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Abstract

We explore the general question of correlations among different waveband luminosities in a flux-limited multiband
observational data set. Such correlations, often observed for astronomical sources, may be either intrinsic or
induced by the redshift evolution of the luminosities and the data truncation due to the flux limits. We first address
this question analytically. We then use simulated flux-limited data with three different known intrinsic luminosity
correlations and prescribed luminosity functions and evolution similar to the ones expected for quasars. We explore
how the intrinsic nature of luminosity correlations can be deduced, including exploring the efficacy of partial
correlation analysis with redshift binning in determining whether luminosity correlations are intrinsic and finding
the form of the intrinsic correlation. By applying methods that we have developed in recent works, we show that
we can recover the true cosmological evolution of the luminosity functions and the intrinsic correlations between
the luminosities. Finally, we demonstrate the methods for determining intrinsic luminosity correlations on actual
observed samples of quasars with mid-infrared, radio, and optical fluxes and redshifts, finding that the luminosity–
luminosity correlation is significantly stronger between mid-infrared and optical than that between radio and
optical luminosities, supporting the canonical jet-launching and heating model of active galaxies.

Key words: galaxies: active – methods: data analysis – methods: statistical – quasars: general

1. Introduction

When dealing with multiwavelength observations of astro-
physical sources, the question often arises whether the
emissions in different wavebands (e.g., optical, radio, infrared,
X-ray, gamma-ray, etc.) are correlated. Determining the
intrinsic correlations between these emissions is crucial for
addressing a large variety of scientific questions, e.g., the
relation between the emission processes and the sites and
mechanisms of the acceleration of particles (or more generally
the energizing of the plasma) responsible for these emissions.
A common practice is to plot luminosities in two bands against
each other for a sample of observed sources and determine the
luminosity–luminosity (hereafter L–L) correlation empirically.
However, more often than not such samples include sources
with a large range of distances, such as extragalactic sources
with a range of redshifts.4 Such samples are always subject to
observational selection effects that truncate the data. The most
common truncation arises in flux-limited data, where the fact
that lower (higher) luminosities in both bands are dominated by
sources at lower (higher) redshifts introduces a significant
artificial correlation in the observed luminosities (e.g.,
Chanan 1983; Feigelson & Berg 1983; Khembavi et al.
1986; Antonucci 2011; Pavlidou et al. 2012). The situation is
even more complicated, however, with extragalactic sources,
where, in addition to the observational selection effects, the
different luminosities may undergo similar or different
cosmological luminosity evolution, which can induce addi-
tional L–L correlation (Petrosian & Singal 2015). Figure 1
shows two examples of L–L scatter diagrams obtained from
flux-limited observed data (top panel) and simulated data
described below (bottom panel). The top panel is from actual

observed data, while the bottom panel is from a simulated
observed data set described below. In the latter case the
population has no intrinsic L–L correlation by design yet
displays a strong observed L–L correlation. Petrosian & Singal
(2015), using partial correlation coefficients and Efron–
Petrosian nonparametric methods (Efron & Petrosian 1992,
1999), showed that most but not all of the observed correlation
in the top panel is induced by the selection process.
In this work we explore the question of to what extent

observed correlations in multiwavelength flux-limited data are
indicative (or not) of intrinsic correlations, and we develop and
verify techniques for directly determining correlations and
distributions. In Section 2 we show analytically the extent to
which (i) truncations due to flux limits of the samples and/or
(ii) luminosity evolutions induce artificial L–L correlation and
the dependence of these effects on the characteristics of the
luminosity functions (LFs).
It should be noted that the questions under consideration

here not only are relevant for L–L correlations but also are
important for exploring the correlation, or generally the
relation, between any two characteristics (or variables), both
of which depend on and are obtained from the values of a third
independent characteristic. In such a case partial correlation
coefficients (based on, for example, Pearson or Kendall
statistics) must be used as explored here. In astrophysical
sources this applies to all extensive characteristics such as
luminosity, mass, or size, whose values can only be obtained
with the measurement of their distances, which are subject to
data truncation and in the case of extragalactic sources are
affected by cosmological evolutions mentioned above. Thus,
the procedures and results described here for L–L correlation
are relevant for considerations of correlations between any two
(similar or different) pairs of extensive characteristics.
In the next section we present some analytic calculations

showing the degree by which different effects mentioned above
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4 Exceptions arise in dealing with clusters of sources with sizes much smaller
than their distance (e.g., Galactic star clusters, sources in distant individual
galaxies, or clusters of galaxies).
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induce artificial L–L correlation. In Section 3 we introduce and
explore simulated data sets with known intrinsic characteristics
of the LF with different degrees of intrinsic correlation between
different waveband luminosities. In Section 4 we explore the
efficacy of partial correlation analysis with redshift binning in
determining whether luminosity correlations are intrinsic. In
Section 5 we demonstrate that techniques applied in recent
works (Singal et al. 2011, 2012, 2013, 2014, 2016;
Singal 2015), based on extensions of methods first proposed
by Efron and Petrosian (Efron & Petrosian 1992, 1999), can
recover the intrinsic distributions and correlations of the
luminosities and redshifts in flux-limited multiwavelength data,
and we show that the intrinsic L–L correlations can be deduced
by considering the correlations between the de-evolved
luminosities. In Section 6 we demonstrate the use of partial
correlation analysis and the determination of the intrinsic L–L
correlations for two real multiwavelength data sets consisting
of radio and optical and mid-infrared and optical observations.
We summarize the main results in Section 7.

2. Analytical Considerations

Let us consider the general trivariate differential LF
x y r, ,Ȳ( ), where x and y stand for dimensionless (for algebraic

convenience) luminosities ({x, y}=L{x, y}/L0), in two
different photon energy bands (where the x, y notation indicates
that the equation in question applies to either x or y), and r
stands for a measure of the distance of the object, which for
extragalactic sources depends on redshift z (or Z≡1+z). r
can be the comoving metric distance DC(z) or the luminosity
distance DL(z). In what follows we will use the last choice, i.e.,
r will stand for DL.

5

The “differential” LF quantifies the differential number of
objects per infinitesimal bin in the relevant parameters, so
obtaining the total number of objects in some range of
parameter values involves integrating the differential LF over
those ranges, while a “cumulative” LF would quantify the total
number of objects above or below a certain value of a
parameter, that is, an integration over a certain range with a
limit of 0 or ¥. The luminosities in a sample are calculated
from the observed fluxes f f,x y. We express these dimension-
less fluxes in units of fiducial flux f L c H40 0 0

2p= [ ( ) ] so
that we get {x, y}=r2f{x,y}.
Without loss of generality we can write, for the full

differential LF,

x y r x y r r, , , , , 1rY = Y¯ ( ) ( ) ( ) ( )

with rr ( ) describing the differential density evolution—the
change in number density of objects—and Ψ(x, y, r) describing
the dependence on the luminosities and redshift. This simply
splits the full LF of both luminosities into a portion quantifying
the object density evolution and a portion quantifying every-
thing else. The differential density evolution ρ(r) is related to
the cumulative luminosity evolution σ(z) by

d r

dr
r

dV

dr
. 2

s
r=

( ) ( ) ( )

If we then consider a sample of sources with flux limits fl,x
and fl,y (in units of f0), they would have minimum luminosities
for inclusion in the sample as a function of r,

x r r f y r r f, . 3m l x m l y
2

,
2

,= =( ) ( ) ( )

Figure 2 graphically sketches some of the characteristics of a
(single-waveband, for clarity) LF when parameterized in this
way. The observed distribution of the sample—that is, the
number density of objects in the parameter space of x, y, and r
—is then related to these intrinsic luminosity distributions as

d N

dx dy dr

d r

dr
x y r x x y y, , , 4m m

3 s
= Y Q - Q -

( ) ( ) ( ) ( ) ( )

where Θ(b) is the step function (=1 for b>0 and 0 otherwise).
For convenience we also define the bivariate observed
luminosity distribution over just x and y luminosities (i.e.,
integrated over all r),

d N

dx dy
N x y d N dx dy dr dr, 5

r2

0

3
0

òº =( ) ( ) ( )

Figure 1. Two examples of observed optical–radio luminosity scatter diagrams
from flux-limited data sets: quasars from Singal et al. (2013; top), and a
simulated data set subject to similar flux limits and known input parameters,
but with no intrinsic luminosity–luminosity correlation developed in Section 3
(bottom). Colors represent different redshift bins. Black points are z�0.5,
dark-blue points are 0.5<z�1.0, light-blue points are 1.0<z�1.5, green
points are 1.5<z�2.0, yellow points are 2.0<z�2.5, orange points are
2.5<z�3.0, and red points are z>3.0. Also shown for the real data are
lines of constant ratio of the 5 GHz radio luminosity to the 2500 Å optical
luminosity, and the limiting luminosities for inclusion in the sample at example
redshifts of z=1 and z=3. It is clear that selection and redshift evolutions
can induce a correlation between the different waveband luminosities that is not
intrinsic. Some of the sharpness of the boundaries observed in the simulated
data is due to a high-luminosity cutoff included in the simulated data to make
the number of required data points manageable.

5 Note that in a static Euclidean case (for example, if one is dealing with
Galactic or nearby extragalactic sources) all these measures of distance are
equivalent.
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(where r0 is the maximum distance accessed by the survey),
and mono-variate distributions over just one luminosity,

dN

dx dy
N x y N x y d y x

,
, , , . 6

y x,m m
òº =

¥

{ }
({ }) ( ) { } ( )

{ }

We use the observed moments of these distributions to
determine the correlation between the two luminosities. For
example, the observed average value of luminosity x at each
fixed luminosity y value is

x y
x d N dx dy dx

dN dy
7x

2

m
ò

á ñ =

¥

( )
( )

( )

(because dN/dy is the number [density] of objects at that y
value, thus the denominator of the average), and we can
determine whether the observed average value of x depends on
or is independent of this y value, which is an indication of an
observed correlation or lack thereof, respectively, between x
and y.

We start by assuming that the luminosities are uncorrelated
(i.e., x and y are independent of each other) and that both are
independent of r, i.e., there is no luminosity evolution, and see
if an observed correlation is induced. In this case we can
separate the variables as x y r x y r, , y y rY =¯ ( ) ( ) ( ) ( ). Then, if
and only if the data are not truncated, xm=0 and r0 = ¥ and
Equation (7) simplifies to

x
x x dx

x dx
x , 80

0

int
ò

ò

y

y
á ñ = =

¥

¥

( )

( )
( )

and xint is a constant independent of y, thus resulting in no
observed correlation between x and y.

In what follows we will add the effects of data truncation and
consider what one would observe x yá ñ( ) to be given the data at
hand. We will consider several cases, starting with the
(mathematically) simplest case.

1. Simple Power-law LFs and No Luminosity Evolution:
Here x x x xx 0xy f= Q -d-( ) ( ) (similarly yy =( ) yy

yf Qd-

y y0-( )). The no luminosity evolution implies that fx,
x0, and δx are independent of r. The truncation due
to flux limits introduces distances r x fx l x0, 0 ,= and

r y fy l y0, 0 ,= below which the sample is not truncated.
We assume that r0,x<r0,y. The intrinsic average value
(and the value observed for untruncated data) is
xint=x0(δx−1)/(δx−2) obtained by putting these LF
forms into Equation (8). But for the truncated data the
observed average values are, using these LFs and limits in
evaluating Equation (7),

x y
dr dx x dr dx x

dr dx x dr dx x
,

9

r d

dr x r

d

dr x

r d

dr x r

d

dr x

0
1 1

0

x
x

x m

x

x
x

x m

x

0,

0 0,

0,

0 0,

ò ò ò ò

ò ò ò ò
á ñ =

+

+

s d z s d

s d z s d

¥ - ¥ -

¥ - ¥ -
( )

( )

where

r y y 1. 10y0, 0z º > ( )

In order to evaluate these integrals, we need the
functional form of d drs , which involves the product
of two functions: the density evolution and the comoving
volume. In general, this product is a complex function of
the above measures of distance, in particular the DL being
used here. Let us assume that we can approximate this
with a power law, dσ/dr∝r2+ β, with β presenting
roughly an evolution index. We then have, performing
the integrations,

x y x
d

d

1 3

1 3
with

4 2 . 11x

int
1

2

1

ò

ò

b h h

b h h

g b d

á ñ = ´
+ +

+ +

= + -

z g

z g

+

( )
( )

( )
( )

Hence, the result depends primarily on the index γ. For
γ>−1 (β−2δx>−5) the average value starts from
near unity and rises quickly as x y yá ñ µ( ) with increasing
y, while in the opposite limit of γ<−3 we get x yá ñ~( )
const., and in between it varies more slowly than linearly
with y. This indicates that in general data truncation
induces some correlation between the luminosities and
this correlation becomes stronger for larger values of the
density evolution index β and flatter LFs (smaller δx).
This is as expected because both these effects result in a
greater segregation of high- and low-luminosity sources
at high and low redshifts, respectively, in the L–L scatter
diagrams as shown in Figure 1.

2. Broken Power-law LFs:
If the broken power law applies only to one variable,

say, the break of the xLF at xbr, then, as evident from the
above analysis, the shape of the other LF (namely, y) is
unimportant, and the only complication is that in
Equation (9) we get three integrals in both the numerator
and the denominator (the second integral gets divided
into two at the break luminosity). As indicated above, a

Figure 2. Graphical sketch of some characteristics of a single-waveband
differential LF x z x z z, , rY = Y¯ ( ) ( ) ( ), where ρ(z) is the redshift density
evolution and xxy¢ ¢( ) is the local luminosity function, with x¢ being the “local
luminosity”—that is, the luminosity with its redshift evolution taken out. Here
x is being used to represent the luminosity in the particular waveband,
following the notation of Section 2, and all functions of the redshift z could
equivalently be expressed as functions of a cosmological distance measure r as
in that section. xm represents the minimum luminosity of objects that could be
present in the survey at some z>0 given the flux limit of the survey fl,x. The
LF extends to luminosities below this value but is not directly probed by the
survey in question.
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steeper LF induces weaker correlation; thus, we expect
that a steepening of the LF at higher luminosities, which
is often the case for most astronomical sources, will
reduce this effect. This can be seen by considering a very
large steepening (i.e., a large increase in value of δx
instead of changes of order unity seen in active galactic
nuclei [AGNs]), which essentially sets a ceiling for
the average near a value at the break luminosity
( x y xbrá ñ ( ) ).

Now, if the other LF also suffers a break (steepening
at ybr as is common), then the integration limits become
complicated depending on the relative values of the break
luminosities and relative values of high-luminosity
indices. In this case a numerical calculation, for specific
parameters of the LFs, is required.

3. Effects of Luminosity Evolution:
If the sources undergo luminosity evolution in one or

both wavebands, we can express this luminosity depend-
ence on redshift/distance with forms x=x′gx(r) and
y=y′gy(r). Here x′ and y′ will be referred to as the “local
luminosities,” meaning that they are the luminosity
values an object would have if the redshift evolution of
the luminosity were taken out (provided that we normal-
ize the evolution function so that g(0)=1). Now
luminosity evolution in x means that ψ(x) is no longer
independent of r, and evolution in y necessitates that ψ(y)
is also not, which means that it does not come out of the
dr integrals and divide out when evaluating Equation (7).
In order to obtain variables independent of r, we can
make the variable change in the integrals to x′=x/gx(r)
and y′=y/gy(r). We then get an equation very similar to
Equation (9) with x in the integrals replaced by x′ and
dσ/dr changed to dσ/dr×gx(r) (because dx=dx′×
gx(r)). Assuming positive luminosity evolution with
redshift, this increases the β index, which, as mentioned
above, increases the variation of the average observed
x with y and thus the observed correlation of the
(nonintrinsically correlated) luminosities. A possible
countereffect, however, is that with this variable change
the y value in Equation (10) is reduced (assuming
positive luminosity evolution in y) to y′, which generally
acts toward reducing the observed correlation. Since the
designations of which band is x and which is y for
this analysis are arbitrary, the effects must be symmetrical
to this distinction. Thus, perhaps counterintuitively,
the induced observed correlation due to luminosity
evolution is highest when the luminosity evolutions in
the respective bands are the most divergent.

The above results show that for flux-limited, multiwaveband
data sets, observational selection effects induce an artificial
correlation between luminosities, the exact degree of which
depends on the particular functional forms of the LFs and the
two luminosity evolutions, with greater difference in the latter
inducing greater artificial correlations between the luminosities.
The simulations discussed below show that these artificial L–L
correlations are indeed induced for such data sets.

3. Simulated Data Sets

In order to explore the effects of redshift evolutions and
observational selection effects on population characteristics, in
particular the L–L correlation, we simulate populations with

known intrinsic properties, such as LFs in two different
wavebands, undergoing comoving density and luminosity
evolutions similar to those for observed AGNs. From this we
then select an observed sample with two hypothetical flux
limits. To develop and highlight comparisons with recently
explored real populations (e.g., Singal et al. 2013, 2016), we
have assumed this simulated population to be “quasars”
observed by large-area surveys and labeled the two wavebands
“optical” and “radio,” but the conclusions as far as issues of L–
L correlations and population distributions are entirely general.
Our main goal is to see how well we recover the input
characteristics, in particular the assumed L–L correlation, using
the methods we used in the above papers and in Petrosian &
Singal (2015).

3.1. Simulated Population Characteristics

We have distributed the populations according to the
following intrinsic characteristics, now switching notation in
some cases to dimensionful luminosity La for the luminosity in
a given waveband and redshift z rather than the dimensionless x
and y and distance r used in Section 2. The populations have
intrinsic “local” (that is, before any redshift evolution effects
are considered) differential LFs that obey a simple power law
of the form

L
d L

dL
L L L , 12a a

a
a a a a

a
0, 0,ay y¢ = -

F ¢
¢

= ¢ Q ¢ -d( ) ( ) ( ) ( ) ( )

where LaF ¢( ) is the cumulative local LF. This results in a
power-law local LF (with power-law index δa) above an
assumed minimum luminosity for the population L0,a. We then
introduce luminosity evolution with redshift to the population
with the functional form used for our AGN studies, which has
been shown to be a good fit to the data (Singal et al.
2013, 2016):

L z L g z g z
Z

Z Z
with

1
, 13a a a a

k

cr
k

a

a
= ¢ ´ =

+
( ) ( ) ( )

( )
( )

where Z ≡ 1+z as above, with potentially different
parameters (δa, L0,a , ka) for each waveband. This form allows
for rapid evolution up to redshift zcr and then less rapid
evolution at higher redshifts, where rest-frame time changes are
smaller. The population also is simulated to have a comoving
density evolution ρ(z) or the differential number evolution

d z

dz
z

dV

dz
e , 14

z z
s2

m
2s

r= µ
- -( ) ( ) ( )

( )

where σ(z) is the cumulative number evolution discussed
above, with zm and s as the mean redshift and variance,
respectively. With the population characteristics distributed in
this way, the overall LF in a waveband a can be expressed as

L z z
L

g z
g z, . 15a a a

a

a
ar yY =

⎛
⎝⎜

⎞
⎠⎟

¯ ( ) ( )
( )

( ) ( )

This is because ρ(z) quantifies the object density evolution with
redshift, while what remains is the distribution over luminos-
ities (which may change with redshift, which is known as
luminosity evolution). To see that the latter is included,
consider that at a particular redshift z and particular luminosity
La one would be drawing from the local LF (a function of
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L L g za a a¢ = ( )) at a luminosity value that is lower (assuming
positive luminosity evolution with redshift) by a factor of
1/ga(z), and therefore drawing an appropriately higher
corresponding LF value to account for the redshift evolution
of the luminosity. However, to remain properly normalized so
that integrating over all luminosities gives the total number of
objects at any given redshift, the higher LF value must then be
divided by the factor ga(z). Mathematically, the latter can be
seen by noting the relation, given the luminosity evol-
ution, dL dL g za a a¢ = ( ).

The total number of observed objects is then

N dz dL z
dV

dz

L g z

g z
, 16tot

z

L z
a

a a a

a0

max

min
ò ò r

y
=

¥
( )

( ( ))
( )

( )
( )

where the value of Lmin(z) depends on the flux limit of the
sample in waveband a.

In what follows we simulate a population in two different
bands (which we will call optical and radio) with a simple
power-law intrinsic correlation between the local (prior to any
redshift evolution) luminosities:

L L , 17rad opt¢ µ ¢ a( ) ( )

where α is the correlation index. We explore the values
α=0.0 (i.e., no correlation) and two different degrees of
correlations with α=0.5 and 1.0.

For the luminosity evolutions, in order to span values
approximately matching the intrinsic characteristics of real
populations from previous analyses, we adopt the values
Zcr=3.7, kopt=3.0, and krad=4.5. For the LFs and density
evolution, also to approximate intrinsic values seen in previous
analyses, we adopt power-law indices, δopt=−2 and
δrad=−2, and zm=2 and s=0.75. We also assume that
the spectrum of sources in the short range of frequencies
around each band can be approximated by a power law

L , 18a anµ e- ( )

with photon index values of εopt=0.5 and εrad=0.4. We
form Monte Carlo populations with these distributions by
inverse transform sampling, which allows random numbers to
be generated uniformly on the interval [0,1] (e.g., Devroye
1986). For concreteness we consider the optical luminosity
density at 2500Å and the radio luminosity density at 1.4 GHz.

The inverse transform sampling method requires assigning a
lower and upper limit to the quantity being simulated, and the
choice of these limits determines how many objects must be
simulated in order to achieve a reasonable number of observed
objects once the observational limits are imposed. These limits
result in an effective maximum luminosity (which varies with
redshift because of the imposed luminosity evolution) and
additionally an effective minimum luminosity at very low
redshifts for the uncorrelated case, which can be seen visually
in Figures 4 and 5. However, because of the steepness of the
LFs and the relative lack of very low redshift sources, these
simulation cutoffs are much less significant for the observed
data set than the main observational truncation at low
luminosities—i.e., there are far fewer objects in the L–z regions
of the former than the latter. In the analyses discussed below in
Sections 4 and 5 we treat only the observational truncation, so
to the extent that we successfully recover the relevant intrinsic
population characteristics it is done in spite of the presence of

these additional and unaccounted-for cutoffs, highlighting their
subdominant nature and lack of significant effect on the
analyses.

3.2. Simulated Selection Effects

Because an optical observation is needed to identify a quasar
via colors and provide a spectroscopic redshift, only those
objects whose flux density is greater than the corresponding
assumed minimum for detection in both wavebands are
considered to be part of an observed sample. With the
populations simulated according to the intrinsic characteristics
of Section 3.1, we then apply simulated flux-limited “observa-
tions” in both wavebands. For simplicity, straightforwardness,
and a connection to real data, the optical survey is taken to
observe in a filter equivalent to the Sloan Digital Sky Survey
(SDSS) i band (e.g., Schneider et al. 2010) and have a universal
magnitude limit of 19.1 in that band, and the radio survey is
taken to be observing at 1.4 GHz and have a universal flux
density limit of 1 mJy. The former is a simplified version of a
limit that can be taken for the SDSS data release 7 quasar
catalog (Schneider et al. 2010), and the latter is a simplified
version of the limit of the Faint Images of the Radio Sky at
Twenty-Centimeters (FIRST) survey (Becker et al. 1995).
Figure 3 shows the optical–radio flux–flux scatter diagram for
two simulations: one for the case of no correlation (α=0), and
one with α=1. These are the simulated “observed” data we
start with.
From the flux density of each object j in waveband a, fj, a, we

calculate its luminosity density in that waveband with the
luminosity–flux relation

f
L K z

D z4
, 19j a

j a a

L
,

,

2p
=

( )
( )

( )

where DL(z) is the luminosity distance determined from the
standard cosmology and Ka(z) is the K-correction factor. For a

Figure 3. The i-band optical vs. 1.4 GHz radio fluxes for the observed
simulated data sets, for the case of intrinsically correlated (top—α=1.0) and
intrinsically uncorrelated (bottom—α=0) radio and optical luminosities. For
clarity and ease of presentation here we show fluxes of 10,000 randomly
selected sources. A possibly apparent discontinuity in radio flux at low optical
fluxes in the uncorrelated case is a visual artifact of the visually compressed y-
axis interfacing with the actual distribution of fluxes of the observed sources
and the selection of 10,000 objects for visual purposes and does not represent
an actual discontinuity in the data.

5

The Astrophysical Journal, 877:63 (13pp), 2019 May 20 Singal et al.



power-law spectrum as in Equation (18), the K-correction
factor is

K z z1 . 20a
1 a= + e-( ) ( ) ( )

In Figures 4 and 5 we show the optical and radio luminosities
versus redshift, and in Figure 6 we show radio luminosities
versus optical luminosities for the 10,000-object “observed”
simulated data sets. As evident, a strong observed correlation is
present even for the uncorrelated (α=0) sample.

4. Analysis with Binned Partial Correlations

Here we explore the efficacy of determining correlations
with data binned in redshift. In the limit of infinitesimally
narrow bins, the data within each bin should have no
appreciable luminosity evolution and will be truncated parallel
to the axes in the L–L plane, and therefore the phenomena that
induce L–L correlations discussed in Section 1 will be
irrelevant (select truncations parallel to the axes in the L–L
plane are shown in the top panel of Figure 1). Thus, redshift
binning has been used as a technique to deduce intrinsic L–L
correlations (e.g., Pavlidou et al. 2012). The question still
arises, however, whether analysis in finite-sized bins where
these effects do not disappear completely is effective.

A standard measure of partial correlations is the Pearson
partial correlation coefficient (PPCC; e.g., Rao & Sievers 2007),
which expresses the partial correlation between two variables
discounting their mutual dependence on a third:

r
r r r

r r1 1
, 2112,3

12 13 23

13
2

23
2 1 2

=
-

- -[( )( )]
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where rab is the standard sample Pearson’s moment correla-
tion (PMC—commonly known as Pearson’s r) between

variables a and b,

r
a a b b

N
, 22ab

i i i
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å
s s

=
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where a aa N i
1 2s = å -( ) is the standard deviation of the a

values and N is the total number of data points.
It is important to note that the PMC and PPCC are measures

of the extent to which two variables are correlated, in the sense
of being related by some function. However, they do not shed
any light on the nature of the correlation function itself, and a
higher value does not necessarily indicate a steeper correlation
function (or vice versa), only that the data more closely adhere

Figure 4. Optical luminosities vs. redshift for the observed simulated data sets,
for the case of intrinsically correlated (top—α=1.0) and intrinsically
uncorrelated (bottom—α=0) radio and optical luminosities. There is only
one selection-induced truncation visible, that of the main curve at low
luminosities, which increases with redshift. The apparent cutoff at high
luminosities (and an additional, minor one for low luminosities, which appears
at very low redshifts for the uncorrelated case) is not an observational effect but
rather an artifact of the underlying simulation and does not appreciably affect
the analysis here, as discussed in Section 3.1.

Figure 5. Radio luminosities vs. redshift for the observed simulated data sets,
for the case of intrinsically correlated (top—α=1.0) and intrinsically
uncorrelated (bottom—α=0) radio and optical luminosities. There is only
one selection-induced truncation visible, that of the main curve at low
luminosities, which increases with redshift. The apparent cutoff at high
luminosities (and an additional, minor one for low luminosities, which appears
at very low redshifts for the uncorrelated case) is not an observational effect but
rather an artifact of the underlying simulation and does not appreciably affect
the analysis here, as discussed in Section 3.1.

Figure 6. Optical vs. radio luminosities for the observed simulated data sets,
for the case of intrinsically correlated (top—α=1.0) and intrinsically
uncorrelated (bottom—α=0) radio and optical luminosities. As in Figure 1,
it is clear that the observed luminosities can be correlated even if there is no
intrinsic correlation between them.
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to the function, whatever it may be. In this work we calculate
PMCs and PPCCs using the logarithm of the luminosity values
(and linear redshift values), in order to reduce the potential
outsize effect of a small number of objects with a very high
luminosity in a given bin.

We bin the data and then examine (a) the two luminosity–
redshift correlations, (b) the L–L correlation, and (c) the partial
L–L correlation for two cases: (i) the raw observed luminos-
ities, and (ii) the so-called “local” luminosities with the best-fit
redshift evolution removed. The differences between the L–L
full and partial correlations between the two cases can reveal
how much of the L–L correlation is physically real and how
much is due to redshift evolution.

The most effective binning method for our needs, taking into
consideration the data that we deal with, was found to be an
equal number of objects per bin since objects are distributed
unevenly across redshift. If we divide bins instead with uniform
redshift size per bin, the few highest-redshift bins end up with
too few objects, resulting in unrealistic, erratic, and unreliable
correlation coefficients for these bins. The number of objects in
the least populated bins could be increased by increasing the
width of the bins in redshift, but this leads to severely flux-
limit-induced correlations as discussed above. On the flip side,
having an equal number of objects per bin and many bins
would lead to bins with excessively small redshift ranges due to
a high number of objects at those redshifts. While this does not
make the L–L correlations unreliable, it does hide intrinsic
luminosity–redshift correlations since the redshift range is too
small to detect redshift-dependent correlations. The optimum
number of bins is thus the result of a trade-off between having
some of the bins be too narrow and some too wide, and it
depends on the size of the data set.

The effects of cosmological evolutions and observational
selection biases can be investigated by examining both raw and
local luminosities for the uncorrelated and correlated simulated
data sets discussed in Section 3.
Figure 7 shows intrinsically uncorrelated simulated radio–

optical data in 20 bins of redshift for both raw (top panel) and
local luminosities (bottom panel). As expected, the radio–
optical partial correlation coefficients for both raw and local
luminosities are all approximately zero since these simulated
data were designed to have no intrinsic correlation between the
optical and radio luminosities. As hypothesized, in the top
panel of Figure 7 we can see that the radio–redshift and
optical–redshift correlation coefficients are nonzero since the
population has luminosity evolution. Since we are not using
infinitesimally small redshift bins, there is an automatic
influence of the flux limit on the luminosities vis-à-vis redshift,
which further contributes to a higher radio–redshift and
optical–redshift correlation. Moreover, the radio–optical full
correlation coefficients can be observed to be relatively higher
than the partial correlation coefficients because the former are
not disregarding their mutual dependence on redshift. This plot
also demonstrates the contrast between using large and small
bins. The last bin (at around average redshift of three, with the
largest redshift range) of both panels of Figure 7 shows a
relatively strong dependence of the luminosities on redshift,
and as a result it has a higher radio–optical raw luminosity full
correlation as well. This behavior is expected and is due to two
reasons: (1) as we discussed earlier, having larger redshift
ranges brings the flux limit effect into the luminosity
dependence on redshift, automatically and misleadingly
strengthening the correlation between luminosities and redshift,
and (2) having a larger redshift range shows a relatively large
artificial PMC correlation, which disappears using the partial
correlation PPCC.
In comparison, we expected luminosity dependence on

redshift and the radio–optical correlations to be smaller for the
local luminosities as shown in the bottom panel of Figure 7.
The utilization of local luminosities removes the redshift
evolution, allowing us to observe correlations that exist sans
redshift dependence. This is exactly what is seen, as the full
radio–optical and the partial radio–optical correlation coeffi-
cients align almost perfectly with each other in the bottom
panel of Figure 7. However, local luminosities still do not
remove the effect of the flux limit, which is why we do not see
a completely nonexistent redshift dependence in luminosities,
and which is why the last bin still has a relatively higher
luminosity dependence on redshift than the other bins.
Figures 8 and 9 show the cases of intrinsically correlated

simulated radio–optical data, with the correlation power-law
index (see Equation (17)) α=1.0 and 0.5, respectively, in 20
bins of redshift for both raw (top panel) and local luminosities
(bottom panel). Compared to the uncorrelated case, these
manifest some distinctly contrasting features. As anticipated,
the radio–optical partial correlation coefficients for both the top
and bottom panels of Figure 8 are higher than for Figure 9, and
both are much higher than in Figure 7 since the simulated data
were designed to have intrinsic correlation between the
luminosities. As in Figure 7, the luminosity–redshift correla-
tions are generally nonzero in the top panels and drop lower
(almost to zero) in the bottom panels of Figures 8 and 9 since
using local luminosities removes their intrinsic dependence on
redshift.

Figure 7. Radio–redshift, optical–redshift, and radio–optical PMCs, and radio–
optical partial with redshift PPCCs in 20 bins of redshift with an equal number
of objects per bin for raw (top) and local (bottom) luminosities for the
intrinsically uncorrelated simulated observed radio and optical quasar data.
Points are plotted at the average redshift and correlation values for each bin.
We see that the lack of correlation between the two luminosities is manifest and
that the luminosity–redshift correlations present in the raw luminosities are
removed when considering the local luminosities.
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We see from considering the above figures that full and
partial correlation analysis in appropriately sized bins of
redshift is a useful tool for determining presence or lack of,
and at least qualitatively the degree of, intrinsic correlation
between luminosities in a doubly flux-limited sample. The
simulated data sets with intrinsic correlations between the
luminosities (whether the actual form of the correlation is linear
or sublinear) show significantly higher partial correlations
between the luminosities and in particular the local luminosities
than is the case for the simulated data set with no intrinsic
correlation between the luminosities, which manifests nearly
zero average partial correlation between the local luminosities.

5. Demonstration of Nonparametric Techniques with
Simulated Data Sets

In recent works (Singal et al. 2011, 2012, 2013, 2014, 2016;
Singal 2015) we used multiwavelength extensions of methods
first proposed by Efron and Petrosian (Efron & Petrosian
1992, 1999) to recover the intrinsic distributions and correla-
tions of the luminosities and redshifts in flux-limited multi-
wavelength data. Here we apply these techniques to the
simulated data sets developed in Section 3 to demonstrate how
well we recover the input characteristics.

5.1. Luminosity Evolutions

We determine the correlations between luminosity and
redshift by using a variant of a rank test statistic modified
with the use of associated sets that are unbiased sets for

comparison. The test statistic

23
j j j

j j
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å

t =
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tests the independence of two variables in a data set, say, (xj, yj)
for j=1, ..., n. Here j is the dependent variable (y) rank of
the data point j in a set associated with it, n1 2 1j = +( )( ) is
the expectation value, and n1 12 1j

2 = +( )( ) is the variance,
where n is the number of objects in object jʼs associated set. For
untruncated data (i.e., data truncated parallel to the axes) the set
associated with point j includes all of the points with a lower
(or higher, but not both) independent variable value (xk<xj).
If the data are truncated, one must form the associated set
consisting only of those points of lower (or higher, but not
both) independent variable (x) value that would have been
observed if they were at the x value of point j given the
truncation. Figure 10 shows a graphical description of an
associated set for a given example data point.
If (x y,j j) are independent, then the ranks j should be

distributed randomly and τ should sum to near zero.
Independence is rejected at the mσ level if mt >∣ ∣ . To find
the best-fit correlation between y and x, the y data are adjusted
by defining y y F xj j j¢ = ( ) and the rank test is repeated, with
different values of parameters of the function F until y′ and x
are determined to be uncorrelated.
In the case here of multiband luminosity and redshift data,

for determining the redshift evolution of luminosity we can
treat redshift as the independent variable and the luminosities

Figure 8. Radio–redshift, optical–redshift, and radio–optical PMCs, and radio–
optical partial with redshift PPCCs in 20 bins of redshift with an equal number
of objects per bin for raw (top) and local (bottom) luminosities for the
intrinsically 1.0-correlated simulated observed radio and optical quasar data.
Points are plotted at the average redshift and correlation values for each bin.
We see that the strong correlation between the two luminosities is manifest, that
the luminosity–redshift correlations present in the raw luminosities are
removed when considering the local luminosities, and that removing the
luminosity–redshift correlations decreases the divergence present in some bins
between the PMCs and PPCCs for the luminosity–luminosity correlations.

Figure 9. Radio–redshift, optical–redshift, and radio–optical PMCs, and radio–
optical partial with redshift PPCCs in 20 bins of redshift with an equal number
of objects per bin for raw (top) and local (bottom) luminosities for the
intrinsically 0.5-correlated simulated observed radio and optical quasar data.
Points are plotted at the average redshift and correlation values for each bin.
We see that the strong correlation between the two luminosities is manifest, that
the luminosity–redshift correlations present in the raw luminosities are
removed when considering the local luminosities, and that removing the
luminosity–redshift correlations decreases the divergence present in some bins
between the PMCs and PPCCs for the luminosity–luminosity correlations.
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as dependent variables. The problem becomes one of
determining the evolution factors ka(z) in the functions
ga(z) in Equation (13) that render each luminosity uncorre-
lated with redshift. In the three-dimensional case, properly
taking into account the data truncations is important because
we now are dealing with a three-dimensional distribution
(Lrad, Lopt, z) and two correlation functions (grad (z) and gopt
(z)), plus we can find the true intrinsic correlation in this case
because the truncation effects in the luminosity–redshift
space are known and redshift is the independent variable in
both cases.

Since we have two criteria for truncation, the associated set
for each object k includes only those objects that are
sufficiently luminous in both bands to have been in the survey
if they were located at the redshift of the object in question. The
luminosity cutoff limits for a given redshift must also be
adjusted by factors of gopt (z) and grad (z). Consequently, we
have a two-dimensional minimization problem, because objects
will drop in and out of associated sets as gopt (z) and grad (z)
change, leading to changes in the calculated ranks in
Equation (23).

We form a test statistic comb opt
2

rad
2t t t= + , where τopt and

τrad are those evaluated considering the objects’ optical and
mid-infrared luminosities, respectively. The favored values of
kopt and krad are those that simultaneously give the lowest
τcomb, and, again, we take the 1σ limits as those in which τcomb

<1. Figure 11 shows the 1σ and 2σ contours for τcomb as a
function of kopt and krad for the simulated data sets. We see that
the input intrinsic luminosity evolutions are recovered. We note
here that we were able to recover the input intrinsic luminosity
evolutions in the case of the intrinsically correlated luminosities
without consideration of an orthogonal “correlation-reduced”
radio luminosity as explored in previous works (e.g., Singal
et al. 2013).

5.2. Density Evolution

The cumulative density function σ(z) and differential density
function ρ(z) are related as in Equation (2). Expressed as a
function of z instead of distance, this would give for the

cumulative number of objects at redshifts less than z

z
dV

dz
z dz. 24

z

0òs r=( ) ( ) ( )

Following Petrosian (1992) based on the method of Lynden-
Bell (1971), which is equivalent to a maximum likelihood
estimate, σ(z) can be calculated by
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m j
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where the set of j includes all objects with a redshift lower than
or equal to z, and m( j) is the number of objects with a redshift
lower than the redshift of the object at redshift z that are in that
object’s associated set. In this case, the associated set is again
those objects with sufficient optical and radio luminosity that
would be seen if they were at redshift z. The use of only the
associated set for each object accounts for the biases introduced
by the data truncation.
However, to determine the density evolution, the luminosity

evolution determined in Section 5.1 must be taken out. Thus,
the objects’ optical and radio luminosities, as well as the optical
and radio luminosity limits for inclusion in the associated set
for given redshifts, are scaled by taking out factors of gopt(z)
and grad(z), which are determined as above. The preceding
method is fully adequate if there is a uniform selection function
across redshift for quasars at a given flux. The differential
density evolution dσ(z)/dz is shown in Figure 12. It is seen that
the input intrinsic redshift distribution of the population is
recovered.

5.3. Local LFs

We first obtain a cumulative local LF

L L dL , 26a a
L

a a a
a

ò yF ¢ =  
¢

¥
( ) ( ) ( )

Figure 11. The 1σ, 2σ, and 3σ contours for the simultaneous best-fit values of
kopt and krad of the simulated samples, for the forms of the luminosity
evolutions given by Equation (13), and for simulations with intrinsic (solid)
and no intrinsic (dashed red) correlations between the luminosities. It is seen
that the input intrinsic luminosity evolutions (kopt=3.0 and krad=4.5; see
Equation (13) in Section 3.1) are recovered to within small deviations.

Figure 10. Depiction of the associated set for a particular object in a
hypothetical single-flux-limited single-waveband survey. Associated sets are
introduced in Section 5.1.
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which, following Petrosian (1992) using the method of
Lynden-Bell (1971), Φa(La¢), can be calculated by

L
n k

1
1

, 27a a
k
F ¢ = +( ) (

( )
) ( )

where k runs over all objects with a luminosity greater than or
equal to La, and n(k) is the number of objects with a luminosity
higher than the luminosity of object k that are in object kʼs
associated set, which in this case consists of those objects that
would be in the survey if they were at object kʼs luminosity
considering the luminosity limits for inclusion at each object’s
given redshift in both optical and radio. The local LF La ay ¢( ) is

L
d L
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. 28a a
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In Section 5.1 we determined the luminosity evolutions for
the optical and radio luminosities. We can form the local
optical Lopt opty ¢( ) and radio Lrad rady ¢( ) LFs straightforwardly, by
taking the evolutions out. As before, the objects’ luminosities,
as well as the luminosity limits for inclusion in the associated
set for given redshifts, are scaled by taking out factors of grad(z)
and gopt(z), with krad and kopt determined in Section 5.1.
Alternate methods of determining the local LF exist, such as
binning objects in redshift and constructing the LF with the
1/Vmax method, as in Feigelson & Berg (2000). However,
using the method here with local de-evolved luminosities has
the advantage of using all of the objects to construct the
local LF.

Figures 13 and 14 show the local differential Lopt opty ¢( )
optical and radio LFs, respectively, determined for the
simulated data sets. Here we obtain the derivative of La aF ¢( )
by fitting a simple cubic spline interpolation to La aF ¢( ) and
taking the derivative at various points where the spline is well
behaved. We see that we recover the input intrinsic local LFs.

5.4. Intrinsic Luminosity–Luminosity Correlations

Having determined that binned PPCCs provide a potentially
reliable method of determining the presence of an intrinsic

correlation between luminosities, we use the technique
introduced in Petrosian & Singal (2015) to extract the best-fit
power-law form of that correlation assuming that the luminosity
evolutions have been determined as in Section 5.1. We perform
a variable transformation by defining the so-called “correlation-
reduced” local luminosity as

L
L

, 29a

L

L

crr
opt

fid

¢ =
¢
a¢( ) ( )

where Lfid is some fiducial luminosity to avoid exponentiating a
dimensioned number, whose actual value is irrelevant. Then for
a range of values of α we compute the median value of the

Figure 13. Local optical luminosity function Lopt opty ¢( ) for the simulated data
sets, for the for the cases of intrinsic (stars) and no intrinsic (squares)
correlations between the luminosities. It is seen that the input intrinsic local
luminosity distributions of the populations (δopt=2.0; see Equation (12) in
Section 3.1) are recovered. For reference a line indicating a power-law slope of
δopt=2.0 is shown.

Figure 14. Local radio luminosity function Lrad rady ¢( ) for the simulated data
sets, for the for the cases of intrinsic (stars) and no intrinsic (squares)
correlations between the luminosities. It is seen that the input intrinsic local
luminosity distributions of the populations (δrad=2.0; see Equation (12) in
Section 3.1) are recovered. For reference a line indicating a power-law slope of
δrad=2.0 is shown.

Figure 12. Differential density function dσ(z)/dz vs. redshift determined from
the simulated data sets calculated as in Section 5.2, for the cases of intrinsic
(stars) and no intrinsic (squares) correlations between the luminosities. The
normalization of dσ(z)/dz here is arbitrary. It is seen that the input intrinsic
redshift distribution of the population (zm=2.0, s=0.75; see Equation (14) in
Section 3.1) is relatively closely recovered. For reference a Gaussian with these
input characteristics is also plotted.
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PPCC between Lcrr¢ and Lopt¢ in bins. The value of α that results
in a median PPCC of zero is the best-fit value for the power-
law exponent for the intrinsic correlation between La¢ and Lopt¢ .

Figure 15 shows such a median PPCC versus α for the
intrinsically 1.0-correlated (black) and 0.5-correlated (blue)
simulated observed radio and optical quasar data, along with
those for two real data sets discussed in Section 6. The 1σ
range of uncertainties reported for these values is determined
by considering the χ2 versus α distribution. We see that this
technique recovers quite well the known power-law form of the
intrinsic correlation in the 0.5-correlated simulated data and
somewhat overestimates the power-law value in the case of the
1.0-correlated simulated data.

6. Demonstration: Luminosity–Luminosity Correlations in
Real Quasars

We now show a partial correlation analysis and determina-
tion of the L–L correlation index α of Equation (29) with two
real observed two-flux-limited quasar data sets: (1) a set of
optical and radio luminosities used in Singal et al. (2013), and
(2) a set of optical and mid-infrared luminosities used in Singal
et al. (2016). Part of this analysis applied to the radio–optical
data set was previously demonstrated in the conference
proceeding Petrosian & Singal (2015).

The best-fit redshift evolutions for the luminosities of the
form of Equation (13) are determined by Singal et al. (2013)
and Singal et al. (2016) respectively, with methods verified
here in Section 5.1.

Figure 16 shows the PMCs and PPCCs for the optical–radio
data set with 10 bins of redshift for both raw (top panel) and
local luminosities (bottom panel). As this data set is quite a bit
smaller than any of the simulated data sets considered above or

the optical–mid-infrared data set, a smaller number of bins are
warranted as discussed in Section 4. As can be seen there, the
radio–optical PPCCs are small yet not insignificant, with only
two bins exhibiting radio–optical PPCCs equal to or less than
zero. The radio–optical PMCs align almost perfectly with the
PPCCs in the bottom panel of Figure 16, indicating that
removing the redshift evolution removes almost all of the
excess induced correlation between the luminosities. The
radio–optical PPCCs maintain their magnitudes across both
panels of Figure 16, providing us with a fairly reliable
confirmation of the small yet not insignificant correlation
between radio and optical luminosities.
Figure 17 shows real mid-infrared and optical data in 20 bins

of redshift for both raw (top panel) and local luminosities
(bottom panel). Figure 17 can be observed to clearly have
features quite similar to the case of intrinsically correlated
simulated data—in particular the high PMCs and PPCCs that
do not diminish significantly for the local luminosities, as
shown in Figure 8. Figure 17 displays high L–L PMC and
PPCC values across all bins, signifying a high intrinsic
correlation between mid-infrared and optical radiation being
emitted by the observed quasars. Once we remove the intrinsic
redshift evolution of the luminosities and use local luminosities
(bottom panel of Figure 17), the infrared–optical PMCs drop
slightly compared to the case of raw luminosities (top panel of
Figure 17) and align almost perfectly with the PPCCs. This
indicates that the nonintrinsic, flux-limit-induced redshift
dependence of the luminosities is almost negligible in all but
the highest-redshift bin, where even in the bottom panel the full
infrared–optical PMC of the highest-redshift bin is larger than
the PPCC. This anomalous behavior predictably signifies that
the highest-redshift bin still has a nonintrinsic redshift
dependence of luminosities owing to the relatively larger

Figure 15. Median of binned PPCC values for the “correlation reduced local
luminosity” (see Equation (29)) vs. local optical luminosity for the cases of the
(1) intrinsically 1.0-correlated and (2) 0.5-correlated simulated observed radio
and optical quasar data, using 20 equally populated redshift bins. The best-fit
correlation between the luminosities is the α value that gives a median PPCC
value of zero, as discussed in Section 5.4. The best-fit L–L correlation power-
law index values are α=1.41±0.1 for the 1.0-correlated case and
α=0.65±0.1 for the 0.5-correlated case. We see that this technique is
somewhat reliable for recovering the known power-law form of the intrinsic
correlation in the simulated data.

Figure 16. Radio–redshift, optical–redshift, and radio–optical PMCs, and
radio–optical partial with redshift PPCCs in 10 bins of redshift with an equal
number of objects per bin for raw (top) and local (bottom) luminosities for the
real observed radio and optical quasar data from Singal et al. (2013). Points are
plotted at the average redshift and correlation values for each bin. We see that
the two luminosities are only moderately intrinsically correlated, as the PPCCs
are all positive but small.
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redshift range. These results indicate that the mid-infrared and
optical luminosities are highly intrinsically correlated, whereas
the radio and optical luminosities characterize a much smaller,
although still present, intrinsic correlation.

We can then apply the techniques of Section 5.4 to
determine the best-fit power-law form of the intrinsic
correlations between the radio and optical and mid-infrared
and optical luminosities. These are shown in Figure 18. The
results favor a higher power law of intrinsic correlation
between the mid-infrared and optical luminosities (favoring
an α∼0.7) than for the radio and optical luminosities
(favoring an α∼0.2). We briefly discuss the physical
implications of this in Section 7.

7. Summary and Discussion

Understanding the true correlation between luminosities in
different wavebands is important for testing models in a variety
of classes of extragalactic objects. However, it is unavoidably
the case that observational selection effects such as the flux
limits and the positive redshift evolution of LFs in different
wavebands make determining the actual presence or absence,
the extent, and the form of the intrinsic correlation between
different waveband luminosities for a class of objects from
flux-limited survey data complicated. Figure 1 demonstrates
that even intrinsically uncorrelated but flux-limited data can
manifest observed luminosity correlations. Our investigation is
summarized below:

1. We first demonstrate analytically in Section 2 the degree
to which the observational selection effects and lumin-
osity evolutions induce an artificial L–L correlation and
how this induced correlation is related to the parameters
describing the LF, luminosity evolutions, and comoving
density evolution. However, the bulk of the paper uses
various simulated data sets to demonstrate the presence of

induced correlations and the methods we use to determine
true intrinsic correlations.

2. In Section 3 we describe three simulated populations of
extragalactic sources with intrinsic properties (such as
LF, luminosity evolutions in two different wavebands,
and a common density evolutions) very similar to those
deduced for quasars or AGNs, at radio (1.4 GHz) and
optical (2500Å) bands: one with no correlation and two
with two different degrees of correlations, quantified as
L Lrad opt¢ µ ¢ a( ) with α=0.0, 0.5, and 1.0, respectively.
We then select simulated “observed” subsamples limited
by two different flux limits in the two bands, again similar
to observed quasar samples in the literature.

3. In Section 4 we determined via the simulated data sets
that considering full and partial correlations in bins of
redshift is a useful method for determining presence or
lack of, and at least qualitatively the relative degree of,
the intrinsic correlation between two waveband luminos-
ities in a doubly flux-limited sample. We also showed in
Section 5.4 a technique to estimate the power-law form of
the intrinsic correlation between luminosities.

4. In Section 5 we determined with the simulated data sets
that nonparametric statistical techniques first proposed by
Efron & Petrosian (1992) and Efron & Petrosian (1999)
and extended to multiwavelength analyses in recent
works such as Singal et al. (2011, 2013, 2014, 2016) can
successfully recover the correct redshift evolutions of
luminosities, redshift densities, and LFs of extragalactic
populations cataloged in flux-limited surveys.

5. In Section 6 we demonstrated the techniques developed
here for determining intrinsic L–L correlations applied to
two actual observed data sets. Using binned partial
correlation analysis, we show that mid-infrared and
optical luminosities show a stronger degree of intrinsic
correlation than radio and optical luminosities. This is

Figure 18. Median of binned PPCC values for the “correlation-reduced local
luminosity” (see Equation (29)) vs. local optical luminosity for the cases of the
(1) real radio and optical and (2) real mid-infrared and optical quasar data. A
total of 10 and 20 equally populated redshift bins were used for the former and
the latter, respectively. The best-fit correlation between the luminosities is the α
value that gives a median PPCC value of zero, as discussed in Section 5.4. The
best-fit L–L correlation power-law index values are α=0.25±0.15 for
radio–optical and α=0.75±0.1 for mid-infrared–optical.

Figure 17. Infrared–redshift, optical–redshift, and infrared–optical PMCs, and
infrared–optical partial with redshift PPCCs in 20 bins of redshift with an equal
number of objects per bin for raw (top) and local (bottom) luminosities for real
observed mid-infrared and optical quasar data from Singal et al. (2016). Points
are plotted at the average redshift and correlation values for each bin. We see
that the two luminosities are very strongly intrinsically correlated.
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also manifested by larger index α of the intrinsic L–L
correlation for the mid-infrared sample than the radio one.

The very high degree of correlation seen in this
analysis between mid-infrared and optical luminosities in
quasars lends support to the picture of tori being heated
primarily by accretion disks. The significantly weaker
correlation between radio and optical luminosities can be
taken to support the notion that radio emission is affected
by both the accretion disk size and the black hole spin,
and maybe most importantly by the latter. These results
support an overall picture where black hole size
determines accretion disk size and luminosity, which
then dominates the optical emission and becomes the
primary driver of infrared emission via heating of the
torus, while both black hole spin and size, and perhaps
primarily spin, determine jet strength and therefore the
radio luminosity.
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