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The TV game show “The Price is Right” features a bidding auction called

Contestant’s Row that rewards the player (out of four) who bids closest to an

item’s value without overbidding. By exploring 903 game outcomes from the

2000-2001 season, we show how player strategies are significantly ineffi-cient, and

compare the empirical results to probability outcomes for optimal bid strategies

found in Kvam (2018). Findings show that the last bidder would do better using

the näıve strategy of bidding a dollar more than the highest of the three bids. We

use the EM algorithm to model the predicted merchandise value as a function of

player bids. These estimates allow us to demonstrate how one player’s observed

bid effects another player’s evaluation of the same merchandise.

Keywords: Anchoring, Auction, EM Algorithm, Logistic Regression, Order

statistics
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1 Introduction

The Price Is Right (TPiR) is a game show that has been running on American

television as early as 1956. With over 8000 episodes aired since its debut, TPiR is

one of the most well known and longest running game shows in US history. The

show features several games in which contestants from the audience compete to win

prizes by guessing the retail price of some featured merchandise. We have particular

interest in the segment called Items up for bid, in which four contestants from the

audience guess the value of a piece of merchandise, and the bidder who is closest

without going over the actual value wins the merchandise. This asymmetric risk

makes the TPiR game complicated, in terms of bidding strategy. Because of the

overbidding penalty, players tend to place a bid below what they believe is the true

value of the merchandise.

Each player (we will label them Player 1 through Player 4) reveals their bid

in sequence, starting with Player 1. This gives players who bid later a distinct

advantage, because they can sometimes increase their chance of winning by bidding

a dollar more than a previous player. According to the rules of the game, this action

virtually eliminates that other player’s chance of winning. It is clear that such a

strategy is optimal for the last bidder (Player 4). For example, suppose the first

three player bids are $700, $800 and $900. It can be easily seen that the best bid for

Player 4 would be one dollar more than one of the previous bids, or if they believe

the value of the merchandise is less than $700, they would bid one dollar.

In this paper, we examine the game outcomes of 903 Items up for Bid segments

from the 2000-2001 TPiR show. There is a modest amount of literature that con-

siders this type of auction, and we review some main findings in Section 2. The

data are introduced and summarized in Section 3, and in Section 4, we compare

how actual bidders contrast with the optimal strategies derived in Kvam (2018) as

well as the past results in Berk, et al Berk, et al. (1996). We examine what the

data reveal about player bidding behavior, and specifically on how a player’s actions

may be influenced by a player who bids before they do. These effects are akin to

“anchoring”, which we discuss in Section 5.
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2 Background

Most applied game theory models are based on auctions in which players are not

aware of the bids from other participants (Lorentziadis, 2015). In this TPiR auction,

the bid order is crucial for player strategy and imposes a unique asymmetry. With

no chance to win by overbidding, all players are motivated to bid below the perceived

value. At the same time, players gain information and distinct advantage by knowing

their opponents’ bid, so being the first bidder is a significant drawback. Player 4,

as mentioned earlier, has four rational bids to make that will optimize the chance

of winning: bidding one dollar more than one of the three previous bids, or simply

bidding a dollar in case the other three players have all overbid.

Past research has considered both the economic principles and behavioral mod-

eling for player bids using past game data. Berk, et al. (1996) showed apparent

faults with contestants’ strategies and proposed simple rules for rational bidders.

Their results were based on a limited number of games from the 1994-1995 season,

showing it was advantageous to bid last. They also demonstrated that contestants

tend to improve their strategies if they play repeatedly.

Estelami (1998) studied the impact of product-related factors on the players’

understanding of different product categories. Heally and Noussair (2004) conducted

an experimental study that showed similar suboptimal bidding behavior that was

found in Berk, et al. (1996) and Lorentziadis (2015). Lee, et al. (2011) used

the bids of the individual players to construct an aggregate bid that is superior to

estimates of individual players. Holbrook (1993) considers fundamental relationships

between the bidding behavior of the players and the kinds of merchandise that is

up for auction, and specifically the way television (TPiR in particular) affects that

relationship. Mendes and Morrison (2014) present optimal strategies for symmetric

games (each player has equal footing), including those where overbidding disqualifies

the bidder.

Kvam (2018) considered optimal bidding strategies for all four players, including

marginal strategies (when only one player shows strategy while the other three

players bid their perceived value) and conditional strategies, in which players adjust

their marginal strategy knowing the other players are simultaneously optimizing
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their bid. If all four players use conditional strategies, Player 4 maintains a large

advantage over the other three players, winning 56.7% of the time in simulated

outcomes. In contrast, Player 3 would win 21.7% of the games, Player 2 wins

11.6%, and Player 1 wins only 7.4%. When all players use conditional strategy,

there is a 2.5% chance they all overbid. Note that if all players gave independent

assessments of the merchandise, with a 50% chance of underestimating its value,

then we would expect them to overbid as a group with probability 1/16 = 0.0625.

Berk, et al. (1996) explored how players use suboptimal bidding on TPiR and

offer simple rules for the bidding behavior they observed. In this paper we use

statistical methods to characterize the bid behavior of the contestants, knowing they

are not always bidding their perceived value of the merchandise. We use actual data

from the TPiR 2000-2001 season, described in the next section. Bid behavior is not

thoroughly studied in the literature, but research exists to study auction scenarios

in which bid collusion is suspect (Graham and Marshall, 1987, Ballesteros-Perez, et

al., 2015). If we fail to acknowledge that players use concealment in bidding, it is

not possible to directly test the optimal bidding strategies in Kvam (2018) in order

to see how they applied to actual data. In this paper, we try to model the bidding

behavior using the opaque information provided by contestants.

3 Data From The 2000-2001 Season

We collected data from 903 games during the 2000-2001 season of The Price is Right

from the website titled “The Price is Right Stats” (see references). There are usually

six games per episode, but some data are missing due to typos from the webpage or

problems with uploading the data. During the game show, if all contestants overbid,

the host starts the bidding over. We only collected the first segment (when all four

contestants overbid) for those instances. Players who fail to win the first time the

game is played can reappear on the second game, and the evolution of bid behavior

for players who participate in more than one game is aptly studied in Berk, et al.

(1996). We do not have information on player identity, which could be an important

factor because players who lose in an Items Up For Bid segment will continue on

(with a new player selected from the audience) the next time that game is played.
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As a consequence, we have no information on the random effects of players which

may affect sequences of two or more games.

3.1 Frequency of Winners

From the 903 games, Player 4 was predictably most successful, winning 41% of the

time. Players 1, 2, and 3 won 16.2%, 17.1% and 17.9% of the games, respectively. In

7.9% of the games, all four players overbid. Similar results were obtained by Berk,

et al. (1996) in a sample of 48 auctions from 55 show broadcasts, presumably during

the early 1990s. In their sample, Player 4 won 40% of the time. Over the 2000-2001

season, we observed that contestants underbid a majority of the time (68%, 68%,

67%, 74% for Players 1 through 4, respectively). This is in line with a coherent

strategy, given the asymmetric loss incurred by overbidding.

We would not assume player bids are independent. The challenge in measuring

the actual correlation between bids is masked by the way players adjust their bids

in reaction to another player’s bid. This is especially true for bids that are a dollar

more than a previous bid, or with games in which a player bids one dollar. A one-

dollar bid, most frequently used by Player 4, signals that the player believes the

value of the merchandise is less than the previous bids on display. We will refer to

this strategy as plus-one bidding, even using this action to describe bids that are

within $10 of other bids.

It has been demonstrated that the plus-one bidding strategy is key to maximizing

a player’s win probability (mostly for Player 4, the last bidder), and we will reaffirm

from the data that many players failed to apply such a strategy. We consider the

reasons and consequences of plus-one bids, and how we can estimate a player’s

perceived value of the merchandise that is up for bid using this biased data. Next,

we consider a näıve strategy for Player 4 that is based only on previous bids and

not on the player’s random assessment of the merchandise.

3.2 Näıve Bidding Strategy

We noted that all players have a tendency to bid below the value of the merchandise,

and this can be seen if we consider the four bids as order statistics. As a simple

example, suppose players are independently bidding the value they believe for the
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merchandise, and their belief is such that they are just as likely to overbid as to

underbid. According to probability, the second smallest bid will most frequently win

(the probability of two bids under and two bids over, assuming the likelihood of an

exact guess is negligible, is 6/16 = 0.375). That is, based on binomial probabilities,

the probability of winning, from the lowest to the highest bid are 4
16 ,

6
16 ,

4
16 and 1

16 ,

with a probability 1
16 that no one wins due to everyone overbidding.

The data demonstrate that players do not bid independently this way. In the

2000-2001 season data, the lowest bid won 15.1% of the time. The second lowest

bid won 15.4% of the games, the third lowest won 13.7%, and the highest bid won

47.8% of the games. Because we understand players are more likely to bid below

the merchandise value, these observed frequencies are not expected to match the

probabilities of the order statistics, and this is borne out in the data.

During the TPiR season, Player 4 won the auction around 40% of the time, but

the findings here suggest Player 4 may do better by ignoring their judgement on

the merchandise value and simply bidding a dollar higher than the highest previous

bid. This what we call the näıve strategy. If we consider only the bids from the

first three players across the 903 games, all three players bid below the merchandise

value 48.8% of the time. This means Player 4 would have won nearly half the games

using the näıve strategy, which is 20% more often than Player 4 actually won during

the 2000-2001 season.

3.3 Player Evaluation and Plus-One Bidding

Consistent with Berk, et al. (1996) and Kvam (2018), Holbrook (1993) shows it

is frequently advantageous to use plus-one bidding (including a bid of one dollar),

and it is always optimal for the last bidder to do so. Players 2 and 3 always risk

having subsequent bidders boxing them out of the game by bidding one dollar more

than their bid, so they have incentive not to underbid, making every player’s game

strategy more complicated.

In the 2000-2001 data, players bid $1 in approximately the same frequency as the

optimal strategies found in Kvam (2018): the fourth player put in a minimum bid

of one dollar 18% of the time, while the other three players did this less than 1% of

time. Even though the strategy of bidding $1 may be optimal in theory, it was not
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to the advantage of the players, overall. In fact, the low bidder (the player who bid

$1) won less than one percent of the time. Given the frequency and the large scale

of underbidding by all players, the dollar bid has less chance of succeeding because

the probability that one of the previous bids was already under the merchandise

value is high.

Although plus-one bidding served as an optimal strategy for many game scenar-

ios, the data reflect the findings in Berk, et al. (1996) that players failed to use

this approach as frequently as they should have. In only 65% of the games played

were there any bids within ten dollars of each other (we expanded the range of bid

differences because players occasionally bid a few dollars more than a previous bid,

as if to generously grant their competitor a modest interval of potential values that

will allow them to win). In only 3% of the games did Player 2 bid under 10 dollars

or within 10 dollars of Player 1. In 11% of the games, Player 3 bid under 10 dollars

or within 10 dollars of a previous bid. Most surprisingly, in only 60% of the games

did Player 4 bid under 10 dollars or within 10 dollars of a previous bid. In only

one game (out of 903) did more than two bids deliberately top a previous bid by

a dollar, and that was game #683, in which Players 1 to 4 bid (respectively) 1000,

1001, 1002, and 1003 dollars for merchandise that was valued at $1030 (so Player 4

won).

These statistics suggest that there may be an implicit social cost for bidding one

dollar more that a previous bidder. Since Player 4 bid close to a previous bid (or bid

near one dollar) only 60% of the time, that player was using a clearly suboptimal

strategy for the other 40% of the games. The bidding data might suggest a social

norm is being enforced since players who bid one dollar more than a previous bidder

essentially eliminate them from competing for the prize in that game. There is no

explicit cost to this apparently efficient strategy, but the risk of appearing ruthless to

the audience or just to the other players might be an influence the player’s behavior.

Because the presence of one-dollar bids and plus-one bids obscures our ability to

assess the bidding behavior of the four players, in the next section we consider how

the information from player bids is related to the actual value of the merchandise,

and how variability between players and variability between games (or merchandise)

effects this relationship. If players show a bias by underbidding, that bias may
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depend on the merchandise value. With the presence of plus-one bids, we treat the

player’s bid as a censored information.

4 Do Players Use Optimal Strategy?

The optimal strategies established in Kvam (2018) rely on simulation-based em-

pirical results in which players obtain their assessed value of the items up for bid

independently. Each player’s strategy uses information provided by the previous

bidders. We denote the merchandise evaluations of Player 1 to Player 4, respec-

tively, as X1, X2, X3, X4, implying that player evaluations are governed by some

joint distribution, while the actual evaluations (x1, x2, x3, x4) are not revealed by

the players. Instead, we observe their respective bids as b1, b2, b3, b4. Optimal player

strategies are summarized as follows:

1. Player 1 maximizes the win probability by bidding b1 = 0.975x1.

2. For Player 2, who observes the first bid as b1, if x2 > b1, then the win proba-

bility is maximized by bidding b2 = b1 +0.345(x2−b1). If x2 < b1, then Player

2 maximizes winning probability by bidding b2 = 0.975x2.

3. For Player 3, who observes bids ordered b1:2 < b2:2, if x3 < b1:2, then the

probability of winning is maximized by b3 = 0.963x3. If b1:2 < x3 < b2:2, then

Player 3 should bid b3 = b1:2 +0.249(x3−b1:2), and if b2:2 < x3, the bid should

be b3 = b2:2 + 1.

4. Player 4 maximizes win probability by bidding a dollar more than the largest

bid under x4, and by bidding a dollar if x4 is smaller than the three previous

bids.

If all four players use this optimal strategy, their respective win probabilities will be

0.075, 0.116, 0.216, 0.569.

The data do not allow us to see directly whether the players are using this type

of optimal strategy. Specifically, we want to know each player’s assessed value of the

merchandise (xi) but the data reveal only the observed bid value bi. If we replace the

bid by Player 1 with an optimal bid, for example, the bids that follow (from Players
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2, 3, 4) no longer represent player strategy, because those players were reacting to

the original bid, not the more optimal one.

In order to examine how player bids matched optimal strategies, we need to

generate a better guess of the player assessment than what is provided by the ob-

served bid. The adjustment presented below will provide an improved estimate on

player evaluations. To address the second point, we will construct optimal bids for

a player, and then consider the subset of the 903 games in which that player’s bid

is relatively close to that optimal bid. For those games, the subsequent bidders are

reacting to what is an approximately optimal strategy, and we will compare how

often that player wins in those games, compared to how frequently that player wins

overall.

4.1 Modeling Player Evaluations

If we treat plus-one bids as censored variables, we may be able to get a better

understanding about the underlying bidding behavior of the players. For example,

if we observe bi = 1 from Player i, we may assume the player’s evaluation xi is

actually between $1 and the smallest bid observed up to that point. In general, if

a player bids one dollar more than a previous bid, we treat that as right-censored

data (or possibly interval censored if it was not the highest bid observed at that

point).

In this section, we model the observed player bids as a function of merchan-

dise value using a basic regression model and treating plus-one bids as censored

observations. We model the joint density of the four bids using the marginal dis-

tribution of the first player’s bid, the conditional distribution of the second player’s

bid (given the first), and so on. For computational convenience, we use an EM-

algorithm (McLachlan and Krishnan, 2014) to avoid likelihood formulations with

censored data. That is, we initially replace censored values with näıve estimates

of the data (e.g., midpoints) and then use EM-iterations to improve the estimated

regression coefficients until the model converges.

Because the bids from Players 2, 3, and 4 are affected by the previous bids, the

most useful evidence of bias (toward underbidding) in a player’s bidding behavior

is provided by the initial bid from each of the 903 games.
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Figure 1: First player bid (regression on blue line) compared to merchandise value
(red line). Regression estimates β̂0 = 559.8 (s.e. = 32.3), β̂1 = 0.320 (s.e. = 0.025),
σ̂ = 384.0.

Figure 1 shows the linear regression of the first player’s bid as a function of mer-

chandise value. In the regression, we see a large amount of variance across different

values of merchandise, along with the effect that players tend to overestimate the

lesser-valued merchandise and underestimate merchandise of high value. This is ex-

pected, and presents a reasonable model of player behavior. If b1 represents the bid

from the first player, and v represents merchandise value, then the regression model

E(b1) = β0 + β1v provides a convenient way to estimate player bias. For any game

with an item up for bid of value v, players, on average, will underbid an amount

τ(v) = v − (β0 + β1v) = (1− β1)v − β0.

Let bki be the actual bid from Player k in game i, where k ∈ {1, 2, 3, 4} and

i = 1, 2, · · · , 903. Then we estimate the player’s perceived value of the merchandise

to be

yki = bki + (vi − β̂0 − β̂1vi) = bki + τ̂i(vi)

where τ̂i(vi) = vi(1 − β̂1) − β̂0 is the estimated bias for merchandise with value vi

based on Player 1 bid data for all 903 games.

With data (b1i, b2i, b3i, b4i, vi), we generate estimates of player evaluations using

simple linear regressions on player bid data. The details for these regressions are
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relegated to the appendix. With incomplete data, we apply the EM Algorithm to

find maximum likelihood estimates of the regression parameters, and also use the

missing-data estimates to illustrate the variability between player bids and how it

changes as a function of merchandise value. As a result, the plus-one bids will not

fully obscure our ability to characterize this variability.

Step 1. Generate initial estimates of player evaluations based on plus-one bids using

midpoints for interval censored bids (and one-dollar bids), and adding 20% for

left-censored bids.

Step 2. Use regression to model first bid as a function of value and estimate player

bias τ(v) as a function of value.

Step 3. Model second bid as a function of value and Player 1 bid.

Step 4. Model third bid as a function of value and bids from Players 1 and 2.

Step 5. Model fourth bid as a function of value and previous bids.

Step 6. Use current regression model to estimate censored bids (E-step in the EM

Algorithm), and repeat regressions until estimated player evaluations converge.

The initial guess for the interval censored bids (we added 20% to the actual bid)

is admittedly arbitrary, but the EM iterations converge in a uniform manner for any

reasonable selection with this data, and required fewer iterations with this initial

condition.

4.2 Results of Study

After estimating player evaluations for each game, we went back to the optimal

bidding rules in Kvam (2018) to determine if players who bid optimally actually

performed better than expected. Optimal bids are a function of player evaluations

(x1, x2, x3, x4), and in their place we use the estimated player evaluations from the

EM iterations. To determine whether or not a player bid optimally, we selected the

subset of bidders from each game who bid within 50 dollars of the optimal rule.

This occurred between 19% and 58% of the time for the four players. Each optimal
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bid was considered individually, so some games may have no optimal bids, and some

could have more than one.

• Player 1 has the smallest chance of winning, overall, winning 16% of the games.

Out of 903 games, Player 1 bid optimally (within 50 dollars of the optimal

bid) 18.9% of the time, and won in 25.3% of those games.

• During the 2000-2001 season, Player 2 won 17% of the time. In 22.5% of the

games played that year, the second player’s estimated merchandise evaluation

led to a bid within 50 dollars of the optimal bid. In those games, Player 2 won

30.0% of the games.

• In the 903 games played that season, Player 3 actually won 17.9% of the time.

In 22.6% of the 903 games, Player 3 bid optimally, and from those games,

Player 3 won slightly more often (20.6% of the games).

• Player 4 bid optimally 58% of the time, which means that in 42% of the games,

Player 4 chose not to bid using the plus-one bidding rule. For those games in

which Player 4 did use the optimal bid, they won 47.1% of the games. Over

all games, Player 4 won 41% of the time, and in games where Player 4 did not

employ plus-one bidding, they won only 32% of the games.

The results show that all four players would have improved their winning chances

by using the optimal bids. The bid rules mostly help the first two players, who

improve their win probabilities by 58% and 76%, respectively. Players 3 and 4

improve win probability by 15%.

5 Anchoring & Bid Correlation

The available data for the 2000-2001 TPiR season gives us an opportunity to measure

and test how a player’s evaluation of the merchandise might be affected by another

player’s revealed bid for that particular merchandise. For example, suppose the

contestants are bidding on a gourmet outdoor grill with stainless steel grates and

built-in propane gas supply for six burners. Further suppose that Player 2 recalls

coveting such a grill with similar properties during a recent visit to Home Depot,
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but does not recall any of the actual grill prices. If pressed on the subject, Player

2 would guess the value of the grill displayed on the stage would be between $1000

and $2000. However, after Player 1 bids $3300 for the grill, Player 2 starts to believe

this initial evaluation was too low, and they end up bidding $2400.

This example of one player’s influence on another is akin to anchoring; the first

bid serves as an “anchor” for the other players. Anchoring is a cognitive bias that

leads people do depend too heavily on some information that may be only slightly

related to the merchandise they are assessing. For example, wine sellers may use

anchoring to great benefit by showcasing expensive bottles of wine to buyers as they

shop and think about a reasonable price to pay for the bottle they will purchase and

take home. The seller has no expectation of selling the prominently displayed $400

bottle of Château Margaux, but after seeing this expensive wine, some buyer might

lose some resistance to spending over $40 on more affordable bottle of Bordeaux.

Anchoring is also used in models where an initial auction price is treated as

an outlier (Ariel, et al. 2003). Although anchoring is typically associated with

irrelevant information (in terms of the item up for bid), recent studies by Beggs, et

al. (2009) and Ku, et al. (2006) have considered extended application for anchor

models, and Yang, et al. (2012) considered information gleaned from prior bidders.

We model the probability of underbidding using a simple logistic regression. In

Figure 2, the blue line represents the empirical probability Player 1 underbids, as

a function of merchandise value. Only for the least expensive merchandise ($500

and less) is Player 1 apt to bid higher than the actual value. The probability

of underbidding, on the other hand, keeps increasing as the value of merchandise

increases, and for the most expensive items up for bid, Player 1 almost always

underbids.

The red line in Figure 2 represents the conditional probability that Player 2

underbids given that Player 1 underbids. The bid by Player 1 serves as a potential

anchor for Player 2, and we can see that the conditional probability of underbid-

ding increases noticeably. The green line represents the conditional probability that

Player 3 underbids, given both of the previous players have entered a bid below

the merchandise value. Again, the probability is higher, suggesting anchoring is a

plausible factor for the observed bidding behavior.
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Figure 2: Conditional probabilities of underbidding for Player 2 (red) and Player 3
(green) along with probability of underbidding for Player 1 (blue).
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Figure 3: Conditional probabilities of underbidding for Player 2 when Player 1 bids
less than 67% of the true value (red), when Player 1 bids between 67% and 100%
(green) and when Player 1 overbids (blue).

14



In Figure 3, we see the frequency of underbidding for Player 2 broken into three

difference cases: (1) the red line shows the probability Player 2 underbids when the

first bid is at most 2/3 the actual value of the merchandise, (2) the green line shows

the probability when the first bid is higher than 2/3 of the value but still under the

actual value, and (3) the blue line shows the probability Player 2 underbids when

Player 1 overbids. This figure illustrates how the initial bid by Player 1 can affect

how Player 2 evaluates the same merchandise, but it also shows that this anchoring

effect is not as significant as the effect the merchandise value has on how frequently

a player overbids or underbids.

Figure 4 shows the probability Player 2 underbids as a function of first bid, in

terms of its proportion of the merchandise value. In this case, we are averaging over

the actual merchandise value, and focusing on how much (in percentage value) the

first player overbids or underbids. This result is based on a simple (linear) logistic

regression. For example, if the first bid is only half the value of the merchandise, the

second player (if properly informed) would benefit by bidding higher. However, in

the actual games, Player 2 underbids 84% of the time, on average, in this situation.

On the other hand, when Player 1 overbids by 50%, the second bidder has ample

opportunity to increase their chance of winning by staking a lower bid. Nonetheless,

in these scenarios, Player 2 enters a bid that is below the merchandise value less

than 25% of the time.

6 Discussion

This study examined player bidding behavior on the “Items Up For Bid” section

of the daily game show The Price Is Right. Readers familiar with the game show

and the potential irrationality of player behavior in a reality TV environment would

not be surprised at the suboptimal player behavior exhibitied and quantified in this

study. However, these results also give us a unique perspective of player behavior in

an asymmetric auction and helps to illustrate how one player’s bid may affect the

way other players conceive their own evaluation of the merchandise up for bid.

The results in Section 2 reaffirm many of the results found in Berk et al. (1996).

Not only do players bid suboptimally for all varieties of merchandise, but we found
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Figure 4: Logistic Regression showing probability Player 2 underbids as a function
of how much Player 1 underbids.

that during the 2000-2001 season, the last bidder could have improved their winning

percentage by employing a näıve strategy. That is, Player 4 would have have won

20% more frequently by ignoring any preconception they have about the value of

the merchandise and just bidding one dollar more than the highest bidder.

The probability model to determine optimal bidding in Kvam (2018) was tested

using the 2000-2001 TPiR data. Those bidding rules rely heavily on plus-one bid-

ding, along with bid-shrinking (lowering a bid below the perceived assessed value)

in order to maximize winning probability. To test these heuristics, we needed to

estimate player assessment (potentially different from what they actually bid) using

linear regression and the EM algorithm, treating plus-one bids as censored responses.

The optimal rules show that players can significantly improve their winning proba-

bility, especially for Players 1 and 2.

Finally, we consider how the first bid might anchor the second player and affect

their bidding behavior. Using simple logistic regressions, we show that player bids

may be greatly affected by how close the first bidder is to the actual merchandise

value, but the effect also depends on the value of the merchandise. The data show
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that if the first player grossly underbids, the second player is much more likely to do

the same. What the study does not consider, however, is how correlated those bids

might be due to the uniqueness of the merchandise up for bid. That is, the values

of some types of merchandise are much more likely to be underestimated, so this is

a confounded effect. However, Figure 4 shows that across all values of merchandise,

the probability Player 2 underbids is strongly dependent on just how close Player

1’s bid is to the actual merchandise value.

We saw in Figures 2 and 3 that effect of anchoring strongly depends on the value

of the merchandise. Figure 5 shows more detail about how the data are quantified.

The red arrows (downward) show how much (in percentage bid) the second bid

decreases after the first bid, while the blue arrows (upward) show how the second

bid increases after the first. We see that Player 1 often stakes out a bid well below

the actual value, and in those cases the observed increase in the second bid is not

surprising.

Berk et al. (1996) was able to focus on repeated game data from the same players.

Player identity was not used in our analysis, but it would provide a valueable insight

not only into measuring the suboptimal bidding behavior of the TPiR players, but

also the potential anchoring behavior exhibited by the same player over repeated

trials.

7 Appendix

The EM algorithm application from Section 4 is based on linear regressions. With

the assumption of normal errors in the traditional regression model, the joint likeli-

hood for assessment values is normal, constructed using the conditional distributions

from the individual regressions. Each player evaluation (x̂i) is estimated using the

merchandise value and the previous bids. Transformations for the explanatory vari-

ables or the response (using Box-Cox transformations) did not provide appreciable

improvements. For the case of x̂3, regression models used ordered bids b1:2 and b2:2

as explanatory variables. The model fits for the individual linear regressions are not

impressive (R2 values for evaluations for Player’s 1 to 4 are in the neighborhood

of 0.16, 0.39, 0.46 and 0.17), but the purpose of the regression is not to generate
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Figure 5: Second Bidder trends (after first bidder)

an exact prediction for player evaluations, but provide a coherent input to test the

optimality properties using the guidelines in Kvam (2018). The regression and the

E-step estimates are sufficient in this regard. The EM estimates converge sufficiently

in four iterations.

It is worth noting that the EM sequences may not be necessary; the results of

the study in Section 4.2 are nearly identical to the results obtained using the initial

estimates (based on midpoints) obtained in Step 1 of the algorithm described in

Section 4.1.
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