_in_bytes 

9223372036854771712 

ldai@thesis:/sys/fs/cgroup/memory/64mb$ sudo echo 64000000 > 

memory.limit_in_bytes 

ldai@thesis:/sys/fs/cgroup/memory/64mb$ cat 

memory.limit_in_bytes 

64000000 

 

Executing Java code which take 65Mbytes to run. 

ldai@thesis:~$ sudo cgexec -g memory:64mb java memoryeater 

Exception in thread "main" java.lang.OutOfMemoryError: Java 

heap space 

        at memoryeater.main(memoryeater.java:10) 

 

Figure 6. Memory control group configuration 

In 2013, Docker as a container platform provider, helped popularized the concept of 

containerization, and according to Docker over 3.5 million applications have been 

“containerized” with their Docker engine (“Docker eWeek”, n.d.). Figure 7 below 

describes a basic idea of how a Docker container differs from a regular virtualization 

platform. Docker as an open source container solution provider, offers unique answers 

to application level virtualizations, which makes applications run without dependencies 

to host operating systems and hardware configurations. In the article “Linux Kernel 

Vulnerabilities: State-of-the-art Defenses and Open Problems”, that Chen, Mao, Wang, 

Zhou, Zeldovich and Kaashoek (2011) explained that “Missing pointer checks”, “buffer 
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overflow” and “Memory mismanagement” are typical kernel vulnerabilities, unauthorized 

or intended heap modifications will lead to failure of associated code runtime. 

Architectural security is rather challenging today, with the larger amount of resource 

sharing and scaling playing an important role in cloud computing environments 

(Manikandasaran & Raja, 2018).  

App1 App2 App3  App1 App2 App3 

Env Env Env  Env Env Env 

Guest 

OS 

Guest 

OS 

Guest 

OS 

 Docker Engine 

Hypervisor  Shared Host OS Kernel 

Host Operating System  

Hardware  Hardware 

   

 

Figure 7. Virtualization & Containerization 

Literature Related to the Methodology  

Research Foundation. A previous research study by Dai, Guster and Rice 

(2019), stated that the key for tracking where objects reside is to reference their 

memory locations, which then leads to the heap. However, acquiring heap memory 

addresses of a running process in Linux only requires essential tools that comes with 

most Linux distributions. The research also identified that the heap of a non-root-user 

initiated process resides in user memory space and has permissions which allows a 

user level to read and write but is isolated from other processes with a “private” flag. 

Though a root level process would certainly be able to overwrite it. The article also 

stated that, after Java code is being packaged inside a Docker container, the memory 

locations were observed and not accessible with user level permissions anymore. 
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Though it added another layer of abstraction to protect the heap, the authors were able 

to clobber the heap process of the docker daemon to demonstrate a denial of service 

attack with little evidence left in log files. It will be interesting to discover how much 

damage, a Docker container which has mounted to host /proc directory, can do to host 

level user processes, root processes (docker daemon) or even filesystem.  

Tools in Windows. In the operating system world of Microsoft Windows, there 

are also a number of native, as well as third-party debugging tools that are capable of 

searching through process data; such as for list related open files – Windows Process 

Explorer or to view memory or edit with custom values by – WinDbg (Microsoft 

Documentation, 2017). However, the way Docker containers operate in Windows is 

much different than how they do in Linux. For example, the Windows version of Docker 

engine, exposes system APIs through DLL files instead of Linux syscalls, and 

containers need at least some Windows kernel level DLLs to support operating system 

level API calls. And that means, the separation of application containers cannot be 

completely done away from system services and other DLL files, and it does not matter 

what language the containerized program is written in (Walker, 2018).  

Summary 

From system architecture to kernel memory management functionalities and 

policies, heap protection seems to be well thought out. Development and 

implementation of Docker containers is still strongly undergoing change, and current 

research literature relies more on basic functionalities of the operating systems 

themselves. However, with a similar set of tools offered in Windows as compared to 
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Linux, tests are ready to be done in a similar way to illustrate the possibilities of a denial 

of service attack initiated from a clobbered heap and compare both operating systems. 

Moreover, with these research conclusions and documentation of system level tooling, 

the purpose of this research and design of the methodology are clearly defined. 

  



27 
 

 
 

Chapter III: Methodology 

Introduction  

 To provide accurate and understandable results of this comparison study, it is 

necessary to build, and test Docker container environments based on different host 

operating systems. The goal is to determine based on which host operating system a 

given Docker container engine is running, which containerized program has minimum to 

no impact from possible attack on the host. Various attacks will be simulated like a side 

channel attack, buffer overflow attack and direct content modifications all done on the 

memory level.  

Design of the Study 

 In the literature review section, the research methodology introduced becomes a 

foundation of the design to this test bed. To accomplish the study goal, four testing 

scenarios are created, in consideration of multiple techniques to distribute possible 

negative impact to running code from a sidecar Docker container. One or more 

containers are pulled or configured for each stage. In Test 1, the container is built with 

Ubuntu Linux 18.04 base image and the “nano” program added on top, which offers 

access to a shell and text editor for potential required changes. Test 2 requires two 

containers, one built with an official OpenJDK base image, and wraps java code 

“stayrunning”, which is intended to keep providing a timestamp on stdout (screen) until 

interruption. The second container is built from Ubuntu Linux with debugging tools 

installed, in this case, it’s built with GUN Debugger. The container “stayrunning” and 

“test2” are re-used in Test 3, and a new container “memoryeater” is created based on 
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OpenJDK packaging a java code that runs and keeps consuming memory and aims to 

verify OOM practice of the system kernel. Lastly, a container with docker-cli interface 

will be created to have the basic ability to interact with a mounted host docker daemon 

socket. Within the host operating system, users ldai (uid 1000) and user (uid1001) are 

created, both users are added to group docker (gid 999) which has permission to 

execute commands to interact with docker daemon, however, only user ldai has sudo 

permission to run root level commands. Docker container instruction scripts and source 

code of java programs can be seen in Appendices A and B. In these test scenarios, the 

host operating system will be the changing variable, one being Ubuntu Linux, the other 

being Microsoft Windows 10, and the Docker engine version, Docker container 

packaged simple programs, and all other dependencies will remain the same.  

Test-bed Scenarios and Purposes  

Test 1: User ldai (uid 1000) has a plain text file stored in its home directory, with 

permission to read and write only by owner. User (uid 1001) tries to initiate unauthorized 

file system access of ldai’s home directory by bind mounting “/home/ldai” into container 

“test1”. This test checks the possibility of one getting elevated access with root 

permission via Docker container, which not only implies kernel namespace security 

effectiveness but also becomes an essential requirement proceeding to following tests.  

Test 2: With container “stayrunning” activated by ldai (uid 1000), user (uid 1001) 

is normally not permitted to access memory mappings and heap segments of such code 

without being the owner of it or having root permissions. This test utilizes “test2” 

container, with flags turned on to bind mount “/proc” directory, PID namespace and 
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privileges from the host system. This test checks if the system kernel prevents a user 

with elevated root access beyond PID namespace and overwrite memory segments of 

other processes.  

 Test 3: With container packaged java code “stayrunning” initiated in the 

background, user (uid 1001) executes containerized “memoryeater” code, which 

exhausts memory space by continuously consuming it, and tests will be conducted with 

smaller chunks and relatively larger pages for a comparison of kernel reaction. 

Container “test2” will also be used to gain access to “/proc” directory of “stayrunning” 

container process, tests are to be continued by overwrites to “oom_score_adj” with a 

larger number, and manually trick kernel to initiate OOM kill by passing “f” flag to file 

“/proc/sysrq_trigger”. This test verifies effectiveness of OOM kernel memory policy 

implementation and potential security threats. 

Test 4: Again, with “stayrunning” container functioning, user (uid 1001) tries with 

container “test4” which has host docker daemon socket mounted and interacts with host 

docker daemon to stop other running containers. Proposal of container with mounted 

docker daemon socket might seem to be an unusual way to use container technology 

overall, but it is a proper method to test if host docker daemon can be controlled with a 

sidecar container, and how would kernel namespace prevent these activities? How are 

log files going to keep track of them? 

The above tests are to be conducted on both operating system variations, 

targeting for a thorough comparison of reactions from kernel policies implementations 

and effectiveness of functionalities supporting them. 
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Data Collection 

 Data collection is crucial to this study, there is one data collection table designed 

for each test described above. Tables are aimed to accurately record test results and 

represent them in an easy-to-read fashion. The step-by-step test processes are to be 

recorded by shell command tables or screenshots, whichever applies better.  

Hardware and Software Environment 

Dell XPS 9360 – Specification: 

CPU: Intel i7 8550U (1.80Ghz) 

RAM: 16.0 GB (15.7 usable) 

SSD: 512 GB M.2 NVMe  

OS: Windows 10 (Version 1903) 

 Virtual Machine: 

i. Ubuntu server: 18.04 

ii. Microsoft Windows 10 
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Tools and Techniques  

Ubuntu Linux. GDB: GNU Debugger, debugging tools which allows examination 

and modification to memory content of given running program in Linux. 

Windows. Process Explorer: Displays basic information of a running process, 

such as PID and associated open DLL files.  

RAMMap: Displays memory usage, priority information and physical range of 

given process ID. 

WinDbg: Debugging tool for use in Windows, similar to GDB in Linux. 

Summary 

 The test stages of this study are designed to step one on top of each other. The 

lower lever tests are essential for the next process. These tests should go through 

smoothly in a Linux environment. However, they are not guaranteed to work in all 

Windows environments, because some of the testing tools developed for Windows are 

developed with a Graphical User Interface, where Docker container for Windows runs in 

a command line interface or tends to be ran on a service like “head-less” mode.   
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Chapter IV: Data Presentation and Analysis 

Introduction 

 In the “Data Presentation” section, a step-by-step testing process will be listed as 

in either shell command line records in tables, or screenshots of user interfaces. The 

following tables will summarize results of each test in a “Data Analysis” section. 

Data Presentation 

Ubuntu Linux Test-bed Configuration 

ldai@thesis:~$ uname -a 

Linux thesis 4.15.0-91-generic #92-Ubuntu SMP Fri Feb 28 

11:09:48 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux 

Operating System Details 

ldai@thesis:~$ id 

uid=1000(ldai)gid=1000(ldai)groups=1000(ldai),4(adm),24(cdrom

),27(sudo),30(dip),46(plugdev),108(lxd),999(docker) 

ldai@thesis:~$ id user 

uid=1001(user)gid=1001(user)groups=1001(user),999(docker) 

user@thesis:~/test2$ sudo cat 

user is not in the sudoers file.  This incident will be 

reported. 

User Details 

ldai@thesis:~$ ls -la aaa 

-rw------- 1 ldai ldai 29 Mar 26 20:34 aaa 

ldai@thesis:~$ cat aaa 

There is only one line here. 

Plain Text File owned by ldai with 600 permission 

ldai@thesis:~$ docker -v 

Docker version 19.03.5, build 633a0ea838 

ldai@thesis:~$ docker-compose -v 

docker-compose version 1.25.3, build d4d1b42b 

Docker Engine Version 

Microsoft Windows 10 Test-bed Configuration 
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Windows Version Details Content of “aaa.txt” 

  

User lidai has full permission User is no permission 

PS C:\Users\lidai\thesis\os> docker -v 

Docker version 19.03.5, build 633a0ea 
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Docker Engine Version 

Test 1 – Ubuntu Linux 

ldai@thesis:/$ su user 

Password: 

user@thesis:/$ ls -la /home 

total 16 

drwxr-xr-x  4 root root 4096 Feb  3 21:40 . 

drwxr-xr-x 25 root root 4096 Mar 25 20:29 .. 

drwxr-xr-x  6 ldai ldai 4096 Mar 26 20:34 ldai 

drwxr-xr-x  5 user user 4096 Feb  9 16:33 user 

user@thesis:/$ ls -la /home/ldai/aaa 

-rw------- 1 ldai ldai 29 Mar 26 20:34 /home/ldai/aaa 

user@thesis:/$ cat /home/ldai/aaa 

cat: /home/ldai/aaa: Permission denied 

Verify if other user (1001) can access ldai (1000)’s file 

user@thesis:~$ docker ps 

CONTAINER ID        IMAGE               COMMAND             

CREATED             STATUS              PORTS               

NAMES 

user@thesis:~$ docker images 

REPOSITORY          TAG                 IMAGE ID            

CREATED             SIZE 

user@thesis:~$ docker build -t test1:latest . 

Sending build context to Docker daemon  18.94kB 

Step 1/2 : FROM ubuntu:18.04 

18.04: Pulling from library/ubuntu 

5bed26d33875: Pull complete 

f11b29a9c730: Pull complete 

930bda195c84: Pull complete 

78bf9a5ad49e: Pull complete 

Digest: 

sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392b7546b43a0

51853a341d 

Status: Downloaded newer image for ubuntu:18.04 

 ---> 4e5021d210f6 

Step 2/2 : RUN apt update && apt -y install nano 

 ---> Running in 4892ac1b7b56 

Removing intermediate container 4892ac1b7b56 

 ---> f63075002cd4 

Successfully built f63075002cd4 
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Successfully tagged test1:latest 

user@thesis:~$ docker images 

REPOSITORY          TAG                 IMAGE ID            

CREATED             SIZE 

test1               latest              f63075002cd4        

56 seconds ago      93.5MB 

ubuntu              18.04               4e5021d210f6        6 

days ago          64.2MB 

user@thesis:~$ docker run -it --mount 

type=bind,source=/home/ldai,target=/test/ldai test1 

root@1cd82de03972:/# cd /test/ldai 

root@1cd82de03972:/test/ldai# ls -la aaa 

-rw------- 1 1000 1000 29 Mar 27 01:34 aaa 

root@1cd82de03972:/test/ldai# cat aaa 

There is only one line here. 

root@1cd82de03972:/test/ldai# echo 'NOW! There are TWO 

lines!' >> aaa 

root@1cd82de03972:/test/ldai# cat aaa 

There is only one line here. 

NOW! There are TWO lines! 

root@1cd82de03972:/test/ldai# exit 

exit  

user@thesis:~$ 

User (1001) successfully elevated permission then accessed and modified ldai 

(1000)’s file with a container. 

user@thesis:~$ exit 

exit 

ldai@thesis:/$ cd 

ldai@thesis:~$ cat aaa 

There is only one line here. 

NOW! There are TWO lines! 

ldai@thesis:~$ stat aaa 

  File: aaa 

  Size: 55              Blocks: 8          IO Block: 4096   

regular file 

Device: 802h/2050d      Inode: 1572867     Links: 1 

Access: (0600/-rw-------)  Uid: ( 1000/    ldai)   Gid: ( 

1000/    ldai) 

Access: 2020-03-26 21:28:42.859029240 -0500 

Modify: 2020-03-26 21:28:39.947011864 -0500 

Change: 2020-03-26 21:28:39.947011864 -0500 
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 Birth: - 

File aaa still has same metadata associated.  

Test 1 – Microsoft Windows 10 

 
Verify user cannot access file aaa.txt 

PS C:\thesis\test1> docker build -t test1:latest . 

Sending build context to Docker daemon  2.048kB 

Step 1/2 : FROM ubuntu:18.04 

18.04: Pulling from library/ubuntu 

5bed26d33875: Pull complete                                                                                             

f11b29a9c730: Pull complete                                                                                             

930bda195c84: Pull complete                                                                                             

78bf9a5ad49e: Pull complete                                                                                             

Digest: 

sha256:bec5a2727be7fff3d308193cfde3491f8fba1a2ba392b7546b43a0

51853a341d 

Status: Downloaded newer image for ubuntu:18.04 

 ---> 4e5021d210f6 

Step 2/2 : RUN apt-get update && apt-get -y install nano 

 ---> Running in e559d10ea86d 

Removing intermediate container e559d10ea86d 

 ---> dc6be42f2de9 

Successfully built dc6be42f2de9 

Successfully tagged test1:latest 

SECURITY WARNING: You are building a Docker image from 

Windows against a non-Windows Docker host. All files and 

directories added to build context will have '-rwxr-xr-x' 

permissions. It is recommended to double check and reset 

permissions for sensitive files and directories. 

Building container “test1” (Notice above warning) 
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PS C:\thesis\test1> docker run -it --mount 

type=bind,source=c:/thesis,target=/test test1 

root@db3d0b5ce994:/# cd test 

root@db3d0b5ce994:/test# ls 

Dockerfile  os  stayrunning.class  test1  test2  test3  test4 

root@db3d0b5ce994:/test# cd os 

root@db3d0b5ce994:/test/os# ls 

root@db3d0b5ce994:/test/os# ls -la 

total 0 

drwxrwxrwx 1 root root    0 Mar 28 01:26 . 

drwxrwxrwx 1 root root 4096 Mar 28 01:26 .. 

 

 
“test1” container started after allowing mount by clicking “Share it” 

 
Root user inside container was not able to see “aaa.txt” but was able to see other files 

with access permission. 

PS C:\thesis\test1> docker run mcr.microsoft.com/windows:1903 

Unable to find image 'mcr.microsoft.com/windows:1903' locally 

1903: Pulling from windows 
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af1a530dff54: Downloading [====================>                              

]  1.517GB/3.657GB                                                 

c0f80931c4bb: Downloading 

[==================================>                ]  

1.623GB/2.367GB 

Digest: 

sha256:bbb680fb17fa5c93a95fcf97f6ea81bee4494ff405cf31f859686f

6ca9e761be 

Status: Downloaded newer image for 

mcr.microsoft.com/windows:1903 

Microsoft Windows [Version 10.0.18362.720] 

(c) 2019 Microsoft Corporation. All rights reserved. 

 

C:\> 

PS C:\thesis\test1> 

Getting “windows” container, because license issues, this study cannot run 

microsoft/nanoserver or Microsoft/servercore images. 

PS C:\thesis\test1> docker run -it --mount 

type=bind,source=c:\thesis,target=c:/test 

mcr.microsoft.com/windows:1903 powershell 

Windows PowerShell 

Copyright (C) Microsoft Corporation. All rights reserved. 

 

Try the new cross-platform PowerShell https://aka.ms/pscore6 

 

PS C:\> echo "there is now two lines" >> c:\test\os\aaa.txt 

PS C:\> 

Using powershell command to edit text file. 
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File edited successfully. 

Test 2 – Ubuntu Linux 

ldai@thesis:~$ java stayrunning 

This sample program should stay running ==> Thu Mar 26 

21:48:35 CDT 2020 

This sample program should stay running ==> Thu Mar 26 

21:48:55 CDT 2020 

This sample program should stay running ==> Thu Mar 26 

21:49:15 CDT 2020 

This sample program should stay running ==> Thu Mar 26 

21:49:35 CDT 2020 

This sample program should stay running ==> Thu Mar 26 

21:49:55 CDT 2020 

This sample program should stay running ==> Thu Mar 26 

21:50:15 CDT 2020 

Running Java code “stayrunning” on raw host by ldai (1000) 

user@thesis:~/test2$ ps -aux | grep jaca 

user      12051  0.0  0.0  13136  1108 pts/1    S+   21:57   

0:00 grep --color=auto jaca 

user@thesis:~/test2$ ps -aux | grep java 

ldai      12002  0.3  0.5 4748916 41820 pts/0   Sl+  21:55   

0:00 java stayrunning 

user      12053  0.0  0.0  13136  1032 pts/1    S+   21:57   

0:00 grep --color=auto java 

user@thesis:~/test2$ cd /proc/12002 

user@thesis:/proc/12002$ cat maps | grep heap 

cat: maps: Permission denied 

User (1001) does not have permission to view memory mapping of such running java 

code. 

user@thesis:~/test2$ docker build -t test2:latest . 

Sending build context to Docker daemon  2.048kB 

Step 1/2 : FROM ubuntu:18.04 

 ---> 4e5021d210f6 

Step 2/2 : RUN apt update && apt -y install libc6-dbg gdb 

valgrind 

 ---> Running in 98729dfbc0d2 

Removing intermediate container 98729dfbc0d2 

 ---> 1d2dbc59adc4 
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Successfully built 1d2dbc59adc4 

Successfully tagged test2:latest 

Building test2 container image with debugging tools installed. 

user@thesis:~/test2$ docker run -it --mount 

type=bind,source=/proc,target=/test/proc  test2 

root@9bbd6b210161:/# cd /test/proc/12002 

root@9bbd6b210161:/test/proc/12002# cat maps 

cat: maps: Permission denied 

root@9bbd6b210161:/test/proc/12002# cat pagemap 

cat: pagemap: Permission denied 

root@9bbd6b210161:/test/proc/12002# cat stack 

cat: stack: Permission denied 

root@9bbd6b210161:/test/proc/12002# exit 

exit 

Still not able to access virtual memory mappings, with elevated root permission. 

ldai@thesis:~$ docker build -t stayrunning:latest . 

Sending build context to Docker daemon    105kB 

Step 1/3 : FROM openjdk:latest 

latest: Pulling from library/openjdk 

cd17e56c322c: Pull complete 

ecdd73bb9922: Pull complete 

e742458088f5: Pull complete 

Digest: 

sha256:85e34d6934d5b00048e31e93ee7abef73307cf0524d4205dcce4c9

b2a5870128 

Status: Downloaded newer image for openjdk:latest 

 ---> e2b050e4e3da 

Step 2/3 : COPY ./stayrunning.class . 

 ---> 5d0c5d201dea 

Step 3/3 : CMD java stayrunning 

 ---> Running in 6649376d29c7 

Removing intermediate container 6649376d29c7 

 ---> d8b148a44480 

Successfully built d8b148a44480 

Successfully tagged stayrunning:latest 

ldai@thesis:~$ docker run -it stayrunning 

This sample program should stay running ==> Fri Mar 27 

03:26:40 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

03:27:00 GMT 2020 
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This sample program should stay running ==> Fri Mar 27 

03:27:20 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

03:27:40 GMT 2020 

Build docker container image and run java code “stayrunning” 

user@thesis:~/test2$ ps -aux | grep java 

root      19665  0.1  0.4 4783940 39024 pts/0   Ssl+ 22:44   

0:04 java stayrunning 

root      20721  0.2  0.4 4783940 38200 pts/0   Ssl+ 23:19   

0:01 java stayrunning 

user      21681  0.0  0.0  13136  1004 pts/1    S+   23:28   

0:00 grep --color=auto java 

user@thesis:~/test2$ docker run -it --mount 

type=bind,source=/proc,target=/test/proc --pid=host --

privileged  test2 

root@b0d26312a293:/# cd /test/proc/20721 

root@b0d26312a293:/test/proc/20721# cat maps | grep heap 

023a8000-023c9000 rw-p 00000000 00:00 0                                  

[heap] 

root@b0d26312a293:/test/proc/20721# gdb --pid 20721 

GNU gdb (Ubuntu 8.1-0ubuntu3.2) 8.1.0.20180409-git 

Copyright (C) 2018 Free Software Foundation, Inc. 

License GPLv3+: GNU GPL version 3 or later 

<http://gnu.org/licenses/gpl.html> 

This is free software: you are free to change and 

redistribute it. 

There is NO WARRANTY, to the extent permitted by law.  Type 

"show copying" 

and "show warranty" for details. 

This GDB was configured as "x86_64-linux-gnu". 

Type "show configuration" for configuration details. 

For bug reporting instructions, please see: 

<http://www.gnu.org/software/gdb/bugs/>. 

Find the GDB manual and other documentation resources online 

at: 

<http://www.gnu.org/software/gdb/documentation/>. 

For help, type "help". 

Type "apropos word" to search for commands related to "word". 

Attaching to process 20721 

[New LWP 20767] 

[New LWP 20776] 

[New LWP 20777] 
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[New LWP 20778] 

[New LWP 20779] 

[New LWP 20780] 

[New LWP 20781] 

[New LWP 20782] 

[New LWP 20783] 

[New LWP 20784] 

[New LWP 20785] 

[New LWP 20786] 

[New LWP 20787] 

[New LWP 20788] 

[New LWP 20795] 

[New LWP 20796] 

[New LWP 20797] 

 

warning: Expected absolute pathname for libpthread in the 

inferior, but got target:/lib64/libpthread.so.0. 

 

warning: Unable to find libthread_db matching inferior's 

thread library, thread debugging will not be available. 

 

warning: Target and debugger are in different PID namespaces; 

thread lists and other data are likely unreliable.  Connec 

 

warning: Expected absolute pathname for libpthread in the 

inferior, but got target:/lib64/libpthread.so.0. 

 

warning: Unable to find libthread_db matching inferior's 

thread library, thread debugging will not be available. 

0x00007f8996170017 in pthread_join () from 

target:/lib64/libpthread.so.0 

(gdb) dump memory ~/gdbheap 0x023a8000 0x023a8f00 

(gdb) set {char [3840]} 0x023a8000 = "The heap is now 

clobbered!!!!" 

(gdb) dump memory ~/gdbheap_2 0x023a8000 0x023a8f00 

(gdb) detach 

Detaching from program: target:/usr/java/openjdk-14/bin/java, 

process 20721 

(gdb) q 

root@b0d26312a293:~# ls 

gdbheap  gdbheap_2 

root@b0d26312a293:~# cat gdbheap 
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!0▒:!P▒:p▒:!java!stayrunning1/usr/java/openjdk-

14/bin/java!P▒:p▒:1A/usr/java/openjdk-

14/lib/server/libjvm.soA/usr/java/openjdk-

14/lib/serverlibjvm.so▒▒▒▒!/lib64/libm.so.6!/lib64libm.so.6AP

▒:0z▒▒▒{▒P▒:0z▒▒▒{▒q▒▒:▒Y{▒▒T{▒P▒:0z▒▒▒{▒▒▒:▒Y{▒▒T{▒P▒:0z▒▒▒{

▒!▒▒▒!▒▒▒!▒▒▒!▒▒▒Q▒▒▒▒P 

`▒:!@▒:▒▒▒▒▒:▒▒▒▒P▒:▒▒{▒▒▒:▒:▒▒▒▒▒▒▒▒▒▒▒▒h▒▒▒8▒▒▒▒▒▒غ▒▒躭

▒H▒▒▒(▒▒▒ػ▒▒軭
▒Ȼ▒▒Ⱥ▒▒▒▒▒▒▒▒▒(▒▒▒▒▒x▒▒▒h▒▒▒X▒▒▒H▒▒▒▒▒8▒▒▒X▒▒▒@▒▒▒▒▒%H▒:▒:▒:▒ 

                                             

P͢▒P▒D͢▒A▒▒▒▒▒▒▒▒,P▒:▒▒▒`E▒▒p▒▒{▒H▒l@▒H▒:eO)&▒▒▒▒▒▒▒▒▒ȃ▒▒▒T
{▒Ѝ▒▒▒▒▒▒▒▒▒▒▒▒@=                                                                                                                      

▒:@n▒/usr/java/openjdk-14/lib/server/libjvm.so▒`r▒▒▒:▒m▒▒▒       

▒▒▒:P▒:▒:▒m▒▒▒n▒▒▒n▒▒ 

n▒▒@n▒▒Pn▒▒▒n▒▒▒n▒▒▒n▒▒`n▒▒pn▒▒▒m▒▒▒m▒▒▒m▒▒▒n▒▒▒n▒▒▒m▒▒n▒▒▒m▒

▒n▒▒o▒▒0o▒▒ o▒▒o▒▒▒n▒▒Po▒▒@o▒▒0n▒▒@`r▒P▒r▒"▒▒:▒▒:P?: 

0▒r▒ dr▒؍:libm.so.6aK▒▒▒q▒N▒▒{▒H▒l`@▒:e`&Ё:{r▒P▒:{r▒p 

▒▒▒▒                       ▒▒▒▒ui       ▒▒▒▒i▒▒▒ii 

▒▒▒▒▒▒▒▒ui      ܯ▒▒w▒▒▒rii       ܯ▒▒ 
▒▒▒root@b0d26312a293:~# xxd gdbheap 

bash: xxd: command not found 

root@b0d26312a293:~# ls 

gdbheap  gdbheap_2 

root@b0d26312a293:~# cat gdbheap_2 

The heap is now clobbered!!!!root@b0d26312a293:~# 

User 1000 was able to attach host PID namespace and by using -–privileged flag, to 

access and overwrite given heap address. 

This sample program should stay running ==> Fri Mar 27 

04:37:46 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

04:38:06 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

04:38:26 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

04:38:46 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

04:39:06 GMT 2020 

# 

# A fatal error has been detected by the Java Runtime 

Environment: 
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# 

#  SIGSEGV (0xb) at pc=0x00007f89956e8cdf, pid=1, tid=23 

# 

# JRE version: OpenJDK Runtime Environment (14.0+36) (build 

14+36-1461) 

# Java VM: OpenJDK 64-Bit Server VM (14+36-1461, mixed mode, 

sharing, tiered, compressed oops, g1 gc, linux-amd64) 

# Problematic frame: 

# C 

[error occurred during error reporting (printing problematic 

frame), id 0xb, SIGSEGV (0xb) at pc=0x00007f8995cd21c5] 

 

# Core dump will be written. Default location: Core dumps may 

be processed with "/usr/share/apport/apport %p %s %c %d %P 

%E" (or dumping to //core.1) 

# 

# An error report file with more information is saved as: 

# //hs_err_pid1.log 

# 

# If you would like to submit a bug report, please visit: 

#   https://bugreport.java.com/bugreport/crash.jsp 

# 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[error occurred during error reporting (), id 0xb, SIGSEGV 

(0xb) at pc=0x00007f8995bccbb7] 

[Too many errors, abort] 

[Too many errors, abort] 

[Too many errors, abort] 

[Too many errors, abort] 

[Too many errors, abort] 
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[Too many errors, abort] 

[Too many errors, abort] 

[Too many errors, abort] 

 [Too many errors, abort] 

Container packaged java code is no longer running. 

Test 2: Microsoft Windows 10 

PS C:\thesis> docker build -t stayrunning:latest . 

Sending build context to Docker daemon  10.24kB 

Step 1/3 : FROM openjdk:latest 

 ---> 6adc576f6a58 

Step 2/3 : COPY ./stayrunning.class . 

 ---> Using cache 

 ---> c3727279bb9f 

Step 3/3 : CMD java stayrunning 

 ---> Using cache 

 ---> 6e23da6cbf17 

Successfully built 6e23da6cbf17 

Successfully tagged stayrunning:latest 

SECURITY WARNING: You are building a Docker image from 

Windows against a non-Windows Docker host. All files and 

directories added to build context will have '-rwxr-xr-x' 

permissions. It is recommended to double check and reset 

permissions for sensitive files and directories. 

PS C:\thesis> docker run -it stayrunning 

This sample program should stay running ==> Sat Mar 28 

15:51:05 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

15:51:07 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

15:51:09 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

15:51:11 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

15:51:13 GMT 2020 

Built and started “stayrunning” container by lidai 

PS C:\Users\user> docker ps 

CONTAINER ID        IMAGE               COMMAND                  

CREATED              STATUS              PORTS               

NAMES 
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bed1fa8adbcd        stayrunning         "/bin/sh -c 'java 

st…"   About a minute ago   Up About a minute                       

zealous_curie 

PS C:\Users\user> Get-Process -Name vmwp 

Handles  NPM(K)    PM(K)      WS(K)     CPU(s)     Id  SI 

ProcessName 

-------  ------    -----      -----     ------     --  -- ---

-------- 

    370      18     6584      20412              8712   0 

vmwp 

 

PS C:\Users\user> Stop-Process -ID 8712 

Stop-Process : Cannot stop process "vmwp (8712)" because of 

the following error: Access is denied 

At line:1 char:1 

+ Stop-Process -ID 8712 

+ ~~~~~~~~~~~~~~~~~~~~~ 

    + CategoryInfo          : CloseError: 

(System.Diagnostics.Process (vmwp):Process) [Stop-Process], 

ProcessCommandEx 

   ception 

    + FullyQualifiedErrorId : 

CouldNotStopProcess,Microsoft.PowerShell.Commands.StopProcess

Command 

User can list running docker containers process ID of “Virtual Machine Worker 

Process” but cannot stop such container due to lack of permission. 

PS C:\Program Files\Docker\Docker> .\DockerCli.exe -

SwitchDaemon 

 error during connect: Get 

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/json: 

open //./pipe/docker_engine: The system cannot find the file 

specified. In the default daemon configuration on Windows, 

the docker client must be run elevated to connect. This error 

may also indicate that the docker daemon is not running. 

PS C:\Program Files\Docker\Docker> docker ps 

error during connect: Get 

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/json: 

open //./pipe/docker_engine: The system cannot find the file 

specified. In the default daemon configuration on Windows, 

the docker client must be run elevated to connect. This error 

may also indicate that the docker daemon is not running. 
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PS C:\Program Files\Docker\Docker> PS C:\Users\user> docker 

ps 

Get-Process : A positional parameter cannot be found that 

accepts argument 'docker'. 

At line:1 char:1 

+ PS C:\Users\user> docker ps 

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    + CategoryInfo          : InvalidArgument: (:) [Get-

Process], ParameterBindingException 

    + FullyQualifiedErrorId : 

PositionalParameterNotFound,Microsoft.PowerShell.Commands.Get

ProcessCommand 

User tris to switch from Docker Linux container mode to Windows container mode via 

PowerShell command line interface but interrupted (crashed) docker daemon. 

This sample program should stay running ==> Sat Mar 28 

16:35:04 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

16:35:06 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

16:35:08 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

16:35:10 GMT 2020 

time="2020-03-28T11:35:12-05:00" level=error msg="error 

waiting for container: unexpected EOF" 

PS C:\thesis> docker run -it  stayrunning 

C:\Program Files\Docker\Docker\resources\bin\docker.exe: 

error during connect: Post 

http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/containers/create

: open //./pipe/docker_engine: The system cannot find the 

file specified. In the default daemon configuration on 

Windows, the docker client must be run elevated to connect. 

This error may also indicate that the docker daemon is not 

running. 

See 'C:\Program Files\Docker\Docker\resources\bin\docker.exe 

run --help'. 

Running “stayrunning container” crashes and refuses to restart after daemon 

interruption. 
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However, docker desktop application is still running 

PS C:\thesis> docker run -it  stayrunning 

This sample program should stay running ==> Sat Mar 28 

17:06:53 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

17:06:55 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

17:06:57 GMT 2020 

Restarted docker daemon and “stayrunning” container 

PS C:\Users\user> docker ps 

CONTAINER ID        IMAGE               COMMAND                  

CREATED             STATUS              PORTS               

NAMES 

d624e2b49317        stayrunning         "/bin/sh -c 'java 

st…"   3 minutes ago       Up 3 minutes                            

unruffled_blackburn 

PS C:\Users\user> docker exec -it d624 /bin/sh 

sh-4.2# ps 

sh: ps: command not found 

sh-4.2# cd /proc/22 

sh-4.2# cat maps | grep heap 

01d46000-01d88000 rw-p 00000000 00:00 0                                  

[heap] 

User is still able to find heap memory allocation information. But would not have 

enough tools around unless a Windows container switch can be done while the Linux 

container is running. 

Test 3: Ubuntu Linux 

ldai@thesis:~$ docker run -it stayrunning 

This sample program should stay running ==> Fri Mar 27 

04:53:16 GMT 2020 
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This sample program should stay running ==> Fri Mar 27 

04:53:36 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

04:53:56 GMT 2020 

Start “stayrunning” container 

user@thesis:~/test3$ docker build -t memoryeater:latest . 

Sending build context to Docker daemon  4.096kB 

Step 1/3 : FROM openjdk:latest 

 ---> e2b050e4e3da 

Step 2/3 : COPY ./memoryeater.class . 

 ---> 8d27609c1c06 

Step 3/3 : CMD java memoryeater 

 ---> Running in ab989c51b079 

Removing intermediate container ab989c51b079 

 ---> 255067894aaf 

Successfully built 255067894aaf 

Successfully tagged memoryeater:latest 

Build “memoryeater” container 

user@thesis:~/test3$ docker run -it memoryeater 

free memory: 67834240 

free memory: 91081408 

free memory: 90557120 

free memory: 90557120 

free memory: 221104896 

free memory: 155568896 

free memory: 90557184 

free memory: 351141072 

free memory: 285605072 

free memory: 220593360 

free memory: 480634248 

free memory: 415622536 

free memory: 350610824 

free memory: 611175872 

free memory: 545639872 

free memory: 480628160 

free memory: 741196656 

free memory: 675660656 

free memory: 610648944 

free memory: 785241144 

free memory: 719705144 

free memory: 654693432 



50 
 

 
 

free memory: 590207696 

free memory: 524671696 

free memory: 459659984 

free memory: 395167280 

free memory: 329631280 

free memory: 264619568 

free memory: 200127696 

free memory: 134591696 

Exception in thread "main" java.lang.OutOfMemoryError: Java 

heap space 

        at memoryeater.main(memoryeater.java:10) 

Above container is designed to take up 650 megabytes until memory exhausts.  

user@thesis:~/test3$ docker build -t memoryeater:latest . 

Sending build context to Docker daemon  4.096kB 

Step 1/3 : FROM openjdk:latest 

 ---> e2b050e4e3da 

Step 2/3 : COPY ./memoryeater.class . 

 ---> b23a94ff4fc1 

Step 3/3 : CMD java memoryeater 

 ---> Running in f105de607315 

Removing intermediate container f105de607315 

 ---> 84a7b0d75fa9 

Successfully built 84a7b0d75fa9 

Successfully tagged memoryeater:latest 

user@thesis:~/test3$ docker run -it memoryeater 

free memory: 721088880 

Exception in thread "main" java.lang.OutOfMemoryError: Java 

heap space 

        at memoryeater.main(memoryeater.java:10) 

Above container is modified to take up 1 gigabyte until memory exhausts.  

This sample program should stay running ==> Fri Mar 27 

05:07:36 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:07:56 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:08:16 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:08:36 GMT 2020 

“Stayrunning” container is still running as intended. 
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user@thesis:~$ docker run -it --mount 

type=bind,source=/proc,target=/test/proc --pid=host test2 

root@b61bcf4e752d:/# ps -aux | grep java 

root      19665  0.1  0.4 4783940 39356 pts/0   Ssl+ 03:44   

0:08 java stayrunning 

root      21920  0.1  0.4 4783940 38656 pts/0   Ssl+ 04:53   

0:01 java stayrunning 

root      22714  0.0  0.0  11464  1008 pts/0    S+   05:08   

0:00 grep --color=auto java 

root@b61bcf4e752d:/# cd /test/proc/21920 

root@b61bcf4e752d:/test/proc/21920# cd .. 

root@b61bcf4e752d:/test/proc# echo f > sysrq-trigger 

“oom_score_adj” is overwritten to high number, and “f” flag overwritten to “sysrq-

trigger” to manually trigger OOM Kill. 

This sample program should stay running ==> Fri Mar 27 

05:10:16 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:10:37 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:10:57 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:11:17 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:11:37 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

05:11:57 GMT 2020 

Killed 

ldai@thesis:~$ 

Java code in “stayrunning” container is killed  

Test 3: Microsoft Windows 10 

This sample program should stay running ==> Sat Mar 28 

17:33:13 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

17:33:15 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

17:33:17 GMT 2020 

This sample program should stay running ==> Sat Mar 28 

17:33:19 GMT 2020 
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Container “stayrunning” is up 

PS C:\thesis\test3> docker build -t memoryeater:latest . 

Sending build context to Docker daemon   5.12kB 

Step 1/3 : FROM openjdk:latest 

 ---> 6adc576f6a58 

Step 2/3 : COPY ./memoryeater.class . 

 ---> 8728ff2dbf13 

Step 3/3 : CMD java memoryeater 

 ---> Running in 039283c91ada 

Removing intermediate container 039283c91ada 

 ---> d68398122600 

Successfully built d68398122600 

Successfully tagged memoryeater:latest 

SECURITY WARNING: You are building a Docker image from 

Windows against a non-Windows Docker host. All files and 

directories added to build context will have '-rwxr-xr-x' 

permissions. It is recommended to double check and reset 

permissions for sensitive files and directories. 

Built “memoryeater” container 

PS C:\thesis\test3> docker run -it memoryeater 

Exception in thread "main" java.lang.OutOfMemoryError: Java 

heap space 

        at memoryeater.main(memoryeater.java:10) 

Container “memoryeater” cannot be started due to lack of memory space for Java 

heap. 

OOM kill test cannot be accomplished due to a lack of tooling without “Windows” 

container mode. 

 

Test 4: Ubuntu Linux 

ldai@thesis:~$ docker ps 

CONTAINER ID        IMAGE               COMMAND             

CREATED             STATUS              PORTS               

NAMES 

ldai@thesis:~$ docker run -it stayrunning 

This sample program should stay running ==> Fri Mar 27 

21:08:55 GMT 2020 
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This sample program should stay running ==> Fri Mar 27 

21:09:15 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

21:09:35 GMT 2020 

Container “stayrunning” started with no others running. 

 
user@thesis:~/test4$ docker build -t test4:latest . 

Sending build context to Docker daemon  2.048kB 

Step 1/5 : FROM ubuntu:18.04 

 ---> 4e5021d210f6 

Step 2/5 : RUN apt-get update     && apt-get -y install nano     

apt-transport-https     ca-certificates     curl     gnupg-

agent     software-properties-common 

 ---> Running in 3633cbc67518 

Removing intermediate container 3633cbc67518 

 ---> 1fd07e1a075d 

Step 3/5 : RUN curl -fsSL 

https://download.docker.com/linux/ubuntu/gpg | apt-key add - 

 ---> Running in 44f16f014df4 

Warning: apt-key output should not be parsed (stdout is not a 

terminal) 

OK 

Removing intermediate container 44f16f014df4 

 ---> 55ec00a945aa 

Step 4/5 : RUN add-apt-repository "deb [arch=amd64] 

https://download.docker.com/linux/ubuntu $(lsb_release -cs) 

stable" 

 ---> Running in 824b3008755b 

Removing intermediate container 824b3008755b 

 ---> 6f47cae8997b 

Step 5/5 : RUN apt-get update     && apt-get -y install 

docker-ce docker-ce-cli containerd.io 

 ---> Running in 437c2bb47874 

Removing intermediate container 437c2bb47874 

 ---> 932153a3db81 

Successfully built 932153a3db81 

Successfully tagged test4:latest 

Building container “test4” with docker-cli installed 

user@thesis:~/test4$ docker run -it --mount 

type=bind,source=/var/run/,target=/var/run/ test4 

root@f1372aa74231:/# docker ps 
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CONTAINER ID        IMAGE               COMMAND                  

CREATED             STATUS              PORTS               

NAMES 

f1372aa74231        test4               "/bin/bash"              

4 seconds ago       Up 2 seconds                            

dazzling_sutherland 

8612a3174684        stayrunning         "/bin/sh -c 'java 

st…"   8 minutes ago       Up 8 minutes                            

xenodochial_gould 

root@f1372aa74231:/# docker kill 8612a 

8612a 

root@f1372aa74231:/# 

Stopping “stayrunning” container with no error. 

This sample program should stay running ==> Fri Mar 27 

21:18:55 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

21:19:15 GMT 2020 

This sample program should stay running ==> Fri Mar 27 

21:19:35 GMT 2020 

ldai@thesis:~$ docker ps 

CONTAINER ID        IMAGE               COMMAND             

CREATED             STATUS              PORTS               

NAMES 

f1372aa74231        test4               "/bin/bash"         3 

minutes ago       Up 3 minutes                            

dazzling_sutherland 

“Stayrunning” stopped without user ldai (1000)’s acknowledgement. 

Mar 27 16:19:53 thesis dockerd[1186]: time="2020-03-

27T16:19:53.613022943-05:00" level=warning 

msg="8612a3174684532f60991620bb84aa41f8523584c0de3f0faed6919a

11e4fd5c cleanup: failed to unmount IPC: umount 

/var/lib/docker/containers/8612a3174684532f60991620bb84aa41 

Mar 27 16:28:26 thesis dockerd[1186]: time="2020-03-

27T16:28:26.831996811-05:00" level=info msg="ignoring event" 

module=libcontainerd namespace=moby topic=/tasks/delete 

type="*events.TaskDelete" 

One record found in docker daemon log about stopped container, nothing indicating 

which user has done so. 

Test 4: Microsoft Windows 10 
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Test cannot be conducted due to lack of stability issue of Windows version docker 

daemon and “Windows” container mode. 

Data Analysis 

Table 3  

Test 1 Data Summary 

 Mounting Filesystem Root Access File Readable File Writeable 

Linux Y Y Y Y 

Windows Y Y Y Y 

 
Table 4 

Test 2 Data Summary 

 Mounting 
Filesystem 

/proc/maps 
Access 

Heap 
Readable 

Heap 
Writeable 

Negative 
Impact 

Linux Y Y Y Y Y 

Windows Y Y N/A N/A Y 

 
Table 5 

Test 3 Data Summary 

 “memoryeater” 
starting 

Kernel OOM 
Kill 

Negative 
impact 

Manual 
OOM Kill 

Negative 
Impact 

Linux Y Y N Y Y 

Windows N Y N N/A N/A 

 
Table 6 

Test 4 Data Summary 

 Mounting Host 
Docker Daemon 

Host Docker Daemon 
Interaction 

Negative 
impact 

Log File 
Record 

Linux Y Y Y N 

Windows N/A N/A N/A N/A 
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Summary  

 This chapter covers a majority of the testing process which happened in both 

operating system environments. Attempted trials and detailed steps have been 

recorded, as accurately as possible, in the data collection section and a summary of test 

results are presented after the data analysis process. 
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Chapter V: Results, Conclusion, and Recommendations 

Introduction 

 This chapter serves as an overview of the thesis research which has been done. 

A representation of research outcomes, an explanation of how such data reflects to the 

purpose of this thesis, and any feasible future works are described in the sections of 

Results, Conclusion and Future Work. 

Results 

 From a high-level point of view, the overall methodology of this research started 

with learning from kernel documentation (i.e. manuals), with the knowledge of how 

kernel manages memory for applications. The tests were designed with a hierarchical 

mind set, each stage’s steps move forward and practices kernel functions. Results 

obtained from the study are clear and answered the following research questions.   

Q: How does kernel memory management work on Microsoft Windows or Ubuntu 

Linux?  

A: Both kernel software researched by this thesis, showed which centralized memory 

management is key to provide policy enforcement consistency, where the kernel defines 

memory allocation policies based on system reliability and security, and kernel modules 

like malloc or mbrlenare are there to offer assistance for code developing, and Out-Of-

Memory like functions are in place to enforce policy. 

Q: Can a misused Docker container become a tool for unauthorized permission 

escalation? How do reactions differ between operating systems? 
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A: According to Test 1 in this study, user accounts with group access to docker daemon 

are capable of unauthorized permission escalation to root, in both operating system 

kernels, by simply starting a new Docker container. Such that a user essentially 

becomes root within their own namespace, but this permission is carried over to a host. 

Q: Are memory mappings of running Docker containers readable or writeable by sidecar 

containers? How do reactions differ between operating systems? 

A: As Test 2 has proven, that in a Linux kernel, mapping information of code in a 

current running container, is not accessible by a non-root user other than the processes 

they own unless such user has docker group permission to start a container within the 

same daemon. The heap memory allocation is readable and writable by unauthorized 

users in this way and can bring down running code. This activity technically grants that 

user root permission to at least the same namespace, which the docker daemon is 

hosting all its containers on by default. However, this test cannot be completely done 

with Microsoft Windows, because of instability of docker daemon when switching 

operation mode and lack of essential command line debugging tools for Windows 

PowerShell.   

Q: Can kernel memory management tools be misused by non-root users within a 

Docker container for hacking? How are kernel reactions different?  

A: Kernel functions such as OOM kill is in place to prevent malicious or poorly written 

code to overly allocate system memory, so foundational system can function stably. 
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Test 3 identifies that, OOM kill helped providing reliable memory resources to running 

code while new malicious program takes an unreasonable amount of memory.  

However, OOM kill function can be manually initiated to targeted processes if a regular 

user has elevated to root access, which is made available with Docker containers. 

Unfortunately, this test also cannot be conducted with Windows equipped virtual 

machines, again because of instability of its docker daemon. 

Conclusion 

 In conclusion, this study learned that, even though, kernel software offers 

impressive central resource management and policies, and preventative modules are in 

place to ensure reliable operation, there are always vulnerabilities or security threats if 

tools are used for an inappropriate purpose. While virtualization and containerization 

accelerate effective and efficient computing resource sharing, information security and 

protection is still a valid concern for computer users, especially enterprise users who 

provide services or hold data for the general public.  

 In other words, it is never wrong for software or DevOps engineers to wait on 

product, infrastructure development, or adopting new technologies until they fully 

understand how it fundamentally operates. Always following good security practices 

while developing is another key to lowering risk and avoiding threats.   

Future Work 

 Some of the designed tests could not be conducted during this research, 

primarily because of the lack of available tools and stability concerns. Some are well 
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worth studying in the future if new tools can be developed to allow researchers to 

ascertain the desired results and these findings would promote good security practices 

and patching vulnerabilities.   
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Appendix A: Dockerfile Source Code 

FROM ubuntu:18.04 

RUN apt-get update \ 

    && apt-get -y install nano 

Container “Test1” 

FROM openjdk:latest 

COPY ./stayrunning.class . 

CMD java stayrunning 

Container “Stayrunning” 

FROM ubuntu:18.04 

RUN apt update \ 

    && apt -y install libc6-dbg gdb valgrind 

Container “Test2” 

FROM openjdk:latest 

COPY ./memoryeater.class . 

CMD java memoryeater 

Container “memoryeater” 

FROM ubuntu:18.04 

RUN apt-get update \ 

    && apt-get -y install nano \ 

    apt-transport-https \ 

    ca-certificates \ 

    curl \ 

    gnupg-agent \ 

    software-properties-common 

RUN curl -fsSL https://download.docker.com/linux/ubuntu/gpg | 

apt-key add - 

RUN add-apt-repository "deb [arch=amd64] 

https://download.docker.com/linux/ubun$ 

RUN apt-get update \ 

    && apt-get -y install docker-ce docker-ce-cli 

containerd.io 

Container “Test4” 
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Appendix B: Java Program Source Code 

import java.util.Calendar; 

public class stayrunning { 

        public static void main(String args[]) { 

                stayrunning object = new stayrunning(); 

                object.waitMethod(); 

        } 

        private synchronized void waitMethod() { 

                while (true) { 

                        System.out.println("This sample 

program should stay running ==> " + 

Calendar.getInstance().getTime()); 

                        try { 

                                this.wait(20000); 

                        } catch (InterruptedException e) { 

                                e.printStackTrace(); 

                        } 

                } 

        } 

} 

stayrunning.java 

import java.util.Vector; 

 

public class memoryeater 

{ 

  public static void main(String[] args) 

  { 

    Vector v = new Vector(); 

    while (true) 

    { 

      byte b[] = new byte[1073741824]; 

      v.add(b); 

      Runtime rt = Runtime.getRuntime(); 

      System.out.println( "free memory: " + rt.freeMemory() 

); 

    } 

  } 

} 

Memoryeater.java 
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