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0. ABSTRACT

The subject of this paper is modelling, estimation, inference and prediction for economic time
series. Bayesian and classical approaches are considered. The paper has three main parts. The
first is concerned with Bayesian model determination, forecast evaluation and the construction of
evolving sequences of models that can adapt in dimension and form (including the way in which
any nonstationarity in the data is modelled) as new characteristics in the data become evident.
This part of the paper continues some recent work on Bayesian asymptotics by the author and
Werner Ploberger, develops embedding techniques for vector martingales that justify the role of a
general class of exponential densities in model selection and forecast evaluation, and implements
the modelling ideas in a multivariate regression framework that includes Bayesian vector autore-
gressions (BVAR's) and reduced rank regressions (RRR's). It is shown how the theory in the
paper can be used: (i) to construct optimized BVAR's with data-determined hyperparameters;
(i) to compare models such as BVAR’s, optimized BVAR’s and RRR’s; (iii) to perform joint
order selection of cointegrating rank, lag length and trend degree in a VAR; and (iv) to discard
data that may be irrelevant and thereby help determine the “lifetime” of an econometric model.
Simulations are conducted to study the forecasting performance of these model determination
procedures in some multiple time series models with cointegration. The final part of the paper

reports an empirical application of these ideas and methods to US and UK macroeconomic data.



1. INTRODUCTION

The determination of good models for prediction is an important element in much practical
econometric research. Since economic time series often display nonstationary characteristics, an
aspect of model determination that must be addressed in practical work is how to model the
nonstationarity in thg data. The choice between different forms of nonstationarity (particularly,
stochastic trends versus deterministic trends and trend breaks) is far from being clear cut in
many applications, as much recent research on unit root tests has shown. But when the choice
is made, it often has a substantial impact on the performance of out of sample forecasts and
forecast confidence sets -— papers by the author (1992, 1994a) and DeJong and Whiteman (1992)
give some recent empirical evidence of this point. Furthermore, practical business and financial
researchers who need to forecast such series as exchange rates and financial prices often need to
deal with a large number of series at the same time, and the task must be repeated period after
period. In these conditions of practical research and real time forecasting it is valuable to have
automated procedures of mode] selection that can take into account critical facets of a series such
as its nonstationarity, and procedures of model adaptation that allow 2 model to adapt as new
characteristics in the data become evident.

The first part of this paper is concerned with the development and justification of such proce-
dures for use in the analysis of economic time series. The methods to be employed are Bayesian
in character but also have classical underpinnings. They build upon ideas on model determina-
tion, hypothesis testing, and forecasting in fhe presence of nonstationarity that the author (1992,
1994a, b, ¢) and the author and Werner Ploberger (1994a, b} have put forward in recent research.
The methods rely on Bayesian updating techniques to revise the model on a period-by-period ba-
sis and, in this respect, are closely related to recursive least squares (Brown, Durbin and Evans,
1976}, recursive maximum likelihood (Ljung and Soderstrém, 1983) and Kalman filter (Kalman,
1960) methods. Harrison and Stevens (1976) gave an early statistical application of Kalman filter
methods to forecasting, and West and Harrison (1989) provide an extensive recent review of their

use in the context of Bayesian inference for dynamic linear models. Hill (1994) provides another



recent discussion and implementation of these ideas.

The approach to be pursued in this project is in a similar spirit to the aforementioned studies
but relies primarily on asymptotic analysis for its justification. It allows for the possibility that
the generating mechanism of the data may evolve over time, that the true probability measure
may not belong to the cla.ss. ;)f probability measures (or models) that are used as candidates,
and that the data may be nonstationary and cointegrated in unknown directions and of unknown
degree. In fact, cointegrating rank, like lag length and deterministic trend degree, is treated
in our approach as an order selection issue that is to be determined by the data; and joint
estimation of cointegrating rank, lag length and trend degree is possible. The role of asymptotic
theory is to provide an exponential form for the Bayesian data density that is common across
a wide range of competing models. Model determinatior, hypothesis testing about the form
of nonstationarity, and forecast evaluation can then all be conducted using these exponesntial
densities. Conditional versions of the density criteria can also be constructed and these can
be viewed as Bayesian “predictive odds,” conditional on a certain part of the observed historical
trajectory. They have the advantage that in large samples and under certain regularity conditions
the criteria are invariant to the prior density. Predictive odds criteria have certainly been used
before in Bayesian analysis and both exact and asymptotic approaches are possible. Early insights
into the use of predictive odds {and related) criteria for model selection purposes were given by
Geisser (1975), Geisser and Eddy (1979), Atkinson (1978) and Hjorth (1982); and the methods
have recently been extensively discussed and applied in work by Gelfand et al. (1992), Gelfand
and Dey (1994) and Pai et al. (1991). Econometric implementations of exact predictive odds
were given by the author (1992, 1994a, b) and the author and Ploberger (1994) under Gaussian
assumptions. More recently, Geweke (1934) has shown bow to use Gibbs methods to compute
these criteria under general distributional assumptions.

This paper provides a general theory that relies on an asymptotically valid form of ‘the condi-
tional density (an exponential density) that can be used for model determination, inference and

forecast evaluation. We are particularly interested in a level of generality in the asymptotics that



allows for integrated and cointegrated processes, so that a wide range of potential applications
come within the compass of the same asymptotic theory, thereby avoiding the awkwardness of
the nonstandard, model-specific (and often nuisance-parameter dependent) asymptotic theory of
classical estimators and tests.

Some of our theory is assisted by the use of embedding techniques that enable us to embed
the discrete time density in a continuous time density process in a manner that is analogous
to the Skorohod embedding of a discrete scalar martingale in a Brownian motion (see e.g. Hall
and Heyde, 1980, Appendix A). Phillips and Ploberger (1994, Theorem 3.4) show how to do this
in the case of a scalar parameter. One of the technical undertakings of this paper is to extend
the embedding theory to the multivariate case. At present, there appear to be no results in the
probability literature, at least to the extent of the author’s present knowledge, that generalize the
Skorohod embedding to the vector case. But, we will show in Section L of the paper that there
are ways around the technical difficulties that arise in the vector generalization. By building a
location model regression structure {which is a feature of most time series models) into the general
likelihood framework it is possible to embed the score process as a vector of stochastic integrals
with respect to a univariate Brownian motion and this vector is a continuous square integrable
martingale. With this construction an embedding theory for the vector case is attainable. The
theory can then be applied to justify the use of the conditional Bayes densities, thereby confirming
our predictive odds criteria as ratios of proper probability densities and to ascertain the form of
the model to which these densities correspond.

We illustrate the theory of the paper in a multivariate stochastic regression framework that
includes vector autoregressions (VAR’s), Bayesian vector autoregressions (BVAR’s) and reduced
rank regressions (RRR's). Our theory is used to construct optimized BVAR'’s, whose hyperparam-
eters are data—determined in the same way as our model determination criteria select lag length or
cointegrating rank in a VAR. This framework also makes it possible to compare such non-nested
models as BVAR's with Minnesota priors (which we call BVARM’s), as used in Litterman (1986),

and RRR's, which are now popular models in empirical studies of cointegration. This particular



application is discussed in some detail. We also show how our methods can be used to assess
evidence in favor of diﬁ'eregt initializations of a process; or, put another way, which data are most
relevant to the recent history of a process and which data, if any, should be discarded.

A simulation study is conducted to examine the forecasting performance of these model deter-
mination procedures in multiple time series models with unit roots and cointegration. It is found
that, with a cointegrated system, optimized BVARM’s have superior forecasting performance than
BVARM’s that employ Litterman’s {1986) settings for the hyperparameters. In such cases the
tightness hyperparameter for the system’s off-diagonal elements is chosen by our model determi-
nation procedures to be much larger than the Litterman setting. In the cointegrated models we
use here, optimized BVARM’s are found to perform in forecasting one period ahead about as well
as RRR’s in which the lag order and cointegration rank are jointly determined by model selection.

The final part of the paper is concerned with an empirical application of our methods to US
and UK macroeconomic data. We build BVARM’s, optimized BVARM’s and RRR models using
our automated model determination procedures for quarterly data on real GDP and personal
consumer expenditure in the USA and UK. These models are used in l-period ahead and 4-
period ahead forecasting exercises over the 14 year period 1980:1~1993:4. The time profiles of
model features such as lag length, cointegrating rank and hyperparameter choices are found to
be fairly stable over this period. The differences between the procedures are small in 1-period
ahead forecasting exercises. In the 4-period ahead forecasts, the BVARM and optimized BVARM
clearly dominate the RRR model and the optimized BVARM is slightly better than the BVARM
with Litterman hyperparameter settings.

The paper is organized as follows. Section 2 contains the main body of our theory and our dis-
cussion of Bayesian model determination, forecast evaluation, data discarding strategies, evolving
sequences of models and VAR, BVAR and RRR model applications. Section 3 reports the sim-
ulation study. The empirical application is given in Section 4. Section 5 makes some concluding
remarks. The paper has two technical appendices. Section P of the Appendix provides the proofs

for Section 2 and some further discussion, examples and technical extensions. Our embedding



theory is developed as a technical supplement in Section L of the Appendix, whose subject is

location models for time series.

2. BAYES MODELS AND DATA GENERATING MECHANISMS

2.1. A General Framework

Wishing to remove the untenable assumption of data generating systems and “true” parameters,
we instead regard the class of models to provide a language in which to express the regular features
of the data. (Rissanen, 1986, p. 1080)

Let (2, 7, P) be a probability space and let (F;);>0 be an increasing family of sub o- fields of
F. A family P?, 8 € R®, of parameterized probability measures is defined on the same measurable
space (Q, F). The collection P?, 8 € R?, comprises candidate probability measures for a discreté
time series (Y;) that is defined on (2, F, P) and adapted to F;. Let Y™ = (¥,)7_, and P, = P|F,,
P? = P®|F, be the restrictions of P and P’ to F,,. Suppose P, < v, and P’ « v, V6 € R” for
some o—finite measure v, on {Q, F,). In Rissanen’s terms, the family P? gives us “a language™
for modelling the “regular features” of the data ¥'".

In this framework P, is the true probability measure of Y. We do not require that P, belong
to the family P? but do require that there be some member of the family, say P.f?‘ , that is “closest”

to P, in some sense. This requirement can be formalized as follows:
(CO) For each n there is ¢ unigue 85 € RP such that

8 = argmeaxfln(dP,f/dPn)dPn = argming [ In(dP,/dP¢)dP,. O

Here K(P,, P8) = [la(dP,/dPS)dP, is the Kullback-Liebler distance between the measures
P! and P,. Roughly speaking, 8%

n

maximizes the Jogarithm of the likelihood ratio dP¢/dP,
averaged over the sample with respect to the measure P,;. If P, is in the parametric fa.mﬂ}; P¢
then K(P,, P,f?‘) =0,F = P,f?' and 49 is called the “true” value of the parameter §, We mention
that the uniqueness of 69 is important. If #2 is not a singleton of R” then some of the results
given below will change. We will indicate some of the possibilities as we go along, but otherwise

proceed as if (CO0) holds.



Let x(#) be a prior density for § on R?. The mixture P, = Jre ¥(8)P2d is the measure
that characterizes the distribution of the data Y™ in a Bayesian framework consisting of the joint
densities (dP¢/dv,, 7(8)). We call P, the Bayesian dats measure and note that since x(8) may
be improper, P, may not be a unitary probability measure. The density of P, with respect
to the true probability F, is given by dPu/dP, = fp, x(8)La(8)df where L,(8) = dP?/dP, is
the likelihood ratio. Let £,(6) = In(L,{4)) be the log likelihood ratio and 15.1)(6) = 0L,(8)/a4
= E}.,(3/30)[tn(L(8)/ f,k_1(8))] = L7_,£:(9) be the score function.

In spite of the fact that it may be nonunitary, P, is a Bayesian analogue of the notion of a
data generating mechanism. When the true probability P, belongs to the parametric class Pé,
we have P, = Pﬁ?‘ and the measure Ps?‘ fully describes the generating mechanism of the data. In
classical parametric statistics the focus of attention is therefore estimation and inference for 82.
For instance, if 8, is the maximum likelihood estimate of 8%, we may use P,;f\" to describe the data
generating mechanism and to model the data. In the Bayesian framework, the data measure P,
does not correspond to P, even when P, = P,fe' unless 7(#) attaches full prior probability mass
to § = 83 (which would require as much divine prior inspiration in Bayesian analvsis as 8, = &
would require good posterior coincidence in classical estimation). The usual way of characterizing
the data generating process under Py, is to let ¢ be a random draw from =(8) and allow Y to
be generated according to Pf. This is easy enough to do except when 7(8) (and hence Pp) are
improper. Ore of the tasks we set for ourselves Jater is to give an explicit representation of the
Bayesian data generating process (i.e. under P,) that allows for improper priors. We also find it
interesting to explore how P, (the Bayesian approach) and Pf" (the classical alternative) relate
to each other as potential models of the data.

Our first step is to approximate P, by a more convenient o—finite measure. Theorem 1 in
Appendix A shows that this can be done under fairly general regularity conditions and that
the approximating measure has a convenient exponential form. This theorem is a version, under
modified conditions that suit our purposes here, of an earlier result given in Phillips and Ploberger

(1994). The new conditions allaw for P,, the true probability, to be outside the parametric family



P?. This facilitates the use of the approximating measure in model selection applications, because
in such exercises we always need to allow for the fact that P, will not be covered by a class of
distributions that are of the wrong parametric dimension (e.g. when the dimension is too small)
but which are under consideration as plausible parsimonious models, We also want to allow for
the possibility that thé -d.imension of the best approximating Bayes measure may change as n
changes. This generality is particularly important in practical applications where the scale of an
empirical model may be larger or more ambitious for larger sample sizes. In such a context the
dimension of the model (p,) may genuinely be endogenous, a matter of choice or design by the
investigator or even a parameter that is itself to be data-determined. More will be said about
this feature later on.

Theorem 1 gives us a measure @, that approximates Py, is the sense that

dP, dQn

—las. (P), (1)

i.e. asymptotically the likelihood ratios of P, and @, with respect to the true probability P,
are the same. The measure Q,, is defined by its RN derivative with respect to P, which has the

convenient exponential form
dQn/dPn = Zon exp{(1/2)VaB7 Vo) B2, Gon = (27)"/*x(63)(dPER /dP,) (2)

where V,, = Es.l)(Bﬂ) is the score function 8f,/86 evaluated at 8. Under P,f'o‘, V. is a local
martingale and B, = (V,) = I}_, E(ere}|Fk—1) is its conditional quadratic variation process.
(Here ) = {82).)

As shown in Appendix A there are several alternative asymptotically equivalent forms for the

density (2). One that is especially useful is
dQn/dPn = conexp{£a(8.)}/1Bal'’? , con = (27 )P"/2x(83) , (3)

where 8, is the MLE or QMLE of fn. Noting that exp{fn(gn)} = dP,f=§“ /dPy it is apparent that

we can write the (probability) measure @,(-) as

Qn(4) = / (dQn/dP)dP, = / con| Bal H3dPP for A€ F,
A A



which shows how the Bayes measure Q, relates to the fitted classical measure PE". We consider
this relationship in more detail later.

Result (1) and the form of the density (2) tell us that the Bayesian data measure P, can be
asymptotically characterized by a measure that is in the same exponential family for a general class
of likelihoods and priors. ‘I_‘lie conditions given in Appendix A make no assumptions about the
stationarity of the time sé;ri;s“Y, and allow for models with stationary, integrated and cointegrated
components. They also place no restrictions on rates of convergence of specific compbnents of
5n and do not use any rotations of the.pa.ra.meter space in order to isolate rates of convergence.
Such generality is particularly useful in multivariate systems with a partial set of unit roots
and unknown directions of cointegration, where the usual limit distribution theory for 8, is very
complex and depends on such information — see Phillips (1989), Sims, Stock and Watson (1991)
and Toda and Phillips {1993) for llustrations. In place of restrictions on the rates of convergence
of 8,, the density (2) embodies all the necessary information in the matrix process Bn. As the
conditional variance matrix of Vi, B, records the time of V;, not chronologically but in information
units that measure how informed the data is about &, in various directions.

The density (2) is simple because of its nice exponential form and also because it depends
only on a few critical elements: the score V;,, the conditional variance matrix B,,, the prior at §9
and the dimension pn of the parametric family 8,. The conditions given in the Appendix allow
V. to be a local ng’ martingale, so that some of the usual regularity conditions of maximum
likelihood (integrability, reversal of differentiation and integration operations) are not required
or not as strict as they are in extracting the limit distribution theory of §,. One advantage of
the relaxation of strong moment conditions on the score process, for instance, is that the theory
underlying (1) and (2) should be more readily applicable to models where an asymptotic theory
for maximum Hkélihood and/or quasi maximum likelihood (like Gaussian estimation) has proved
difficult. Important examples of the latter are ARCH and GARCH models where it has been

difficult to establish general asymptotic results for the MLE and QMLE, although Weiss (1936)
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makes significant progress oo ARCH models and Lumsdaine (1992) and Lee and Hansen (1994)
have obtained useful recent results for GARCH models.

2.2. The Conditional Bayesian Density

The prequential approach is fornded on the premiss that the purpose of statistical inference is
to make sequential probability forecasts for future observations, rather than to express information
about parameters. (Dawid, 1984)

The exponential Bayes measure defined by (2} is path dependent in the sense that it depends
on the sample data via the score process V; and its conditional variance matrix B,. It is also
dependent on the value of the prior at 6%, i.e. #(82). In large samples we can scale out the
effect of the prior by working with a conditional measure. Since the prior density =(f) is always
somewhat arbitrary the idea of removing the dependence of the Bayes measure on the prior may
be appealing. This can be achieved as follows.,

Let ny be a new initialization of the time series Y; and let n, be some future time such that

n, > ng > 1. When ng is large, we have from Theorem 1
dQ1y /dPry = Ton, exp{(1/2)Vy Byl Vo }/| Bnp 1M

dQn,/dPn, = Ton, eXP{(1/2)Vr:°B;: Vﬂn}/lBﬂolllz )
and

APry/d@ngs P, /dQn, — 1 as. (P) as ng — oo . (4)

Moreover, taking tbe dimension (p,) of 8, to be fixed for np €< n < n, and assuming that
85, = 63,, We have Ton, = Tgn, = (27"/2x(82). Thus, the conditional density of Q,, given %,
is

_ exp{(1/2){Va, Bzl Va, = Vo Bl Vo)) dPe [aP,

Fro (1Bna|/|Bro | )H/? dP:f‘“/dPna
qnq('lfﬂo) , Bay,

dQ e
dF,,

(5)

and the conditional measure is

Qnu(BIFn) = [B tna (1 Fug)dPry , VB € FRo .
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This conditional density and its induced measure @,(+|F,,) can be shown to be a proper prob-
ability density and a proper probability measure (subject to the use of a possible stopping time
argument to ensure integrability). A demonstration of this feature of the conditional density was
given in the case of a scalar parameter with P, = P¥ and for a continuous time series in Phillips
and Ploberger (1994, Theorem 2.4). An extension of that result to the multivariate case is given
in Section L below and it is shown there how the result can be applied to time series models that
have a conditional mean regression structure.

In view of (4) the conditional density gn,(-|Fn,) is an asymptotic approximation to the coun-
ditional Bayes density dP,,/dPn|Fpn,. From the practical standpoint ¢a,(-|Fpn,) is appealing be-
cause it is invariant to the prior x(#) and it depends only on the dimension of the parameter space
and the history of the score process V; and its conditional variance matrix B, over the interval
ng < 1 < n,. Therefore, for large samples we have a valid approximation of a Bayes density that
is independent of the prior. Effectively, the prior density has been left behind by the advent of
sample data, and inference about the data generating mechanism (P,) can be made using this
Bayes density without concern about the influence of or sensitivity to the prior, at least to the
extent that the asymptotic approximation holds good.

In earlier work by the author (1994a, b, ¢) in the simpler setting of Gaussian linear models
this conditional Bayes density was constructed and used for forecast evaluation purposes where
it was called PICF (posterior information criterion for forecasts). In such circumstances, ny can
be taken as the sample data and n, — ng can be considered the forecast period over which models
of different dimension and possible structural characteristics (such as the presence or absence of
cointegration) are to be compared. The criterion on which the forecast evaluation of two different
models (M7 and M;, say) is made then depends on the conditional density ratio or the RN
derivative of the respective conditional Bayes measures QM1(.|F,. ) and QMi(Fn,), ie.

erﬁl('lfno) - qvﬁl(‘[fno)
dQN2(|Fn)  Grit(1Fn) |

(6)

This ratio can be viewed as a predictive odds ratio given F,_  or conditional Bayes factor given

Fr, to use more customary Bayesian terminology. What distinguishes (6} from alternatives such
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as these is the following: (i) the elements of (6) are densities of exponential form (and numerical
integrations are not needed to calculate them); (i) the justification for their form js asymptotic;
(iit) the densities depend only on V;, By and p, for the respective models and hence are very
easy to calculate; (iv) the criterion is developed and justified for a wide class of likelihoods and
priors, including improper pri;rs which- are often excluded from consideration in the copstruction
of Bayes factors and predictive odds.

If we employ the alternative formulation of the density approximation given by (3) in the

construction of (6) the formula is even more direct and has some revealing implications. It is

based on
In(1Fn) = €Xp{ng(Bn.) = by (B0 )} /(1Bug | /| Bu|)'/? (7
which depends on the MLE §t and B, over ng £t < ng. Note that (7) avoids the final factor that
appears in (5), which depends on the relative likelihood de? /dP; over the interval: ng < ¢ < n,.
The above expression (7) leads to an interesting connection with the classical approach. As
discussed earlier in Section 2.1, the classical approach proceeds on the assumption that there is a
“true model” in the parametric class, say Pf')‘. The “true parameter” 62 is then estimated, let us
say by the MLE §m and plugged into the parametric distribution giving PE" iz much the same
way as the transmission of an automobile is engaged as we shift into gear. Now let us suppose

that |Bn,|/[Bn,| ~ 1 as nq gets large. In other words, since

B, = Bng + T3t Eerer | Far) (8)

we assume that the new information about the process over t € [ng+1, n,] as embodied in the
second term on the right side of (8) is of minor importance relative to the information (B, ) that
has already been gathered over the historical sample period {1, nol. In a certain sense, this is a
widespread presumption for reasonable {orecast capability. For, if the new information over the
forecast period were large relative to the information in the sample data, then we must surely
expect forecasts that are based on the historical data to be poor. For instance, if inflation is
steady and well modelled by a trend stationary or integrated process over the sample period

but turns into hyperinflation during the forecast period, the information content of data in the
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forecast period substantially exceeds that in the sample period. Naturally, forecasting capability
is sharply delimited in such a situation.

Using [Bn|/|Bngl ~ 1 in (7) for ng < n < n, we obtain

(1 Fn) = exp{La(8n) = Log(Fny)}

= Ln(0n)/ Lng(Bns)
o a0 Leosi(Brea)
Lac1(Bam1) Lng(Bng) ©)

Now by the formula for recursive maximum likelihood and under conditions which ensure that

5,1 -8 ~0as. (P)and B,l,nV,, = 0,(1), we have approximately
Bn = Ony + Ba(Bma ) N (Bas)) = By + 0,1 D min BYE) | 35 n— 00 (10)

B Amin(Ba) — 00 a.5. (P) as n —~ oo and if we substitute (10) into (9) we get the approximate

relationship
Gna (" Fng) ~ H filss at-llf!—l) (11)
t=ng+1

where fi(-; 8|Fi—1) = Li(8)/Li-1(6) is the conditional density of ¥, given F_y at 6. In (11)
fils a-llf;_l) is the classical predictive estimate of the conditional density of Y; using information
in F,_1, including the MLE 8;_;. The right band side of (11) is in fact just the classical estimate
of the “dgp”.

Relationship (11) tells us that in large samples the best Bayes estimate of the data generating
process (invelving the conditional Bayes density gn,(|F»,)) is asymptotically equivalent to the
classical estimate of the same parametric model with the maximum likelihood estimate of the
parameters “plugged in” and updated in a recursive way over the given interval of data. The
latter is just the classical predictive distribution. Phillips and Ploberger (1994, Theorem 2.3)
established the equivalence between these Bayesian and classical “dgp’s” directly in the special
case of a linear stochastic regression model with Gaussian errors.

One feature of (11) that makes the predictive odds or PICF criterion appealing for model
comparison and forecast evaluation purposes is that the asymptotic equivalence shows that the

criterion can be justified by both Bayesian and classical statistical arguments. On the one hand,
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the criterion is a conditional Bayes density: an RN derivative of the Bayes measures for the
respective models conditional on F,,. On the other it is simply the conditional forecast distribu-
tion of the classical parametric model with the period by pericd MLE’s replacing the unknown

parameters. Thus, combining (6) and (11) we have the criterion

- d'QnM«l _ Gng [ Fne Hﬂﬂ :Ml('i 8-i1Fir)
dQnl Fne  ¢n, I-Fn-n t=ng+1 f: {3 9:_1]-7:1—1)

where ftM‘ and ftM’ denote the conditional densities of Y; given F;_; under models M, and M;,
respectively, and ?i‘,"_f‘l and E{'f, are the MLE's of the parameters of the corresponding models
using data in F,—. The final “~” in (12) holds when the relevant conditional quadratic variation
processes satisfy |Ba|/|Bn,| ~ 1, as this condition underlies the asymptotic equivalence in (11)
above.

Some empirical illustrations of the use of the criterion PICF in Gaussian AR models are given

in Phillips (1992, 1994a, b).

2.3. Can We Do Better than the Exponential Bayes Measure in Modeling the “dgp”?

The exponential Bayes measure Q, and its conditional version and density Q.(-|F,,) and
gn("{Fno) pProvide us with one way of modelling the data. As we have already seen in (11), there
is a close asymptotic relationship between this Bayes model for the data and the classical model
whose parameters are fitted by maximum likelihood. Obviously, there are many other ways of
modelling the data. Without divine intervention or extraordinary sample coincidence we cannot
expect any empirically feasible alternative procedure to hit upon the true probability measure P,
of the data ¥Y™. As our framework allows, P, may not even be included in the {parametric) class
Pi» under consideration as candidate measures. Under these circumstances the most reasonable
questions we can ask of our fitted models are: how well do they do in characterizing the true
probability F,.; and can we do better than our fitted models in the parametric class we have
chosen? In effect, are there better models in the candidate space that we have somehow missed
out on? And, if so, how close to P, can we reasonably expect to come?

These questions raise some very general issues that are close to a major nerve center of all
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statistical enquiries — the comparison of different statistical models of the same data and the
determination of the most well suited model in. a given class. Some related questions and issues
have recently been considered in an important line of research by Rissanen (1986, 1987). Rissanen
{1987) shows that his notion of stochastic complexity achieves on average the lower bound with
respect to which we can a.x-)-proach the true law of a process within a given parametric class. In
particular, Rissanen’s Theorem 4.1 establishes the following: under certain regularity conditions, -
if f(Y™; p, ) is a parametric class of densities for Y™ with a p-vector parameter 8 in a compact
set ©PF of R? and if g(Y™) is any (proper) density for the observations, thea ¥4 € ©7 except for a

set that has Lebesgue measure zero (in R?) we have the inequality

E, {8l (Y™; 3, 8)/ oY)}
7 0) 21 (13)

lim inf,,
where the expectation is taken with respect to the distribution defined by f(Y™; p, ). This result
tells us that except for negligible sets (of # € ©F) the closest Kullback-Liebler distance we can
expect to come on average to the true density of the data is bounded below by the quantity
(p/2)In(n) as n — .

Rissanen’s theorem is proved under regularity conditions that ensure the MLE &, is
/n—consistent and satisfies a central limit theorem. In ongoing work the author and Werner
Ploberger have been able to show that a version of Rissanen’s theorem holds in a more general
context that allows for random information (in finite samples and in the limit) and rates of con-

vergence for a‘,, that may differ in different directions. More precisely, under regularity conditions

similar to (C1)-(C7) in Section P and for every ¢, a > 0 we find that
M8, : Pi{la(dg/dP2) > —(1/2)(1 — ) ln(det(B.))}2 e} = 0, as n— oo (14)

where A(-) is Lebesgue measure and G is any (proper probability) measure for Y,

In (14) the probability that the inequality dG/dP* > —(1/2)(1-¢)ln(det(B,)) holds is
evaluated with respect to the measure P/ in the given parametric class. The RN derivative
4G /d P measures the relative likelihood of the measure § against Pf», i.e. the “goodness of fit”

of the density of G. The result (14) gives an upper bound (i.e., —=(1/2){1-¢)in(det(B,)) ) on this
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goodness of fit, and tells us that the set of 8, for which this bound can be exceeded with nonzero
probability has Lebesgue measure that is zero as n — co.

Thus, if there is a “true model” represented by Pf’J‘ in the parametric class, then we
cannot expect (with probability exceeding o) to get “nearer” to the truth than the bound
exp{~(1/2)(1-¢) ln(det(Bn))} = 1/ det(B,)(*~/? when we use d¢ /dP,f?‘ to measure “nearness.”
This bound depends on the dimension of the parameter space (the dimension of the matrix By, ) so
the curse of dimensionality is an intrinsic element in how close we can expect to come to the true
probability mechanism. Moreover, the bound is random and depends on the information in the
data, as manifest in the matrix quadratic variation process B,. Thus, the more information we
have in the data about the evolution of the score process V,,, then the closer we can hope to come
to P,fg'. Since the bound involves det(B,), we are handicapped in this process of approximatjon by
the directions in which the compensator B, grows most slowly (i.e. by its smallest latent value).

The bound applies to each useable model class and includes all G, no matter how they are
arrived at. Thus G includes candidate measures such as the “plug in” probability Pf’*, in which
fn is estimated from the data on a sequential basis as in (11) above, and Bayesian measures
such as P, = [, 7(8,)Péndb,, in which the parameters are averaged out with respect to a given
(proper) prior. With regard to the latter, we know from Theorem 1 that such measures can be
well represented in large samples by the exponential measure Q, defined by (2). Note that in this

case in (2) we have the true probability P, = P (for each 4, € ©,) and so
In(dQn/dPi*) = In(con) + (1/2)ViB Ve — (1/2) In(det B,).

Under very general conditions we can expect VB 1V, = 0,(1) under P measure, because V, is
a Pin—martingale, and B, is its quadratic variation process. (In fact, it is shown in (L17) below
that VIBIV, = o(ln(Amax(Bn))' 1) 2.5, (P) for all § > 0 in time series models with a conditional

mean regression structure.) Thus,
In(dQn/dPy") ~ —(1/2)In(det B,), as n— oo, (15)

and so, under PP» probability, the exponential Bayes measure (J,, comes arbitrarily (i.e. up to

¢ > 0) close to achieving the upper bound on the “goodness of fit.” In other words, we cannot
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reasonably expect to do any better than the measure Q, in modelling the process Y= (or at Jeast
its proper conditional version as given by (5) or (7) above).

According to (14) the f,-sets for which we can do better than @, in modelling Y™ when
P, = P¢ with 8, € ©F have zero Lebesgue measure in ©F». This result allows for there to be
exceptional points. For in;tance, if we have some special information about the “true dgp” and
do not have to estimate all the parameters of 4, or if we have divine inspiration and just hit upon
the right value by good fortune, then we may be able to do better than Q,. Examples where we
know that the real dimension of ©F is smaller than p, and we do not have to estimate all the
components of 6, include the following: (i) knowledge that there is a unit root in the process; (ii)
knowledge that a VAR system is cointegrated of a certain order; (iii) prior economic knowledge
that certain parameters should take on specific values. In such cases we can expect to do better by
working on the appropriate sub-manifold of @£ for 6, and finding the corresponding exponential
Bayes measure for the restricted §-set. Ia general, the “true” parameter 8, of a parametric model
will be totally unknown and this ignorance includes the correct dimension of 4,.. In such situations
(14) indicates that an empirically feasible model of misspecified (smaller) dimension may be better
than a model of the correct dimension. In effect, the attainable upper bound, which depends on
the available data and the informatjon that it embodies (as manifested in B,), may be superior
in the case of a model class of smaller dimension than it is for one of larger dimension that places
unreasonable demands on the available data.

This brings us to the next question of how to choose the best model among several of different
dimension. Suppose for example, that we have models M; with parameter spaces ©! of dimension
pi (i=1, ..., I). According to (14) the exponential Bayes measure QM is as close to the “true”
measure in the model class M; that we can hope to get with an empirically realizable measure
(subject to excep'tiona.l cases of zero measure in § space). If we want now to compare models M;

and M; in different classes (i # j) then the obvious criterion is the relative Lkelihood
: M,
PIC;; = dQX/dQy" (16)

between these best exponential measures for the two different classes. Phillips and Ploberger
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(1994, Section 5) suggested the criterion PIC (a posterior information criterion or asymptotic form
of Bayes factor) as an extension of the Schwarz (1978) BIC criterion for model selection purposes
in cases such as partially nonstationary regressions where there may be random information in the
limit or differing rates of convergence in components of the MLE. Phillips and Ploberger suggest
that PIC as given in (16) be made unique by setting the constant con that appears in dQ,./dP, in
(3) at the value ¢y, = 1. This corresponds to the use of the “canonical prior” x(8,) = N(€2, I) for
which 7(83) = (2x)7P~/2. I it is desirable for this dependence on the prior to be totally avoided,
then we can use the predictive odds criterion, PICF given in (12).

We can also argue that in model selection using PIC the factor involving ¢g, in (3) can be
neglected in large samples. This remains true even if the dimension (p,) of the parameter space

in the approximating parametric class tends to infinity with n. To see this, note that

(1/n)tn(dQn/dPs) = (1/n)fn(con) + (1/n)ta(By) = (1/20)¢n] B, |
= (pa/20)tn(27) + tn(2(8)) + (1/n)a(Ba) + (1/20)¢n| By

~ (1/n)a(B0) = (1/20)€4] Bl , 2s n — o0 .

The asymptotic equivalence in the last line holds provided: (i) (62) is bounded above and away
from zero as 7 — oo (i.e. the prior does not become too thin at 6%, nor dominate the data
density as n — o); (i) (1/2)¢a(8,) = Op(1) as n — oo (which is usually satisfied in time series
models); (iil) £n|B,| ~ kpnLa(n) for some k > 0; and (iv) p./n — 0 as n — oo, Observe that the
dimension of the matrix B, is pn X p, and B, carries the information content of the data about
8, so that (iii) above can be expected to hold for a wide class of models and both stationary and
nonstationary data. Thus, in large samples the PIC criterion given by (16) can be used with the
setting ¢on = 1 in (3).

In stationary systems, for which the MLE B, is v/n—consistent and the standardized informa-
tion matrix n~!B, has a nonrandom positive definite limit, PIC is asymptotically equivalent to
BIC. Under the same conditions, PIC is also asymptotically equivalent to the MDL (minimum
description length) principle of Rissanen (1987; equations (3.5) and (3.9)). Unlike BIC and MDL

our criteria PIC and PICF allow for nonstationarity in the data and improper priors in their
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construction.

Let M; be the model chosen by (16) among the various alternatives M; for i = 1,..,1I. Let i
be the dimension of the parameter space of Ef.-, and 5;, be the corresponding MLE of the param-
eters 8¢ of model M;. Then the pair {5;, 31) and M; constitute the best approximating model in
the averal] class M; (i = 1, ..., I) according to (16). The (probability) measure corresponding to
this choice is Qﬁ?‘, which is defined by

Q¥ [dP, = exp{t(F)}/1BLP/ (17)

where B! is the quadratic variation process of the score Vi = £{7(610) and 4 minimizes the
Kullback-Liebler distance K{(P,, Pfi‘) between P, and Po~. We will explore the statistical model
associated with Qﬁ?‘ in a general case more explicitly in Section 3. From formula (11) we deduce

that under QM the conditional density of the observation Y, given Y™~ is approximately

(Y| Fac1) ~ fi(Yn; BaglFact) (18)

where fi is the conditional density of Y, given F,_; corresponding to the parametric measu..

P?* for model M; but with the MLE &,_, being used in place of 8/,_,.

2.4. Evolving Format Models and Measures

Almost any statistician will use families {Py : # € ©,} where the “number of parameters® depends
on the “aumber n of observations,” That is usually done by considering more complex models when
the available informatior becomes better and more complete. It has some relation with the “number
of parameters” but the relation is not clear-cut. (Le Cam and Yang, 1990, p. 100)

Model choice along the lines described in the preceding section can be conducted on a period
by period basis. Thus, we can choose the most suitable mode] for the data by PIC or PICF as
we move through the sample. Such a procedure allows for the fact that the best approximating
member -of a given class of parametric models may be of different dimension as we collect mare
data. Indeed, there is no reason why we cannot have several model classes under consideration (for
example, VAR's, BVAR’s and reduced rank regression VAR’s) and use these criteria to determine
the most well suited member within each class and then to compare the winners across classes

leading to an overall champion of champions. We can even use mixtures of models across classes
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in the evaluation if these are deemed to be of interest, as they might be in some nonnested
parametric cases.

In such an approach to modelling we recognize that the true probability P, may be outside
the parametric classes that are selected for candidate probabilities. This circumstance is surely
typical of econometric endeavors in practice. Thus, we may well find it appropriate, as the LeCam
and Yang citation that heads this section suggests, to vary the dimension of the parametric model
as n changes. As n grows we may expect models to be more ambitious in scope and possibly more
complex in form, so that more features of reality are brought within their compass. Of course,
as n grows we also have more observations to explain and thus dependence of model size on n is
by no means “clear cut.” For instance, one interesting possibility that is seldom considered and
which we shall subsequently investigate is the notion of “data discarding™: when it is helpful to
discard some of the observations and what criteria could be used to select the data to be thrown
away?

We also may wish to explicitly recognize that the true probability P, may itself evolve with n.
Further, it may be realistic to allow the measurable space (2, F) to evolve with n. For instance, as
time passes technological, institutional and infrastructure changes may lead the space Q to expand
in dimension to accommodate new economic products and services or new statistical measures
of aggregate economic activity {money supply aggregates, inflation indices and the like). We
can allow for these possibilities by taking a new probability space, viz., (Q,, Fn, Py), period by
period. Within this framework, the old idea 6f a “dgp” loses its relevance — it is now a moving
target that evolves, as time elapses, in the form of a sequence of spaces and probability measures
that are defined upon them.

Accompanying the sequence of probability spaces (n, Fr, P,) is the realized sample trajec-
tory Y™. Leaving issues of data revision aside, we can accept the historical data Y™ as given and
constant over time. Thus, as time elapses, the true probability P, and parametric families Pf»
may change, the exponential Bayes measure @, and “plug in” measure PE" will both certainly

change, but the historical data Y™ remains fixed. We just add new points to the trajectory as n
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increases. Under this scheme of things, we have a fixed set of observations Y™ and different ways

of representing it in terms of the measures Q,,, P,f" and P,. The framework we conceive is laid

out in Table 1.

TABLE 1: Data Sequences, Probability Spaces and Measures for Evolving Models

Data trajeciotien
Expo- Tree
Porential meatial Bayes Pars Dimes. umilary
Sample data Bayes mix. metric Prior sivn "PIC’ed~ prob-
date discarding mesare tnse family denaisy of 8}, messure ability Probability space
rl Yy
Mg %ng i i Mgt
yno Y- Y;-"'Yno Qng Png P"‘O "‘O(ang) Png Gngy Png (ﬂn.o.}'no.}’no)
n M ei ] i M o~
Y Y- Yorr-Yog-oo¥a | Qu™ Pn Poh *n{8}) Pr Qn ™ Pn, (Qn. Fn, Pn)
Mps - -~ — - i
Legead: G ™ = 18,1712 exp(ta(80)) ~ 18012 exp (1 20V, BT Vi) Vai = &1)(010)
i yph gai
Pn = I wn(fp )P, " d5], By = (V)
- 7 My, M.-.],. X i . o
i = arg maz;(2@Q, ™ fdQ, hi=m1, . In 8, = arg mlne,- K(Pn, P,")
n
T = ArgmMaXy Fr K{Pn, Pn")=fh(dpﬂ/‘Pn")‘P"

In this framework of evolving spaces and measures, it is not necessary or even particularly
sensible to insist on the existence of a common probability space (£, F, P) with P, = P|F, and
Pf = P®|F, being the restrictions of P and P? to F, (as we did in Section 2.1). What we lose
by giving up the superstructure of the common space (R, F, P} to the probability framework is
the capacity to make assertions like that of (1), wherein the likelihood ratio dP./dQ, — 1 as.

with respect to the global probability measure P. Instead, we can replace this resuit with the

weaker assertion that

dPy _ 4Py dQ.
Q. _ dr,' 4P,

— 1 in F,-probability. (1)

{(An attempt to extend this to a.s. convergence would require more assumptions to link the rows of
Table 1, the situation here being analogous to that of a triangular array, for which only very limited

strong laws have been established, e.g. Teicher {1985) — and such linkages would necessarily
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delimit the capacity of the madels and measures to evolve with n, which may be counterproductive
given our aim of accommodating evolutionary mechanisms). Theorem 1/ in Appendix A gives a
modified set of conditions under which the assertion (1) holds.

In other respects the theory underlying @, and its property as the data measure that achieves
the lower bound of closeness of approximation to P, continue to hold. Thus, in the framework
of an evolving probability law for the data, the exponential measure @, is still the best feasible
empirical measure that we can use to characterize the truelaw of the data, at least when we confine
ourselves to parametric models of dimension p, in the class P2, We also want to compare models
of different parametric dimension because p, is unknown and our framework allows p,, and, indeed,
the true Jaw P, to evolve with n. As discussed in Section 2.3, the procedure we suggest is simply
to compare the relative likelihood, shown in (16), of the exponential Bayes measure for each
candidate dimension of the parameter space. Let My; = {P,f:‘ 1 0L € 0, dim©f = pi} bea
class of parametric models of dimension p, for i = 1, ..., I, with p} < p? < -+ < pl. (There
is no need for these parametric model classes to be nested.) Let @~ be the exponential Bayes
measure for the parametric class M;,;. We select the model class with dimension p, determined

by the highest relative likelihood according to these exponential Bayes measures, i.e.

-

Pn=ph , where i= argmax(dQM/dQ~n), (19)

wherein the relative likelihood of QM~i is taken with respect to the coiresponding measure for
the mode! of the largest parametric dimension, viz. QnM""' (which is chosen for convenience). Let
E" = ﬂM"‘ be the chosen measure. Then (QE"),,Z,‘c| is a family of data—determined exponential
Bayes measures that most closely approximate (in terms of having the highest relative likeli-

hood) the true probabilities (Py)n»n, Within the parametric classes (Mni3 i = 1, «.o, In)npn,. The

measure Q7" can be regarded as having been “PIC’ed” by the data according to the criterion (19).

2.5. Data Discarding and the Lifetime of a Model
Whenever we allow a mechanism to evolve over time we must admit the possibility that the past

may become less relevant in determining the future course of the process. This consideration leads
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us to study the period over which the specification of an econometric model may be appropriate or,
in other words, the appropriate lifetime of the model. The problem of determining the lifetime of a
model seems important for empirical work, especially in the context of macroeconomic time series -
taken over periods where there are substantial changes in institutional infrastructure or external
shocks to an economy that are large enough to destroy the relevance of initial conditions. In such
cases we need methods that enable us to determine which data are most relevant to explaining
the recent history of a process, and we need a strategy to discard data that is irrelevant and to
reset the initial conditions.

The method we propose for this purpose is based on the relative likelihood of the exponential
Bayes measures conditional on data that are measured from different initializations. The method
is therefore of the same type as our model selection and model representation strategies presented
in earlier sections. It is also related to the idea of using conditional predictive ordinates for the
diagnostic analysis of the effect of individual observations on Bayes factors, as used by Pettit and
Young (1990Q) and Polasek (1994).

We start by specifying a period of “recent history” given by the interval [n,, ny] which will
be used for calibration of likelihoods. Let ng be the earliest initialization that is to be considered
and n? the latest. Usually we will have n® > p, and n, — n% > p, where p, = dim(9,,), so that
the parameters of the class P2 of candidate measures can be estimated from every initialization.
Let 7 be the smallest sub o—field of F,, for which ¥, r £t < ng, is measurable.

As in Sections 2.1 and 2.2 we can construct exponential Bayes measures Qn, and conditional
measures Qn, (+|Fn,) that provide data-based descriptions of the process over the intervals ¢ < n,
and n, < t € n,. We now extend these objects to accommaodate variable initializations. Let
gny{-)F7) be the conditional Bayes density of the data ¥, no+1 < t < ny, given FP. Asin (7)

above, this density has the following form

oy (1F7°) = exp{tn, (F) — £n,(82)} /(1B /| Ba, )/ (20)

where 8 is the MLE based on Fl-measurable data. Asin (11) this density can be approximated
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asymptotically as follows:
Ry
gmClFr)~ [T AG8HFY (21)

t=fig+1

where fy{-; 8]F%') is the conditional density of ¥; given F3~'. The predictive estimate of this
density uses only .Ff.“l-meas;.lré.ﬁerdata in the construction of the plug in estimator -1,

To compare models with different lifetimes (ry — r and n; — ng, say), or equivalently different
initializations (v and ng), we construct the relative likelihood of the measures over the interval

(no+1, ny] conditional on the two past histories F7'= and F¢. Define

_ 9 (1F72) IP) H ft( 9t—1|F 1)

qﬂb( l}_ﬂ ) t=n, +l A‘ llj:t-l) (22)

and let

"|)

= arg max r, (23)
fe[-n.o e}

Then the resulting measure Q,,(-|72°) provides the best data-based description of the process
over the recent history [n,+1, ny] given data in F,_, and it appears that data in F>_, can be
discarded,

A finding that 7 > ng and that data discarding is appropriate can be interpreted as a test
for structural change. If there is a change in the law P, governing the process Y, (say at time
t = 7o) which has some manifestation in the data then we might expect to find some evidence of a
“structural change” in parametric models for the data provided these are close enough to P, (we
might also expect to find spurious evidence of such breaks if the family of candidate models is a
poor approximation to F; and there is no break — e.g. see Nunes, Kuan and Newbold, 1994). If
the break is sufficiently important then it may be better to “weed out” the data before the break
(just as we “weed out” poor models). The criterion (22) daes this on the basis of the apparent
relevance of the past data to models of the process over its recent history.

In using (22) 2 decision must be made concerning the period of recent history (here n,+1 <
t < ny) that is used for calibration purposes, as well as the interval of alternative initializations
of the process that we wish to contemplate. These decisions are necessarily somewhat arbitrary,

they depend on data availability and they involve judgmental elements. But we can be guided by
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a knowledge of institutional and infrastructure changes that have taken place and whose effects on
the (economic) phenomena under study are of interest. We also need to be aware that while some
past data may not appear very relevant in the determination of the most well suited law of the
process in the present, there may be earlier data that is relevant. For example, in explaining the
- behavior of US aggregate economic indices following the Reagan tax reforms of the early 1880s,
we may be interested in the extent to which data from periods where there were similar political
changes is helpful in determiring the most suited law for the experience of the 1980s.

The scopre of the criterion (22) can be made wider by noting that the information sets F7
are not yet explicit and could well involve event fields that are much larger than the o-algebra
generated by Y; over 7 < t < n. For instance, a question that is of relevance to ongoing interest
in the “convergence™ of national economic activity across nations is whether there are periods of
historical economic development of one country that assist in explaining more recent economic
development of others. In such a context the algebra of relevant events F7 may involve the his-
torical experience of advanced industrialized economies (which by suitable lagging could be much
earlier than the chronological time r of initialization in F7?) as well as a developing nation’s own
past history. Using a criterion like (22) we could then investigate whether blocks of past economic
data of the industrialized country assist in modelling the developing nation’s recent history and
locate the “most relevant” block of data by means of a choice such as (23). Comparing this
outcome with that of the same model without such data we could then determine whether the
additional data should be discarded or retained. If the choice is to retain the data then we have
some statistical evidence to support the notion of comparable periods of economic development.
Moreaver, if the additional data can help us explain recent events better it may be of potential

use in predicting the future.

2.6. Multivariate Regression and VAR Applications

We consider the multivariate stochastic regression model

= Ale)zi+e (E=1,..,n) (24)
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whose dependent variable y and error ¢ are m— vector valued stochastic process. Y = (y)7,
X" = (z4)], E® = (&:)7 are defined on a probability space (Qn, Fpn, Pn). Accompanying y, is
a filtration Fpy C Fp (t = 0, i, 2, ...) to which both 'yg and ¢, are adapted. The error & is a
martingale difference sequence with respect to F,; and is assumed to have constant conditional
variance matrix £ = E(e;-e:”]}',,,_l).. The regressors z; (k x 1) are defined on the same space
and are Fp,_,- measurable. The coefficient matrix A depends on a p,-vector & of unknown

parameters,

Common examples of (24) are the VAR with k lags, written as
v =T Aigei + 6, (23)
and the same model augmented with a deterministic trend of degree ¢
W = Tig Aitei + Shaotit! 60 (26)

We refer to (26) as a “VAR(k,£)” system. When £ = —1 in (26) there is no intercept and the
model is equivalent to (25).

Another form of (26) that is useful in application is
Ay = O1y1 + T @Ay i + Thoodit + 6 (27)

where $; = L% A, ~T and ; = —Ej?:,-AJ- (¥ 2 2). This format is useful when we wish to allow

{or test) for unit roots, cointegration or other forms of co-movement in the system. Thus when

H is written as
&, =4f (28)

in terms of the factor loading matrix ¥ (m x r) and the cointegrating matrix 8 (r x m) (27)is a
reduced rank regression of the type studied in Johansen (1988, 1991) and Ahn and Reinsel (1988,
1990). In this case we may select an identified parameterization in which §' = [I,, F]'and then
(27} comes within the framework of (24) with « being the vector formed from the co.mponents of v,
F,®;andd; (i=2,..,kj=0,..,¢£). We call the model based on (27) and (28) a reduced rank

regression (RRR) of order (k,£,7) or an “RRR(k,£,r)” for short. Note that in addition to (28)
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we may impose restrictions on the coefficients d; of the deterministic trend in (27). For instance,
if 8'd; = Q V7 then there are no deterministic components in the cointegrating regression, which
is then purely stochastic in the terminology of Park and Qgaki (1991). Additional restrictions of
this type clearly come within the framework of (24).

Situations also arise where we may wish to allow for co-movement in the elements of y;.in
(27) without requiring @, to be of reduced rank and permitting some elements of y; to be mildly
explosive processes — see Phillips (1992) for some illustrations. In such cases, we can define A

in (27) explicitly as follows

my 1
R K | m (29)

H = N H22 = diag(hmlﬂ, veey h.-r) .
0 Hyp | ma

When Hys = 0, there are m; = m — my units roots in the system and the linear cointegrating
relation Fiyi + Faya where (y,, ¥5,) is a partition of y; that is conformable with H. When
H22 # 0 and for some i h; > 0 then y,, ", explosive. In such cases h; is usually very small and y;;
is then well modelled as a mildly explosive process over the relevant data.

A further example of (27) that is now in common use in empirical applications, especially in
forecasting exercises, is a Bayesian version of the VAR with priors on the coefficients that are
centered on a vector random walk (i.e. ; = 0 in (27)) with a subjectively determined degree of
tightness in these pﬁors. Such Bayesian vector autoregressions with these (so-called) Minnesota
priors are discussed in Doan et al. (1984), Litterman (1986) and Todd (1990). We call these
models BVARM’s. Qur terminology will apply to systems-based implementatjon of these ideas
as well as the single equation based approach of Litterman (1986). Polasek (1994) gives a recent
treatment of BVARM models using hierarchical priors that is more closely related to our own
approach.

Let ¢; = iid N{0,X) in (24) and let 8 = (o, ¢')’ where ¢ is the vector of nonredundant

elements of X. The log likelihood is then

£a(8) = —(mn/2)la(27) ~ (n/2)In |2} - (1/2){T7H 7 (we — Ale)a )y - Ale)z)]), (30)
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the score process is

Ir Wil
0@y = e , with W, = (I'® z{)(8vec A/da’) (31)
(1/2)D'(Z71 ® T 1)vec(Ep 646; ~ )

where D is the duplicator matrix for which vec £ = Da, and the conditional quadratic variation

is

Ir, WIT W, 0
B, = : (32)
0 (n/2)D'(Z-' & T-1)D

Let 8, be the MLE of 4. Then, using (3) and (30)32) we find that up to 2 constant
— (2/n)1n(dQn/dPn} = In [E4f + (1/n)In | By (33)

where £, = n-1 LT (ye — A(@n)z: )y — A(@n)z:) and &, is the MLE of a. The matrix B, in (33)

can be estimated using B, = B,,(b‘,,) and

[Ba(8n)] = |SIWEWill(n/2)D'(E @ £371)D)|

IE?W:E;Iﬁ'ftl(n/Q)m(r.-H)/?{zm(m—l)/zlf:;llm+]}
SEWIE -1, | (am(m+1)/2 jgm) T =1 m+1
177 ¢t=~n n

where W, = (I ® zi)(Bvec A(@n)/Ba’). To evaluate different models within the class of (24) we
can then use the criterion

PIC =1n(E,| + (1/n)In| B, . (34)

For a class of regression models of the form (24) with restrictions only on the coefficient matrix

A = A(a), (34) is equivalent (up to a term of smaller order in n) to
PIC =1n|E,| + (1/n)n|Boal, (35)

where B, = E’I‘W{ E;lﬁ,.

One immediate application of (35) is to order selection problems in VAR(k,{) models of
the form (26). Here the trend degree (£) and vector autoregressive order (k) can be selected
sequentially (or jointly) by minimization of (35). We can also apply (35) to the problem of order

selection in RRR(k,¢,r) models of the form (26) and (28). In this case, we treat the cointegrating
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rank (r) of (28) as an order selection problem. It is therefore possible to use (35) to achieve joint
order selection of the cointegrating rank and autoregressive lag length, a feature that makes the
approach appealing in empirical applications where there is frequently sensitivity of the choice of
r to the specified lag length & of the VAR. See Chao and Phillips (1994) for further discussion
and a proof that the procedureryields consistent estimates of both k and r. Of course, we can
also use (35) to jointly determine k, £ and r in (26) and (28) if this is deemed useful.

It is helpful to give a more explicit formula for B,, in the case of reduced rank regression, for
here there is only a simple quadratic nonlinearity in the parameters. Suppose we write (27) and

(28) directly in the form

Ay = By + @2+, §=[I, F)
By (27)
= G‘Ug-{'Eg y U= ’ G=[’7,@], @:[@2, seey q’k]

zp
dim(u) =r+dim{z)=r+{(k-1)m+£4+1.

Then the asymptotic distribution of the maximum likelihood estimators of G and B are given by

the following expressions:

Gn—~ G ~ N(0, Z@ (U'V)™)

F-R ~ MNQO, (279 @ (¥ 1 Fema) ),
(cf. Ahn and Reinsel, 1990, Theorem 2) where U’ = [u1, we tns Y4 _; = (120, «wo, Y2n-1] and 33, is
the subvector of y; = (¥},, ¥,)’ that appears in the conformal partition of y; and the cointegrating
matrix §. Thus, when we order the parameter vector a in (24) according to a = (vec(GY', vec(FY)

then we obtain the following explicit asymptotic formula for B.q in (35):
- £ el0 0
0 FEIHRSY Y.
where we make use of the fact that the asymptotic distributions of the components G and E,

are independent (cf. Ahn and Reinsel, 1990, and Phillips, 1991) and where U is copstituted

in the same way as the matrix U but uses F, in place of the matrix F in its definition. This
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representation of B, is helpful because we have
|Bual = 123 "B E7 5l 10O 1 VoI (36)

where ¥ = dim(u;) = r + (k~1)m + £ + 1, and (36) simplifies the calculation of the criterion (35)
for the reduced rank regression case.

As a final illustration of our formulae we consider a BVARM model constructed from (27)
with £, = iid N(0, ) and conjugate priors for the coefficients. Since there are no restrictions on
the coefficients of (27) in 2 BVARM (i.e. the parameter space has full dimension) we write (27)
as

Ay =Cz+¢,, with C= [@1, wory D13 doy oory d(] . (37)

It is customary in the use of the BVARM model to conduct the analysis on a single equation basis
and ignore the effects of contemporaneous correlation in the errors of (37) — Litterman (1986)
and Todd (1990} give details of the prescribed single equation construction. We shall ignore this
customary simplification for the time being, and proceed with a systems analysis of (37).

Let x(c) = N(T, V.) be a conjugate Gaussian prior density for the elements of the coefficient
matrix C in (37) stacked in the form ¢ = vec(C). The posterior distribution of ¢ is N (%, Vi)

with mean vector
= V4T XX T VI + (27 @ X X )En] (38)

and covariance matrix

Vee= V14210 X0X,] 70 (39)

Here 3, = (E7' @ XL X,)"YZ' @ XAy = (J @ (X! X,) ' X!)Ay is the MLE/OLS estimator
of the unrestricted vector of coefficients ¢, X/ = [zy, ..., zn] and Ay = vec(AY"). If a Jeffreys’
prior is used for the matrix £~! in addition to the prior x(c) for C, then, for large n, the posterior
N(c, 17,:) and (38) and (39) have the same form but with T replaced by T, — cf. Zellner (1971,
p. 240). The above formulae include the case where some components of C (e.g. the coefficients
of the deterministic trend) are assigned uniform priors. We then set the corresponding rows and

columns of V71 to zero in (38) and (39).
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The model (37) with prior N(c, V.) is covered by Theorems 1 and 1’ and the asymptotic
form of the Bayes measure for this BVAR system is determined by the value of the lkelihood
ratio d@Qn/dP, which can be calculated as a special case of the result given in (33) and (35). In
particular, we find

PIC=In|Z,]+ (1/n)n |81 @ X/ X, = PICYAR | say (40)

where £, = (1/n)(AY’ — CX!)(AY' - CX!Y is the MLE/OLS estimate of the error variance
T in (37). Note that PIC is invariant to the prior N(c, V.) and is identical to PICYAR, the
corresponding value of PIC for an uarestricted VAR (and also 2 BVAR with uniform priors on
all of the coeflicients C). This equivalence shows that in large samples the exponential Bayes
measures do not discriminate between BVAR's with different priors — they are all the same as
the Bayes measure for an unrestricted VAR. This is entirely consistent with the results of Section
2.2. In large samples, the prior is left behind by the data. So any advantage there is to the use
of a BVAR in large samples should also be manifest in an unrestricted VAR. Of course, it is well
understood that the practical advantage in the use of BVAR's in forecasting stems from tk._ cole
of the priors in “reducing the effective number of parameters.” When the prior information is
tight, the matrix V! in (38) and (39) is large and will dominate the data in some cases. Then
the posterior mean ¢, will be substantially shifted away from the unrestricted estimate ¢, towards
the prior mean €. In such cases, the asymptotics given in Theorems 1 and 1’ are simply adjusted
by doing the requisite expansions about 8, (the posterior mean or mode of 8) rather than the
MLE @,. Let us now explore this possibility.
Let £,(8) = ln{r(6)L.(8)} = In(x(8)) + £.(8) with & = (¢, ¢’) and vec(T) = Do. Then, up
to a constant we have
ta(e, 0) = ~((m + 1)/l |E| - (1/2)(c-TV M c—2) - (n/2) La|5|
= (1/2nc{Z"YAY'-C X! NAY'-CXY} .

The score process is

3L, /8¢

08¢, /0c

-Vl e-8 +(E7 8 Xn)e

]

I

((n+m+1)/2)D"(E71 @ Z1)vec{(1/(n+m+1))Sfere| - T} ,
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where € = vec[ey, ..., £,). As before, let us suppose that we are only interested in models of the
form (37) with explicit prior information on the coefficient matrix C. Then, proceeding as in the

derivation of (35), the criterion function becomes
n |8, + (1/5) 1| B (41)

where ﬁm =V 1+ f;l ® X X, is the inverse of the posterior variance of ¢ (i.e. f’n‘cl evaluated
at T =%, given earlier in (39)). In fact, By is the quadratic variation of the score process
0l;[0c taken with respect to the joint measure of the data (P,) and the parameter vector c.
The matrix B, in (41) is evaluated at the posterior mode of L, which is T, = (1/(n+m+
NI Ay - 5,,:;)([33;, - 5,.‘:.:1) ~ (1/a)E3 Ay - 5,.:,)(Ayg - 6’,,:0’ as determined by the first
order conditions obtained by setting the score functions above to zero.

When V! = 0 the prior on ¢ is uniform. In this case ¢, = ¢, and S, = &, the OLS
estimators of ¢ and £. Then B, = £73 ® X/.X, and (41) is the same as PICYAR as given in
(40) for the unrestricted VAR. The reduction to PICYAR in this case is reasonable because when
V-1 = 0 the Bayes estimates ¢, and T, are just the unrestricted OLS estimates ¢, and &, and we
would expect the corresponding Bayes measures to be equivalent. However, when V. = 0 we have
ﬁm = co and the penalty term in (41) is too big. In this case, there are no coefficients to estimate
in (37) because ¢ = € with probability one when the prior variance matrix V. = 0. To take account
of the fact that as V, — 0 we have greater restrictions on the effective parameter space we need
to reset initial conditions in (41) to allow for the fact that there may be a very large amount
of “information” (in this case prior ~- and possibly “spurious™ prior ~— information) about the
coefficients even when there is very little data. We can proceed as in Section 2.2. For a model
with k lags and £+1 deterministic regressors we can set the new initialization at ng = mk + £+ 1,
which provides enough data to start estimating the model (37). In place of (41) and following (7)

we use the criterion function
PICBYAR = 1n|E,| + (1/7)In(|Bacl/| Bngel) - (42)

Note that

B = VC_1 + E;l © X Xn= En_lc + i;l @ T,
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and so
Bucl = 1Barell] + £71%(1021) B (1920) 577 (43)
= {Buel T 1H+E717002)8 (T62,)Ev7 .
a=ng+1
Thus
PICPY R =[S+ (1/n) 3 Wi+ ;3102 B (T0z, 821 (429
s=ng+1

When V. = 0 we have 5;:1 = Qforall s > np and the penalty term in (42') is zero, corresponding to
the fact that there are no fitted coefficients: i.e. ¢ = 7, the prior setting, and ¥, = (1/ n)E Ay, -
€z, )(Ay; — 2.). Furthermore, when V;"! = 0, as it is under a uniform prior on ¢, we have
B, = T71@ X'X, for all s > ng and PICBYAR s asymptatically equivalent ta PICYAR, the
criterion for an unrestricted VAR. Thus, PICBYAR allows for a full range of prior specifications
from a fully (V; = 0) or partially (some rows and columns of V; zera) restricted system through
to a completely unrestricted system V"1 = (.

Formula (42) or (42') offers some interesting possibilities for model selection and hyperpa-
rameter optimization in BVAR models. Let 3 be a vector of hyperparameters that are used to
determine the prior variance matrix V. (and possibly the prior mean t) and that are permitted to
range over a compact set V. Note also that a BVAR model depends on prior settings of the lag
length £ and the degree of the deterministic trend (£) in the model (37), just like an unrestricted
VAR. We may therefore use the criterion (42) to choose among the many paossible BVAR models
in the given class. (Akaike (1986) employed a related idea in the selection of smoothness priors
for distributed lag estimation in a Gaussian framework.) The data—determined values of &, £ and

1 are given by
CBVAR(kL1)

)

(%, ¢, %) = arg min PI

min {44)
where we minimize over k=1, ..., K;£=0,1, ..., L and ¥ € ¥ for some K, L and compact set
¥. The resulting BVAR(%, 2, 1:5) can then be used directly for forecasting and can be updated on
a period by period basis (with possibly revised values of ‘J;, f, {5 as new data becomes available).

Such a model belongs to the class of evolving Bayes models discussed in Section 2.4.
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Further we can compare BVAR('E, ?, 1,3) models (and the data-optimized version BVAR(E, ?, {b-))
with reduced rank regression models in the class RRR(,{,r) and unrestricted VAR(k,¢) mod-
els as well as data—optimized versions of the latter. This type of comparison not only is useful
in deciding which class of model to use for forecasting purposes, but also provides us with a
mechanjsm for. determining ﬁﬁether the data supports model mixtures (like 2 BVAR), where
smoothness priors facilitate the use of high dimension parameter spaces, or “PIC’ed” models with
explicit prior restrictions (such as a cointegrating dimension or zero coefficient restrictions) that
are directly incorporated in the formulation of the system. In order to harmonize the criteria in
comparisons of this type, we should use a common point of initialization for the computation of
the penalty term. (The advantages of harmonizing the information sets in this way are evident
in some AR model selection simulations reported in Phillips, 1994). The formulae that we would

use to conduct the above mentioned comparisons are as follows:
PICBYARKAY) = 1n |E4) + (/) 1n(| Buel /| Broel) (45)
where
B, =V '+ E1@ XLX,,
Eﬂ = (I/R)Z?(Ayn - Enzn)(Ayt - 5:17-!)' »
Ga=vec(Co) = [V + 520 @ X X Ve 4+ (B © XL XW)Ed]
& = vec(Cp) = [T ® (YY) 1Y ]vec(AY,) ,

T = prior mean of ¢, V., = V,(¢) = prior variance matrix of ¢

PICRRR(4) = 108, | + (1/7) 1) Buol /| Buoal) (46)
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where

Bn =123 @ Up0nl30 25190 ® Y] -1 Y21
Boo | Yt B
7

z, = (AY s e Ay:_H_l y 1,2 ., t‘)

v = (¥ ¥5) » Ya_y = [120, oo Yan1l s ¥ 2y = [B10, o) Y1nm1]

§ =1, F], Ba=[I F)

n = (1/m)E (A% — FuBavio1 — B2) (A% — FuBittar — B2)'

An E,.,, & = reduced rank regression estimates of v, § and & in the model (27').
Note that the VAR(k,{) model is included within the class RRR(k,£,r) under the particular
setting r = m (i.e. no reduction in the rank of the lag 1 coefficient matrix).

As mentioned earlier, existing empirical work with BVAR’s has been conducted on a single
equation basis. The main reason for this is that matrices such as B, in (43) can be of high
dimension for 2 VAR with even a few variables and many lags. The regression software package
RATS that offers BVARM’s as an alternative to unrestricted VAR's implements BVAR's on a
single equation basis as recommended in Litterman (1986, p. 29-31) with the so-called Minnesota
priors and optional (as well as default) hyperparameters to control for the degree of tightness in
the priors. We will now consider how to include these BVARM’s within our modelling framewark.

Start by writing the model (37) in the single equation form
Ay = clzy + €t , var(eg)o? (i=1,...,m). (37)

If n(e;) = N(E, V) is the prior density for ¢; in (37'), then the posterior for ¢; is N(¢;s, 17,“'.)
with mean

G = [V 4+ a.‘—ZX:\Xn]—l[I,;'_—IE‘. + (07 X7 X )Eim]

where € = (X3 Xn) ' X! Ay; and variance matrix

Vﬂci = [Vc‘:.l + Urzx:ixﬂ]_l .
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The Minnesota priors have mean ¢; = 0, since the first lag coefficient of unity is already embodied
in the differenced dependent variable Ay of (37°). The covariance matrix V,; of the Minnesota

prior for ¢; s diagonal with diagonal elements constituted as follows:

: Afa) if t=3
var((®.);;} = /e) ’ (47)
(8X5:/aT;)? if i#]

for the lag a coefficient matrix $, (a =1, ..., k); and
var{(ds)i)] = o0 (48)

for the trend degree b deterministic coefficient (b = 0, ..., £). In (47) A and # are hyperparameters
that are determined by the investigator — Litterman {1986)'s choices being A = 6 = 0.2, and the
default settings in RATS are ) = 0.2, ¢ = 0.5. Also @} is the OLS estimate of the error variance
in (37') for (i = 1, ..., m), and so the Minnesota priors are data-based priors. With this prior the

inverse of the variance matrix V,, is

Vol = diag{(51/876:)% s (1/AV, o (G /DG (281/003:)%, .oy (2/2)2, -, (49)
o, i’ ‘\-._,‘,-.-J ~ g o’ fl_.—-l \Tl
1 i m+ m+

m
= =32, (k5 =12 2 = =42,
(28, /07G;)%; ..; (KT, /6AE;), .y (RIA), oy (kTm/0AT)"; QI/, \(L}, ey \(l_,}
m+m (k=1)m+1 (k=1)m+i (k=1)m+m  5m¥l km+2 km 4L
We now construct the Bayes measure and model selection criterion PIC for the BVARM
model constituted as above, i.e. {(37') with priors w(¢;) = N(0, V¢,) and VT ! given in (49) for each

equation i = 1, ..., m. Start by defining the Minnesota prior Veas for the full vector of coefficients

cin (37} by

Vil = dieg(VY, o, Vi)
and let

Bar = Vol + E£03, © X1 X,
with

(Brar)ij = (1/R)ER L (Agic ~ EinZ)(Byjr ~ Tinze) -

Then we constiruct

PICBVARMIELS) - yp (1§ 0ot 4 (1/7) In(! B |/{ Brom]) (50)
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in an analogous way to (45) and (46)-

Notice that (50) depends on the given values of the order parameters k (lag length) and £
{deterministic trend degree), as well as the tightness parameters A and . Just as before in (44},
we may now choose k, £, A and @ to optimize the Bayes measure of the data within the BVARM
class, i.e. select

~

(5.3, 0) = rg i, PICRMH20 )

where we minimize over k = 1, ..., Kpr; £ =0, 1, ..., Lys for given maximum orders Ky and Ly
and A € Ap, 8 € Oy for some preassigned intervals Ay = [0. Ay, @y = [0, Opr], say for the
tightness parameters X and 4.

Note also that (50) has the alternate representation (as in the derivation of (42') above)

PICEVARMIEAD) = 1n || + (1/m)Simnos o I + £ 01020 B (1820 E00Y - (B0)

Using this representation it is easy to see that (50) is well defined at the lower Limits of the domain
of definition of the tightness parameters ) and 8.

Consider, for instapce, the case where A — 0. When A = 0 the prior ensures that each equation

of (37') is a random walk with drift, i.e.
Ay = ydy +ea (i=1, ., m) (37")

We would therefore expect the penalty associated with the regression (37”) to involve only the
drift terms d,. It is therefore interesting to find the limiting form of the penalty term in (50’) as
% — 0. To take limits as A — 0, it is easier to work in reversed Kronecker product form for then
the elements involving the deterministic trends d; appear only in the final block. Let K,,,, be

the commutation matrix of order mu, X mu, where 1, = dim{z;), and write

(I2,)B: (I®z,) = (182,)Emus Ky Bretbr Kmu, ) K (K ®24)
= Km{z,81)(Vih + XiaiXem 8 E53) (2,8 DKm (52)
where
Vih = K, Vit Ko = e =D}/’ he Dy,
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whera

and D is a diagonal matrix. Then (52) is

- -1

I0 ~
Kpi(z,®1)D;/? + DX, X, 984Dy DIV,01)Kym
00
-- -1
) I0 0 0 0 )
— Km0, d,®1] + _ Kim as p— o0
00 0 D\ iD,.; @Iy d,®1

Kml(d:(D:_IDa—l)-lds @ E;;{)Klm = Kmli;{{d',(D:_1Ds—1)_ldsﬁ’lm

Eobdy(Dy 1Dy )N,

since Km1 = K1m = I and where D)_; = [d}, ..., d,—1] is the data matrix of the deterministic
trends in the above. With this simplification, we see that as A — 0 (or g — o) the penalty in

(50") reduces to

W/n) Y {1+ d(D)yDrr) .} (53)

s=ng+1
which is precisely the penalty we would have for model (37"”) with no prior information on the

deterministic coefficients ¢;4, i.e. an unrestricted OLS regression of Ay, on the deterministic trend

d;. Note also that

E7 g1 0{1 4 d(D} Dy) '} = Ia{ [ 114 &), Dut) 4]}

=ng+1
= { J[ 1Fl/Eul)
a=ng+1

where F, = EM[1+d;(D'_1D,_1)‘1d,] (s = ngtl, ..., n) is the sequence of forecast error variance
matrices of the OLS forecast errors for the model (37). This form of the penalty is, of course,
associated with the predictive odds interpretation of the PICF criterion on which (50’) is based.
Explicit formulae for such predictive odds or PICF criteria in multivariate Gaussian models were
given earlier in Phillips (1992), but that paper did not consider Bayes measures for BVARM

models nor show specializations such as {52) above as tightness priors reach their imits.
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Similar reductions apply as the tightness hyperparameter § — 0. In that case the limiting

prior ensures that each equation of (37’) is an autoregression with trend, i.e.

k
Ayie = padie-1 + Z @ijAYit-j41 + cigde + € (1=1, .., m) (37"
j=2
and the prior on ¢} = (@i, -y @ik) is HL] N(O, A/7).

Thus, PICBYARM a5 given in (50) or (50") is consistent with the more restricted prior specifica-
tions that apply at the limits of the domain of definition of the hyperparameters A and 6, as well
as being consistent with a fully unrestricted system when Vc}} = (0. We therefore propose that the
formulation (50) be used in the determination of the optimal values of the hyperparameters and

lag order and trend degree parameters, as shown in (51), and that this formulation be employed in

comparisons of BVARM’s with BVAR’s as in (45) and Bayesian reduced rank regressions as in (46).

3. SIMULATION EVIDENCE

Simulations were conducted to evaluate the forecasting performance of several different models
in the VAR class. We were particularly interested in comparing BVAR and RRR models as fore-
casting tools, and to examine the relative performance of optimized BYAR's with data—-determined
byperparameters against BVAR's with arbitrary parameter choices.

Our experiments considered the following three alternatives: (i) a BVARM model with the
Litterman (1986) choices A = # = 0.2 for the tightness hyperparameters that appear in the prior
variance matrices (47) — we call this model a BVARM(lit); (ii) a BVARM model with data-
determined hyperparameters A and # chosen to optimize the model selection criterion (50) — we
call this model a BVARM(opt); and (iii) an RRR model with lag length (k) and cointegrating
rank (r) jointly chosen to optimize our criterion function (46). In all three cases we set the
deterministic trend degree (£) to its true value (£ = —1) corresponding to the fact that each of our
experimental designs had no deterministic trend. The lag length in the VAR was data-determined
in our RRR model and set to the value k = 3 in the BVARM(lit) and BVARM(opt) regressions.
We set intervals Ay = [0.01, 0.61] and ©pr = [0.01, 1.21] with a grid size of 0.02 in each case for

determining the optimal hyperparameter values of A and § in the BVARM(opt) regressions.
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Three generating mechanisms of the form (26) were used. Each was a 3-variable VAR with
lag length k = 1 and no trend or intercept (£ = —1). The lag 1 coefficient matrices and other

parameters in the experimental design are shown in Table 2.

TABLE 2: Experimental Designs for Forecast Trials

Expetiment
1 2 3
Lag 1 Coeficient Matrix [ 2 0 3] [-é 83] [H > ]
-1 10 210 0 0 o038

Cointegrating razk (r) 2 2 1

Lag length in VAR (k) 1 1 1
Trend degree () -1 -1 -1
Error Covariance matrix (L) I I I
Sample size (n) 125 125 125
Length of {orecast peticd 25 25 25
Number of replications 100 100 100

Experiments 1 and 2 both have two cointegrating vectors, and these differ in terms of the
magnitude of the cointegrating coefficients and the number of variables involved. For example,
experiment 1 has one cointegrating vector linking variable 2 to variable 1 (2 random walk) and
a second cointegrating vector that links variables 2 and 3 to variable 1. This experiment gives
us a more complex linkage in the variables than experiment 2, where both the second and third
variables are cointegrated with variable 1 and differ only in terms of the size of the cointegrating
coefficient and the stationary shocks. Experiment 3 is a system of three independent variates,
two of which are random walks and the third is a stationary AR{1). This experiment is designed
so that it is well suited to the form of 2 BVARM model and the Litterman (1986) settings for
the hyperparameters. Experiments 1 and 2 are designed to be well suited to the format of an
RRR model and have off- diagonal elements in the lag 1 coefficient matrix that are nonnegligible.
For these experiments we anticipate the Litterman settings to be less well suited, at least for the
hyperparameter # that controls the tightness of the prior distribution on the off-diagonal elements

of the VAR coefficient matrix. We were interested in the extent to which the BVARM(opt) model,
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where § is data~determined, deals with the non-zero off-diagonal elements in the VAR by adjusting
the value of 4.

The results of these simulations are shown in Table 3. A sample size n = 125 was used in
each experiment and the final 25 observations in each simulation were used for 1-period ahead
forecasting trials. Forecasts were generated by each fitted model and these models were updated
on a period-by- period basis through the forecasting period. The updating included (k, r) choices
for the RRR model and (A, #) choices for the BVARM(opt) model. The hyperparameter settings

A = 8 = 0.2 were maintained throughout the forecasting petiod for the BVARM(lit) model.

TABLE 3: Simulation Results for Forecast Trials

Average
kypsrparameter Average
setlings in RARR
Ezperi. Vari- Avarage RMSE’s of forecast BYARM{opt) model arders Average PIC walues
ment able BVARM(Lit) BYARM{apt) RRR A [ r & BVARM(lit) BVARM({opt) RRR
1 1.0059 1.0097 1.0089
] 2 1.9062 1.0112 1.0047 -| 0.)208 1.0841 2.0100 1.0123 1.85%4 0.2400 0.0058
2 1.58228 1.0833 1.0824
1 1.0213 0.9997 0.9963
2 2 4.078T 0.9%41 0.9755 0.5808 0.9139 2.0000 1.0672 3.1973 0.2048 0.0134
3 1.29%1 1.0102 1.0014
1 1.0149 1.0114 1.01%9
3 2 1.0223 1.0182 1.0232 0.0922 0.1882 1.4256 1.0136 0.0235 «0.000¢ 0.0127
) 1.0229 1.0245 1.0307

Table 3 gives the average root mean squared errot for the 1-period ahead forecasts over the 25
periods for each experiment averaged over the 100 replications in the simulation. The results are
‘unambiguous. For the random walk component (variable 1) the BVARM(lit) performs well and the
average RMSE is close to that of the BVARM(opt) and RRR models for all three experiments. The
same holds for variable 2 (the second random walk) in experiment 3. However, the cointegrated
variables (2 and 3) in experiments 1 and 2 are much better forecast using the BVARM(opt)
and RRR models than with the BVARM(lit) model. The differences in the forecast RMSE’s are
substantial and are clearly related to the size of the cointegrating coefficients. Thus, variable 2 in
experiment 2 has a cointegrating equation with a coefficient of 5 (i.e., y3r = ~5y1e-1 + €2¢) and
its RMSE of forecast under a BVARM(lit) model is four times that of a random walk (variable

1) and more than twice that of variable 3 whose cointegrating equation has a coefficient of 2 (i.e.,
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Y3t = 2y1¢—1 + £a¢). Similar results were found for experiment 1. In all these cases, the forecasts
from the BVARM(opt) and RRR models are substantially superior — all have average RMSE’s in
the close neighborhood of 1.0, which is the standard error of the optimal forecast. In experiment
3, the forecast performance of all three models is very similar and in every case quite close to the
standard error of the optimal forecast.

There is no doubt from these results that the BVARM(opt) model is a better forecasting
instrument than the BVARM(lit) in these experiments. Whenever there is cointegration in the
system the BVARM(opt) model succeeds in reducing the RMSE of forecast to a value that is
close to the standard error of the optimal forecast, whereas the RMSE of the BVARM(lit) can
be several times larger. Since the generating mechanism for each experiment is a reduced rank
VAR we expect the RRR model to do well. What is surprising is that using model determination
techniques to optimize the BVARM, the BVARM is seen to be capable of doing as well and in
some cases even better than a RRR.

Note that for experiments 1 and 2 the hyperparameter settings that are selected in the
BVARM(opt) are very different from the Litterman choices of A = 6 = 0.2. Particularly im-
portant is the choice of 6, which as Table 3 shows, is generally selected at a much larger value
(around unity) for both models. Even A, which is the general tightness parameter in the BVARM,
is chosen at a higher value than Litterman’s A = 0.2 in experiments 1 and 2.

Experiment 3 was designed to be most well suited to the Litterman BVARM, being a diagonal
model of two random walks and one autoregression with a large stationary root (0.8). In this
case the BVARM(opt) selects hyperparameter settings for A and # that are, on average, below
the Litterman values of 0.2. Thus, the optimized BVARM finds in the data evidence that the
prior of a vector random walk is appropriate in this case and tightens the hyperparameter A and
6 accordingly. Thus, for both cross-cointegrated variables and diagonal unit root or mear uait
root models the BVARM(opt) modelling procedure makes appropriate choices of the .hyperpa.-
rameters, tightening or relaxing the Litterman settings of A and & to conform more closely with

the generating mechanism of the data.
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Not unexpectedly (in view of the true generating mechanisins), the RRR model does well in
every experiment. The RMSE’s of forecast are close to the standard error of forecast of the optimal
predictor for each variable in the three experiments. Moreover, the model orders of cointegrating
rank (r) and lag length (k) are chosen, on average, to be close to their correct values for each
experiment. On the basis of their PIC values, our model selection criterion would choose the RRR
model, on average, for the first two experiments (where there are two cointegrating vectors). In
the third experiment the BVARM(opt) model would be chosen, on average, over the RRR model
because of its smaller PIC value. This choice would be also supported in the ez post forecasting
results for which the BVARM(opt) average RMSE's are smaller for each variable than those
of the RRR model in experiment 3. Again, not unexpectedly, when the generating mechanism
comprises two random walks and an AR(1) with a large stationary root, we find that a BVARM
with optimized hyperparameters is the more suited model. But the difference is not large in this
case and the forecasting performance of the model selected RRR is quite encouraging.

Figure 1 graphs the forecast errors for the 25 forecasting periods obtained in a fairly typical
simulation for experiment 1. The substantial improvements in the forecasts of variables 2 and
3 (both cointegrated with variable 1) using the BVARM(opt) and RRR models are apparent in
Figures 1(b) and 1(c). In this experiment variable 1 is a random walk and forecasts of this variable
are very similar for all three models. Figure 2 shows the time profile of the model choices in the
BVARM(opt) and RRR procedures. In Figure 2(a) 2 large setting for § (between 1.1 and 1.2) is
made throughout the forecast period, and A is chosen around 0.28. Both values are seen to be
very stable throughout the period, which indicates that the model determination procedure finds
little evidence of a shifting generating mechanism. The same point holds for the RRR model,
where a cointegrating rank r = 2 and a lag length k = 1 are found for the entire forecast period
(see Figure 2(b)}.

To sum up, these simulation results are quite encouraging for our model determination meth-
ods in both BVARM models and RRR’s. For BVARMs it is apparent that substantial gains over

the Litterman settings are possible when there is strong cointegration in the data. When each vari-
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332 7 “he model behaves like a random walk or a stationary autoregression, then the Litterman
S for the hyperparameters seem to be close to optimal and there is Iittle to choose between
e T7ARM(lit) and BVARM(opt) models in forecasting performance. In every experiment, we
forsf -hat RRR models (with jointly determined cointegrating rank and lag length) performed -
w=i x the forecast trials. Oniy when the variables are close to independent random walks could
= 33 model be outperformed by a BVARM. What is perhaps the most unexpected result
3= Ze optimized BVARM produces forecasts that are as good as the RRR model when there
== = cointegrating vectors in the system and large cointegrating coefficients. This is surprising
e the priors in the BVARM do not accommodate cross-cointegration among the variables
Zx_ soutrivial cointegration wherein the cointegrating vector involves more than one variable).
= Z==fore seems that the hyperparameters in the BVARM have the flexibility to allow for the
p=Tiity of cointegration among the variables in an indirect way by relaxation of the priors on
== zF-iiagonal VAR elements. When this flexibility is exploited, as it is in the BVARM(opt)
o= 7 is remarkable that the forecasting performance of the BVARM can be so close to that

=< =2 28R model and that of the optimal predictor.

4. AN EMPIRICAL ILLUSTRATION
TO USA AND UK MACROECONOMIC ACTIVITY

e methods of Section 2 were applied to US and UK quarterly macroeconomic data on real
P zad real personal consumer expenditure. Table 4 provides details of the series used, the data
sm—=_ the notation employed and the sample and forecasting periods. All series are seasonally
aczmad. and measured in natural logarithms. The data are graphed in Figures 3 and 7.

= each couniry’s data we built .BVARM’s, optimized BVARM’s and RRR models using the
—=azed model determination procedures of Section 2.6. The 14 year period 1980:1-1993:4 was
s===z for ez post forecasting trials of these three models. The period includes the early 1980’s
= _3%0’s recessions (1979-1980, 1982, and 1991 for the ﬁSA; 1980-1982, 1990-1991 for the UK)

== e 1980’s expansion for both countries.
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TABLE 4: Data Sources and Descriptions

Sample Forecast
Country | Variable Description Source Peried Period
GDP  Gross Domestic Product Citibase | 1947:1-1979:4 | 1980:1-1993:4
(1987 $bil, SA, logs) (gdpq)
Us
C Personal Consumer Citibase | 1947:1-1979:4 | 1980:1-1993:4
(1987 $bil, SA, logs) (gcq)
GDP Groes Domesiic Product IFs 1957:1-1979:4 | 1980:1-1993:4
(1990 pounds sterling, SA, logs {gZ99bz)
UK
C Private Consumpticn IFS 1957:1-1979:4 | 1980:1-1993:4
(pounds sterling, SA, logs) {qt96fc)
[deflated by GDP deflator = q{99bc/q¢99ac]

Our main focus of attention is the forecasting capabilities of the different models in this
empirical application. But we are also interested in the outcome of the model determination
procedures and the stability of the model choices over time. In the case of the BVARM(opt)
model, model determination here means the hyperparameter choices of the (A,f#) pair in the
Minnesota prior variance matrices (47). In the RRR model, mode! determination here means
the joint selection of the cointegrating rank and lag length. All three models were formulated to
include an intercept but no deterministic trend (this choice accorded with the trend degree selected
by PIC in an unrestricted VAR of the form given in (26)). The BVARM models were formulated
with k = 4 lags. This framework enables us to focus on the empirical effects of hyperparameter
selection in BVARM’s and joint cointegrating rank and lag length determination in RRR’s.

The results of the forecasting trials are given in Table 5. Figures 4 and 5 show the 1-period
and 4-period forecast errors from the three models for the US. Figures 8 and 9 show the 1-period
and 4-period forecast errors for the UK. The time profiles of the hyperparameter choices in the
BVARM(opt) models and the rank and lag order choices in the RRR models are shown in Figures
6 and 10 for the US and the UK, respectively. The empirical results can be summarized in the

following remarks.
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TABLE 5: Empirical Results of Forecast Trials

RMSE's of Forecast

1-period ahead 4-periods ahead
Country | Variable | BVARM(lit) BVARM{opt) RRR | BVARM(lit} BVARM(opt) RRR

GDP 0.0080 0.0077 D.0077 0.0180 0.0176 0.6201

USA
C 0.0072 0.0071 0.0074 0.0153 0.0149 0.0177
GDP 0.0105 0.0105 8.0107 0.0220 0.0214 0.0288

UK
c 0.0155 0.0157 0.0151 0.0299 0.0302 0.0333

(a) In 1-period ahead forecasting over 19801993 there is little to choose between three models.
The BVARM(opt) forecast RMSE’s are slightly better than those of the other two models for the
USA, but the differences are minor. As is apparent from Figures 4 and 8 the time profile of
the forecast errors is also very similar. Thus, although there is cointegration in both data sets
(see Figures 6 and 10), the BVARM and RRR models produce very similar forecasts. This is
in contrast to the simulation results of Section 3 where the BVARM and RRR model forecasts
were quite different when the true data generating mechanism was a cointegrated VAR. In this
empirical application all of the models are approximations and all seem to do about as well as
each other, in spite of differing lag lengths, the presence of cointegrating restrictions and different
byperparameter choices.

(b) The 4-period ahead forecasts are shown in Figure 5 for the USA and Figure 9 for UK. Here
the differences between the models are more substantial. The RRR model has forecast RMSE’s
that are 10%-20% greater than those of the BVARM models for the USA data and 15%-30%
greater for the UK data. The time profile of the forecast errors shows that the RRR model
encounters most difficulty in forecasting the recessions — in all cases {early 1980’s, early 1990’s
for both countries) the RRR model tends to overpredict GDP and C during the recession by more
than the BVARM models, leading to the Jarger negative forecast errors that are apparent during

those periods in Figures 5 and 9. The RRR model does quite well in 4-period ahead forecasts
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during the 1980's expansion for both countries. But the failyre of the RRR model during the
recessions leads to its overall poor performance relative to the BVARM models. Figure 10(b)
shows that there is a model specification shift in the RRR model for the UK during the 1990's,
changing the lag length and cointegrating rank, so that by the end of the forecast period-the
data do not support the presence of cointegration between GDP and C. Thus, in 4-period ahead
forecasts the results are unambiguous. The BVARM models both do better than the RRR model.

(c) Since the BVARM models are preferred in 4-period ahead forecasts it is interesting to see
whether the optimized BVARM produces any improvements over the Litterman BVARM. There
is some evidence of this. For the USA, the BVARM(opt) has smaller RMSE’s for both variables,
and for the UK the BVARM(opt) has a smaller RMSE for GDP but not C. But, the differences
in the two BVARM’s are not great, as is clear from the graphs of the forecast errors shown in
Figures 5 and 9.

(d) Model choices are shown in Figures 6 and 10. For the US BVARM(opt) model,  is almost
exactly the Litterman choice of A = 0.2 {or the entire forecast period, while §is around 0.9 (much
greater than Litterman’s 0.2), recognizing that off diagonal VAR components are important. For
the UK BVARM(opt) model X is also very close to 0.2 for most of the period but takes on smaller
values (closer to 0.1 than 0.2) towards the end of the period, thereby giving greater weight to
.the independent random walk priors and corroborating the move in the data-determined RRR
model away from a cointegrated system at the end of the pericd that was noted above. For the
UK BVARM(opt) model, 8 is closer to Litterman's 0.2 than it is for the US model and continues
to get closer (nearly 0.3) at the end of the period, again confirming that off diagonal elements in
the VAR are less important for the UK model than they are for the US model.

(e) Lag length and cointegrating rank choices are shown in Figures 6(b) and 10(b). For the US
RRR model there is evidence of cointegration between GDP and C for the entire forecast period,
including the recessions. The lag length in the VAR varies between 3 and 4 lags and seems to be
higher during the recessions. For the UK RRR model there is evidence of cointegration between

GDP and C for most of the period but this changes at the end of the period. The lag length chosen
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for the RRR model is short (k = 1) for the 1980’ and changes to k = 2 for the 1990’s recession.
Thus, there is some evidence in the UK data of a shift in the form of the best approximating
RRR system during the 1990’s. These changes correspond to the movement in the BVARM(opt)
model towards a pair of independent random walks.

These empirical results lead to the following general conclusions for these two data sets:

(i) BVARM and RRR models have very similar 1-period ahead forecasting track records;

(ii) BVARM models outperform RRR models in 4-period ahead forecasts and do much better
than RRR models during recessions;

(iii) Optimized BVARM models offer some gains over BVARM models with prescribed hyper-
parameters both in 1-period ahead and 4-period ahead forecasting, but the gains with these two
data sets are not great;

(iv) Data-determined hyperparameter choices over the period 1980-1993 indicate that off di-
agonal elements are important in the data generating mechanism at least as it is modelled in a
VAR. There is scope, as discussed in Section 2.6, for making the hyperparameter BVAR model
more flexible, perhaps by permitting individual equation choices for A and 8. Our empirical results

suggest that it may be worthwhile trying more sophisticated BVAR’s of this type.

5. CONCLUSION

The philosophy of data-based econometric model determination that underlies this paper
is most closely related to ideas of Rissanen, Dawid and LeCam and Yang that are expressed
in the headnotes to Sections 2.1, 2.2 and 2.4. These ideas do not seem as yet to have had
any impact on econometric modelling methodology, in spite of the considerable attention that
‘econometricians have given to issues of methodology in recent years. The methods given in
this paper offer a.r practical implementation of these ideas, allow for an automated data—based
approach to econometric model determinatior, and illustrate their use in the context of models
like reduced rank regressions (RRR's) and Bayesian vector autoregressions (BVAR's) that are

presently popular in practical econometric work.
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Our approach to model determination can be applied to Bayesian models with prior distribu-
tions that depend on the hyperparameters, like BVAR’s, where simple parameter counts do not
adequately represent the extent of a2 model’s parameterization. In an “empirical Bayes” fashion
we show how hyperparameters can be data~determined in a way that optimizes a convenient
asymptotic form of predictive odds criterion that we call PICF. This criterion enables us to com-
pare distinct classes of models that are of empirical interest {like BVAR's and RRR’s} and allows
us to choose among 2 continuum of model formulation possibilities as the hyperparameters vary
over their given domains. Qur empirical findings with simple time series models of aggregate
production and consumption in the USA and the UK indicate that BVAR’s optimized in this way
tend to outperform RRR's as forecasting tools, especially over longer lead times like 4 quarters
ahead. Even when there is evidence of cointegration in the system, as there is in both the US and
UK data sets, optimized BVAR's tend to do better than RRR’s. This empirical outcome is con-
firmed in simulations and illustrates one of the central advantages of data-determined parameter
selection in this context: it makes allowance {or the cross efects between the lagged variables in
a VAR that arise in cointegrated systems by suitably adjusting the hyperparameters that control
the degree of tightness in the priors for the off-diagonal VAR coefficients.

The empirical examples of the paper are confined to multiple time series models in the VAR
class. But the Bayesian asymptotic theory of Section 2 and the model determination eriteria that
are based on it have much wider applicability. One application that looks promising is to time
series models of conditional volatility, where classical asymptotic theory has proved to be difficult
and where there are many competing empirical models that call out for model determination
criteria. Another application is to nonparametric location models of the type considered briefly in

Section L. Applications of the methods given here to these and other models will help to evaluate

their usefulness in practice.
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1
L. LOCATION MODELS AND AN EMBEDDING THEORY

L.1 Conditional Mean Location Models

Let Y* = {Y;}3 be a discrete scalar time series defined on the filtered sequence of measurable
spaces (0, ;). A family of candidate probability measures of Y™ is denoted by PT*, which depends
on the sample size n and a scalar mean location function m. The function m is usually delivered
by the conditional expectation of ¥; given Fi.; in which case we write mi; = E(Yi|Fiy)
= PP(Y:[Fi-1) in linear functional notation (emphasizing the dependence on FPm). In such a
case the mean locator is a stochastic process and is itself time dependent. However, there is
some advantage in treating m {or m.;) as if it were a “parameter” of the model as we will see
below. In fact, from a Bayesian perspective the interpretation of this “parameter” as a stochastic
process is not of great importance in itself because m is regarded as random anyway in a Bayesian
treatment.

Next, let X™ = {X,}3 be a k-vector time series defined on the same probability space as y»

with X, being adapted to F;-;. The natural regression formulation of the mr del for Y, is then
Yi=m{XY4e, t=1,.,n (L1)

where m(X*) = E(Y;]X") is the conditional expectation function and ¢, is a martingale difference
with conditional variance function o? = E(e?|X*). The model (L1) falls into the framework of 2
nonparametric time series regression. There are now several methods available for the estimation
of the regression curve m(z) = E(Y;|X* = z) in (L1), altkough applications are generally l'lm.'xtéd
to cases where z has very low dimension and is usually scalar. (See Hardle (1990), Bierens, (1987,
1994) apd Hardle and Linton (1994) for recent reviews, and Robinson (1983) for a development
of an asymptotic theory kernel regression for time series.) Also existing treatments appear, to
the best of my preseat knowledge, to be limited to the case of stationary time series which nat-
urally restricts the scope of potential applications. Phillips (1994) develops some nonp';xrametric
regression asymptotics for a special nonstationary case of (L1) — the Gaussian random walk.
For the present we assume a parameterized version of the model in which m, = my(8) =

E(Yi|Fi-1, 6) where § € RP. Suppose P:‘(GJ & v,, some o-finite measure on (&, Fyu), and
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let P, < v, denote the true probability measure of Y™. As before, we require that there be
some member of the family, say Py (ao), that is closest to P, in the sense that it minimizes the
Kullback-Liebler distance K (P,, Pm®) as in (CO).

When the true probability P, belongs to the parametric family Py )} we have P, =Py )
and the focus of attention in classical statistics is the estimation of 8° (or m,(8°)) and inference
about §°. Corresponding to the true measure Py’ (%) in this event is the classical model or actual
data generating process

=m()+e, t=1,..,n (L2)
where m,(6°) = m(X?", °). If 8, is the maximum likelihood estimate of &, then P,':'(?") is the
classical estimate of R, = Pm(go)

We write the RN derivative of P/ with respect to P, as
L,(8) = dPMO) 4P, = (dP™® [du,)/(dP./dvy,) .
Setting Lo = 1 we have

Lﬂ(g) = (Lﬂ/Ln—l)(Ln—l/Ln—Q) e (Ll/LQ) = fn . fﬂ-—l eea fl .

If we write £,(6) = In(Ln(6)) as the telescoping sum £,(8) = £}_,{In(Lx(8)) — In(Lsx-1(8))},
then the score function can be written in the form EE)(B) = E3_1(8/08)[In(Li(8)/ Li—1(8))}
= L}_,ex(d). Under commonly used regularity conditions that ensure the square integrability of
e5(8), we have E(ex(8)|Fi—1) = 0 a.s. (P?) and then £{(8) is a (square integrable) P{-martingale.
Of course, this is the framework that has facilitated the use of martingale limit results in the
development of a large sample theory of inference for stochastic processes based on the likelihood
and its derivatives. A rather general theory has been obtained for the special case of a scalar
parameter § — see Hall and Heyde (1980, Ch. 6) for an extensive discussion. The limit theory
constructed along these lines for vector # does not appear to be complete because of technical
difficulties -— cf. Hall and Heyde p. 156. These difficulties arise partly from comphcatxons
associated with a multivariate extension of the Kronecker lemma, and partly because of the

diverse potential limiting behavior of the Hessian £2 (8) = E7_,0e4(6)/08" — for instance, when
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approptiately scaled, some component submatrices of z.‘.”(a) may converge in probability (P?)
to constants or random variables but others may converge only weé.kly to random variables, as
in the case of models with some unit roots (see Phillips (1989) and Park and Phillips (1988,
1989) for examples and discussion). One way of proceeding in the general multivariate case is.
to make “higher level™ a.ssump‘tions of a very general type such as those in LeCam (1986) and
LeCam and Yang (1990) about the local asymptotic behavior of the likelihood. LeCam and Yang
require that the family of measures P¢ be locally asymptotically quadratic {LAQ) in the sense
that the difference between the log likelihood and quadratic function locally in the neighborhood
of § tends to zero in probability (P?) as n — oc. Jeganathan (1994) has recently shown that this
requirement includes a large variety of time series models, including models with some unit roots.

A second way of proceeding in the multivariate case is to provide more structure about the
nature of the stochastic process in the form of a stochastic regression model. The added structure
makes it possible to be more specific about the large sample behavior of the likelihood and
its derivatives in different directions of the parameter space. This appendix (L) provides an
illustration of this second approach. We focus here on embedding the score process in a vector
continuous martingale and embedding the Bayes density (2) in a corresponding continuous process
(see Theorem L5 below). However, our approach can also be used to develop strong laws and
central limit theory in the vector case extending the treatment given in Hall and Heyde (1980,
Ch. 6).

We start by building the intermediate dependence of # on the locator function m into the
score process ls,l)(ﬁ). We assume that m is twice continuously differentiable in # and proceed as

follows:

£24(8) = £7(8/00)n f; = £}(9m;/98)(3/6m;)(In f;) = T3 Z;(8)e;(6)

where m; = m;(6), e;(8) = dln f;/dm; and Zj(0) = 0m;/88. Now Z;(8) is F;.,-measurable,
e;() is a Pf-measurable difference and EEJ(B) is a p-vector P¢-martingale. The matrix condi-

tional quadratic variation process of fg)(é) is

(€0(6)) = T3Z;(0)Z;(0Yh;(0) , where hy(8) = E(e;(6)7|F;1) as. (PY) .
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Under the regularity conditions of Section P.1, the exponential Bayes measure Q, of ¥™ is defined
as in (P1) with V, = £0(°) = £7Z;e;, say, and variation matrix B, = (V,) = E}Z;Z'h;. Note
that By, = B, + E} 11 2:21h; and |Bn|/|Bn,! = no+1(1+R;ZB1 Z;). Thus, as in equations
(7}, (9) and (10) of the paper, we deduce that the conditional Bayes density dQn/dP,|Fy, is

approximately

b ACi Bl A S AC 81 F)
o)~ 1] o zp }) ~ [T #5h (L3)
t=ng1 L H B2 L (1+ R 2B 7))

where Z; = Z,(8) and B,_; = Ei'lfjfth-. Also, when |B,|/1B,,| ~ 1 we have:

n(iFn) ~ ] A£G BalFn) (L3")

t=ng+1

as in equation (11} of the paper. In both {L3) and (L3') f; is the conditional density of Y, given

F1-1. The model for (¥;)}_,; corresponding to the deasity (L3') is just
Yo=m(By)+u, with wlr_ = fils 8| Fiy) (L4)

We call this the Bayes modei for Y;. It is the approximate Jarge sample data generating mechanism
for Y: under the Bayesian mixture measure P, = [ 7(#)P?d8.

We can go a little further in approximating the Bayesian data generating mechanism (L4).
The conditional density f; in (L4) is not necessarily Gaussian, but we can construct Gaussian
measures that conform with the conditional mean locator function my(-) locally as we move away
from f;. Thus, let mn, be the pathwise (or Hadamard) derivative of the function m, with respect

to the conditional measure corresponding to the density f;. We introduce the conditional density
Pty = exp{eaen/af - (1/208)(imen)*} = dPin/dPwlFiay , say

where 5 is a scalar that parameterizes departures from m(-) via the curve m] which passes
through m, at 5 = 0, i.e. m¢® = m,. The measures P., are Gaussian and are defined by their

derivatives with respect to Lebesgue measure, i.e.

(@Pia/dv)(-|Fioa} = (1270} ) exp{~(1/20F) . ~ 1m)?} . (L3)
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Under Piy(+|F(-1) we have in place of (L2) the model Y; = m: + men + &, whose conditional
mean function E(Y|Fi-1) = m; + M7 is the same locally in the neighborhood of m, along the
curve m7 as it would be under the density, say. f;, for which the conditional mean is actually
E(Y:|Fe-1) = m]. Thus, we can use the Gaussian measures Py, and densities (L5) in place of the
densities f7 in the neighborbood of f;. With this replacement, the conditional Bayes density in
(L3} is approximately
(1 Fer) e TT (@Bl o) Ba )/ + B 2B 2V
t=ng+1

~ I (ered1 4 bZB 20V exp{~(1/208) (g = melBe)) /(1 + B Z B 20} (L6)

t=np+1

The model for the data that corresponds to this density s
Y, = me(fig) + v, wilm, = N(O, 0F(L+ R ZIBTNZ) (L7)

According to (L7), ¥; is (locally) Gaussian with conditional mear location my(f;-,) and condi-
tional variance o2(1 + h 21 B4 Z0).

When the location function my, in (L2} is linear and the error ¢, in (L2) is iid N (0, ¢?), Phillips
and Ploberger (1994) showed that (L&) is the exact conditional Bayes data density of (V)7
and (L7) is the corresponding Bayes model with m,(gt_l) = Z{?t_l and o7 = a?.

We can proceed in a similar way when the model (L2) has parameterized conditional variance
function E(e}|Fi-1) = o?(#) for some g-vector of parameters ¥. The conditional density f; in
(L3} now depends o both 8,1 and the maximum likelihood estimate %1 of ¥. The Bayes
model for (Y], 41 s then the same as the location model (L4) with an error v; whose conditional

density is wr,_, = ft(s 6:—11 ;}I"t-lift—l)'

L.2 Embedding

In this section we seek to show that the score process ES,”(&”) can be embedded into a vector
continuous time martingale and that its conditional variance process is asymptotically equivalent
to the quadratic variation matrix of the continuous martingale. In the scalar case, the first part of

this embedding is a straightforward application of the Skorohod embedding — cf. Hall and Heyde
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(1980, p. 269). But the latter part is more difficult. Phillips and Ploberger (1994, Theorem 3.4)
give a result of this type for the scalar case and show how it can be used in Bayesian applications
to characterize the Bayesian data density and a model with which it can be associated. The
vector case is substantially more complex because the quadratic variation matrix of the discrete
‘martingale has more degrees of freedom than can be manipulated using stopping times of a vector
martingale in continuous time. There appear to be no general vector martingale embedding
theorems in the probability literature at present, at least to the extent of the author’s knowledge.
What we present below is a limited set of results that take advantage of the structure of the score
process in the location model (L2).

As above, we write the score process as V,, = 853)(6‘0) = L7 Zkei, which is a P,fo—martingale
in discrete time, and its conditional quadratic variation as B, = (V,) = E2ZcZ hi, where

hi = E(€2]F¢—1). We will need some additional conditions to establish our main result.

L.3 Additional Regularity Conditions

(E1} supys; E(Jexl®|Fr-1) < 00 a.s. (P) for some a > 4.
(E2) inf{n : B, is nonsingular} < oo a.s. (P).
(E3) (i) Amin{Br) — oo a.s. (P)
(ii) Amin(Gn) = o0 a.s. (P)
where G, = £7_, Z4Z} ® Zi Z}.
(E4) Forany § >0
(1) I8(Amax(Bn})/Amin(Bn)¥ — 0 as. (P)
(if) In(Amax(Gn))/ Amin( Bn)® — 0 as. (P).

(E5) For some p such that 1/2 < p< 1

Amax{(B;P? @ B7P)\G (B2 @ B7?/Y) = 0 as. (P).
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L.4 Remarks on (E1)~(ES5)

(a) Condition (E1) requires that & = 446 moments of the martingale differences ex in V,, =
L7 Zye, exist for some § > 0 and are uniformly (in k) bounded above. It could be relaxed to a
fourth moment condition with some changes to other conditions and to the proof of Theorem L.5.

(b) Condition (E2) ensures that there exists some finite N .such that By > 0. Then, By > 0
for all n > N since B, = Bnoy + ZnZLhy 2 Bpoy as. (P).

(c) Condition (E3)(i) ensures that the information content of the process V, diverges as n - co
even in those directions where the information is least. It is comparable to the minimal excitation
condition for the consistency of the least squares regression estimator of § in a linear model
yk = Z}6 + £, with stochastic regressors Z; — see Lai and Wei (1982, Theorem 1). In the linear
regression context, Lai and Wei show that
(IW) (i) Amin(Ba) = o0 a.5., a0d (i) In(Amax(Bn)) = o(Amial Br)) 2.s.
are nearly minimal conditions for consistency. We require the first of these (the minimal exci-
tation condition) in {E3)(i). Our (EA)(i), like (LW)(ii}, is a condition number requirement on
B,. It is stronger than (LW)(ii), but is easily satisfied in all stochastic regression models with
stationary ergodic regressors and integrated regressors. Conditions (E3)(ii) and (E4)(ii) place
similar requirements on the tensor product (fourth moment) matrix of regressors Gnr.

(d) Condition (E5) controls the relative expansion rate of the fourth moment matrix G, in
relation to the conditional quadratic variation matrix B,. In eflect, the fourth moments of the
regressors must be small relative to the 2p’th power of the second moments of the regressors for
some p > 1/2. We can illustrate this condition in the context of the linear regression model

v = 2,0 + & with g, = iid N(0,1) and with an F.;-measurable regressor z. Take the following

cases as examples:

Case (i) z strictly stationary and ergodic with finite fourth moments. Here G, = £, 28 = O(n)

a.s. (P) and B, = ZL,22 = o(n) a.s. (P), so that
B;¥#G, = 0(n~?)0(n) = O(n' %) = 0 as. (P)

for p > 1/2.
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Case (ii) z; = I(1). Here, using the law of the iterated logarithm, we get

Gn = Tiz! = (a7 E}(znn/(n In(ln(n)))}?)*}n¥(ln(la(r))) for t/n < r < (t+1)/n
= Jo(#an/(n In(ln(n)))*/2)*dr n*(In(ln(n)))?

= O(n*(In(ln(n)))?) as. (P);

and, in a similar way,

Bn = O(n? In(ln(n))) as. (P).
Hence,

B;¥#G, = O(rn™*(ln(ln(n)))"*)0(r*(In(la(n)))?) as. (P)

— 0 as. (P),

for all p > 3/4.

L.5 Theorem Assume conditions (C1)~(C7) hold in the contert of the location model (L2} and
that the true probability measure is P, = P,fa = P|F,, the restriction of P = P¥ to F,. Under
the additional conditions (E1)-(E5) there ezists a probability space supporting (Vi, Bn)a>1, @
continuous martingale M(t) with quadratic variation A(t) = [M],, and stopping times (Ty)n>1
such that:

(a) Vo = M(7) = [g" SdW, where W is a standard Brownian motion and § = §(r) is a
piecewise coniinuous process.

() B7 Y2 A,B7Y? = I — o0 as. (P) as n — oo where A, = A(T,) = [ S(r)S(r)dr.

exp{(1/2)V!B;*Va} ,exp{(1/2)M (1) A;  M(7a)}

© = gpn A2

—las (P). O
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L.8 Proof of Theorem L.5

Since I}, ex is a scalar zero mean I, martingale we can embed this process in a standard

| Broﬁﬂw motion. Thus, expanding the probability space if necessary, there exists a standard

Brownian motion W and stopping times (Ta)np1 such that I7_ ep = W(r,), r, is F,~measurable
and

(i) E{(rn — Tact)|Fac} = E(e2|Facs) a5, (P)

() E{(rn = 51| Fac1} € CrE(jeal™Fac1) a.s. (P) where C, = 2(8/22) T {r +1)
see Hall and Heyde (1980, Theorem A.I, p. 269).

Next define the continuous process
M(t) = 25, Z{W (1)) - W(rjo0)} + Zun {W(t) - W(r)} = JI Sdw (L8)

where the integrand in the stochastic integral fol S5dW is constructed as the piecewise linear
process

S(r)=2; for rj_1 <r<y.

Then Vo = Z}_, Zyer = M(7,), and hence the vector martingale V, is embedded in the continuous
martingale M(t) = f; §dW, a stochastic integral with respect to the Brownian motion W. This
proves part {a) of the theorem.

The matrix quadratic variation process of M(t) is 4, = [M], = fot S§§8'dr and

An = [Mlr, = ["§S'dr={[I" + -+ [2}55%dr = £}, ZuZ}(rk — acy) (L9)

T

= Y3o1Zk 2. A, say

On the other hand the conditional quadratic variation matrix process of the discrete martingale
Va is

B, =X}, ZkZ;‘E(eilfk-l) = EL‘___IZ;‘ZLhk , say. (L10)

We explore the relationship between A, and B, as n — oo. Define C, = A, ~ B,. We will

show that

I1B:Y2Cu B2 = 1B 24, B7VA = I = 0 2. (P) as n— o . (L11)
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Now Cp = £}, Zx Z}(Ak — hi), which we will write in vector form as
cn = vec(Cr) = Tfuy Zi @ Zi(Ak — hi) = L Wi, say,
where Wy, = Z;, ® Z; and n = Ay — h. Define
Go = T301 242, ® Zi 2} = Ti, Wiy

and note that

(Elml®)/* < (E|AK) + (Elhel®)® < 0 as. (P)

for some & > 2 in view of (ii) above and condition (E1). It therefore follows that

G ?eal?

chGilen = (Zpay MWL) (Shoy W) ™ (Shay Wems)

O(ln(Amax(Gn))) as. (P) (L12)

by Lemma 1(iii) of Lai and Wei (1982).

Now, in view of {L12), we obtain

1B 2C.B AP = (B @ B )eal® = (B7Y? @ BV)GH2 G e
< WB:Y2 0 B G PIG el
= O(hmn{(B7 /2 ® B7*)Ga(B;'/? @ BTY)))0(1n(Amas(G))

— 0 as. (P) as n— o0

under assumption (E5), thereby establishing (L11). This proves part (b) of the theorem.

Finally, we need to show that
ViBW, = M(r.Y A7IM (1) = In(|By|/|An]) = 0 25, (P) as n— <. (L13)
First note that

|An|/]Bn| = |Bﬂ + An - Bnl/lBﬂI = |Bﬂ + Cn‘/anl (L14)

I+ B;Y2C,B;V? — 1 as. (P)
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in view of (L11). Thus, In{|Bal/|4al) = 0 a.s. (P} and (L13) holds is
V!BV, = M(aY AT M(1a) — 0 2s. (P). (L15)

To prove this we use the fact that V, = M (7s) 2nd write the difference of the quadratic forms in

(L15) as

VaBI W, = VA By + Ca) " Va V!BV, - Vi(B; - BI1Cu(Ba + Ca) )V

1

= V!B Cu(Bn +Cn) 'Va

= V!BV, BV (14 BYAC, B YA B A, (L16)
Now

I B2 Val?

It

V.B'V,
= (SlorerZ)) (SR ZaZhhi) T (Blar Zees)

_— — -1 _—
= (CadiZ0) (S0 ZZL) (ShaZeds)

where di = ex/hl? and Z; = Zuh)”. Since E(d}{Fin1) = 1 VK, supiyy E(}}F4-1) = 1 and

therefore by Lemma 1(ii) of Lai and Wei (1982) we have
1BVl = olta(Mmax(Ba))' ) 25 (P) (L17)

for every 6 > 0.

Using {L16) and (L17) we obtain
(VaBZ1V, = VAV, < |BRYACa BTN + B YR BT A HIBL PG . (L18)
In view of (L11), (I + Bx*2C.BZY?)™Y|| = O(1) as. (P). Take ¢ = 1—p > 0 and we have

IBZY2C, BTV = [{(By<® ® By X(By?? @ BI?/?)ea|?

A

B3/ ® By /*|[*(Bx*"* © B**)eal”

A

§BI</? @ B/l B;?!? @ By )G MG enlf?

% O(In(Amax(Gn))) as. (P) as n— oo . (119)
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Using (L17) and (L19) in (L18), we find that
VaB Vo = ViAT VAl = O(1/in( B3 ))O(Amax[(B7?/* © B7?/%)Go(B77/* @ B7#/%)))

X O(In(Amax(Gn)))o(1n(Amax(Bx)))'**)

= 0 as. (P) as n—o

in view of conditions (E4) and (ES5), establishing part (c) of the Theorem.

L.7 Discussion and Application of Theorem L.5

(a) Theorem L.5 shows that the discrete time pair (Vy, B,) can be embedded in the continuous
pair (M(t), A(t)) using the stopping time sequence r,. In consequence, the discrete exponential
process

Ty = |Bn|'1/2 exp{(1/2)ViB;'V,} {(L20)

can be embedded in the continuous time exponential process
r(t) = |AQ)| V2 exp{(1/2) M (tY A(t) T M (1)) (L21)

in the sense that r,/r(r,) — 1 as. (P) as n — oo. Moreover, as shown in the proof of Theorem
L.5, M(t) has a representation as the vector stochastic integral M(t) = fot Sd1i" and we can write
r(t) as
r(t) = | I 55'[*” *exp {(1/2)( JLaws’) ( /! 55') s sm;} . (L22)
The argument of the exp(-) function in (L22) has a familiar form that arises frequently in the
asymptotic theory of regression for integrated processes — see Phillips and Duriauf (1986), Phillips
(1988), Park and Phillips (1988, 1989) and Sims, Stock and Watson (1991) for many examples.
Further, forms of this type arise in many other cases as well, including stationary regression
models, as shown in Phillips (1989).
Finally, if the log likelihood £,(#) is LAQ in the neighborhood of 8° then for & = 8 = 6° small
we can write the log likelihood ratio as A, = £,(8) — £,(6°) ~ h'B,TI"'2 Va = (1/2)R’'Boh. Theorem

L.5 shows that we can embed this likelihood ratio asymptotically in a continuous process A(t) as

A(ra) ~ b (I SSNM [T Sdw — (1/2)R'([T" §5')h .
0 Q 0
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This representation of the likelihood ratio satisfies the limiting Gaussian functional (LGF) condi-
tion of Phillips (1989) and has the form of a locally asymptotically Brownian functional (LABF)
likelihood ratio, as discussed by Jeganathan (1994).

(b) The continuous exponential process r(t) in {L21) and {L22) is generally much easier to
work with than the discrete process rn. It is particularly convenient in showing that conditional
densities constructed from r(t) are proper probabilities densities. Thus, {ollowing the analysis of

Phillips and Ploberger (1994, Section 2.6) for the scalar case, we have
r(rire) = r(7)/r(r0) = exp{K(r) - K(ra)} = exp{ [ dK(t)} (L23)

where K(r) = (1/2)M () A()"tM(t) - (1/2)In|A(t)]. The stochastic differential dX(2) in the

final expression of (L23) can be evaluated by Ito calculus as follows:

dE(t) = [M{tY A MM () - (/MY A" (dA) A M (1)

~ (/2)tr{A(t)" dAQ)} + (1/2)tr{fi(t)“dM(t)dM(r)'}

MY AR dM () = (/DM AR) AL () M(1)

using the fact that dA(t) = dM(t)dM(t) as. (P) in stochastic caleulus. Next let J(t)
= [ M(tY A(t)"'dM(t). Then, dJ(t) = M(tY A(t)"'dM(t) and it is clear that J(t} is a continu-
ous martingale (because M (t) is} with quadratic variation process d[J], = (dJ(2))* = M(t)'A(¢)"!
x dA()A(t) 1 M(t) as. (P). Thus, we can write (L23) as

r(rlro) = exp{J(r) ~ (1/2)[7)s} . (L24)

Thus, the conditional exponential process r(7{m) has the form of the so-called Doléans exponential
—— see Meyer (1989, p. 148). Now, by Novikov's theorem (see Ikeda and Watanabe, 1989, Theorem
5.3, p. 152}, it follows that E{r(r|ry)} = 1 and hence r{7|ry) is a proper probability density, when
Efexp{(1/2){J];} < oo, which can always be arranged by use of a suitable stopping time. Thus,

if we set

7, = inf{s : |A(s}| > ce®, somee >0}, 220, (L25)
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then (75)apo is a family of monotone increasing and continuous (in a) stopping times such that
A(7,) is as. (P) bounded. If we go ahead and replace the time index ¢ (chronological time) by
a and let @ — oo, then we make a time change in the process under which the “new time” is
measured in information units of the original process. In the new time frame A(7,), and hence
[/]-., are bounded a.s. (P) and so Elexp{(1/2){J]r.} < 0 a.s. (P).

-Since r(r|rg) represents a proper probability density we can ask wkat is the model to which
it corresponds. The explicit representation of the martingale M(t) as the stochastic integral
M(t) = fc; SdW from the construction in the proof of Theorem L.5 helps us find the model for
r(rlra). Start by writing R(t) = A M (1) = (f{.55') (Js 5¢W) = B(t) - 0, say. Then

r(rlro) = exp{J h(t)YS()dW () - (1/2) [, B(t)'S(1)S(1)R()d1} (L26)
which is the likelihood ratio density process for the stochastic differential equation
dX(t) = R(tYS(t)dt + dW (1), t2 7 (L27)

(e.g. see Ibragimov and Has'minski, 1981, p. 16). In effect, (L27) is a probability model for
the evolution of the data in continuous time corresponding to the exponential density r(7]r) in
(L26). Just like the discrete Bayes models (L4) and (L7), it is data dependent — here h(t) =
A(t)"1M(t) is a least squares estimate in continuous time of the parameter A in the constant
coefficient differential equation dX(t) = h'S(t)dt + dW(t). (Note that under P, A = 0 and then
Ry = (U 55')'1 (i sax)= (J3 55') T SaW) = A(t)=1M(t), as above.)

(c) Finally, we remark that Theorem L.5 and its proof are given without making any assump-
tions about rates of convergence concerning estimates of 8; and no rotations of the regressor space
(i.e. the space of the Z;) are used in setting the conditions (E2)}-{E3). In fact, varying rates of
convergence are permitted according to the rates of divergence of Ayin{B,) and Apax(Bn). How-
ever, the rates of divergence of the Ay,(Bn) and Apax(Ba) cannot be “too different” and there
is a control on the extent of the possible difference through the “condition number” requirement
(E4)(i) whereby In{Amax(Bn))/(Amin(Bn))¥ — 0 as. (Pj so that In(Apnax(B.)) cannot be large

relative to an arbitrary power (8) of Apin(Bn) as n — cc.
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P. PROOFS OF THEOREMS FOR SECTION 2,
SOME DISCUSSION, AND SOME TECHNICAL EXTENSIONS
TO MIXTURE MEASURES

P.1 Regularity Conditions

(C1) The log likelihood £,(8) = Ly(La(6)) is twice continuously differentiable with derivatives
£(6) and £2(9).

(C2) Under P? tﬁ”(a) is a local Ly martingale with conditional quadratic variation (matriz)

process Bn(6). Let By = Ba(89). AS = Amin(Bn) = o a.5. (P) as n — cc.

(C3) Uniformly forhe §,={h € R? : h'h =1}
{R'€EY62)h + h'Boh} /R Bk — 0 as. (P) as n— oc .
(C4) For some sequence &, > 0 such that §, | 0 and 6,X° { o< as, (P)
{R'ED(Oh - KED (@R} /h'Boh — 0 as. (P)

uniformly for h € S, and uniformly for 6, &' € N; (69) = {6 : 16-82Y < 6,}.
(C5) The mazimum likelihood estimator 8, satisfies b, — 60 — 0 a.s. (P)osn — .
(C6) For any sequence §, > 0 as in (C4)

| Ba |2 ] (0)(dP;/dP,)df =0 as. (P) as n — oo .
Ny ©

Bi'n

(C7) The prior density x(8) is continuous at 62 with x(62) > 0 Vn.

Phillips and Ploberger (1994) use very similar conditions in their Theorem 4.1 and discuss
the conditions in detail. (C4) above is weaker than their (D4) and P, need not belong to the

parametric family P?.

P.2 Theorem Under conditions (C0), (C1), (C2), (C3), (C4), (C5) and (C6)

dP, ,dQ,

'd—Pn' E*E—’l a.8. (P)
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where the measure Q,, is defined by its density with respect to P, as follows:
dQn/dPy = Ton exp{(1/2)V. BV, }/| Bal'/? (P1)

where Vo = £8(6°) and %on = (21)P/21(ﬁ)(dP,fe'/dPu). The following forms are equivalent

asymptotically to (P1):
dQn/dPy = Ton exp{(1/2)(8—63) B (8,~62)} /| Ba| /> (P2)

and

dQn/dPn = conexp{La(Bn)}/IBaM? | with con = (22)7/71(8°) . (P3)

P.3 Remark Under the conditions of the theorem the posterior density of § can be written as

wa(8) = 7(6)(dP2/dP,)/ /R _ T(O)(dPi/dP,)d8 = 7(8)dP3/dP,

n(8)(dPr/dP)/(dPa/dPy) ~ T(0)(dP;/dP,)/(dQn/dPy) = 7(8)dP]/dQ,
7(6) exp{€a(6)}/[con exp{£n(6n)}/1BA]"?]

(m(8)/7(82))(27) P/ By |'/? exp{€a(8) — £u(8n)}

~ (x(8)/7(69))(27)?/*| B, | exp{~(1/2)(8 -8, B.(6-8)}

~ N(8., B;') . (P4)

As remarked iz the Introduction, results that show the asymptotic normality of the posterior
density have a long history in statistics. LeCam and Yang (1990) provide a review and relate
the phenomenon to early work by Laplace in the nineteenth century and Bernstein and von
Mises in the first part of the twentieth century. Heyde and Johnstone (1979) showed that the
phenomena applies to stochastic processes and under more general Eonditions than those for which
the maximum likelihood estimator is asymptotically normal. Chen (1985) provides a general (nox-
probabilistic) derivation of the result in the multivariate case and shows that a condition such

as

/ 7(8)(dP!/dP,)d9 — O (P5)
Nen(83)
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(i.e. the concentration of the posterior density around 6 as n — o) is necessary and sufficient
for the posterior to be asymptotically normal under weak smoothness and steepness conditions on
the likelihood. (A continuity condition on the prior x(#), like (C7), is also needed but is implicit
in Chen’s conditions because he works directly with the posterior density.)

Our (C6) is stronger than Chen’s (P5) because our object is not just to establish asymptotic
normality of the posterior but to give an asymptotic approximation to the Bayes density dP,/dP,,
for which the relative error goes to zero a.s. (P), as in the statement of Theorem 1. This requires

that the posterior mass outside of a neighborhood like N, (89) of 8 go to zero faster than | B,|~1/2,

P.4 Remark Theorem P.2 (and its proof) is very similar to Theorem 4.1 of Phillips and Ploberger
(1994). The main differences are that P, need not belong to the parametric class PZ, that there
need not be a fixed “true value” of € for all n and that the smoothness condition (C4) is required
to hoid only in a shrinking neighborhood N, (82) of #°. The latter condition is weaker than (D4)
in the Phillips-Ploberger paper, which employs a fixed neighborhood system, and weakening this
condition turns out to be important in applications, as we see below. The requirements §, | 0 and
§nA3 T 00 a.5. (P) ensure that the neighborhood shrinks around 60 as n — oc but that it is also
infinitely wide in terms of 1/A] units as n — co. Now, A = Apn(B,) so that 1/A° = Amax(B71).
B, is the matrix quadratic variation of the score V, = £,(1I)(€2) and measures the information
content of the data about 62. As in (P4) we anticipate that 8 is distributed about 8, with
variance matrix B! in large samples. Thus, the shrinking neighborhood system N5, (6°) requires
that this neighborhood be wide relative to a set that contains most of the mass of 8 as n — oc,
Note that the above arguments and conditions do not place any conditions on rates of con-
vergence and hence are useful in models where the rates of convergence differ in different but
unknown directions as in the case of cointegration. In the latter case it seems that a shrinking
neighborhood system of the type specified in (C4) is needed in order to get an a.pplica.bl.e result.

As a short llustration of the importance of this condition, consider the following simple version
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of a cointegrated system based on model {27) in the paper:

bye = 1801+, Y(mx1), f=(1,0)(1xm) (P6)

with m = 2. As is apparent from the formula for Bpa derived for (35) (see the equation before

(36) in the paper), we have

-1 ATdd
£2)(g) = T-l@pY! Y18 0
0 TEY8Y; Y2
where & = (7', b). Suppose 8% = (1, 17) is the true cointegrating vector, and consider a form like

that in (C4) with &’ = (A’, 0). Then

{h'eD(8)h - KEP(EOVR} /R Bah
= (W I BY Yo 18 = BT ke SOV Y B0 R T R YL Y B

= (B, Y18 - B¥YL Y1 8%/ VYL You8° (P7)

With suitable setting of initial conditions in (P6) w; = f¥y-y is strictly stationary and by
the ergodic theorem BYY! Y 14° = O,,.(n). However, for § in a fixed neighborhood of AY it
is clear that since some components of .., and hence §'y,~; are I{1} we have g'Y Y48 =
Oass(n?lnln(n)) — see for instance Lai and Wei (1983, p. 364). Thus, (C4) does not hold in a
fixed neighborhood of 8°.

Now take a shrinking neighborhood system for 8, as in the stated condition {C4), with 6, =
O{n~(/24}) for some 0 < e < 1/2. Then, 6x | 0 as required and since A% = Agin(Br) = Ous(n),
corresponding to S¥Y,Y_;8° asymptotically, we also have 6,00 = Ops (V¥ ) — o0 as. (P)
as required. Further, let 8 € Nj,(6°) and then 8 = §° + 6p with [§g]l = Oas(6s). Then (PT7)
becomes

(26577, Y180 + 63Y L Yoabp) YL Y0

Next

A

165YL, Y1 8% < sl ZT yerwi] < N8I STy pem 2N ST wd 2

16310 e (n(In In(n)) )0 (/%)
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and thus
NS Y L, Y1 PO/ B*YL1Yo® < 106110 (0 3 (In1n(n)) /%) = oy, (1YL, Yoy
since &, = O(n~1/%-%) for some e > 0. In a similar way,
165Y 3 Y181 /BYY2,Y15° < ||6p] O Inln(n)) = 0,,(1) .

Thus, (C4) holds for a shrinking neighborheod system N;,(6°) in the cointegrated system (P6)

with shrink factor &, = O(n~1/?~) for some 0 < e < 1/2.

P.5 Proof of Theorem P.2 The proof {ollows exactly the same lines as the proofs of Theorems
2.1 and 4.1 given in Phillips and Ploberger (1994), replacing a.s. (P°) convergence with a.s.
(F) convergence which allows for the fact that the probability measure P may be outside the

parametric class P?. The Taylor expansion of £,(8) about 8, has the form
£a(8) = talBn) + (1/2)(6~ 8. 6D (8 )(6-F2) ,

where 8, is on the line segment between § and 'én. The quadratic term is decomposed with

9—8,=Mh, k€S, as

(0~B.Y D (6m)(0-8n) = —(0-8,) Ba(0=8,) + {K[€P(6) - €N @)A/H B,k

+R'[ED(62) 4 B,h/K Bk} (6-6,) Ba(8-8,) .

Under (C3), &(¢(02) + B.Jh/K Boh — 0 a5, (P), and under (C4), h"[z?)(em)-df’(eg)]h JR'Boh
— 0 a.s. (P) uniformly for 8, 6, € N;,(6°). The remainder of the proof follows as in the Phillips
and Ploberger result. However, it should be noted that the ¢gy, in (P1) and (P2) are different
from that of (P3). The reason is that we take the Taylor expansion about 82 in deriving (P1)
and (P2) and this leads to the presence of the factor dp’ [dP, = exp{¢,(8%)} in expressions
(P1) and (P2). When P, is in the parameter family we have P, = P , dP,f?' /dPr, =1 and then

con = (27)P/21(89), as in expression (P3). In other cases the extra factor is retained.
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P.8 Alternative Regularity Conditions for Evolving Models
Let new conditions (C2"), (C3'), (C4'), (C5’) and (C6') be defined in just the same way as
conditions (C2), (C3), (C4), (C5) and (C6) with “a.s. (P)” convergence in the original conditions

being replaced by “in P,-probability” as n — oo in the new conditions. Then we have:

TEEOREM P.2' Under conditions (C0), (C1), (C2), (C3), (C4"), (C5') and (C8')

4P, dQ,
dP,' dP,

— 1 in P,~probability as n — oo .
where the measure Q, is defined as in (P1), (P2) and (P3). O

The proof follows as in Theorem P.2 (and Theorems 2.1 and 4.1 of Phillips and Ploberger, 1994)

using “in P,—probability” convergence in place of “a.s. (P)” convergence.

P.7 Mixtures of Exponential Bayes Measures

Condition (C0) requires that there be a unique #9 that minimizes the Kullback-Liebler distance
K (P, P?) between P, and the family P. In addition to 62, there may be points 6}, (i =1, ..., T)
of local minima of K (P, P{). And in some cases the global minimum may not be unique. In
such cases we can construct local approximating exponential Bayes measures in the neighborhood
of each point # and a composite mixture measure that approximates Pn.

We start by assuming that the local behavior of the log likelihood around each locally optimal

point @i is quadratic and that the prior is continuous at each 6}, i.e.

(C8) £,(8) is locally asymptotically quadratic (LAQ) at §: for each i = 0,1, ..., I in the sense

that

0,(0) = {£a(80) + V/:(8—6.) — (1/2)(8-6.)Y Bai(0—6.)} — 0 in P,—probability as n — o

where Vi = £84(8.) and B; = (£7)(6)). Further, Amin(Bni) diverges in P, -probability as

n -+ 00,

(C9) n(8) is continuous at 8}, (i =1, ..., I).
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Next we construct intervals N; = N (6:) = {6 : 16-6i < 8} around each 6 with radius
8, > 0 constituted as in (C4) so that &} | 0 and with &AL diverging in P,- probability, Then,
the density dPn/dP, = [ x(8)(dP}/dP,)d§ can be approximated as follows:

Blo | #(8)(dP!/dP,)d6
Ni

Tl . 7(8) exp{ta(6r) + Vai(0—6L) — (1/2)(6-6.Y Bai(6-63)}d8 + o,(1)

= Tloexp{la(6}) + (1/2)V/iB 7} Vo) / 7(8) exp{~(1/2)(6 -6, B.i(§ -6, )} d8

Tl om(8)(2n )P/ Bl P exp {£.(6}) + (Y/2QViB Vi) + 0,(1)

l

o (O )P [dPy)| Buil ™ exp{(1/2)V, Bl Vai} + 05(1)

where ! = 0% + B! Vi, In the third line of the above argument we use Laplace approximations
to the integrals over N; and in the last line we use the continuity of #(-) at .. The final result

is the mixture of exponential densities

n

dQn/dP, = Tl Tinexp{(1/2)V. B Vi) |BailM? Ein = (27 )P~/ % (6. )(dP% /dP,) (P8)

LloldQn/dP,); , where [dQ,/dP, Ji = Cin exp{(1/2)V: B Vi } /| Bui] V2

This mixture is the approximating density for dP,/dP,.

If condition (C6) holds, then the contribution from the first component of the sum in (P8)
dominates (i.e. the global maximum at %) as n — o and we get the same single element
exponential density as given earlier in (P1). If there are several global maxima, 6., for which the
generalized variance | B[ is of the same stochastic order as n — oo then each of these is retained
in the mixture density (P8) as n — oo.

The posterior density of  can also be approximated using (P8). This density is

I.(6) = x(0)(dP;/dPa) = x(6)(dP![dP,)/(dP,/dP,)

7(6)(dP;/dPa)/(dQn/dPy)[1 + 0,(1)]

7(8) exp{€n ()} /{Z!_gTin | Bnil "/ exp((1/2)VL. BZV,il) .

In the neighborhood of 8,,; we have, in view of (C8),

6a(8) = £u(8)+ Vii(6-065) = (1/2)(8- 6. ) Boi(8—85) + 0,(1)
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= (0} + (L/2VLB; Vi ~ (1/2)(8-8.) Bui(8- ) + 0,(1) .

Thus for 8 € N; we obtain

I(8) = x(8) exp{—~(1/2)(8~8.) Bni(6-6.)} /S oTn| Bnj| 12
x exp{(1/2)V4;V,5 Vaj = (1/2)ViiBaiVai — La(85)}1405(1))

(2773 By 2 exp{~(1/2)(8~6. Y B,;(8-63))

[{ELoldQn/dPa);/{dQn/dP.)i} + 05(1) (P9)

Thus, in the neighborhood of #: the posterior density is approximately N(‘ﬁ';;, B;‘J) where E; =
9:‘ + B;-l Vai.

Local asymptotic normality results for the posterior density are not in any way new. Hartigan
(1983, p. 111) gives a pointwise result of this type for the posterior density for iid samples. LeCam
and Yang (1990, pp. 67-68) give a similar local result for the posterior density under an LAQ
condition like (C8) and for Gaussian priors, but indicate (p. 71) that Gaussianity is not essential,
And Chen (1985, p. 543) shows that “fractional” normal approximations to the posterior will
occur around any modal point of the posterior under fairly general conditions and without being
specific about the probability framework.

The mixture exponential density (P8) Las several interesting features that are worthy of com-
ment. First, note that since many points of local approximation contribute to the overall ap-
proximating measure ¢, we cannot simply scale out the effects of the prior by using conditional
Bayes densities in the same way as we did in Section 2.2. Thus, if there are several points £} in
the parameter space 6, for which P,f:‘ is an equally good approximation to P, and the prior does
not exclude these points then under reasonable conditions we can expect the best approximating
Bayes measure to be a mixture of exponential densities that are local to each of these points.
The weights (€;n) assigned to each of these local densities depend on the value of the prior at
each point (7(8)n')) and the extent to which P,gi' approximates P,, as measured by the relative
likelikood dP,fi‘/dPn. In such conditions, we “do not leave the prior behind” as n increases as we

do in the simpler case studied in Section 2.2 of the paper. We might expect such a situation to
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be more likely to arise when the family of measures P{ 6 € © provides poor candidate measures
for P,. Then, several points of 8, may do equally well in terms of furnishing candidate measures
for P,, the data may not be informative in choosing between them and the prior weight that we
put locally in the regions of 8, where these points lie will be important in determining the form
of the approximating measure.

Phenomena where the posterior is multimodal (as in (P9) above, with modes at each gﬁ,) and
there is insufficient information to allow one mode to dominate and the posterior to concentrate
as n — oo are sometimes classified as situations where “Bayes procedures behave miserably.”
LeCam and Yang (1990, Section 7.5) discuss some such situations and illustrate the potential
misbehavior of Bayes procedures in certain nonparametric settings, using examples that are due
to Diaconis and Freedman (1986). In these examples the parameter space @, is large (in fact,
infinite dimensional}, the prior is “too thin™ around the true § € ©,, the posterior distribution
fails to concentrate, and “Bayes procedures are inconsistent.” In finite dimensional parameter
spaces, we see from (P9) that related behavior can apply for finite n when many points like 8%
compete for the role of approximating the data distribution. As we have seen, in such cases the
prior does play a more important role and its effects can persist even as n gets large. However,
if Pé», 8, € ©,, is a poor family of candidate measures for P, then a mixture like (P8) may
not be such a bad approximation to the data distribution. Indeed, as the discussion of Section
2.3 reveals, within the family P we may not expect to do better than the measure @, as an
approximating data distribution, at least within feasible empirical procedures. The alternative
is to find a more adequate family of candidate measures for approximating P, or to have better

prior information.
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Figure 10: Optimal Choices — UK Models
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