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THE TOPOLOGICAL STRUCTURE OF
MAaXIMAL LATTICE FREE CONVEX BODIES:

THE GENERAL CASE

I. Birany, H. E. Scarf, and D. Shallcross'

Abstract. Given a generic m x n matrix A, the simplicial complex K(A) is defined to be
the collection of simplices representing maximal lattice point free convex bodies of the form
{z : Az < b}. The main result of this paper is that the topological space associated with X(A)

is homeomorphic with R™~1.

1 Introduction

The major question in integer programming is to decide whether or not a given convex body
contains integral points. The convex body is usually given as the set of solutions to a system of
linear inequalities

Az < b (1.1)

where A is an m by n matrix (m > n) and b € R™. In this paper we prove a theorem describing
the topological structure of the collection of maximal lattice point free convex bodies of the above
form when the matrix A is fixed and b varies.

Let a; denote the ith row of A, so a; € R". We need the following conditions on A.

!The authors are, respectively, at the Mathematical Institute, Budapest, POB 127, 1364 Hungary, at the Cowles
Foundation, Yale University, New Haven, CT 06520, and at Bellcore, 445 South Street, Morristown, NJ 07962.

The first author was partially supported by Hungarian NSF grant 1909, the second author by NSF grant
SES9121936, and both the first and second author by the program in Discrete Mathematics at Yale University.



Al. There is a strictly positive row vector A € R™ with A4 = 0.
A2. If, for some i € {1. ..., m} and z € Z" a;z = 0, then z = 0.
A3. The » X n minors of A are all nonsingular.
The first and the third condition here imply that for any b € R™ the convex set
Ky={z € R™ : Az < b} (1.2)

is bounded. Condition A2 asserts that the hyperplane a;z = 3; contains at most one lattice point.
This condition is more stringent than necessary for our analysis and and can be relaxed to allow

an open set of matrices containing A in its interior.

Definition. K} is a maximal lattice free convex body (or MLFC body, for short). if
(1) K} has no lattice points in its interior,

(2) any closed convex body which properly contains K, does have a lattice point in its interior.

By Al and A3, K} is a convex polytope. Notice that if K} is a MLFC body, then sois z + K
for every z € 7ZZ™.

Condition (2) implies that every facet of a MLFC body K} contains a unique lattice point in
its relative interior. Let 2’ be this lattice point when the facet is defined by the ith inequality
a;z < fB;. Some inequalities a¢;z < B; may not define a facet of K} in which case the inequality
a;z < fB; can be replaced by e;z < B; with any 8; > 3; without changing K. Thus different
right-hand sides (i.e., different b’s) may give rise to the same MLFC body.

To avoid this ambiguity we set §; = +oo for an inequality that does not define a facet. A

convenient way to do this is to introduce “ideal points” w!, w?, ..., w™ by defining

+o0 ifi=7,
—o00 otherwise.

Let W = {w!, ..., w™}.



Assume now that A is a MLFC body. We shall represent it by an m-element set o C Z"UW

in the following way. For i = 1, 2, ..., m define

=t if a;z < fB; defines a facet, and z' € Z" is on this facet,

w' otherwise.

Let 0 = {s!, s%, ... s™}.

On the other hand, an m-element set ¢ C Z™ U W determines a convex set A} via
B; = max{a;s : s € o}, and b= (54, ..., ﬂm)T.

The set K, is a MLFC body if the elements of o can be indexed as ¢ = {s!, s?, .... s™} so that
the following holds: 3; = a;s' (¢ = 1, ..., m), a;8’ < B;, if 7 # 4, and there is no z € Z" with
a;iz < B;foralli=1. .., m.

Define now the complez K(A) associated with this collection of MLFC bodies as the sim-
plicial complex whose simplices are the finite sets o representing MLFC bodies together with
their subsimplices. The vertex set of K(A) is Z™ U W so it is infinite. Given a simplex
o = {2}, ..., 2P, wh, .., wit} € K(A) with p > 1, its cell, |o], is the set of all abstract mized
combinations from o that are defined as

T = Z7(k)zk + Zﬂ(jg)wj‘ (1.3)

P q
k=1 =1

where v(k),8(j¢) > 0 and Y% v(k) = 1. Notice that |o| is not a subset of R" since the points z*
and w’ are thought of as abstract points.

The body of K(A), |K(A)|, is the union of cells of simplices o containing at least one non-ideal
point. This is not the usual definition of the body of a simplicial complex but it suits our purposes
well.

We will show later (Lemma 2 in Section 5) that every point of [K(A4)| is contained in finitely
many cells of K(A), i.e., K(A) is locally finite except possibly at the ideal points. This implies
that the topology of |[K(A)| is well defined.

Now we can state our main result.



Theorem 1. |K(A)| is homeomorphic to R™™!.

This theorem is a generalization of a result from [1] where the case m = n + 1 is considered.
The constructions and the proofs of this paper take their origin from [1], but a different and novel
approach is needed here at several places: the well conditioning assumption A3 is necessary here
to ensure local finiteness of K(A); there are no ideal points when m = n 4 1: and the geometric

realization of K(A) (see Section 7) is simpler in [1].

2 Examples

Before presenting further theorems and the proofs it is instructive to consider a few examples.
When m = n + 1, ideal points are not needed since every MLFC body is a simplex. When

n = 2 and m = 3. K(A) has a particularly simple structure (cf. [7]). Namely, there is a basis.

e!, €%, of the lattice ZZ2 such that the simplices of K(A) are lattice translates of {0, e!, el + €2}

and {0, €2, e! + €?}. The corresponding triangles and their lattice translates form a tiling of the

whole plane and constitute a simple geometric realization of K(A) as R? (see Figure 1).

5]
e? el +e°

Figure 1. The 3 x 2 case

When n = 1 and m = 3 the inequalities in the system (1.1) can be put in the form —z < G,
z < B2, < B3. The MLFC bodies are the intervals [k, k 4+ 1] (k € Z). They are represented by

simplices of K(A) of the form

{k, w?, k+1} and {k, k + 1, w’}.



The ideal point u' does not appear in any simplex of K(A). |[K(4)|is given in two ways in Figure

2: first the ideal points are in the plane, and, second, they are placed at infinity.

2 4

Figure 2. The 3 X 1 case

The case n = 2, m = 4 can be treated using results of [7]. In this case some three of the
inequalities in (1.1), a1z < B, axz < fBo, azz < f3, say, determine a bounded region and the 3
by 2 case applies. Each of the two types of simplices obtained from these three inequalities alone
is augmented by w* in order to get a maximal simplex in K(A). Some other three inequalities,
a,2 < fPa, a3z < 33, agz < B3 say, also determine a bounded region, and the 3 by 2 case applies
again. Of the ideal points only w! and w* are needed and they only appear in this way. The
remaining maximal lattice free bodies do not involve the ideal points; the four lines corresponding

to the four inequalities are placed at four lattice points z!, z2, 23, z* whose convex hull is a

Figure 3. The 4 x 2 case

parallelogram of unit area. One can visualize the abstract simplicial complex K(A) as the col-



lection of “3-dimensional” parallelograms. with vertices coming from Z*. The boundary of their
union consists of two pieces: each piece is homeomorphic to R? and corresponds to the tiling (of
R?) by triangles from the 3 by 2 subcases. (Above each tiling there is a suspension to infinity by
w! and w*.) This is what we like to call the quilted paplan.

As these simple examples show,not all ideal points belong to simplices of K(.4). On the other
hand, a result of Doignon [3], Scarf [6], and Bell [2] states that a MLFC body can have at most
2" facets. Thus for a maximal dimensional simplex o = {z!, 22, ..., zF, wit, ... wim=*} € K(4)
onehasn+ 1<k <2"

As we mentioned. the well-conditioning assumption A3 ensures the local finiteness of K(A).

An example due to Lovdsz [5] shows that if A3 does not hold, then K(A) may not be locally finite.

Figure 4. K(A) is not locally finite
The example is for the 4 by 2 case: two of the vectors, say a; and a; are opposite (a; + az = 0)
and have irrational slope. Figure 4 depicts two parallelograms {z!, 22, 23, 2%} € K(A4), from
an infinite sequence‘ of parallelograms that contain the point z* = 0 and correspond to MLFC
bodies. A3 is violated here by the 2 by 3 minor [al,ag]T of A.
We mention further that the same well-conditioning assumption A3 was needed in [5] in order
to show that the “shapes” of the MLFC bodies of the type K, (with A fixed, again) can be

approximated by the shapes of a finite subset of this type. Details can be found in [3].



-1

3 The Exponential Map

The proof of Theorem 1 will be based on a geometric realization of £(A). The key construction

is the ezponential map E : R™ x (0, co) — R™ defined by
E(z,t) = (exp{taiz}, exp{tasz}, ..., exp{tanz})T.

Quite often the parameter t € (0, co) is not important and we simply write E,(z) or E(z).
Consider now A € RT from condition Al and set
M={yeR} : [[or=1} (3.1)
1=1
Notice that M is the boundary of the strictly convex set {y € RT : Hy;\’ > 1}. Further,

Ei(z) € M for every z € R™.

We remark that, more generally, for a row vector u € R} with pA = 0 one could define

M(u)={ye R} : [Tvi =1}
1

It follows then that E,(z) € M(u) for every such u so that E; maps R" to (| M(u). In what
follows, however, we will only make use of this fact with u = A.
Define now V; = E(Z"), obviously V; C M. Moreover, no point of V; is contained in the

convex hull of other points of V;. Define
C: = RT + conv V3,

a convex set that has extreme points y € V;. Denote the standard basis of R™ by {e(1), ..., e(m)}.

Let v, ..., v» € V; (p > 1) and j1, ..., Jq € {1, ..., m} (¢ > 0) and define

F = conv{v?, ..., v"} + pos{e(j1), .., €(dq)} (3.2)

where convX and posX denote the set of convex combinations and non—negative combinations,
respectively, of the elements of X. Clearly, F lies in C; and is a convex polyhedron. F will be

called a face of C; if it is the intersection of C; with a supporting hyperplane. In this way we



can define vertices, edges, ..., facets of C; as well. It is easy to see that the vertices of C; are the
points in V.

The connection between A(A) and the facets of C; is established in the following theorem.
Theorem 2. There is a tg > 0 such that for t > ty the following statements are equivalent.
(1) o= {2, ..., 2%, w’t, ..., we} is a mazimal simplez of K(A) (i.e., p+g=m).
(2) F = conv{Ey(z!), ..., E¢(z?)} + pos{e(j1), ---, €(dq)} is a facet of C;.

It follows from Theorem 2 that for t > ¢y, p + ¢ = m holds for the facet F in (3.2).
The boundary of C; is going to be a geometric realization of the complex K(A). In order to

show this we have to prove that the boundary of C; consists of faces of the type (3.2).

Theorem 3. C; is a closed set. Its boundary consists of faces of the form (3.2) with v' = Ey(2')

for some 2t € Z" (i =1, ..., p).

Notice that every point of C; is of the form Y oy Ey(2') + 3 Bje(j) where the first sum is a
convex combination and the second is a nonnegative combination. Thus the first part of Theorem
3 implies the second. We mention further that Theorems 2 and 3 show that the combinatorial

structure of the face lattice of C; stabilizes after ¢t > 1.

4 72" Acts on K(A) and C

We mentioned earlier that K(A) is invariant under translations by integers. Precisely, given

z € ZL" define
z+ 2z whenz € R",
T:(z) =
z whenzeW.
The group of translations 7" = {T; : z € Z"} is isomorphic to Z" and leaves K(A) invariant,
ie., if 0 € K(A), then Ty(c) = {s+ 2z : s € 0} € K(A) as well. The orbit of o € K(A) under

T™ is the set of all simplices of the form T'o with T € T". Moreover, T™ acts transitively on the



vertices of K(A) (belonging to Z"), i.e., for every pair z,v € Z" thereis a T € T" with z = T'v.

So we have the following simple

Lemma 1. The orbit of every o € K(A) with 0 N 7L # O contains a simplex with a vertez at the
origin.

Z™ acts on the convex set C; as well in the following way. Given z € ZZ" define the m x m
diagonal matrix D, as

D, = diag(exp{ta;z}, ..., exp{tamz}).

D. : R™ — R™ is a nonsingular linear map and D™ = {D, : z € Z"} is a group isomorphic to

Z". Notice that D. leaves V; and RT invariant since
DzEt(ZO) = Et(Z + Zo) and DR = '_{'_L

It follows that D,C; = C; so that C; is invariant under the group ID™ of linear transformation.
This implies that if F is a face of C; then sois D, F. It is clear, moreover, that ID™ acts transitively
on the vertices of C; and therefore C; looks the same at every one of its vertices. Thus C; is a
highly symmetric convex set which is, as we shall see later, locally a polytope.

As the group T™ acts on |K(A)| one can factor it out to obtain the topological space |[K(A)|/T™.

We shall prove

Theorem 4. |K(A)|/T™ is homeomorphic to the direct product of the n-torus and R™~ "1,

This result is the natural extension of Theorem 2 from [1]. Its proof uses equivariance as well
but this time the exponential map is not simplicial and we have to use an unusual extension of

E, cf. (8.1).

5 Auxiliary Results and Proof of Theorem 3

We will need a few properties of the complex KC(A). The first is local finiteness which we state in

the form of
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Lemma 2. Each lattice point = € L™ is contained in a finite number of simplices of K(A).

Proof. It is enough to prove this for z = 0. Assume, to the contrary, that an infinite number of
maximal dimensional simplices, o(1), ¢(2), ... € K(A) contain 0. We can further assume (after

possibly reordering the rows of A and deleting some of the o(k)) that each (k) is of the form
o(k) = {z'(k), ..., 2P(k), wP*?, ..., w™}

where z!(k) = 0 (Vk) and

jgﬁfpaizj(k) = a;2'(k) =: Bik) (i= 1, ., p).

As the sequence o(k) is infinite, some of the §;(k) cannot be bounded. Assume (again by deleting

some of the o(k)) that

Bi(k) — B; fori =1, 2, ..., p/, and
Bi(k) Sfroofori=p +1, ., p

where 0 < p’ < pand B; < oo for i = 1, ..., p’. Notice that 8;(k) = a;z'(k) > @;z°(k) so that
Bi>0fori=1, .., p.
Moreover, the sets
Qk)={z € R" : e,z < Bi(k), i=1, .., P}
cannot be bounded (they contain the infinite sequence 2P(k)). Consequently the cone
QUO)={z€R"” : q;z<0,1=1, .., p'} CQ(k)

is not bounded. Now condition A3 readily implies that int Q(0) # ¢. Then Q(0) contains infinitely

many lattice points. But the sets
Q)N {z € B : az < Bi(k), i=p +1, ..., p}

form an increasing sequence as k — oo (since §;(k) /" o) and cannot be lattice point free. This

contradiction demonstrates Lemma 2. O
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Remark. The Lemma is equivalent to the fact that the number of one-dimensional simplices
of the form {0. =} € K(A) is finite. Such a z € Z" is a neighbor of the origin (cf. [7]). Therefore
Lemma 2 says that there are finitely many neighbors of the origin if A is well conditioned, i.e., it
satisfies A3; similar statements were proved in [9], [7].

We mention further that Theorems 2, 3, and Lemma 2 show that C; is locally a polytope
(when ¢ > tg). Indeed, every point of C; belongs to some facet by Theorem 3: and every facet
comes from a maximal simplex of (A) by Theorem 2. Then, by Lemma 2. any vertex v of C; is
contained in finitely many facets; C; has the structure of a polytope at any one of its vertices.

We need two more properties of the sets Kj. Both of them are stated in [1] for the n + 1 by

n case. The proof given there extends without difficulty and is, therefore, omitted.

Lemma 3. There is a 61 > 0 (depending only on A) with the following property. Let S be a finite

set of lattice points and define
K ={z € R" : Az < b} where §; = max{a:z : z € §}.

If K contains a lattice point in its intertor, then it contains a lattice point z such that a;z < B;—é;

foralli=1, ..., m.

Lemma 4. There is 6; > 0 (depending only on A) such that if o = {z%, ..., 2P, wh, ..., wia} €

1

K(A) with p+ ¢ = m and z is a lattice point different from z', ..., zP, then for some i €

{1, ooy mI\ {41, o Jo}

a;z > max ;27 + 6.

=1l,..,p

Proof of Theorem 3. We prove that C; is closed. We may assume ¢ = 1.

Notice that V is discrete, i.e., every compact set contains only finitely many elements of V. By
the definition of C, every element ¢ € C can be written as a mixed combination ¥ a;v'+ 3 B;e(j),
i.e., the first sum is a convex combination of some »* € V and the second is a nonnegative

combination. As V C R, 3 B;e(j) and every a;v' is less (componentwise) than c.
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Assume now that c is from the boundary of C. Then ¢ = limj—.co c(k) with c(k) = v(k) + f(F)
where v(k) € conv V and f(k) € RT for all k = 1,2, .... The sequence f(k) must be bounded
so we may assume (by considering a subsequence if necessary) that lim f(k) exists and equals
f € R}, say. Then lim v(k) exists and equals v = ¢~ f. As v(k) € conv V C R™, every v(k) can

be written as a convex combination of m + 1 elements of V:

v(k) = ai(k)v(k).
=0
Considering a subsequence if necessary we assume that lim a;(k) = «; for i = 0.1, ..., m. Clearly

a; >0and Y g a; = 1. To have convenient notation assume o; > 0 for i = 0. 1. wwjand a; =0
fori=j+1, ..., m. Then, for i = 0,1, ..., ], the sequence v*(k) must be bounded and we may
assume that lim v'(k) = v*. Since V is discrete, v' € V. Thus lim 37 a;(k)v'(k) = S aivt = u,
say. Consequently v — u = lim Z;"H a;(k)v'(k) and the limit is in R since every summand is
there. Thus ¢ = u + (v — u) + f and here u is of the form Zé a;v', a convex combination, and

(v-u)+feRT. O

6 Proof of Theorem 2

We essentially repeat the argument for the (n 4+ 1) X n case from [1] with the necessary modifica-
tions.

We show first that (2) implies (1). Let h be the normal to C at F) i.e.,
hy > 1 for all y € C, with equality for y € F. (6.1)

Clearly h = (hy, ..., hm)T is nonnegative and h; = 0 if and only if F'is parallel with e(i). To
simplify notation assume j; =m, jo,=m—1, ..., jo=m—qg+ 1. Thus h; =0if: > m—¢q+1
and we rewrite (6.1) as

m—gq
Z h; exp{ta;z} > 1 for all z € ZZ", with equality for z = 2l .., 2P (6.2)

1=1

It follows from the equality case that hjexp{te;’} < 1(i=1, .., m—gq, j =1, .., p),
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implying a;z/ < ~1log h;. So
. 1 )
max ;27 < -=log h; (i=1, ... m —gq). (6.3)
i=1,..p i
We wish to show that ¢ = {2, ..., 2P, w™ 9t . w™} € K(A) (in particular p + ¢ = m),

i.e.. there are no lattice points other than 2!, ..., 27 in
K:{.’L‘ERn car <P, i=10 . m—q}

where §8; = max{a;z’ : j =1, ..., p} and, further, that z!. ..., z? are on distinct facets of K.
Let z be a lattice point satisfying a;z < 8; for i = 1, ..., m — ¢ (z = 2/ is possible). Then, by

Lemma 3,fori=1, ..., m~g¢q
a;z <max{a;2’ : j=1, .., p} - . (6.4)
On the other hand, (6.2) shows that thereis an i € {1, ..., m — ¢} with

h; exp{ta;z} >

— 1 7 or, a;z > —%(log h; + log (m — q)).

Thus by (6.3)

1
a;z > —?log hi ~ —tl—log(m -q)

2 ma.x{a,-z] 2 Jj=1 .., p} - ?10g(m_‘ a),

contradicting (6.4) if ¢t > ¢; = %log(m - q).
It follows that K is a MLFC body and there is at most one z; on every one of its facets
implying p € m — q. Finally, p + ¢ > m follows from the fact that F is a facet.

We now turn to the second part of the argument and show that (1) implies (2). Assume
o= {2} ..,2%, wPt, ., w™} € K(A) (6.5)
(using convenient notation, again). Let h € RT satisfy h; = 0fori=p+1, ..., m and

hE(z)=1forj=1, ..., p. (6.6)
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We will show the existence of a t; such that hE(z) > 2 for every t > ¢, and 2z € Z", different from
21, ..., zP. Assume the vertices have been permuted so that a;z = max{a;z’ : j =1, ..., p}.

We compute Ay, ..., h, from the system of linear equations (6.6). By Cramer’s rule we have

e = det V
17 det(exp{ta;zi})

where N is the matrix obtained by replacing the first row by (1, ..., 1) in the matrix appearing
in the denominator. The determinant in the denominator can be written as the sum of p! terms,
each one based on a permutation of {1, ..., p}. But for each permutation =, other than the
identity, the corresponding term is (Il exp{a;2"()})* which is strictly less than (I exp{a;2'})! so
that for large ¢ this single term will be the asymptotic value of the denominator. Similarly, the
numerator is asymptotically equal to the same product with index ranging from 2 to p. Thus we
get that

hy = (1 + &1(t)) exp{—ta;z'}
with €1(t) — 0 as t — co. An identical argument gives that fori =1, ..., p
hi = (1 +ei(t))exp{—ta;z'}
with ¢;(t) — 0o as t — oo. In particular, there is a t, so that for all ¢+ > ¢, we have
hi > 2 exp{—ta;z' —t6y} fori=1, ..., p (6.7)

with é; the constant in Lemma 4 since 1+ ¢;(t) > 2exp{—16;} for large enough t.
Assume now that v = Ey(2) and z € Z" is distinct from z!, ..., z2P. We have to show that

hv > 2 for t > t;. But using Lemma 4 we get that
hv = Shiv; > T 2exp{—t(a;2' + 65)} exp{ta;z} > 2.

In this argument the value of {; depends on the particular simplex ¢ € K(A). In order to
complete the proof of Theorem 3 we must show that a single value suffices for all simplices. To
see this recall that if ¢ is the simplex in (6.5), then g9 = T,0 is a simplex of K£(A) again. It is

an easy matter to check now that if {; is the value given by the above argument for ¢, then the
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same value will do for og as well. This means that a single value of ¢, suffices for the orbit (under
the group T™) of a simplex. By Lemma 1 every such orbit contains a simplex with one vertex

at the origin. Lemma 2 implies that there are finitely many simplices in K(A) containing 0 and

consequently, finitely many such orbits. O

7 Proof of Theorem 1

Assuming t > to we suppress ¢ from the notation. Theorem 1 gives a geometric realization of
|KC(A)| as the boundary of the convex set C in the following way. We define a map f : [K(A)| — C.
Let

o=1{z, ... 2%, w, ... qu} € K(A)

be a simplex with p > 1. The abstract mixed combination from (1.3)

T = Z’y(k)zk + Z,B(jz)wj‘ (7.1)

k=1 =1

(which is a point of the cell || in [K(A)|) is mapped to

flz) = 1kVEG) + > Ble)ele)- (7.2)

14
k=1 =1

One can see easily that f is well defined, i.e., if z belongs to two simplices of X(A) then the
corresponding definitions coincide. Now f : |[IC(A)| — 0C is one-to-one by Theorem 3. Moreover
f is continuous in both directions as one can readily check. Thus f is a geometric realization of
|K(A)|, and so |[K(A)| and dC are homeomorphic. But dC is homeomorphic to R™~! so Theorem

1 follows. O

8 Proof of Theorem 4
Assume again t > to. We need to define an equivariant extension
E” : |[K(A)| —0C

of the exponential map E : K(A) — 8C. Equivariance here simply means that E*(T,z) =

D.E*(z)forall z € K(A) and all z € Z".
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It is easy to see that f in (7.2) is not equivariant since D.e(j) = exp{a;z}e(j). As E is
simplicial on the simplices ¢ without ideal points, for these simplices the extension of E is the
usual simplicial one: for z in (7.1) with ¢ = 0 we have E~(z) = Y %_, 7(k)E(z*). For a generic
point z € |K(A)| which is of the form (7.1) define

4 ,
E*(z) = iv(k)E(zk) + iﬂ(jg) > (k) exp{aj,z*Ye(je). (8.1)
k=1 =1 k=1
It is not difficult to check that E* is equivariant, one-to—one, and continuous in both directions.
Next, we define a map ¢ : 0C — M which is equivariant with respect to D., i.e., D.g(y) =
g(D.,y) for every y € OC and every z € ZZ™. Let R(y) be the ray starting at the origin and passing

through y and define simply

g(y) = M N R(y)

which is clearly a point in M. g is equivariant since R(D.y) = D,R(y) and M is invariant under

D,. We see now that the following diagram

k@A) £ o L M
T, | D, | D,|

K@) £ ec L M

commutes for every z € Z" implying that the quotient space |[K(A)|/T™ is homeomorphic to
M/D™.

M is homeomorphic to R™~! and a natural homeomorphism M — R™~! is the componentwise
logarithm of y € M. Write D* for the set of all m by m diagonal matrices whose diagonal entries,
dy, ..., dm, are positive and satisfy IITdi" =1 (cf. (3.1)). D* acts on M as the group T of all
translations acts on R™~!. D, is a discrete subgroup of D™ and the natural isomorphism D* — T
(taking componentwise logarithm of the diagonal entries) maps D, onto an n—dimensional lattice
of T*, isomorphic to Z". Thus the quotient space M/D,, is homeomorphic to R™~* /Z" proving

the theorem. O
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