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EDGEWORTH APPROXIMATION FOR MINPIN ESTIMATORS IN
SEMIPARAMETRIC REGRESSION MODELS

By OLIVER LINTON
DEPARTMENT OF ECONOMICS

YALE UNIVERSITY, NEW HAVEN, CT 06520

We examine the higher order asymptotic properties of semiparametric regression
estimators that were obtained by the general MINPIN method described in Andrews
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[1]. We derive an order n~! stochastic expansion and give a theorem justifying order

n~! distributional approximation of the Edgeworth type.

This paper is based on Chapter II of my Ph.D. thesis. I would like to thank T. J.
Rothenberg and P. J. Bickel for useful discussions and a co-editor for helpful comments.

I would also like to thank Glena Ames for retyping this manuscript.



1. INTRODUCTION

Semiparametric methods allow one to obtain precise estimates of certain key quan-
tities without fully specifying the probability distribution of the data, see for example
Andrews [1,2], Bickel [5], Bickel et al. [7], Hardle and Stoker [17], Linton [24], Manski
[26], Newey [31], Powell, Stock and Stoker [37], and Robinson [38,39,42,43]; for reviews,
see Newey [32] and Robinson [40)].

The notion of precise used by these authors rests on first order asymptotic theory
for large sample sizes. There are two main problems with this theory. Firstly, the
asymptotic distribution can provide a poor approximation to the actual distribution
of the statistic considered. Practical experience suggests that estimator performance
deteriorates with the number of nuisance parameters being estimated. Since semi-
parametric estimators take account of an infinite dimensional nuisance parameter, one
must expect a potentially large small sample cost that is not reflected in the limiting
distribution®. Secondly, a large number of choices have to be made in constructing the
estimators about which this asymptotic theory provides little guidance. These choices
can substantially affect the magnitude of estimators and test statistics.

We suggest using higher order approximations to overcome these problems. These
methods have found considerable application in econometrics, see inter alia: Sargan
[47], Phillips [35,36], and Rothenberg [44,45]. In other work, Linton [22,23], we have
developed detailed “second order” moment approximations for various semiparametric
estimators in regression models, including: the partially linear model considered in
Robinson [39] and the heteroskedastic linear regression considered in Robinson [38].
These approximations quantify the small sample cost of the semiparametric estimation
strategy in terms of a few interpretable quantities. This provides information about
the choice of method, e.g. kernel versus nearest neighbor, and the choice of smoothing
parameter.

We show that these approximations can be developed in a more general framework,

and indeed that distributional approximations can also be validated. We examine the
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MINPIN estimator 7 that minimizes the random criterion ¥, (7, é),where Gisa pre-
liminary nonparametric estimate of a vector of regression functions G and n is sample
size. The contrast V¥, is chosen to ensure that 7 so defined is consistent: for example,
VU,,(7, G) could be the negative of the sample log likelihood function. This method of
generating estimators of 7 is considered in Andrews [1] and Bickel et al. [7], wherein
conditions are given under which 7 is y/n consistent and asymptotically normal.

! stochastic expansion

We make two contributions. Firstly, we derive an order n~
for the standardized estimator ¢ = \/n(7 — 7), i.e. we find random variables £* and
R such that £ = ** + R, where the reminder term R does not affect the distribution
of t to order n~!. The leading term #** is O,(1) and has bounded moments to some
suitably high order. In fact, £** is a polynomial in a vector of weighted U-statistics of

order up to m > 2, where the order m that is needed is determined partly by the rate

of convergence of G. A weighted U-statistic of order m is a random variable of the form

um = Z Xnil..imgo(Xiu ) Xim)7 (11)

i1, im=1
where { Xy, i, } are deterministic weights satisfying certain order of magnitude condi-
tions specified below, while X , .., X; are independent random variables; see Lee [20]
for a review of U-statistic material. Our second contribution is to justify Edgeworth
type distributional approximations for the distribution of #*, and hence of . More
precisely, we give conditions under which certain U3 possess an order n~! Edgeworth
distributional approximation. A delta-method argument then ensures that t** itself
has an order n~! Edgeworth approximation. Our work on U-statistics extends Callaert,
Janssen and Verarbereke [8] who deal only with unweighted U-statistics of second order.

For /n consistency, we generally? need G to be consistent at a rate better than
n'/*. This requirement is satisfied by a number of nonparametric estimators of regres-
sion functions or their derivatives under smoothness and dimensionality restrictions,
see Miiller [29] and Hérdle [18]. We do not go into the details of the nonparametric

estimation, and refer the reader to these references for more discussion.
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We work throughout with a fixed design for convenience. This may often be justified
by ancillarity considerations.

In Section 2 we define the sampling scheme we shall be analyzing, and give a
number of examples. In Section 3 we develop the stochastic expansion and verify that

1 as t. In Section

the polynomial statistic £* has the same distribution, to order n~
4 we prove that weighted U-statistics of order 3 have a valid order n~! Edgeworth
approximation. All proofs are contained in Appendices I and II.

Notations. For any vector # = (z1,..,x)", let |z| = [Z5_; 3]'/2 be its Euclidean
norm, while for any real symmetric matrix A, let Apin(A) and A\pax(A) be the smallest
and largest eigenvalues respectively. We use ¢(.) and ®(.) for the standard normal

density and cdf respectively. Finally, for a finite set S, let #S be its cardinality.

2. ASSUMPTIONS AND EXAMPLES
The observed data { X;}7_, are partitioned as X; = (Y;7, Z1)*, where the dependent
variables Y; are K, x 1, and the regressors Z; are K, x 1. The data are independent

across i, and are described by the following conditional Lebesgue density functions:

fY7,|Z7,(y’ T, G(ZZ))J 1= 1727 w1

where 7 is a P x 1 vector of unknown parameters, while G = (G!,G?, ..., GF)T is an
L x 1 vector of unknown regression functions. Our objective is to obtain estimates of 7
given preliminary nonparametric estimates G of G.

We consider an estimator of 7 that minimizes the criterion U, (7, @) in the special
case where VU, (7,G) is a sample average — which it would be under the independent
sampling assumption. In fact, we actually work with solutions 7 of the associated first

order conditions:
" ov
—126 (X;:7,G(Z) =0, 7=1,2, ..., P. (2.1)
Tr

Andrews [1] and Bickel et al. [7] both derive the first order limiting distribution of 7,

in slightly different settings. Pfanzagl [33] analyzes the higher order properties of such
4



estimators in a parametric context, i.e. where G is known. We extend his theory to

encompass the semiparametric case.

Ezamples
The following examples fit in to our framework and are of particular interest for

econometric applications:

Example 1. Homoskedastic Nonlinear Regression
Yi=9(Z)+ Uy, i=1,2, ..., n,

where Uj; is a vector of iid stochastic errors with mean zero and covariance matrix ¥,
while Z; are fixed regressors. The finite dimensional parameter of interest is ¥, while g(.)
is of unknown functional form. A scalar version of this estimation problem is analyzed

in Carroll and Hall [10]. Estimates of ¥ are provided by any solution of

n U SOEY; — G20V — 3(Z))T — 5] =0,

i=1

where the known Z(.) is such that E[Z(U;Ul — ¥)] = 0.
Example 2. Partially Linear Regression
yii = B Yo + 0(Z) + &5 Yai = go(Zi) + iy i =1, 2, ..., m,

where Z; are fixed in repeated samples, while ; and 7; are mean zero, independent and
mutually independent random errors. The finite dimensional parameters of primary
interest are (3, while ¢;(.), where ¢1(Z;) = FElyu], and the vector g(.) are unknown
regression functions. Robinson [39] and Chen [12] established the first order asymptotic
theory for various estimators of  under the alternative sampling scheme in which
(Y1, ZF)" are iid. Suitable estimators of 3 solve n™* > E[n;(v; — 1] 8)] = 0, where
E[ZE(ne;)] = 0, while 7; = Yo; — §2(Z;) and 0; = y1; — §1(Z;), where g; and g, are

preliminary nonparametric estimates of g; and gs.
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Example 3. Heteroskedastic Linear Regression
= ﬂTZZ + 6Z'O'(ZZ'), 1= 1, 2, e, n,

where ¢; are iid mean zero and variance one, while Z; are fixed in repeated samples.
The first order asymptotic theory for feasible GLS estimators of 3 was established by
Carroll [9], and subsequently advanced by Robinson [38] under the assumption that
(yi, ZT)T are iid. We can consider 3 that satisfies: n=' Y% 2(5, 2 Z;(y; — 7 Z:)) = 0,

where E[Z(0; ' Zig;)] = 0, while 62 = §2(Z;) — §3(Z;) estimates o2, where Go(Z;) and

G1(Z;) are nonparametric estimates of E[y?|Z;] and E|y;|Z;].

Nonparametric Estimation

We use nonparametric estimators that are linear in some dependent variable, i.e.
Zwugo i1=1,..n;k=1,.,L, (2.2)

for some functions ¢*(.) such that E[p*(V;)] = G*(Z;), where {wf,} are deterministic
smoothing weights depending only on 7y, Zs, ..., Z,. This includes most commonly
employed estimators of regression functions and their derivatives, see Hardle and Linton

[16]. It is convenient to rearrange (2.2) as

~ ~

'Y = G¥(Z) — G*(Z)) = Vii + B,

where Vi; = 3, whUF with UF = ¢*(Y;) — G*(Z;), and By = >, wh,G*(Z;) — G*(Z;).

We make the following assumptions:

Al

(i) For each k, there exists b < oo and ay, > 0, such that max;<, |By;| < bn®*.

(ii) For each k, there exists Wy and px > 0 such that #{(i,j) : w}; # 0} =
O(n'*2%) and n**|wf| < wy.

(iii) Let ¢ < minming{p}, ming{ay}], with (> 1/4.



A2 The sequence of Lx 1 vectors {U;}, are independent and mean zero. Let ¥, =
EU;UT], then %; is bounded away from zero and infinity. Furthermore, sup,s, E[|U;]’] <

oo for some J > 4.

Remark: Conditions A1(i) — (i7i) are satisfied for kernel weights when Z has

bounded support and G is sufficiently smooth. See for example Miiller [29].

Let G be the space of allowable function valued nuisance parameters and define the

norm || e ||, on G by
]l = masx max | H,(Z)
We make use of the following lemma:

Lemma 2.1: Let 1/4 < 0 < (. Assume that A1-A2 hold, and that J, {, and ¢
satisfy J > (14 2¢)/(¢ —0). Then, for some 6 > 0,

Pr[n’*||G — G||» > clogn] = o(n~%?), Ve > 0.

For example: when 6§ = 1/4, ¢ =1/2 and ( = 1/3, we must have J > 18. Lemma 2.1
is proved in Appendix I. See Robinson [41] for similar results in a parametric context.

The importance of this lemma is to establish when one can restrict attention to a small

neighborhood of G.

Parametric Estimation
We now consider the properties that W must possess. We need some more notation.
For two-dimensional arrays (matrices) A = (a;x), we denote the j, k’th element of the
inverse of A by a/* when it is defined. We shall denote derivatives of ¥, (7, G) with
respect to the elements of 7 and to elements of G by Greek and Roman subscripts
respectively. Thus, for each 7, a, and k, ¥prae =11 37 | Wik, where Uik (7, G) =

%(Xi; 7, G(Z;)) for each i. We use the affix (™) to imply dependency on G,

~

ie. Uy =n 130, \Timi, where U,,; = %(Xi; T, @(Z,)), and the affix ( — ) to
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denote mean values, i.e. U, = n 17 B[V, 0] Let w = (1,G) € T xG = be
a typical parameter value, and let w; = (77, G(Z;)")T € T x R, where T is an open
subset of R”. Finally, we define a neighborhood A/, of w using the norm || e ||,,, and the
corresponding neighborhood of w; by N,,..

We assume that the true parameter 7 is in the interior of 7, and that

B1 For alli and for some p,m > 4, all the partial derivatives \I/mmmﬁpi;klk%km(w*)
exist and are continuous functions of w* in a neighborhood N, of the true parameter

value.
B2 There exists a finite integer ng such that inf,>,, Amin(Vnra) > 0.

B3 For every w € Q) there exists a neighborhood N, of w and an & > 0, such that

for all my, ..., mp, ki, ..., kp, with p, m > 4, we have for some d > 4:

*E d
Slill) EUJ[\Ilnﬂ'lﬂg...ﬂp;klkz...km] < OO’
n-z

where WiT o ks = SUPur e, [ D | R (0 | L] A
B4 Vm, ki, Yw € Q: (1) E,[Vri(wi)] = 0; (2) Eu[¥rik(wi)] = 0.
B5 For some p, m > 4, all the standardized arrays
nt? é[qjmm...ﬂpi;klkg...km — Wﬂlﬂg...ﬂp;klkg...km]

possess uniformly, in a neighborhood of the true T, valid order n=' Edgeworth approxi-

mations at the true G.

Remarks:

1. Bhattacharya and Ghosh [3], Pfanzagl [33], and Skovgaard [48] give primitive
conditions under which B5 is satisfied.

2. Assumption B4(1) is necessary for consistency of 7, while Assumption B4(2)
ensures that there is no “information loss” resulting from estimation of G. B4(2) is

intuitively of the same form as Bickel’s [5] orthogonality condition, but is expressed in
8



terms of partial derivatives of ¥ with respect to the components of G, rather than in
the language of functional derivatives of the likelihood as used in Bickel et al. [7]. When
W is the likelihood function, this condition corresponds to the information matrix being
block diagonal between 7 and G. B4(2) is not necessary for the y/n consistency of the
estimator, but the assumption simplifies some derivatives, and in practice one would
choose a V¥ to satisfy this condition.

3. The quantities m, d, J, and ¢ must satisfy many additional restrictions which
are not given here. Instead, we refer the reader to Appendix I where the conditions,
we denote by the letter C*, are stated and used in proving Theorems 3.1-3.3. These
conditions can be traded off against each other; for example, allowing m to be very
large one can weaken the remaining conditions.

4. Condition B3 is a local regularity condition similar to the stochastic equiconti-
nuity property used in Andrews [1] and Bhattacharya and Ghosh [3], assumption A2.
In some cases it is quite easy to verify. Consider Example 3, and take the normal based
likelihood function; in this case ¥,; = 0,2 Zpi(y; — Z1'3). Provided o? > ¢? > 0 and

d = J, condition B3 follows.

3. EXPANSIONS

We adopt the tensor notation frequently used in the Edgeworth approximation
literature, see McCullagh [25]. Apart from the index 4, which will be reserved for
observations, when an index is repeated in an expression, it is to be summed over.
Unless otherwise stated, the ranges of the indices are as follows: subscript ¢ runs through
1, 2, ..., n, Greek subscripts run through 1, 2, ..., P, while Roman subscripts other than
¢ run through 1, 2, ..., L.

For any 7 we can expand each equation in (2.1) about the true value 7, obtaining

for each ,



~

Qux(t) = \/H\TJM(TO)—i—‘ifnm(m)ta—i—%n‘l/Q\Pmm(Tg)t '+ ;n Y, (T0) 2718 + Ror,

(3.1)
where t* = /n(t® — 7§), while Rgr = 4n?/ P20 ey (TIEUEOP | with |77 — Toa| <
|Ta — Toa| for each a. The solutions of @Q,(t) = 0 depend on: \Tfm” \Tfnm, \ifnm,y, and
\T!nmwg, all of which depend on G in a potentially non-linear fashion. Therefore, we
expand each of these hatted quantities in a Taylor series about G. The non-leading

~

terms, Vyra, Yiray, and Wyrays, all expand in a similar fashion: for example,

\/I}nﬂ'a - @nﬂa \I]#m - Tnﬂ'oz + R#m

nmTo TQ )

in which the truncated array is

— _ — Tk km
\I’Z:Z - \I]rwroc - \Ijnﬂ'a - \I'ITUTO( +n ! Z \Ijﬂ'az kr +.+n ! Z \I]ﬂ'Oﬂ k1k2.km 11 Fz )
i=1 i= 1

while the remainder is

DAm — = 1 * REm1

Ry =n""% m raishika oy (X3 7o GH(Z))TF L TP (3.3)
Here, for each i, G*(Z;) is a vector of intermediate values such that |G**(Z,)—G*(Z;)| < |G*(Z;)—
G*(Z;)| for each k. Each term in (3.2) can be rewritten as a sum of weighted U-statistics

of orders up to j. For example, n~! > \I!mi;klfff‘ﬁ- =

' Y0 E(Wraikt) BiBri + 17 S0 E(Warair) {21 wwaE[UkU’]}jL

0™ ) BiiBri Vet — E(Wraim) 410" X0 {0 E(Wraim)whwl  UFUI—E(UFUN]+

2n 10 {50 E(Vraim) Bawk U+

n~! Z?l j2:1{2?=1 E(‘I’mi;kl) i m}U]kl UJIQ +n~! Z] i=1 wz]wi] [\Dwai;kl_E(\Dﬂai;kl)]UfU;+
n-1 S i wh Wl [Wrgint — BV painn)JUE U

1j1 " g2 J17J27?
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where the first line contains only deterministic constants, the second line has only single
sums of independent random variables, while the third and fourth lines are weighted U-
statistics of orders 2 and 3 respectively. This structure is exploited in Section 4 below.
By direct calculation, W, — Vpng = O,(n~12), while

n=tyr %\I/mi;klk%kjf‘fl ffj < 0y(n79%), j=2,..,m,
using Lemma 2.1 and the Cauchy—Schwarz inequality.

The leading statistics n'/2®,,,, 7 = 1,.., P, also expand in a Taylor series, but
with terms of different magnitude. Firstly, n'/?¥,. = O,(1), while in Appendix I
we show that n /23" W T = O,(n¢) (this holds because ¥, are zero mean
random variables). When E(W k,x,..k;) = 0, which happens in many adaptive situa-
tions, n~1/2 3", %\Ifm;klkZ_“kjffi f’fj = 0,(n7%), j = 2,..,m. However, in general,
E(Wrikiky..k;) 7 0, and we can only establish, using the crude method of Cauchy-
Schwarz bounding and Lemma 2.1, that n=1/2 3" %\I/m;klk%kj f‘fl f‘ff < Op(nl/Qn_jC),
Jj=2,..,m.

We draw a number of conclusions from the above analysis. Firstly, at this level
of generality a necessary condition for 7 to be y/n consistent is that G converges to G
at a rate faster than n'/%, because n~ /2" | W, T*T! may not be o,(1) otherwise.
Secondly, even if this condition is satisfied, to approximate the distribution of 7 to

! we may need to include many terms from the expansion of \/H‘Tfm(T, C:’)

order n~
The number of terms which must be included depends on (. Since the m’th term
in the expansion of n'/2W,. (7, G) is O,(n'/*n=™¢), we should include m terms, where
m+1 > 3/2¢. When ¢ > 3/8, we only need include three terms from both the expansion

around 7 and the expansion about G in order to get o,(n™!) remainder terms.

Define the following O,(1) arrays

~ ~ ~ J— ~ ~ J—

Sna == nl/Q\Ijnoz; Snﬂa = nc(\ljnﬂa - \Ijnﬂa); Snmry = nc(\ljnﬂa’y - \Ijnﬂa’y)7

and the corresponding truncated statistics: S# , S# and S#

T s O, Hrary» Where we drop the m

superscript for convenience®. We shall refer to the collection of all standardized arrays
of the above form, up to fourth order partials, as S and S# respectively.

11



We first establish the existence of a consistent root. The MINPIN estimator 7 is

defined to be any solution of (2.1) if one exists, and zero otherwise.

Theorem 3.1: Assume that conditions A1-A2, B1-B5 and C* hold. Then, with
probability 1 — o(n™'), the random variable T solves the quasi-likelihood equations (2.1)

in the set {7 : |7 — 79| < L\/‘%g} for some ¢ > 0.

We now replace the arrays S by their truncations S#. Let 7 = V/n(T* — 1) solve

the truncated equations @7 (t) = 0, where

nmw nmwo nmwory

oy — - 1 — 1 5 1 =
Q. (t) = S* 4+, pat®+n 5% t“+§n*1/ Q\Ifmrwto‘t”—l—én’(l/ 240 57 t“tuén*lwnmét‘“mé.
The following theorem establishes that ¢ can be approximated in distribution by £*:

Theorem 3.2: Assume that conditions A1-A2, B1-B5 and C* hold. Then, there

exists a positive constant ¢ such that

Pr [\tN* — 1 > nlogn] =o(n1).

The truncated equations ()} are polynomials in the vector t*, and, by the implicit
function theorem, ¢* is a smooth function of the elements of S#. We can invert this
function to write £* as a power series in the random variables S#. The power series
expansion is truncated at a suitable point, and the truncated expansion, denoted **, is
then used as an approximation to .

Skovgaard [48] shows how to find this polynomial approximation when G is known

and the estimator is the MLE. The same techniques can be used here. Let

Vo= WSk Ve = WSE Ve = TG

no’ n Mnoy) naybs

_ T, T . _ (X 8 Sy . S _ T, T . S _ T, T
Mt =V "W, M™ =V "W,\; M™° =W "W,\s; M =W "W, s,

12



and similarly define the infeasible arrays: Y, Yz, and Yi.,. In general, t** involves
polynomials up to the order [(7!], where [e] denotes least dominating integer, in the

above arrays. Therefore, provided ¢ > 1/3, the polynomial approximation to t* is

~

" = ¥y + AVra, Ya) + B(Vrar, Voo, ¥, (3-4)

where A and B are homogeneous polynomials in the arrays fﬁr, ffm, and ffmw given by

A=n"Y, Y, — %nﬁl/QMm”?a?,Y;
B = 0 X, ¥y — I CHUDP MY, Ty CHA N T Tt 2T, T,
B A A IRy et A

We now prove that the distribution of ¢ can be approximated by the distribution of #**

with error of order n=!:

Theorem 3.3: Assume that A1-A2, B1-B5 and C* hold. Then for some ¢ > 0,

we have

Pr |7 — 7| > nl(fgn —o(n?).

In a number of leading examples, the quasi-likelihood equations (2.1) can be solved
to define 7 explicitly; for example, when V¥,,, = 0. In this case, t is a ratio t, =

\Txga\/ﬁ@m, and the polynomial approximation to ¢ is of the simpler form
R A O S A (3.5)

We now investigate further the examples of Section 2, in the special cases where the

simpler expansion (3.5) suffices.

13



Homoskedastic Nonlinear Regression
Consider the scalar version of model 1 in which the errors u; are iid with zero mean

2

and variance o2. We consider the standard estimator of o2, i.e. 6% = n ' 0" | [y; —

G(Z:)]?, where §(Z;) = YI ; wy;. By straightforward manipulation
t=vn(a —o?) =n 23 G ul — 1+ 30N piuuy 0TS Eu + b, (3.6)

i—1 it i=1
where: pi; = n V2 wiwe — 2w, & = 2{ywrBi — Bi}, & = 1+ Y, wh;, and
b=n"Y2Y, B} 4+ n~1/? S it wfj — 2020~ 2wy, with B; = > wi9(Z;) — g(Z;). From
Al(il): n=2 Y0 §ui—0% = 0,(1), b=O0(n'*%), Y., pijuiu; = Oy(n=°), while
n Y25 &u; = Oy(n~°). In this example, it is not necessary to employ a truncation

argument as contained in Theorems 3.1-3.3, since (3.6) is exact.

Partially Linear Regression
Consider the scalar version of model 2 in which both errors ; and 7; are iid with
zero mean and variance o2 and o7 respectively. The standardized Robinson estimator
of 3 is
n -1 n
t=/n(f - 9) = [nl Zﬁ?] [n“? Zﬁi@] :
i=1 i=1
where 7, = 1, — (By; + Vi) and &; = ¢; — (B; + Vz;) are nonparametric residuals,
with By, = 3, wi592(Z;) — 92(Z;) and B.; = 3-; w;;0(Z;) — 0(Z;) deterministic, while
Vii = Yjwyn; and V,; = 3, wie; are both zero mean weighted sums of iids. See
Linton [22] for further discussion. The standardized estimator is in closed form and
the expansions leading up to Theorem 3.1 and Theorem 3.2 are unnecessary, although

Theorem 3.3 is required. Let X =n™'2 7 7,8 and Y = n~2 ¥ [77 — o2, then

%

Tk — — Xy — XyQ
t :aan—an‘L%—l—anG . (3.7)

where

14



X =n 1250 men 2L Euemtn R Eanit %Z pigen+n 20 ByiBe,
i#j

Y =n"!/? S (nf _‘772;) +n7/2 s §2i77i+”_1/2 Die1 PigNin; —I—n_1/2{2?:1 Bﬁﬁaé %Z
i#]

2 _

wzg

20'%11}“'},

with: py; = 7V wyw — 2wy}, & = nTYH S wpwye — Byb, and &y =
n Y2 wiBey — Bei}. Thus, the truncation (3.7) is a polynomial in weighted U-

statistics of order 2.

4. DISTRIBUTIONAL APPROXIMATION
We have just shown that £** has the same distribution as ¢ to order n~!. Here we
derive and justify approximations to the distribution of £**.
The first order behavior of #** is determined by dropping everything in (3.4) but
the leading term: provided B2 holds, £, = —W, S, + 0,(1), and for any P-vector c,

Pr{(cacsQap) 2ents < 2] — ®(x) = o(1),

where Qq5(70) = lim, o[V, L 57| E[\ijiqﬁ%]ﬁiﬁ]. This result is proved in Andrews
[1] under weaker conditions than ours.

We now turn to the higher order properties of t**. To approximate the distribution
of £** to order n~* we use the well established Edgeworth method, see Rothenberg [45] for
a review. In parametric settings, the first four (asymptotic) cumulants of a statistic are
sufficient to determine the order n~! approximation to its distribution the form of which
is given by an Edgeworth measure which depends on these cumulants, see (4.3) below.
We calculate order n~! approximations to the cumulants of £** and substitute these into
the Edgeworth measure. Getting the cumulant approximations involves straightforward
but tedious computation which is carried out in Linton [22] for the Robinson estimator

in the partially linear model, and in Linton [23] for the semiparametric GLS estimator

in the heteroskedastic linear regression model. In fact, in these papers only the mean

15



and variance of the standardized estimator were calculated, and only to order n—2*,
for some p < 1/2. The resulting approximations we described as “second order.” Our
purpose here is to justify an order n=! distributional approximation based on order n=!
approximations to all the relevant cumulants. In fact, we work with the special case
for which the first four cumulants suffice. See the examples below for an explanation of
the plausibility of these conditions.

The truncated statistic £* is a polynomial in the array S#. In our special case,
§#ﬂ, §#m and §#m7 are vectors of zero mean weighted U-statistics of orders up to 3.
Apart from a deterministic bias term that can be handled by analytic methods, these
can be written in the form

Q=n""23"g(X)+n 3> pisep(Xi, X;) +1 ¢ DS mav(Xi, X, Xx), (4.1)

=1 > k>j>i

where £ > (. Both ¢ and v are permutation invariant, i.e. p(z,y) = ¢(y,x) and
v(z,y,z) =v(z z,y), with E[p(X;, X;)]|F] = Ev(X;, X;, Xx)|F] = 0, where F denotes
any proper subset of either {X;, X;} or {X;, X;, Xix}, while E[g(X;)] = 0, 4,5,k =
1,2, ..,n. Thus, these three separate pieces are zero mean and mutually orthogonal by
construction. Here, {p;;} and {m;;;} are sequences of non-random weights depending
on {wy;} in such a way that >3-, pi;0(X;, X;) and X35k o mier (Xs, X, Xy) are
both O,(1). In this representation, the double and triple sums are known as degenerate

weighted U-statistics of orders two and three respectively.

Our argument is based on establishing the following:

(EDGE1) The vector Q = (Q1, Qa, ..., Q)T possesses an order n=' Edgeworth ap-

proximation.

(EDGE2) If Q possess an order n=' Edgeworth approzimation, then P(Q) does too,

where P(+) is a polynomial with bounded coefficients.

Essentially this strategy pursued in Bhattacharya and Ghosh [3]. However, they deal
only with U-statistics of order 1, i.e. single sums, for which (EDGEI) has been estab-

lished under weak conditions. They also establish (EDGFE?2). Their argument justifying
16



(EDGE?2) can be employed here, although a rigorous proof of this would require con-
siderably more work.

We prove (EDGET) for our more general class of statistics. Random variables of
the type (4.1) are related to standard U-statistics whose properties are well established.
In particular, Bickel, Gotze, and van Zwet [6] and Callaert, Janssen and Verarbereke [§]
give conditions under which the formal Edgeworth approximation is valid for standard
U-statistics of order 2. Standard U-statistics have correction terms that are O,(n='/2),
while our weighted U-statistics have correction terms that are O,(n~¢), where in general
¢ < 1/2 and hence the correction term in (4.1) is of larger order. Therefore, we must
extend this previous work.

Below we establish that the formal order n~! Edgeworth approximation to the

distribution function of Q indeed has error of order n!.

We prove our theorem for
scalar valued iid random variables. The extension to non-identically distributed and
multivariate statistics is also valid under the high level assumption D5. The proof of

this, however, requires somewhat more notation than we already have, and we leave

this for future work?*.

Let 1,(s) = E[e?*Q] and n(s) = E[e*9XV)] where i = v/—1, and assume

D1 #{(i,7) : pij # 0} = O(n'*t2); #{(i,4, k) : mijx # 0} = O(n'T%). There is a
nite constant 6 such that n o] <0 andn | < 6. We require that ¢ >
f 6 such that n/**|py| < 6 and n'/>*|r| < 6. We require that ¢ > 3/8

and & > 5/8.
D2 E[lg(X1)[%] < 00; Elp(X1, X5)[°] > 005 Eflv(X1, Xa, X3)[°].

D3 limsup_.|n(s)] < 1.

nlogn n(5) _
D4 fn1/4g+</10gn ¢5 ds = O(n 1)'
Remarks.

1. The order of magnitude assumption about ( and £ is for convenience. Un-
doubtedly, approximations can be developed and justified for whatever values of these

constants are appropriate. We focus on this special case to make the analysis tractable.
17



It can occur in all of the examples we considered. A consequence of D1 is that the

following quantities are O(1):

Wy =n (¢H1/2) Z}: Pij; Wa =Z>Z Py Was=n"% 5% piipjk,
j>i >

k>j5>1
Wy =n"E2 S5 mp, Ws =n U S5 piipn.
k>j>i [Sk>5>i

2. The moment assumptions D2 are slightly stronger than those in Callaert, Janssen

and Verarbereke [8].

We prove the theorem for the standardized (to have mean zero and variance one)

statistic Q, where Q = J(SIQ, with
oq = Elg(X1)*] + n Elp(X1, X2))]W, = var[Q]+o(n™").
When ¢ > 3/8 and £ > 5/8, the third and fourth cumulants of Q are

K3 = K3g + n_1/2609_3E[g(X1)g(Xg)go(Xl, Xo)]W1 + o(n™1),
ka = Kagtn o, {24 Eg(X1)g(Xo) (X1, X2)[Wi+24E[g(X1)g(X3) (X1, Xa)o( Xz, X3) W5
+6E[g(X1)g(X2)g(Xs)v (X1, Xo, X3)Wa} +o(n™H), (4.2)

where 02 = E[g(X1)?], K3y = n,*l/QUQSE[g(Xl)‘Q'] and kyy = n*1{0;4E[g(X1)4] — 3}

g

Under D1-D2: k3 = ®zn~'/? and k, = F4n~', where &3 and &4 are both O(1). Let also

Foa(x) be the standard Edgeworth measure

3
6y/n

2

(22— 1) + 2%(:53 — 32) + 7’;—2(:55 — 10z + 152) | . (4.3)

Fro(z) = ®(r) — ¢(x)

In Appendix II we prove

Theorem 4.1: Assume that D1-DJ hold. Then

sup [Pr[Q < o] = Fra(w)| = o(n™").

Thus the formal Edgeworth approximation for Q is valid, and, according to the ar-

gument we have laid out, so is one for . What is the form of the corresponding
18



distributional approximation for #? Let 1 (¢**) and k2(**) be order n~—! approximations

to the mean and variance of t** respectively, and define the restandardized estimator

T = [[* — k1 (f*)]/ko(f**)2, which has mean zero and variance one to order n~.

ko sk . .
Now let k3(t ) = Ran /2 and ky(f ) = Fan~! be order n~! approximations to the
third and fourth cumulants of 7 respectively, where ®3 and %4 are O(1). Then, 7 has
an approximate distribution function of the form F, with these %3 and %, constants.

Therefore,

Pr[t** < z] = Fo(ry + x1/R) + o(n™Y).

5. EXAMPLES
We now verify the conditions of Theorem 4.1 for some of the examples of Section
2. D1-D4 are straightforward to establish in most cases; the main problem arises in
verifying D4. For notational simplicity we restrict our attention to quadratic statistics
Q=n""23"g(Xi) +n DY pie(Xi, X;). (5.1)
i=1 >
We replace D4 by a condition E1 that can be directly verified under iid sampling.

Firstly, we rewrite (5.1) as 3=, ; 0;;, where

1
7 ony/n

with I(-) the indicator function. Let Hy = 0g' Y7y, 015, where 6 < N(n) < n is an

0

[9(X:) + 9(X))] + n~ pijeo(Xi, X;)I(5 > i),

integer, and

E1 There exists a constant ¢ < 1, such that for N(n) = O(n®), with 0 < § < 1/6,

. 1
Pr[|Elexp(isHn)| Xni1, Xnpo, o Xn| =] =0 ( ) )

nlogn

n1/4+¢
logn

uniformly for s € [ ,nlog n}

Then
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Theorem 5.1: Assume that D1-Dj and E1 hold. Then the conclusion of Theorem
4.1 holds.

In many cases of interest (see below) condition E1 is easy to verify.

Homoskedastic Nonlinear Regression
As far as justifying the Edgeworth approximation for (3.5) is concerned, we can
restrict attention to Q = n™V2Y" [u? — 2] + X35, pijusu;, which is of the form
(5.1) with g(u;) = u? — 02 and ¢(uy, ug) = ujus. In this case Hy = 6,1 (uf — o?) +
On2 + 6p3uq, where 6,1, 6,2 and 6,3 depend on w;, 5 > N. Assume also that u; are
normally distributed. In this case, the random variables u% —0? and 6,3u; are mutually

independent given uy,1, ..., u,. Therefore,
Ex [eisHN} _ By [eisénl(u%ﬂﬂ)] [eisam] Ex [eisangul] 7

where Ey denotes expectation conditional on uy 1, ..., Uy,. Since |e**| < 1 Vzx, we have

Y

[y [eo53]| = | By [eistmtet-o2)

while

Ey [ 087 — mgf o (—is/2) = [1 - 20s72]

where s* = 56,1 = s(n — N)/n/n. Provided only s > n'/2*® for some § > 0, we have
s* — oo, and condition E1 is satisfied.

In conclusion, the Edgeworth approximation of Theorem 4.1 is justified for the
standardized estimator. The relevant cumulants can be calculated from (3.5) and an

extension of (4.2). In particular,

n

W (T =5 ma(E) = (BT Y6+ 0t S5+ oty
i=1 i i=1

2

where ¢; = u? — 2. In the special case that u; are symmetric about zero, the skewness

! recentered and rescaled estimator are (to order n!):

20

and kurtosis of the order n~



ws(F) = { BBy n 7 = Fon™ V% walB) = {BGH/IBE)P ~ 2} n =Fun

and do not depend on the precise way in which g is estimated. The mean and variance
formulas can be further specialized for specific nonparametric estimators as in Linton

22,23].

Partially Linear Regression
In this case, it is sufficient to verify that the quadratic statistics: n=%/2 3" | mie; +
SN pigein; and nV2 R (02 — 024+ 3%, pignin; satisfy the conditions of Theorem

5.1; these can be verified using similar arguments to those given above.

6. CONCLUSIONS

Our main conclusion is that the formal order n~! Edgeworth approximation to
the distribution of the standardized semiparametric estimator is valid under sufficient
smoothness and moment conditions. In some special cases the first four cumulants
are sufficient to determine the approximating distribution. Even so, the computations
required to construct these approximations are burdensome. In practice, second order
approximations that involve only the first two moments and in which the error is of
order n~ % for some yu < 1/2, may be sufficiently illuminating. These second order
approximations can feasibly be constructed, see Linton [21,22,23] and provide useful
information about the small sample behavior of the semiparametric estimator that is
left out of the first order theory.

Our work demonstrates that the distributional approximation derived from these
asymptotic moments is valid. The distributional approximations can be employed to
improve critical values, see Chesher and Spady [13]. One can also discuss higher order
efficiency in a more rigorous setting than is provided by the asymptotic moments alone.
On this point, we mention that the classical results of Pfanzagl [34] regarding the

21



relationship between first, second, and third order efficiency in parametric models do
not hold when G has to be estimated. The second order properties of 7 are dominated
by G. We cannot even uniformly rank different regression function estimators according
to mean squared error. Therefore, there will not be a uniformly (in G)) best estimator

of 7.
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FOOTNOTES

1. Robinson [43] establishes Berry-Essen bounds for a class of semiparametric esti-
mators. These show that the (worst possible) rate at which the normal approximation
is approached is slower than the n~1/2 rate usual for parametric procedures. The Monte
Carlo evidence presented in Hsiech and Manski [19] and Newey [31] suggests that per-
formance of these estimators may be quite good in a range of circumstances, but see
also Stock [49] and Stoker [50] for less flattering results.

2. Although this is often not required in certain adaptive situations.

3. Note that we make expansions of different lengths for S#,, $# and g#m,y.

4. T am aware of only one paper, Gotze [15], that deals with Edgeworth approxi-

mation for multivariate U-statistics under primitive conditions. In fact, this paper only

establishes the validity of an order n~1/?2 Edgeworth approximation.
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APPENDIX I

Proof of Lemma 2.1: By the Bonferroni inequality,
N L n
Prin’||G — G|, > clogn] < Y Z [n?|G*(Z;) — G*(Z;)| > clognl,
k=1 1i=1
for any ¥ > 0. But
Pr[n’|G*(Z;) — G*(Z:)| > clogn] < Pr[n?|Vis| > clogn/2] 4+ Pr[n”|By| > clogn/2),

by the triangle inequality. Then, by assumption A2(ii), the second term is zero for large
n. Also, Vi; = Oy(n#*), and by the Markov inequality,

HL%Z‘] Jﬁ.

Pr[n?|Vi| > clogn] < (clogn)’

By the Marcinkiewicz—Zygmund inequality, F[|Vi;]’] is uniformly of order n=#*/ — see

Robinson [38], Lemma 7. Therefore

L n
53" Prin|GH(Z) — GH(Z)| > elogn] = o(n?),
k=1i=1
provided 1 + J¥ — J( < —2¢ which holds under the stated conditions. .

Proof of Theorem 3.1: In the sequel let ¢ and A be generic constants. The
condition C* consists of several parts which are stated in the proof.

We may write @Q,,(t) =0, as
= A = (), (AL1)

where {A;(t)} consists of —0. " 5#

no? nmo

and — 2110 " W,yr0,5t°t7t°, as well as linear combinations of Rox, RY, Rf,, Rf,, and
R*

Tayd*
Let H,(0; ¢) = {t : |t| < clogn}, and assume that ¢t € H,(79; ¢) for some c¢. We
show below that

Pr[|p(t)| < clogn] =1 —o(n™"), (A1.2)
24
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i.e. ¢ maps H,(7o; ¢) into itself with high probability. In fact, we establish that for

some constant c,
Pr[|A;(t)| > clogn] = o(n™"), (A1.3)

for each j. Since Pr[| 3°; A;(t)| > clogn] < 3, Pr[|Ay;(t)| > ¢'logn], for some constant
¢ by repeated application of the triangle inequality, (A1.3) is sufficient for (A1.2) to
hold.

Then, since ¢(t) is a continuous function of ¢ that maps a compact subset of R”
into itself, we can apply Brouwer’s fixed point theorem: with probability 1 — o(n 1)

there exists a solution ¢ to the system of equations (A1.1) on H,,(7o; c).

Proof of (A1.3): We must show that Pr[|A;(¢)| > clogn] = o(n™!), where A;

come from:

(a) —W.*S# : (b) —/nU,"R¥,; (c) n=SW, S 1o (d) UL RE 1% (e) n™ VW] W, 0 1917

no no ? nmo

() In O2HOTTOSHE o475 () n VAU RE 147 (h) 20 0 T ranst 0

Ty nmory

(1) %n_lﬁzawaavétatﬂyté ) (J) WZQRQOC.

nmo

(a) We first consider terms due to —W., " S#, . This is of the form Hz where H is a P

T, T

P matrix and x a Px 1 vector. Since |Hz| < Apax(H) max;<g<p | 75|, where Ayax (¥, ) is
uniformly bounded by Assumption B2, we can restrict ourselves to examining Pr[|S#, | >
clogn] for each a, where

~ n ~ 1 n ~ o~ ~
Sl = Sna+ 072N Wapg U 4o 4 072N Woip, ok, T2 T (AL4)
m

%
i=1 : i=1

(i) The leading term S, is a sum of independent random variables, which by

Assumption B5 possesses a valid order n~! Edgeworth approximation such that

sup | Pr[Spe < 2] — Fpa(x)| = o(n™Y),
25



where Fy(z) = ®(z) — ¢(x) Y71 n?Q;(z) and where Q; are polynomials with coeffi-
cients determined by the first four cumulants of S,,,. By the properties of the Edgeworth

measure, Fpy(—clogn) = o(n~!) for any positive constant c.

(i) We now examine Pr[|n=/2 7 | W, T¥| > clogn]. By construction, n="/2 3" | W, I'*
=n V2" | Uaik[Bri+ Vii), where U, are zero mean and independent (across i) ran-
dom variables.

(ii.1) Therefore, n¢[n=Y2 " | W, Bri] = Op(1). By Markov’s inequality

P1r[|n_1/2 Z\Ifm-;kBm > clogn| <

=1

1 1 "
d @EHNCN_U? > WaikBri 1,

[clogn i
where E[[n‘n~Y2 3" | W1 Bril?] is bounded by Assumption B3. Therefore,
Pr[|n=1/? > WaikBri| > clogn] = o(n™"),
-1

provided
C*(1) d¢ > 1.

(ii.2) Rewriting n Y2 Y1 | Woin Vi = n ¢ Xpp; pijo(Xi, X;), where py; = nén= 12wy

and ¢(X;, X;) = Vaik(X;)Uykj, and applying the Markov’s inequality as above:

Pr(] > pijp(Xi, X;)| > enlogn] = o(n™"),
i#]

provided E[| Y. pijo(Xi, X;)|%] < A < oo for some d > 0 such that d( > 1. The

moment exists provided sup;s; E[|Wq;e(X;)[*] < oo and sup,s; E[|U;]*?] < oo, see

Mikosch [27], Lemma 1.3.

(iii) We now examine n=Y23°" | W, . [FT

[ )

which is bounded by

) n 1/(1+e)
n726[n1/4+6HG _ GHn]Q [nl Z ‘\I]az’;kl’prg]

i=1
for any £ > 0, by the Holder inequality. We now use the fact that

Pr(A) < Pr(An B) + Pr(B°)
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for any events A and B, where B¢ denotes the complement of B. We take B = {G €
NE*Y, where N4 = {n*|H — G|| < clogn} for any v, and

n 1/(14¢)
A= {n,_25[n1/4+6||G —G|la)? ln‘l > |\Ifm-;kl|1+€] > clog n} :
=1

Note that

=1

ANBC {”_1 S Wi > en®9) (log n)—(1+e)} 7

for some ¢ and for some 6§, £ > 0. Since Pr|G ¢ NY* = o(n"1), by Lemma 2.1, it

suffices to establish that

Pr [nl ST [ Waiga| T > en® 9 (log n)(lJrE)] =o(n1). (A1.5)
i=1

Finally, by Markov’s inequality, the left hand side of (A1.4) is bounded by
0w ({7 3w | o0
i1

for any r; this is o(n™") provided sup;s; E[|¥ | T97] < oo, where
C*(2) 26(1+¢)r > 1.

Th. ~~ffj, for j =3, ..., m.

The same argument applies to n=1/2 > Voikr.. .k

(b) The remainder term R¥ can be dealt with in the same way

o [|n_1/2 Z \Ijm;klkznkmﬂ (Xﬂ T, G*(ZZ))ffl T ffm+1| > clogn

i=1

is bounded by

oMmE [{w;

nosk1.. . kmy1

}r} (log n)(m+1)rn77‘{(m+1)(9+6)71/2} + o(n*l),
Therefore, provided sup,,~4 E[{\Ij;%c;kl...kmﬂ}r] < o0, with

C*(3) r{tm+1)(0+6) —1/2} > 1.

the result follows.
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Terms (c), ..., (j) require less stringent moment restrictions, and their analysis is

omitted. n

Proof of Theorem 3.2 We have to show that there is a constant ¢ such that

Pr[|R > —<—] = o(n!) on |t| < clogn, where R consists of:

nlogn

A _ 1 - 1 - 1 ape
() VnRE ; (0) R () ™ PARE 105 (d) gpn R ot ™88 5 (€) 5n ™ Wnasy (T)L7E17.

The argument is essentially the same as that used to show Theorem 3.1.

(a) We require sup,,», E[{U? }" < oo, with

C*(4) r{(m+1)(0 +6) —3/2} > 1.

(b) We require sup,,~; E{V) ok, .., 7] < 00, with 7{(m +1)(0 +6) — 1} > 1, which
is implied by C*(4).

(c) We require sup,,~, E[{V} }l < oo, with r{(m + 1)(0 + 6) — 1/2} > 1,

nrayky.. kmiy1

which is implied by C*(4).

(d) We require sup,,»1 E[{Vre o501 k17| < 00, with 7(m + 1)(0 + 6) > 1, which is
implied by C*(4).

(e) We require sup,,~; E[{V¥;7

nﬂ'ow&p}Q—i_n] < o0, for some n > 0. -

Proof of Theorem 3.3: It is sufficient to show
Pr[|Q% ()] > n~'clogn] = o(n™), (A1.6)

where Q*(#**) consists of a sum of terms each of which is a fourth order homogeneous
polynomial in the standardized arrays S#. In fact Q*(**) is O,(n %), and is o,(n ')
when ¢ > 1/3. To prove (A1.6) we use the same techniques as in the previous theorem.

We omit the details. n
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APPENDIX II

Proof of Theorem 4.1: The following proposition is instrumental in establishing

the validity of Theorem 4.1:

Proposition: Let F' and G be two signed measures with Fourier transforms v and
W, where 7' (0) = 0, while ¢ is continuously differentiable, 1)(0) = 1 and ~'(0) = 0.
Suppose also that G is differentiable and [ |z||G'(x)|dz < co. Then for all x and all

T > 0, there is a constant m such that

The so-called smoothing lemma is proved in Bhattacharya and Rao [4]. For our appli-
cation we identify G with FE,5, and F with the distribution function of Q. We choose
T = nlogn, in which case

2

Sl{;.p |PI‘[Q < .T] _ ﬁnQ(x) <= /Onlogn M

d /—1
. s+o(n"),

™

where

R3 Ra

Un(s) = exp <—§>2 [1 + 6\/ﬁ(is)s + %(is)4 + %(is)ﬂ = /ei”dﬁng(x) (A2.1)

is the Fourier transform of the signed measure ﬁng.
We split the range of integration into several different parts and show that each

subintegral is o(n™!). We have

fonlogn P (s ;'LZn s) ds <
nX/logn |Yn(s —~)n s nt/4C¢ / logn | by, s) n logn n (s 00 Nn s
fO s w d8+an/ log/ng ! s ds—l—fnl/{urg(/logn ¢5 ds+flogn ¢5 ds
=I14+II+II14+1IV

for any x € (0, (+1/4). We choose y in the sequel. This is a convenient decomposition,

because different methods are applicable for each range. When s is very small, we can
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rely solely on a Taylor series expansion, while for larger s we also rely on crude bounds
for the magnitude of |1, (s)|, which hold when s is kept at a distance from the origin.
The last integral, IV, is o(n™') because of the form of the Edgeworth characteristic
function t,, while ITII = o(n1) by D4. Our proof technique follows closely that used
in Callaert, Janssen and Verarbereke [8], henceforth CJV, and we omit many details.

We use the following facts:
(F1) There exists an € > 0 such that
Loy
n(s)] < exp (5502
for |s| < /o, — see CJV, P304.
(F2) For any £ > 0 there exists a (<) > 0 such that

P )=

for s < ey/n. This is a consequence of Cramer’s condition D4.

-0
)

(F3) For any random variables X and Y, and for any K:
| Y}

(F4) The following quantities are O(1), by D1,

2 K K+1
< =K BIXE )

by Taylor expansion.

JHELkFE] J#Lk
n~(1+30) ZZZZZ Pij PriPIm; m~ 230 ZZZZZ Pij Pkl Prop-
JF#LkAELMFE J#LEAELmFED

(F5) Let n=¢6(n) — oo, for some £ > 0, then

/( )tke_M2dt — O(8" 1) = o(n ).
6(n
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I.

Let A, = - \/—Zl 1 9(X5), By = 0g! Y5 pije(Xi, X;), and
Cn = O'Q ZZZk>j>i WijkV(Xi; Xj, Xk) Then

Un(s) = Elexp(isA,) exp{is(n™*B, + n~¢C,)}]. (A2.2)

We must show that

Pn(s) — Q)Zn(s)

S

ds =o(n1),

/nX/ logn
0

where 1), is defined in (A2.1).

We first Taylor expand the second exponential in (A2.2), drop the remainder, and

define the truncated term
1) = Efespis )1+ isn~<B, + ELn-%B2 4 ian~0, 1) = 08, (5) + 05, (5),

with 1f ,(s) = isn ¢ Elexp(isAy)Cy].
Note that

+\2
V1n(s) = Ig+is{n1/2]§E§W1+n1/QI§‘E§’W4}+%{n_QCI;*E;’WQJrIg‘Ig‘WngnIZ [E3]*Ws},

where

i) =n(om)
E; = aélE {exp [ is (Xl) + g(Xg)}} o(X7, Xg)}

Ej =0q’E {exp [ )+ g(Xg)}} (X7, X2)2}
Ej = 0g’E {exp [Uq\/—{g Xl) +9(Xa) + g(Xa)}] (X1, Xa) (X1, Xs) |
By = gélE {exp [Uqf{g X1) +9(X2) + g(Xg)}} v(X1, Xo, Xg)} )

In the next section we demonstrate that 7 ,(s) can be approximated, in the range

s € [0, nX/logn], by the following simpler function:
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U1 n(s) = Iy+is{n'/? 12E2W1+n1/213E'W4}+( 5)° {n 2 LEW,+ EsWs+nl, EOV?Y,

where

By = o707 (is) Elg(X1)9(Xa2) (X1, Xo) |0, n~2 (is)* Eg* (X1) 9(X2) (X1, X2)]}

(
Ey = 0, °Elp(Xi, X5)?]
(

B3 = o, “An71(is)3Elg(X2)g9(X3) (X1, X2)p(X1, X3)]

B}y = o' n72(is)* Elg(X1)g(X2)g(Xs)v(X1, Xs, X))
By = 0,02 (is) E*[g(X1)g(X2) (X1, X5)]

g
_ —s2/9 (is)? is is 2
Iy = e {1 =GR 02 (g + Gy + w3, )

where [}, is an o(n~!) approximation to the characteristic function of —— \/— Sk 9(X0)

in which o7, , = var [W SF g(Xl)}.
By the triangle inequality

I S fSZX/logn U)n(s)fswl’n(s) dS—}—fé’LX/logn d)l’n(s);{/;l,n(s) dS_I_fng/logn {/jn(s)fs{/;l’n(s) ds

=I1+12+13

We show 1.1, 1.2, and I.3 below.
I.1. We start by introducing
U (s) = Elexp{is(An +n ™ By) M1 +isn™*Cy)] = 90, (s) + ¥15,(s),
where 1%, (s) = isn *Elexp{is(A, +n B,)}Cy]. Then,
[Vn(s) = Yrn(s)| < |thnls) — U1, ()] + [91,(8) — Yrnls)]-
By Taylor expansion (F3),

(U7 (5) = Yu(s)] < A7 s B[|C, "]
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for some A < oco. Therefore

/nX /logn
0

which is o(n™!), when x < 1/8, since £ > 5/8.
Y1, n(S) P1,n(8)

Un(s) — P71 ,(s)

ds = o(n_Q(g_X)),
s

1
We now examine [1 /15"

ds. By Taylor expansion [/}, (s) — 15, (s)]
is bounded by n=%¢|s|3E|[|B,|?]. For x very small we have

[ hale) it
0

s
which is o(n™!), when 3(x — ¢) < —1. Therefore, we choose y = ¢ — 1/3. For larger x

nX/logn

|d < n T E[|B,| ]/ s%ds = o(n>x=%),

we use the bound
n~%|s*| Elexp(isA,) B2]| + n~%|s|*E[B2] (A2.5)
for ’wi),n(s) - ibn(s)’a and so

nX/logn
/O

which is o(n™!), when x = ( —1/4. We now bound the first term in (A2.5) in the range

Ua(s) — il (s)

S

s € [nX'/logn, nX/logn]. Note that
:ZZ p?jQO(XZ, Xj)3+' <+ ZZZZZZ pz’jpklpmp@(Xiu X])QO(XIm XI)QD(er Xp)u
i#] i#jEREIFEMFED
where the intermediate sums have 3, 4 and 5 different indices respectively. By the
triangle inequality we must bound | 33" p}; Elexp(is Ay )p(Xi, X;)%|, ...,
| S pispripmpElexp(isAn) o(Xi, X;)o( Xk, X1)e(Xm, Xp)]|-

We only show the calculation for the six-fold sum; the same method applies to the
other terms. We decompose A,, into orthogonal parts so that A, = = \/— ZZ 19(X5) +
= \/— > 7 9(X;), and then use a conditioning argument to obtain

Elexp(is An)p(Xi, X;)@(Xe, X0)@(Xm, Xp)] =
IiE[expliss_ 7= S0l 9(X0) (X, X5) (X, X1)@(Xim, Xp)l-
Choosing K =2 in F3 we have

E S/\i

NG

exp{ (oqyv/n)! > 9(Xy) } (Xis Xj)o( Xy, Xi)p( X, Xp)

t€Ag
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for some constant A < co. Furthermore, by F1 there is a positive constant A, such that

|[5| < e, for s < ey/no,/oq. Then, applying F4 we have

nX/logmn oo
/ ) n~3s* Elexp(isA,)B3]ds < )\nk/ e ds,

nX'/logn nX'/logn

for some integer k, which is o(n!) by F5.

I.2. We estimate the error in approximating v; , by @Zl,n using the triangle inequality:
[1.(5) = Y1,u(5)] < 12— I°] + |s|n'?| FE5 — LEs|[Wh + |s|n'?| T B3 — I E5|| Wl +
SH{n XL E; — LES|[Ws| + I B — LE3|[Ws| + | [E5)? — L |Ws[},
where, for example, |15 E5 — [, Es| < M|I; — L]+ |E5 — Es|}, for some A < co. Therefore,

I.2 is a consequence of the following two lemmas:

Lemma 4.1.1. For 0 < s < ey/n, we have for any k, there exists X\ < 0o, such

that
I} — Iy| < Aopn tsP(s)e”,

where 6, — 0, P(s) is a polynomial in s with bounded coefficients, and c is a positive

constant.

Lemma 4.1.2. For all s, we have for some A < oo

s % 83 S
|E2 E2| < )\ |:n2 + n1+2C + n3/2+2C:| |E E,2| < )\JJ—; |E3 - E3| S )\ |:’I’|L_L\/ﬁ + nlf2( )
1B~ Bl < A5 + s IBST - B < [ + e

Then, for example

nX/logn * nX/logn [ s s 53
VW Ji T By (s) — Ea(s)lds < MW f5 " 5 4 e + | ds

o 3 n4X
= 6n [n3/2 + n1/2+2< + n1+2c}

for some sequence &, — 0. This is o(n!), provided: y < 1/10 and y < 2(/3 —1/1/6.
These conditions are sufficient for the integrals involving E’s.

The integrals involving |I; — Ix| are o(n 1) because of the exponential bound es-

tablished in Lemma 4.1.1. In sum, 1.2 = o(n™!).
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1.3 is o(n 1) by direct computation — both v, and QZM involve polynomials in

—s2/2

s and e — and are suitably well behaved. Truncate further and check that the

polynomials coefficients agree to o(n™1).

IT.

For 6 < N(n) < n, define the partial sums: Ay = ?{/ﬁ SN, 9(X;), By, =
0q jmi 2 pie(Xi, Xj), and Cnpn = 0g' Tk joi Soiv e (Xi, X, Xi). Then
Ellaxl =0 ([¥]7), BiByal1 = 0 ([4]"), BlCKaat1 =0 ([2]7).

Let
Dyn=A,— Ay +n (B, — Bny) + 1 (Ch — Cnnn),
then

Vn(s) = Elexp(isA,) exp(isDy.) exp(isn™° By ,,) exp(isn*Cy.nn)],

where Dy ,, is independent of A,,. Furthermore, we can rewrite

exp(isn *By,) = 1+isn By, + %n*QCBf\M + (i§?3 n *BY, + Rp

exp(isn™Cnpn) = 1 +1sn*Cxpn + Re

for implicit remainders Rz and Rs. Therefore,

Y (s) = Elexp(isAn) exp(isDnyn)]
+isn™¢Elexp(isAn) exp(isDy ) By + - - - + Elexp(isAn) exp(isDn.n) Ri]
+isn ¢Elexp(isAy) exp(isDy »)Cnn) + Elexp(isAy) exp(isDy.n) Re]
+(is)*n~ O Elexp(isAy) exp(isDnn) BNnCONomm) + - - -
+Elexp(isAn) exp(isDy ) RpRc].

There are ten terms to examine. We first subdivide the range of integration further

into (a) [n*/logn,ey/n] and (b) [ey/n, nY/*¢/logn].
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REGION (A)

For some ¢ > 0, )7] (U

)’<exp[ o Q/UQ)} for s < ey/n.

(i) Since |exp(isD, n)| < 1, we have

|Elexp(isAy) exp(isD, y)|| < |ElexpisAy)]| < exp [—%Nn_l(as/(ra) :
(i)

Elexp(iAn) exp(isDnn)Bynl = DY pii Ele(X;, X;) exp(isAn) exp(isDyy)].
(A2.6)

We work on each pair of indices {i, j} separately. Decompose Ay into Ayx; and Apyo,

where Ay does not depend on X; or X;. Therefore,
Elp(Xi, X;)exp(isAn) exp(isDy )] = E[e(Xi, X;) exp(isAni) exp(isDy )| Elexp(isAna)].
Then use the fact that |exp(isAn1) exp(isDy)| < 1 to find
|Ele(Xi, X;)exp(isAn) exp(isDyn)]| < Eflo(Xs, X;)[]E]] exp(isAnz)|],
where E||exp(isAnz)|] < exp[—As?*(N/n)] for some A > 0. Therefore
| Elexp(isAn) exp(isDy.n) Bl < A1(n) P(s) exp[—As*(N/n)],

where A; = O(n®) for some real number «, while P(s) is a polynomial in s. The same
reasoning applies to the other terms depending on B2 Nons B?Vm, and Cy , », provided the

relevant absolute moments are bounded. A sufficient condition for

Jox j10gn A1(n) P(s) exp[=As*(N/n)] = o(n~1)

is Nn*X~1=¢ — oo, for some ¢ > 0.
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(iii)) REMAINDER TERMS: Provided the relevant moments exist:

(R1)  Bl|Rsl] < st € E[BY,] < Astn (1)
(R2)  El|Ro]| < s*n %E[CR,,,.] < As*n* ()
(R3) B[ RpRel] < {El|Raf? )" (B[R} < Astn~420) (X)°.

n
We subdivide the range of integration further, so that
evn nX1/logn
J =)
nX/ ]an nX/logn
where the number of integrals, g, depends on (. Note that the contribution of the

—H’"S(S ds are: (R1) O <n‘4C (%)2 n4xﬂ'/log"),

ev/n
ds+---+

nXa/logn

17/]”(8) nX2 /logn

S

_?/Jn(S) ds+
s

¥n(s)

S

Un(s)

S

ds,

nX1/logn

. . X /1
remainder terms to the integral f:xj,/l }’if;n

(R2) O (n_% (%) nQXJ'/l"g”>, and (R3) O (n_(‘lC*%) (%)3 n6Xj/l°g"). We choose N dif-
ferently for each subintegral so as to balance the remainder terms with the main terms.
We illustrate the argument for the special case that ( = 3/8 and ¢ is large enough to
be ignored (e.g. £ = 7/8) so that ¢ = 3 and:

N = O(n**) on [n!/®/logn, n?%/logn]
N = O(n*?) on [n*®/logn, n**/logn]
N = O(n'/*) on [n%?®/logn, £//n].

REGION (B). When s is large, we use the bound F2 instead of F1, and then
apply the same method as for moderate s. In fact when s € [¢y/n, n}/**¢] we choose

N = [2logn/x1]. Provided ¢ > 1/4, the same argument works. n

Pn(s)

S

THEOREM 5.1:  We have to show that [")&"

n

ds = o(n™1). We use the

following lemma:

LEMMA 5.1.1: For all s and for all n and N, with 6 < N < n, there ezists
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A < o0, such that

3 N 3k/2 N6
() < E[|Elexp(isHn )| Xns1, r Xul|V 6] {1 FAY sl [ﬂ } Al
k=0

nd’

Then, by assumption E1 there exists a constant ¢ < 1 such that

|ElexpisHyn)| X N1, - Xi]| <o,

nl/a+e
logn ?

1
nlogn

uniformly for s € [ n log n} with probability 1 — 0( ) This gives us an

exponential bound for
3. [N
E|Blexp(isHy )| X 41, -, X] [V {1+)\Z\s\ ] }
k=0

The second term contributes o(n~!), provided N is small enough; N(n) = o(n'/%) will

work. .
PROOFS OF LEMMAS
Proof of LEMMA 4.1.1. Exactly the same as CJV, Lemma 2. .

Proof of LEMMA 4.1.1. Consider the first inequality. Let E’Q be Fy with oq
replacing o,. Then |Ey — E}| < |Ey — Ef| + |Ey — Es|, and |E, — Ej| < )\Z—z for some
A < 00, by the general inequality F3 with K = 3. Also by Taylor expanding oq in
terms of o, we find

2

~ s |'s
|E2 — E| < )‘n1+2< + n3/2+2¢"

i

The remaining inequalities are established similarly. .

Proof of LEMMA 5.1.1. The proof follows by the same argument as given in
Lemma 5 of CJV. Let EN,LN =Nt Z;-V:Hl 0;;, then EHEN,LNP] = O[(N?n~(+40)i/2]
O[(N3n=3)7/2], then N is sufficiently small. n
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