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ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 49, Number 5, 2019

PERTURBED OBSTACLE PROBLEMS IN LIPSCHITZ
DOMAINS: LINEAR STABILITY AND
NONDEGENERACY IN MEASURE

IVAN BLANK AND JEREMY LECRONE

ABSTRACT. We consider the classical obstacle problem
on bounded, connected Lipschitz domains D ⊂ Rn. We derive
quantitative bounds on the changes to contact sets under
general perturbations to both the right-hand side and the
boundary data for obstacle problems. In particular, we
show that the Lebesgue measure of the symmetric difference
between two contact sets is linearly comparable to the L1-
norm of perturbations in the data.

1. Introduction. Given functions g1, g2 : D → [λ, µ] and ψ1, ψ2 :
∂D → [0,∞), with sufficient regularity and 0 < λ ≤ µ, we denote
by OP (Lap = gi, Bdry = ψi) the nonnegative functions ui ∈W 1,2(D)
satisfying the semilinear pdes

(1.1)

{
∆ui = χ{ui>0}gi in D,

ui = ψi on ∂D,
i= 1, 2.

We mention that the obstacle problem can also be formulated in terms
of variational inequalities and functional optimization, though the
equivalence of these settings is well-known; see [3, 7], for instance.
The existence and uniqueness of solutions to (1.1) is shown in the same
references, via standard methods in functional analysis.

Under minimal assumptions on the data (gi, ψi) and the content
of contact sets Λ(ui) := {x ∈ D : ui(x) = 0}, we prove that the
Lebesgue measure of the symmetric difference Λ(u1) ∆ Λ(u2) is
linearly comparable to the L1-norms of the perturbations to data over
appropriate sets. We denote by Ω(ui) :=D \Λ(ui) the noncontact set
associated with solution ui. Our main result is stated in the following
theorem:
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Theorem 1.1. Let D ⊂ Rn be a bounded, connected Lipschitz domain
and let

(gi, ψi) ∈ L∞(D)×C(∂D), i= 1, 2,

with 0< λ≤ gi ≤ µ and ψi ≥ 0. Consider the following obstacle problem
solutions:

(1.2)
ui =OP (Lap= gi, Bdry = ψi),

v̄ =OP (Lap= min(g1, g2), Bdry = max(ψ1, ψ2)).

Assume there exist ȳ ∈D and δ > 0 such that Bδ(ȳ)⊂ Λ(v̄) := {v̄ = 0}.
Further, for η > 0, define the set

D−η :=D \Nη(∂D) =D \ {x ∈ Rn : dist(x, ∂D)< η}.

(a) (linear stability) For η > 0, there exist positive constants C1 and
C2 such that

(1.3) |(Λ(u1) ∆ Λ(u2))∩D−η|
≤ C1‖ψ1−ψ2‖L1(∂D) +C2‖g1− g2‖L1(Ω(v̄)).

The constants C1 and C2 depend upon n, D, η, δ, and λ.
(b) (linear nondegeneracy) If ψ1 ≥ ψ2 on ∂D and g1 ≤ g2 in D, then

for η > 0 there exist positive constants C3 and C4 such that

(1.4) |Λ(u1) ∆ Λ(u2)|≥C3‖ψ1−ψ2‖L1(∂D)+C4‖g1−g2‖L1(Ω(u1)∩D−η).

The constants C3 and C4 both depend upon n, D, δ, and µ, while
C4 additionally depends upon η.

Remark 1. (a) Use of the term “nondegeneracy” in Theorem 1.1(b)
differs from most literature related to the obstacle problem. Typically,
one refers to the nondegenerate quadratic growth enjoyed by solutions
to the obstacle problem in noncontact regions, while here we refer
to nondegenerate changes to contact (or likewise noncontact) regions
induced by data perturbations.

(b) Extracting explicit dependence of the constants C1, C2, C3, C4 on
the domain D does not appear to be feasible in the generality considered
here. The constants are determined (among other things) by the location
of the specified interior point ȳ and L∞ bounds for Green’s functions
and Poisson kernels for D, over subsets of D that are bounded away
from ∂D or ȳ.
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(c) To complement v̄, we also introduce the function

v :=OP (Lap= max(g1, g2), Bdry = min(ψ1, ψ2))

which is used in the proof of Theorem 1.1. By [1, Theorem 2.7(d)], one
immediately concludes v ≤ ui ≤ v, i= 1, 2.

(d) In the case of monotone perturbations, as considered in Theorem
1.1(b), one may wish to combine bounds (1.3) and (1.4) to derive a
linear comparability result for Λ(u1) ∆Λ(u2) = Λ(u2)\Λ(u1). With v̄=u1

in this case, note that the terms in these two inequalities differ only by
specific appearances of intersections with the restricted domain D−η.
Without further assumptions on either the structure of the domain D,
or the nature of the data gi and ψi, these intersections with D−η are
necessary to produce positive lower bounds on the Green’s function
(which is zero on ∂D). The following corollary provides one set of
assumptions under which linear comparability holds.

Corollary 1.2. Under the assumptions of Theorem 1.1(b), suppose
there exists η > 0 such that Λ(u2) ⊂ D−η and g2 − g1 is supported in
D−η. Then |Λ(u1) ∆ Λ(u2)| is bounded above and below by constant
multiples of the sum

‖ψ1−ψ2‖L1(∂D) + ‖g1− g2‖L1(Ω(u1)),

with multiplicative constants depending on n, D, η, δ, λ, and µ.

Comparing our results with the literature, a form of measure stability
is proved in [2], with square root dependence on changes to the data,
while many more stability results appear in [7], including stability with
respect to perturbations to the operator itself, which we do not treat
here. On the other hand, all of the quantitative bounds established in [7]
also involve the square root of data perturbations (along with many con-
vergence results without giving a rate). The closest result to our current
linear stability (Theorem 1.1(a)) can be found in [1, Theorem 4.1], where
the first author worked in the specific setting of D=B1, the unit ball in
Rn. We note that the result in [1] measures the full set Λ(u1) ∆ Λ(u2),
while the current work measures only the portion of this symmetric differ-
ence that is away from the boundary ∂D by some distance η>0. However
we are working in a more general setting here and consider both pertur-
bations to the right-hand side and boundary data for obstacle problems.
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Regarding linear nondegeneracy, our result (Theorem 1.1(b)) appears
to be new in the literature. One can find a form of linear nondegeneracy
bounds in [1, Theorem 5.7], where it is established that the Hausdorff
distance between free boundaries is linearly comparable to perturbations
of the Laplacian data, in the special case when free boundaries are
assumed to be regular. We note that the current work differs from [1,
Theorem 5.7] as we do not assume any regularity on the free boundaries,
we permit perturbations to the Laplacian that are supported on proper
subsets of the domain B (whereas the argument in [1] requires the
difference g2 − g1 to be uniformly bounded below by some positive
constant), and we allow perturbations to both the right-hand side and
boundary data.

As a final note on literature related to perturbed obstacle problems,
the reader should refer to [8] for precise formulas for normal velocity and
acceleration of free boundaries under sufficiently regular variations to
Laplacian and boundary data. The authors of [8] work in a global setting
(i.e., D = Rn) with compactly supported perturbations to Laplacian
data and constant “boundary” data (at |x| →∞). Finally, we note that
regularity of free boundaries is assumed in [8], as one may expect to
make sense of pointwise normal velocity.

Outlining the current work, in Section 2 we introduce notation and
state necessary lemmas from elliptic theory and potential theory. Then,
in Section 3, we prove Theorem 1.1 by splitting into cases where either
boundary data or Laplacian data are fixed.

2. Setting, notation, and preliminary bounds. We assume the
set D ⊂ Rn is a bounded, connected Lipschitz domain. In this section,
we collect preliminary lemmas we will use in the proof of Theorem 1.1.

2.1. The inhomogeneous Dirichlet problem in D. Considering
the situation in (1.1) when boundary data is fixed (i.e., assuming
ψ1 = ψ2), the difference w = u1 − u2 will satisfy an inhomogeneous
Dirichlet problem of the form

(2.1)

{
∆w = f in D,

w = 0 on ∂D.

The precise expression of the function f is not important at the moment
(though it may be instructive for the reader to identify values of f on
subsets of D depending upon the contact sets Λ(u1), Λ(u2), and regions
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of overlap between these), rather we note that tools for controlling
solutions to (2.1) with rough data f will thus help control differences
between u1 and u2. We direct the reader to [5] for a detailed treatment
of inhomogeneous Dirichlet problems in Lipschitz domains, though many
of the statements below come from [9].

We first note that (2.1) is solvable for general domains A and data f :

Theorem 2.1. [9, Theorem 1.2.1] Let A be a bounded domain in Rn.

Given any f ∈ W−1(A) (the dual space to W 1,2
0 (A)), there exists a

unique solution u= Tf ∈W 1,2
0 (A) to (2.1), in the sense that∫

A

∇u∇v =

∫
A

fv for all v ∈W 1,2
0 (A).

There exists a Dirichlet Green’s function for any bounded A:

Theorem 2.2. [9, Theorem 1.2.2] Let A be a bounded domain in Rn
and let T :W−1(A)→W 1,2

0 (A) be the operator defined in Theorem 2.1.
There exists a kernel function G(x, y) in A×A satisfying the following:

(a) G(x, y) ∈ C∞(A×A \ {(x, x) : x ∈A}).
(b) (1− ηy(x))G(x, y) ∈W 1,2

0 (A) where ηy(x) ∈ C∞0 (A) is any cutoff
function satisfying η ≥ 0 and η = 1 in Bε(y), ε > 0.

(c) G(x, y) =G(y, x) for every y 6= x.
(d) G(x, · ) ∈ L1(A) and

Tf(x) =

∫
A

G(x, y)f(y)dy for all f ∈ C∞0 (A).

Considering the low regularity expected for f in (2.1) in the context
of functions w = u1 − u2, we extend the representation found in
Theorem 2.2(d) to more general functions f :

Lemma 2.3. Let D be a bounded, connected, Lipschitz domain in Rn,
let G be the Dirichlet Green’s function on D, and consider

f ∈ Lq(D) with q > n.

Then the solution u= Tf to (2.1) satisfies the representation

u(x) =

∫
D

G(x, y)f(y)dy for all x ∈D.
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Proof. Fix x ∈ D. Since the Green’s function G(x, · ) belongs to

W 1,p
0 (D) for all p ∈ [1, n/(n− 1)) (see [6, Theorem 1.2.8]), the map

given by

If :=

∫
D

G(x, y)f(y)dy

is a bounded continuous linear functional on Lq(D) for all q > n/2 by
Hölder’s inequality. By Calderon-Zygmund theory (see [4, Chapter
9]), it follows that the solution map T : f 7→ u, taking f ∈ Lq(D) with

n/2< q <∞ to the solution u := Tf ∈W 2,q
0 (D) of

(2.2)

{
∆u= f in D,

u= 0 on ∂D,

is a bounded linear map.

Further, since W 2,q
0 (D) ⊂ C1,α

0 (D) when q > n, it follows that the

map T̃ : f 7→ u(x) (composition of T and pointwise evaluation at x ∈D)

is also continuous. Thus, we know by Theorem 2.2(d) that the maps T̃
and I agree whenever f ∈ C∞0 (D). Since C∞0 (D) is dense in Lq(D) for

all n<q<∞, we know that I(f) and T̃ (f) must agree for all f ∈Lq(D),
when q > n. �

For any parameter η > 0, we note that the restricted domain

D−η :=D \Nη(∂D) = {x ∈D : dist(x, ∂D)≥ η}

is a compact subset of D. Thus, the following uniform bounds on the
Green’s function follow from regularity and positivity of G (away from
the pole and away from the boundary ∂D).

Proposition 2.4. Fix δ > 0 such that D−δ 6= ∅ and consider Green’s
function G(ȳ, · ) with pole at ȳ ∈D−δ.
(a) For η > 0, there is a constant G=G(n,D, δ, η)> 0 such that

−G(x, ȳ)≥G for x ∈D−η.

(b) There is a constant G=G(n,D, δ)> 0 such that

−G(x, ȳ)≤G for x ∈D \Bδ(ȳ).

2.2. The homogeneous Dirichlet problem in D. Turning to the
situation in (1.1) when Laplacian data is fixed (i.e., assuming g1 = g2),
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the difference w = u1− u2 can be written as the sum of a solution to
the inhomogeneous Dirichlet problem (2.1) and a harmonic function Θ
satisfying a homogeneous equation of the form

(2.3)

{
∆Θ = 0 in D,

Θ = φ on ∂D.

To bound the function Θ and access the boundary data φ= ψ1−ψ2, we
utilize harmonic measures and properties of Poisson kernels in Lipschitz
domains. The sensitive dependence of solutions to boundary value
problems and the regularity of the boundaries themselves has been an
area of deep inquiry with contributions from many mathematicians.
Although many great references can be included in this context, we refer
the reader to [6] for a detailed development of the content necessary
for our setting.

We first note that (2.3) is solvable for Lipschitz D and continuous φ:

Theorem 2.5. [9, Theorems 1.3.1, 1.3.2(3) and equation (1.3.6)] Let
D be a bounded Lipschitz domain. Given any φ ∈ C(∂D), there exists
a Θ ∈ C(D) satisfying (2.3). Moreover, for every y ∈D there exists a
function K(y, · ) ∈ Cα(∂D), for some 0< α < 1, so that Θ satisfies the
expression

Θ(y) =

∫
∂D

φ(x)K(y, x)dσ(x).

The function K(y, · ) is the Poisson kernel on D, which can be defined
in general as the Radon-Nikodym derivative of harmonic measure ωy

with respect to surface measure σ on ∂D. Other expressions for K(y, · )
can also be found in [6, Corollaries 1.3.18 and 1.3.19], for instance.
Moreover, by [6, Theorem 1.3.17] and the definition of kernel function,
we conclude that K(y, x)> 0 whenever y /∈ ∂D. Thus, by compactness
of D−δ and continuity of K(y, · ) on ∂D, we derive the following bounds
on K:

Proposition 2.6. Fix δ > 0 such that D−δ 6= ∅. Then there exist
positive constants K =K(n,D, δ) and K =K(n,D, δ) such that

(2.4) K ≤K(y, · )≤K for all y ∈D−δ.
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3. Measure-theoretic changes to contact sets. We now proceed
with the proof of Theorem 1.1. As a general overview, we first isolate
cases where either the Laplacian or the boundary data are fixed. We
prove results in each of these cases first, then we conclude the proof of
our main result by applying standard ordering principles on solutions
to the obstacle problem.

Lemma 3.1 (linear control with perturbed boundary data). Take ui
and v̄ as in Theorem 1.1 and assume that g = g1 = g2.

(a) (linear stability) Suppose ȳ ∈D∩Λ(v̄) with dist(ȳ, ∂D)≥ δ > 0, and
choose η > 0. Then

|(Λ(u1) ∆ Λ(u2))∩D−η| ≤
(

K(n,D, δ)

λG(n,D, η, δ)

)
‖ψ1−ψ2‖L1(∂D).

(b) (linear nondegeneracy) Suppose ψ1 ≥ ψ2 on ∂D and Bδ(ȳ)⊂ Λ(u1)
for some δ > 0. Then

|Λ(u1) ∆ Λ(u2)| ≥
(
K(n,D, δ)

µG(n,D, δ)

)
‖ψ1−ψ2‖L1(∂D).

Proof. (a) To prove linear stability, we define v := OP (Lap =
g,Bdry = min(ψ1, ψ2)) and note that v ≤ ui ≤ v̄ holds in D, i = 1, 2.
Therefore, we have

Λ(u1) ∆ Λ(u2)⊂ Λ(v) ∆ Λ(v̄) = Λ(v) \Λ(v̄) =: L,

and it suffices to prove the desired bound for L∩D−η.

Define the auxiliary function Θ solving

(3.1)

{
∆Θ = 0 in D,

Θ = |ψ1−ψ2| on ∂D,

and define h := v̄− v−Θ. Note that h verifies h(ȳ) =−Θ(ȳ) and

(3.2)

{
∆h= χLg in D,

h= 0 on ∂D.

Since ȳ ∈ D−δ and Θ solves (3.1), we apply Theorem 2.5 and
Proposition 2.6 to conclude the existence of K > 0 such that

(3.3) K ‖ψ1−ψ2‖L1(∂D) ≥
∫
∂D

|ψ1−ψ2|K(ȳ, · ) dσ = Θ(ȳ).
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By Proposition 2.4(a) there exists G > 0 such that −G(ȳ, x) ≥ G
for all x ∈ D−η. Further, by g ∈ L∞(D) and L measurable, we know
that χLg ∈Lq(D) for any q > n, so combining (3.2) and Lemma 2.3, we
compute

Θ(ȳ) = −h(ȳ) = −
∫
L
g(x)G(ȳ, x) dx

≥ λ

∫
L
−G(ȳ, x) dx ≥ λ

∫
L∩D−η

−G(ȳ, x) dx ≥ λG |L∩D−η| .

Together with (3.3), this completes the proof of (a).

(b) To prove linear nondegeneracy, we use the same tools as in
the proof of (a), noting that ψ1 ≥ ψ2 implies v̄ = u1, v = u2, and
L = Λ(u1) ∆ Λ(u2) = Λ(u2) \ Λ(u1) in this case. Also note that
h= u1−u2−Θ satisfies (3.2).

By assumption that Bδ(ȳ)⊂Λ(u1), we have Λ(u1)∆Λ(u2)⊂D\Bδ(ȳ)
and so it follows from Proposition 2.4(b) that there exists G> 0 such
that −G(ȳ, x) ≤ G for all x ∈ Λ(u1) ∆ Λ(u2). Therefore, employing
Theorem 2.5, Proposition 2.6, and Lemma 2.3, we compute

K ‖ψ1−ψ2‖L1(∂D) ≤
∫
∂D

|ψ1−ψ2|K(ȳ, · ) dσ

= Θ(ȳ) =−h(ȳ) =−
∫
L
g(x)G(ȳ, x) dx

≤ µ
∫
L
−G(ȳ, x) dx ≤ µG |L|,

which completes the proof of (b). �

Lemma 3.2 (linear control with perturbed right-hand side). Take ui
and v̄ as in Theorem 1.1 and assume that ψ = ψ1 = ψ2. Assume δ, η > 0
are fixed and Bδ(ȳ)⊂ Λ(v̄) for some ȳ ∈D.

• (linear stability) We have

|(Λ(u1) ∆ Λ(u2))∩D−η| ≤
(

G(n,D, δ)

λG(n,D, η, δ)

)
‖g1− g2‖L1(Ω(v̄)).

• (linear nondegeneracy) If g1 ≤ g2 holds in D then

|Λ(u1) ∆ Λ(u2)| ≥
(
G(n,D, η, δ)

µG(n,D, δ)

)
‖g1− g2‖L1(Ω(u1)∩D−η).
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Proof. (a) For linear stability, we again define

v :=OP (Lap= max(g1, g2), Bdry = ψ),

so that v ≤ ui ≤ v̄ again holds; thus it suffices to prove the result for

L := Λ(v) \Λ(v̄)Λ(v) ∆ Λ(v̄)⊃ Λ(u1) ∆ Λ(u2).

We define the auxiliary function Φ solving{
∆Φ = χ

Ω(v̄)
|g1− g2| in D,

Φ = 0 on ∂D,

and define h := v̄− v+ Φ. It follows that h(ȳ) = Φ(ȳ) and

(3.4)

{
∆h= χL max(g1, g2) in D,

h= 0 on ∂D.

Note that we have χL max(g1, g2) ∈ Lq(D) for any q > n, and the as-
sumption on ȳ ensures Ω(v̄)⊂D\Bδ(ȳ). Thus, we apply Proposition 2.4,
Lemma 2.3, and gi ≥ λ in D to compute

G ‖g1− g2‖L1(Ω(v̄)) ≥−
∫

Ω(v̄)

|g1(x)− g2(x)|G(ȳ, x) dx

=−Φ(ȳ) =−h(ȳ)

=−
∫
L

max(g1(x), g2(x))G(ȳ, x) dx

≥ λ
∫
L
−G(ȳ, x) dx

≥ λ
∫
L∩D−η

−G(ȳ, x) dx ≥ λG |L∩D−η| ,

which completes the proof of (a).

(b) For linear nondegeneracy, we again use the tools introduced
in the proof of (a). With g1 ≤ g2, we have v̄ = u1, v = u2, and
L= Λ(u1) ∆ Λ(u2) = Λ(u2)\Λ(u2) in this case. Note that h=u1−u2+Φ
satisfies (3.4) where max(g1, g2) = g2 in this case. Thus, applying
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Proposition 2.4, Lemma 2.3 and gi ≤ µ in D, we have

G ‖g1− g2‖L1(Ω(v̄)∩D−η) ≤−
∫

Ω(v̄)∩D−η
(g2(x)− g1(x))G(x, ȳ) dx

≤−
∫

Ω(v̄)

(g2(x)− g1(x))G(x, ȳ) dx

=−Φ(ȳ) =−h(ȳ)

=−
∫
L
g2(x)G(x, ȳ) dx

≤ µ
∫
L
−G(x, ȳ) dx ≤ µG |L|,

which completes the proof of (b). �

3.1. Proof of Theorem 1.1 and Corollary 1.2. We conclude the
note with a quick comment on bringing together the results from the
preceding lemmata to prove Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. (a) Regarding linear stability, we recall v̄ as
defined in the statement of the theorem and further define

v =OP (Lap= max(g1, g2), Bdry = min(ψ1, ψ2)) and

w =OP (Lap= max(g1, g2), Bdry = max(ψ1, ψ2)).

Notice that we can apply Lemma 3.1(a) to the set difference Λ(w)∆Λ(v),
while Lemma 3.2(a) applies to Λ(v̄) ∆ Λ(w). The proof of part (a) of
Theorem 1.1 thus follows from these lemmata and the simple bound

|(Λ(u1) ∆ Λ(u2))∩D−η|
≤ |(Λ(v̄) ∆ Λ(v))∩D−η|
≤ |(Λ(v̄) ∆ Λ(w))∩D−η|+ |(Λ(w) ∆ Λ(v))∩D−η|.

(b) Proving nondegeneracy follows in a similar manner, where here the
function w satisfies

w =OP (Lap= g2, Bdry = ψ1),

due to the monotonicity assumptions on ψi and gi. The result
now follows by applying Lemma 3.1(b) to Λ(u1) ∆ Λ(w), applying
Lemma 3.2(b) to Λ(w) ∆ Λ(u2), and noting that these sets form a
disjoint decomposition of Λ(u1) ∆ Λ(u2) = Λ(u2)\Λ(u1) in this case. �
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Proof of Corollary 1.2. By assumption Λ(u2)⊂D−η and L= Λ(u2)\
Λ(u1), thus Theorem 1.1(a) produces the desired linear upper bound.
Meanwhile, assuming that g1 − g2 is supported in D−η, we have
‖g1− g2‖L1(Ω(u1)∩D−η) = ‖g1− g2‖L1(Ω(u1)) and the desired linear lower
bound then follows from Theorem 1.1(b). �
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