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Abstract

We introduce a new nonparametric regression estimator that uses prior information on re-
gression shape in the form of a parametric model. In effect, we nonparametrically encompass
the parametric model. We obtain estimates of the regression function and its derivatives along
with local parameter estimates that can be interpreted from within the parametric model. We
establish the uniform consistency and derive the asymptotic distribution of the local parame-
ter estimates and of the corresponding regression and derivative estimates. For estimating the
regression function our method has superior performance to the usual kernel estimators at or
near the parametric model. It is particularly well motivated for binary data using the probit or
logit parametric model as a base. We include an application to the Horowitz (1993) transport

choice dataset.

Some key words: Binary Choice; Kernel; Local Regression; Nonparametric Regression; Parametric
Regression.
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1 Introduction

Methods for estimating nonlinear parametric models such as the generalized method of moments,
nonlinear least squares or maximum likelihood are generally easy to apply, the results are easy
to interpret, and the estimates converge at the rate n'/2. However, parametric models can often
impose too much structure on the data leading to inconsistent estimates and misleading inference.
By contrast, methods based on nonparametric smoothing provide valid inference under a much
broader class of structures. Unfortunately, the robustness of nonparametric methods is not free.
Centered nonparametric smoothing estimators [such as kernels, nearest neighbors, splines, series]
converge at rate n'/2s, where s — 0 is a smoothing parameter, which is slower than the n!/? rate for
parametric estimators. The quantity s must shrink so that the ‘smoothing’ bias will vanish. Although
this bias shrinks to zero as the sample size increases, it can be appreciable for moderate samples,
and indeed is present in the limiting distribution of the standardized estimator when an optimal
amount of smoothing is chosen. It is the presence of this limiting bias, as well as the slow rate of
convergence, that distinguishes nonparametric from parametric asymptotic theory. In practice, the
bias can seriously distort one’s impression of the underlying relationship.! Therefore, it is important
to have control of the bias and to try to minimize its influence on inference.

Some recent developments in the nonparametric smoothing literature have addressed these issues.
Fan (1992) derived the statistical properties of the local linear estimator which involves fitting a line
locally (as opposed to fitting a constant locally which is what the Nadaraya-Watson estimator does).
Fan showed that local linear is design adaptive: its bias depends on the design to first order only
through the second derivatives of the regression function. This is in contrast with the Nadaraya-
Watson estimator whose bias also depends on the logarithmic derivative of the design density and
can thus be quite large for some design densities even when the regression function is linear.?

There are special cases in which smoothing bias is small. For example, the Nadaraya-Watson
regression smoother is exactly unbiased when the function being estimated is a constant. We say
that Nadaraya-Watson estimators are centred at constants. Local polynomial estimators, see Fan
and Gijbels (1992) and references therein, are centred at the corresponding polynomial. In fact, the

local ¢’th order polynomial is centred at a reparameterization p(z) = g+ ou(z —2)+...+ T (z — 2)?

LConfidence intervals are usually constructed without regard to this bias. This practice is justified by under-
smoothing, see Bierens and Pott-Buter (1990). The bias effect can be worse in the boundary regions which are often
of primary interest, see Miiller (1988) and Anand et al. (1993) for some estimators, and in regions where the marginal

density of the explanatory variables is changing rapidly.
2Fan (1993) formalized this further by showing that local linear is superior to Nadaraya-Watson according to a

minimax criterion.



of the polynomial regression function p(z) = vy + 7112 + ... + 742% in which the a parameters are
exactly the regression function and its derivatives. This reparameterization, however, changes with
each evaluation point so the o parameters are not directly interpretable inside the global parametric
model. It is of interest to estimate the v parameters which do have an interpretation when the
parametric model is true everywhere.

We introduce a new kernel nonparametric regression estimator that can be centred at any para-
metric regression function. Our approach is to nonparametrically encompass the parametric model
and to estimate the local parameters using information from a neighborhood of the point of interest.
To facilitate the asymptotics we introduce a local reparameterization that separates out the para-
meters with common convergence rates, specifically setting one parameter equal to the regression
function and others equal to partial derivatives.® Our regression function estimator is consistent for
all possible functional forms, is design adaptive, but has especially good properties (i.e., essentially
no bias) at or near the parametric model. This centering approach to nonparametric estimation
has been recently considered as well in spline regression and series density estimation, see Ansley,
Kohn and Wong (1993) and Fenton and Gallant (1996), but not as yet for kernels. The advantage
of working with kernels is that we are able to obtain the asymptotic distribution of our procedure
taking account of bias and variance. This important result is not available for these other smoothing
methods.

We also derive the asymptotic properties of estimates of the identifiable original parameters of the
parametric model by the delta method. These local parameter estimates are interpretable inside the
parametric model and are of interest in their own right. They can be used as a device for evaluating
the parametric model. See Staniswalis and Severini (1991) for a formal analysis of a likelihood
ratio type test statistic in a similar setting, and Gourieroux, Monfort, and Tenreiro (1994) for an
econometric time series application.

The paper is organized as follows. In the next section we introduce the model and procedure. In
section 3 we establish uniform consistency and derive the asymptotic distribution of our estimators.
Section 4 contains an application to the transport choice data set of Horowitz (1993) and includes
some discussion of bandwidth choice. Section 5 concludes. Two appendices contain the proofs. Our
consistency proof follows an approach similar to that found for example in the results of Potscher
and Prucha (1991), combined with the empirical process techniques of Pollard (1984) and Andrews
(1994).

For any vectors x = (z1,...,24) and a = (a1, ...aq), define |z| = Z;l:l zj, ! = zq! X - X gl

and 2% = (2§, ...,24%) for any integer d, also let for any function g: R¥* — R,

3As is commonly done for the local linear estimator.



olal

Dig(,y) = 5 ar 5 aa9(@y), T € Ry € R,
1 d

with D? = D® when there is no ambiguity as to the variable being differentiated. We use || A| =
{tr (ATA) }1/ ? to denote the Euclidean norm of a vector or matrix A. Convergence of sets should be

taken to mean relative to the Hausdorff metric py (-, ), which is defined for compact subsets A, B of
R? by:

pr(A,B) =inf {6: AC B® and B C A°},

where A% = {z: p(x, A) < &} is the §-neighborhood of the set A with respect to the usual Euclidean
distance p(x,A) = inf,ca ||z —yl|, see Kelley (1955, p131). Finally, L, denotes convergence in

probability and = signifies weak convergence.

2 The model and procedure

The data to be considered are given by the following assumption.

ASsSumMPTION AQ: Our sample {Z;}_,, where Z; = (Y;,X;), is n realizations drawn from an
i.i.d. random vector Z = (Y, X) defined on a probability space (2, F, P), where the response variable
Y takes values in Y C R, the covariates X take values on X C RY, forsome d, and E[Y?] < o0.

Assumption 0 guarantees the existence of Borel measurable real valued functions ¢ and o? with
domain X such that F(Y|X = z) = g(z) and var(Y|X = z) = ¢*(z). Let w; = Y; — g(X;), then

E(u;|X;) =0 a.s. (1)

Our main objective is to estimate the unknown regression function g at an interior point x without
making explicit assumptions about its functional form. We do, however, wish to introduce some
potentially relevant information taking the form of a parametric function m (X, «). For concreteness,

we carry this out using the (nonlinear) least squares loss function, although the idea can be extended



to a likelihood, (generalized) method of moments, or M-estimation setup. We therefore introduce

the following local nonlinear least squares criterion

Qu(z,a) =n" Y {Yi—m(X;,a)}* Ku(X; — ), (2)

i=1

where K () = det(H) 'K (H~!-) with H a d x d nonsingular bandwidth matrix, while K (-) is a real-
valued kernel function. We first minimize (Q,, with respect to o over the parameter space A, C R?,

letting M,,(x) be the set of minimizers. Then, for any a(xz) € M, (z), let

g(z) = miz,a(x)} (3)
be our estimator of g(x), and let

—_

Deg(x) = Dym(z, a(x)), (4)

be an estimate of D%g(x) for any vector a = (ay, ..., aq), where this is well-defined. In general, itera-
tive methods are required to find @(x) and the procedure might be quite computationally expensive
if one needs to estimate at a large number of points x. However, in our experience only a small
number of iterations are required to find each maximum since the globally optimal parameter values
provide good starting points.

Our procedure is related to the local likelihood estimator of Tibshirani (1984), although this work
appears to focus on generalized linear models in which a single parameter 6 can enter any “link”
function [an example of a link function is the normal c.d.f. or its inverse in a probit model]. There
are similarities with the nonparametric maximum likelihood estimator of Staniswalis (1989) in which
there is again only one location parameter, but a more general criterion than least squares is allowed
for. There has been much recent work in the nonparametric statistics literature, mostly focusing
on density and hazard estimation. In particular see: Copas (1994), Hjort (1993), Hjort and Jones
(1996) and Loader (1996). Work in other areas includes Robinson (1989) for a time series regression
problem and the recent paper by Hastie and Tibshirani (1993) about random coefficient models.
Work on regression has proceeded less quickly, and we appear to be among the first to fully exploit
this idea in regression, although see the recent discussion of Hjort and Jones (1994). Our procedure
nests the local polynomial regression that originated with Stone (1977) and was recently popularized

by Fan (1992). These procedures are discussed in Hérdle and Linton (1994, see p17 especially).

We now give some examples.



EXAMPLE 1. Suppose the parametric regression function is linear in the parameters

m(z, ) = oqri(z) + ... + opry(x),

where rq,...,r, are known functions. Many demand and cost systems fall into this category, see

Deaton (1986). In this case, the minimization problem (2) has, for each n, an explicit solution
a = (RTKR)*RIKY,

where R is an n X p matrix with (i, ) element r;(X;), Y = (Yi,...,Y,)?, K =diag{ Ky (X; — z)},
and superscript + denotes a generalized inverse. For example, when m(z,«) = «, then g(z) is the
Nadaraya-Watson estimator. This special case also includes the local polynomial estimators of Fan
(1992).

EXAMPLE 2. (Index structures) Let m(z,a) = F(ar + > 7, ayx;1), for some function F(-).
This generalization provides a convenient way to impose inequality restrictions like 0 < g(z) < 1.
For example, with binary data one might take the logit or probit c.d.f.’s; in a sample selection model
taking F' to be an inverse Mills ratio would be appropriate. This type of structure is used widely;
for example in semiparametric models, where F' would be of unknown functional form while o would
be fixed parameters. See especially Stoker (1986). In our approach, F' is taken to be known, while
« is allowed to vary with z. Our method is fully nonparametric, while the semiparametric approach
adopted in Stoker (1986) entails some restrictions on the modeled distribution. Fan, Heckman and
Wand (1995) consider the case where z is scalar and m(z,a) = F(oq + asz + ... + apaP 1) for some

known link function F'.

ExaMPLE 3. (Production functions). A number of common micro production functions can be
used in (2), including: the Cobb-Douglas m(z,a) = 252 ... 25", the constant elasticity of substitu-
tionm(z,a) = {oq + apx(” 4+ ... + oap_lxgp}l/a” , and the Leontieff m(x, o) = min{ay, aox1, . .., apzq}.
The Leontieff function although continuous is not differentiable. Note that the Cobb-Douglas func-

tional form implicitly imposes the requirement that g(0) = 0. One can also impose, for exam-

ple, constant returns to scale by writing a, = 1 — ];;; a; and minimizing (2) with respect to
a = (oq,...,0p1). See McManus (1994) for an application of nonparametric production function

estimation.



3 Asymptotic properties

In this section we derive the uniform consistency and pointwise asymptotic normality of the regres-
sion and derivative estimators. We first outline the argument and then give the theorems in two
subsections.

We shall show, under only continuity conditions on m and g, that the criterion function Q,(z, «)

converges uniformly [in z and a] as n — oo to the non-random function

Qz, ) = {g(z) —m(z,a)}" fx(z)+ (@) fx(@), (5)

where fx(z) is the marginal density of X, and let ®g(x) be the set of parameter values minimizing
Q(z,a). Under additional smoothness, i.e., continuous derivatives of order » > 0, one can approx-
imate Q,(z,a) by a deterministic function @’ (z,a), obtained from a Taylor series expansion of
E[Qn(z,a)], with a smaller error. Let ®.(x) be the set of parameter values minimizing Q' (x, )
with respect to «; this set is defined inductively, i.e., ®,;(z) = {a € ®; 1(z) : @ = argmin Cj(z, o)},

for j =0,1,...,r* where

2
Ciw.) = [ | 32 S AD"gla) - Dim(a,c)} | K(w)d, ©
{a:|al=7}
Now similarly define ¥o(z) = {a € A, : g(z) = m(z,a)} and ¥;(z) = {a € ¥;_1(x) : D?%(x) =
D¢m(z,);la| = j} for j = 1,...,r. Note that ¥;(z) C ®;(z) for j = 0,1,...r, while, under
continuity and compactness assumptions, ®;(x) # (). We shall assume that ®¢(z) = ¥o(z) and that
A, is compact. A compact parameter space is frequently assumed in nonlinear problems for technical
reasons; it guarantees that M, (z) # (). Nevertheless, it is not strictly necessary: it can be omitted
when the criterion function is convex in the parameters, for example, see Pdtscher and Prucha (1991).
The requirement that Wy(x) # () rules out inappropriate functional forms: for example, if m were
a cumulative distribution function, but the regression function itself were negative at the point of
interest.

Let a’(z) be a typical element of ®;(x) for whichever relevant j = 0,...,7; a key issue here is
identification of the parameter vector a®(z) as well as g(x) and its derivatives. The identification of
the parameter a’(x) will depend on the model chosen, and in particular on the number of parameters
p relative to the number of derivatives, which we assume generically to be » > 0, of g and m at x.

r

Letting p, = > ;_qt;, where t; = (j Zi}l) is the number of distinct j’th order partial derivatives, we

4With the convention that ®_;(z) = A,.



say that a®(x) is underidentified when p > p,, and identified when p < p,.> The leading example of
an underidentified case is when g is only a continuous function but p > 1. In the underidentified case,
®,.(z) may have any cardinality and a®(x) cannot be uniquely identified. Nevertheless, we establish
that M,,(x) is uniformly strongly pg-consistent for the set ®,(x), with 0 < s < r, in the sense that

sup puy{M,(z), Ps(x)} — 0 a.s., (7)

TEXD

for any compact set Xy C X. In other words, every element of M, (x) converges to an element of
®,(x). When g(z) is only continuous but p > 1, even though a’(z) is not identified, the regression
function itself can be consistently estimated by the following argument. For any sequence of functions

~

a(-),a’(-) with a(xz) € M, (z) and a’(z) € Uo(z), we have that with probability one

Qz,a(z)) = Qnlz,a(r))+o(1) (8)
< Qu(z,a"(x)) +o(1) (9)
= Q(z,a"(z)) +o(1), (10)

where the o(1) errors are uniform in z [this is established in the appendix]|, while the inequality in
(9) follows by definition of a(z). Since Q(z, a(x)) > Q(z,a’(x)) by definition, we conclude that with
probability one Q(z,a(z)) = Q(z,a’(z)) + o(1) and hence

m(z,a(x)) = m(z, o’ (2)) + o(1),
uniformly in z, where m(z,a’(z)) = g(z) by assumption. In other words, under our conditions, we

have that

sup [g(z) —g(z)] = 0 a.s., (11)
r€Xy

regardless of the cardinality of Wy(z). When g(z) possesses r continuous partial derivatives and

U, (z) # 0, a similar argument allows us to conclude that for all vectors a = (ay, ..., aq) with |a| <7,
sup E@(x) — D%(z)| = 0 a.s. (12)
xEXy

50f course, these are only necessary conditions. The distinction between exactly identified, p = p,., and overiden-

tified, p < p, plays no role in our analysis.



In conclusion, the regression function and derivatives can typically be consistently estimated even
when the parameters are not.

We now turn to the underparameterized scenario with p < p,, in which case it may be possible to
uniquely identify a®(z), i.e., we can expect that ®,(z) will be a singleton. The ‘identification’ of g(x)
and its derivatives, however, is a different story. There are two subcases. First, when p = p, for some
s < r, then we can expect U;(z) # () and in fact ¥;(z) = ®;(z) for each j < s. In this case, D%g(z)
for any vector a with |a] < s can be uniquely identified; indeed, one can estimate these quantities
via (4). The second case we call ‘unsaturated’ and corresponds to p satisfying ps 1 < p < p, for
some s < r. In this case, the criterion function Cs(x,«) cannot be set to zero, and although we can
identify and estimate a®(x) as well as the partial derivatives through order s — 1, we are not able to
consistently estimated all of the s’th order partial derivatives by this method, i.e., ¥;(z) = ®,(z) for
each j < s — 1 but ¥,(z) = (.5 The following examples clarify these points.

EXAMPLE 4.

(a) Suppose that m(z,a) = ay+asz,ie.,d = 1and p = 2. Then, Pg(z) = {a € A, : g(z) = a1 + anx} =
Uy(x) is a line segment in a-space. When r > 1,

Oi(z) = Uy(z) = {a € A, : g(z) = a; + agrand %(z) = 02} )

which is a singleton with of(z) = g(z) — z - dg(z) /dz and a3(z) = dg(x) /dz.
(b) Now suppose that m(z,a) = a1 + @y, i.e., d =2 and p = 2. Then,
Do(z) = Vo(z) = {a € A; : g(x) = 0nz1 + 0o}

is a line segment in a-space, while, when r > 1, ®;(z) is the orthogonal projection in R? of the
point (0g(z) /0xy ,0g(x) /Ox2) onto the affine subspace ®g(z); this gives a unique element of
a-space both components of which are, in fact, linear combinations of ¢(z), dg(z) /0x; , and
0g(z) /Oxo. However, these parameter values do not set (6) identically zero, i.e., ¥ (x) = (), so
that although g(z) = af(z)- 1+ a$(z)- zo, neither dg(z) /0x1 = af(z) nor dg(z) /0zs = ad(x)
unless x; - 0g(x) /0x1 + xo - 0g(z) /02 = g(x).

6When K is sufficiently smooth, it is possible to estimate the remaining partial derivatives by direct differentiation

of a(x) with respect to x.



In the identified case, p < p,, one can use a standard Taylor series expansion about the single
point a’(z) to establish asymptotic normality for a(z). In the underidentified case consistency of the
function and derivative estimates is established; however, the fact that the smallest set ®,(z) need
not be a singleton makes proving the asymptotic distribution theory more complicated and is not
attempted here.

For notational convenience in the sequel we restrict our attention to scalar bandwidths H = hl
and product kernels Kj,(v) = Hle kn(v;) where kp(-) = h™'k(-/h).

3.1 Uniform Consistency

Let X, be a compact set with X C X for some § > 0, and let A be the closure of U,¢x,A,. Define
the class F.s »(Xo x A) of functions ¢: Xy x A — R for which DEZ’Z))q(x, «) exists and is continuous
in z and « for all vectors a,b with |a| < r and |b] < s, and, furthermore, there exists a non-negative

bounded function ¢ and a positive constant A such that for all z € Ay and «, ¢/ € A,,

D& g(w, ) — DSV g(z,0')| < d(2) [l — o |*

for all vectors a,b with |a| < r and |b] < s. Functions smooth in x that do not explicitly depend on

a can be embedded in a suitable Fj.g0(Xp % A) in an obvious manner.
ASSUMPTION A

(1) The marginal density of X, fx,is bounded away from zero for all x € Xy. Furthermore, fx,0? €
Fo.0.0(Xo x A), while g € Fr.o0(Xo X A) and me Frp A (X x A) for some X > 0.

(2) For an s < r specified in the theorem, we suppose that for allt = 0,1, ..., s we have the following
condition. For any §-neighborhood ®¢(x) of ®,(x), § > 0, there is an € > 0 such that for all
subsets A(x) C Oy 1(x) \ Py () , we have

inf,cx, infoca@) Ci(, ) > €.

(3) The kernel weighting function k is symmetric about zero, continuous, of bounded variation,
and satisfies [k(t)dt = 1, [|k(t)|dt < K < oo, and for some s < r specified in the theorem
[ k(t)t*dt < oo.

(4) {h(n) : n > 1} is a sequence of nonrandom bounded positive constants satisfying h — 0 and

nh®t% [logn — oo for some s < r specified in the theorem.

10



Assumption A2 is a form of identifiable uniqueness necessary for the identification of ®4(z). It is a

generalization of the typical identification condition in parametric models where ®,(z) is a singleton

to the case where it can consist of a continuum of elements. Assumption A2 is plausible from the

form of the criterion function in the leading cases s = 0,1,2. For example, under our assumptions,
a a 2 1

Ci(z, o) = [tk(t)dt x > {afal=1y 1Dg(z) — D*m(z, @)}, while

Cy(x, a) = vec {G'(x) — M'(z,a)} {/(UU' ® UU')K(U)dU} vec{G(z) — M(z,a)},

where G(z) = ( 692%(]% (m))]k and M(z,a) = ( 63;3"% (m,a))j’k are matrices of second derivatives.
In both these cases, we should have ¥ (z) = ®,(z) = {a’(z)}, for s = 1,2, provided there are
sufficiently many parameters [i.e., p = p; or p = py |. This is clearly true in the case of C(x, ). It
also holds for Cy(z, ) provided the matrix [(vv’ ® vv')K (v)dv is finite and positive definite.

The bandwidth condition A4 is the same as in Silverman (1978), when s = 0, and is essentially the
weakest possible. Specializing the assumptions and the theorem to Xy = {z} we obtain a pointwise
consistency result. In this case, the bandwidth condition can be weakened to requiring only A — 0 and
nh¥2% — oo, see Hardle (1990) for similar conditions and discussion of the literature. Schuster and
Yakowitz (1979) show uniform consistency for the Nadaraya-Watson regression estimator by direct

methods. See Andrews (1994) for a review of the theoretical literature and results for more general

sampling schemes using empirical process techniques.

THEOREM 1. Suppose that assumptions A0-A4 hold for some 0 < s < r, and let M, (z), x €
Xo be the sequence of local nonlinear least squares estimators. (i) Then, (7) holds; (ii) Also, taking
s =0, (11) holds; and (iii) Taking s such that p > ps, (12) holds for all vectors a with |a| < s <,
provided that for all © € Xy, Ys(z) # 0 ; (iv) Suppose in addition: that p < p,, that s in A2-A4 is
such that ps_1 < p < ps, and that for this s, ®,(z) = VU, (z) = {a®(z)} for allz € Xy. Then,

sup |a(z) — a%(z)] > 0 a.s. (13)
z€Xo

Note how in the underidentified case where p > p,, ®,.(z) is not a singleton, and although (7), (11)
and (12) will hold, (13) will not.

In the next section we find the pointwise rate of convergence.

11



3.2 Asymptotic Normality

In this section we derive the pointwise asymptotic distributions of the local parameter estimates
a(x), the regression function estimate g(x), and the derivative estimates 5‘79(%) We restrict our
attention to the identified case, and in particular take p = p; = d + 1 and r > 2 so that a’(x) and
g(x) and its first partial derivatives can be uniquely identified. Our results are thus comparable with
those of Ruppert and Wand (1994) for multivariate local linear estimators. This specialization is
primarily for notational convenience, and we remark on the general case following the theorem.

Our approach is as follows. We first work with a convenient reparameterization of m, for which
we use the original notation a(z), and derive the asymptotic properties of the local parameter
estimates @(z) in this case. In fact, we work with a parameterization for which of(z) = g(z) and
ol (x) = dg(x)/0x;, j = 1,...,d, so that &(x) actually estimates the regression function and its
derivatives. The original parameters, which we now denote by ~, are smooth functions of a(z) and
x. We then derive the properties of 7(x) = ~y(a@(z),z) by the delta method. The reason for our
approach is as follows.

The asymptotic properties of extremum estimators depend crucially on the behaviour of the
Hessian matrix and its appropriate normalization. We can generally find a sequence of p x p scaling
matrices H(n) with the property that

-1 0*Qn

Sadal (z,a’(2))H ' = Zpo(z, (1)),

where the limit matrix is positive definite. The ideal case is when the scaling matrices and the
local information matrix Z,.(z,a’(x)) are diagonal (or block diagonal), which we call an orthogonal
parameterization, following Cox and Reid (1987). In this case the diagonal elements of H(n) measure
the relative rates of convergence of the asymptotically mutually orthogonal parameter estimates.
For any given parametric function m(z, ), the components of -y each generally contains information
about both the regression function g(x) and its partial derivatives dg(x)/0x;, j = 1,2,...,d, which
are themselves known to be estimable at different rates, see Stone (1982). A consequence of this
is that the corresponding information matrix may be singular or the scaling matrices may have a
complicated structure that can even depend on g itself.

The parameterization itself is not unique, and can be changed without affecting the resulting
estimate of g(z). We therefore reparameterize to an orthogonal parameterization for which H is
diagonal and Z,,, is block diagonal. In fact, we work with the particular orthogonal parameterization
for which af(z) = g(z) and of, (z) = dg(x)/0dz;, j = 1,...,d, which we call canonical, in which

the score for the parameter af(x) is orthogonal to the scores for each oY (), j = 1,...,d. This
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separates out the parameters with different convergence rates. Given m(z,~), a general method for

finding its reparameterization is to solve the system of partial differential equations:

om .
m(w,y) =on@) 3 Z=(z7) =a(e), j=1....4,

J
for v(a(z),z). Then write m(z,a’(z)) = m(z,7(a’(x),z)). That is, m(z,a%(z)) and its partial
derivatives will equal af(z) = g(x) and of, (z) = dg(x)/0z;, j = 1,...,d, respectively, when
evaluated at z = z. Frequently, the canonical orthogonal parameterization is given by replacing

m(z,7v) by m(z — z,a(z)), as in the local linear estimator of Fan (1992).7 To illustrate the general

method consider the Cobb-Douglas model m(z,v) = 712]* - - - z,7. We have to solve
QIEZRRE -x}p =a(r) 7j+1$;171$¥2 s -pr = 04j+1($)7 j=1....,4d,
which yields
_oga(@) | _ 01(2)
vrla@),e) =2= et J=lesds mlele)e) = S oER T e
1 d

and

zroo(x) /o (z) zqop(x)/ar(z)
iz ala)) = aufe) (2) (%) -

X1 Xd

We use some convenient notation. Derivatives are denoted by subscripts so that m,(z, «) is the
p X 1 vector of partial derivatives of m with respect to a, while m,(z,a) and m,,(z,a) are d x 1
and d x d first and second derivative arrays of m, and my,(z, a) is the p X d matrix of cross partials.
Finally, let Ay = guu(7) — mye(z,a%(x)), and note that A, = g,(z) — m,(z,a’(x)) = 0. We make

the following additional assumptions:

AssuMmPTION B

(1) Assumption A2 is satisfied for ®1(z) = Uy(z) = {a®(z)} with °(z) = (g(z), gL (z))T in the

interior of A, and x in the interior of X.

(2) There is some neighborhood U of (x,a’(x)) in X x A, for which m € Fs.a0(U) and g € Fro0U)
for some integer r, while f € Fi.00(U).

A similar transformation works for index models, thus an orthogonal reparameterization of F(v; +Zj:1 Vi+1%j) is

provided by Floy +Z?:1 aj+1(zj—x;)]; the canonical reparameterization is in fact F[F~! () +Z?:1 % (zj—

z;)].
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(3) The functions memI(X,a){Y —m(X,a)}, Maa(X,a) {Y —m(X, )} and ma..(X, @) are element-
wise dominated for all o € A, by s15(Y, X), 52, (Y, X) and s3,(X) respectively, where E {s;,} <
Sjz <00 forj=1,2,3.

(4) Let v;j(k) = [ k*(t)dt and pj(k) = [t k(t)dt for any integer j. The kernel k is symmetric about
zero and 0 < vy(k),va(k), pa(k) < oo.

We require only two moments for u [see A0], which is less than the 246 commonly used — Bierens
(1987) and Hérdle (1990) — see Lemma CLT in Appendix A. The other conditions are strengthenings
of the differentiability and boundedness conditions of Assumption A and are fairly standard to the
nonparametric literature. The requirement that a®(z) be an interior point of A, in Assumption Bl
is trivially satisfied: given the boundedness of g and its first order derivatives, we can always find
a compact A, with a®(z) in the interior. Our theorem gives the properties of both a regression
function estimator and a derivative estimator. Usually, these results are stated separately because
(a) if one is only interested in the function itself one can get away with weaker smoothness conditions
(twice not thrice continuous differentiability) and (b) the optimal bandwidth for these two problems
is of different magnitude. The latter reason means that there are really two separate procedures: one

optimized for the regression function and one for its derivatives.
THEOREM 2. Let A0-Al1, with Xy = {x}, A3 and B1-B4 hold. Then,

(a) If also lim,, o h?(nh®)Y/? = ¢, with 0 < ¢ < oo, and B2 holds with r = 2, the regression estimate

aq(x) satisfies

(nh®)2 {@y(z) — al(z)} = N {cbl(x), yo(k);X(é)) } ,

where by (z) = 2 pa(k)tr(Ags).

2

(b) If also lim,,_, h2(nh¥)Y2 = ¢ with 0 < ¢ < 0o, and B2 holds with r = 3, the partial derivative

estimates a;(x) satisfy

(P (ao) - )} = ¥ ), BTN —ap

where b;(z) is defined in (31) in Appendiz A.

(c) Let V(x)denote the asymptotic variance matriz of {(nh?)/2Ha(x)}, with H = diag(1,h, ..., h)

a p x p diagonal matriz. That is, vi1(x) is the asymptotic variance of {(nh®)Y2a(z)},
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v;1(x) = v1,(z) is the asymptotic covariance of {(nh?)Y?a;(x), (nh4)Y2a;(z)}, j =2,...,p,
and v;;(z) is the asymptotic covariance of {(nh4+)Y2q,(x), (nh2)YV2a,(x)}, i,j = 2,...,p.
Then, for h satisfying the conditions of either part (a) or (b), v(x) =0,i # j,4,j=1,...,p.

(d) Let V =A"'BA~! where A= H 'n"! S mem(Xi, a(z)Kn(X; —2)H ™ and
B=hiH n1 S wmeml(X;, a(x))K2(X; —x)H Y, withu; = Y; — m(X;, a(x)). Then, for
h satisfying the conditions of part (a), vi1(z) is consistently estimated by the (1,1) element
of V. For h satisfying the conditions of part (b), v;;(z) is consistently estimated by the (j,j)
element of V.

REMARKS
1. The asymptotic variance of g(z) [= a;(z)] is independent of the parametric model m(z, «)

used to generate the estimate.®

Furthermore, the bias of g(z) does not depend on fx(x) to first
order, i.e., the procedure is design adaptive in the sense of Fan (1992). Our work demonstrates that
this is not due to the specific functional form chosen by Fan but solely to the number of parameters
[p = d + 1] chosen in the approximating parametric model.

2. The extension to the case p = p, for any integer s = 0,1,2,... is relatively straightforward
and parallels closely the theory for local polynomial estimators described in Masry (1996). Namely,
under corresponding smoothness conditions and bandwidth rates, the asymptotic variance of the
reparameterized a1 (z) [= g(x)] is the same as that for the corresponding local polynomial [i.e., the
local polynomial of order s] estimator of g(z), while the bias is the same as the corresponding local
polynomial estimator except that derivatives of g(z) — m(z,a’(x)) replace derivatives of g(x); the
results for general local polynomials are stated in Theorem 5 of Masry (1996).

3. The extension to the unsaturated case with ps_; < p < ps can also be briefly described.
Suppose that we reparameterize the first p,_; parameters to correspond to the first s — 1 partial
derivatives, and then reparameterize the remaining parameters to match up with an arbitrary list of
order s partial derivatives of length p— ps_;. Then, the asymptotics parallel that for local polynomial
estimators in which only some of the partial derivative parameters are included in the polynomial.
In particular, the asymptotic variance of the reparameterized a;(x) [= g(z)] is the same as in remark
2 except for the kernel constant, which is now the first element of the matrix M leMp_ ! where
M, and I', are the p X p matrices of kernel moments [each are submatrices of the kernel moment

matrices appearing in Theorem 5 of Masry (1996)]. Finally, the bias contains only the derivatives

8Tt is already known that the variances of the Nadaraya-Watson and the local linear estimators are the same; our

general class of models m includes the local linear (with p = d 4 1) and the Nadaraya-Watson (with p = 1).
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of g(x) — m(z,a’(x)) corresponding to the unmatched derivatives and has kernel constants similarly

modified as in the variance.

A major advantage of our method arises when the parametric model is true or approximately true.
If for some fixed a°, g(z) = m(z,a’) for all x, then g(x) is essentially unbiased as the derivatives
of all orders of g(z) — m(x,a) with respect to x equal zero for all x. In this case, there is no
upper bound on feasible bandwidth and one could widen A to achieve faster convergence. In fact,
parametric asymptotic theory applies to @(z) on substituting nh? for n, since @,, is then just a
subsample weighted least squares criterion. More generally, the performance of our procedure is
directly related to the value of the information contained in the parametric model m; specifically,
the bias of g(z) is proportional to the distance of m from ¢ as measured by A,,. If g(z) is close to

m(z,a) in the sense that

[tr (Aaa)| < [t (gaa)],

then the bias of g(x) will be smaller than that of the comparable local linear estimators. For the local
linear estimator, m,, = 0, and so this procedure has reduced bias only when |tr (g,;)| is small. If the
regression function were closer to the Cobb-Douglas functional form than to a linear function, then
the procedure with Cobb-Douglas m would have better performance as measured by smaller bias.
The performance gain is directly proportional to the value of the information used in the construction
of g(z), unlike for conventional bias reduction techniques.’

The choice of parametric model is clearly important here. In some situations, there are many
alternative plausible models such as logit or probit for binary data. We examine whether the sensible,
but misspecified, choice of a logit regression function works better than plain local linear fitting, when
the true regression is probit. The comparison is made with respect to the theoretical bias of the local
linear and local logit procedures for the probit regression function ®(1 + 0.5z), where ®(-) is the

standard normal c.d.f., while z is a standard normal covariate. These parameter values are taken

9Fan (1993) establishes the minimax superiority of the local linear estimator over the Nadaraya-Watson estimator

in the one-dimensional case; this result was established over essentially the following class of joint distributions D,
C={D(,"): |9z(2)| £C, fx(2)>a, o*(x)<b, f is Lipschitz}

for positive finite constants C,a, and b. In fact, the local linear procedure is minimax superior to any other given
parametric pilot procedure over this class. However, consider the modified class C’ that replaces the bound on g,, by
fgm () — Mya(x, ao(a:))f < C. Then, one has the symmetric conclusion that the pilot m(x, o) generates a regression

estimator with better minimax performance over C’ than the local linear estimator.
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(approximately) from a real dataset, see section 4 below. Figure 1 shows |g.| and |g,. — m,.| as a

function of x. Local logit would appear to be considerably better.

*** FIGQURE 1 HERE ***

Often there is interest in the original parameters v. We can derive the asymptotic distribution

of 7(x) by an application of the delta method. Recalling the relationship v = (o, ), (so that
7i(x) = v;(a(z),z), and 'y?(ac) =v;(a®(z),z), j=1,...,p,) we obtain

Fi(@) =75 (2) =T (@){a(z) — a’(z)} + op({nh**}7),

where I';(z) denotes the p x 1 vector 9v;(«, z)/0c evaluated at a°(z). An important consequence of
this is that 7,,,(z) inherits the slow convergence rates of the derivatives estimates (), ..., 0p(x),
unless all elements of I';(x) except the first one equal zero. The following corollary summarizes the

results.

COROLLARY. Suppose that the conditions of Theorem 2 hold and that v(c,x) is continuously
differentiable in «. Then,

(a) If Tj(z) = (Tj;(x),0,...,0)T, Tj(z) # 0, then
(nh)!2 {3;(2) = 7f (@)} = N{cDj(2)ba(2), T (2)ons(@)}, j=1,....p,

where h satisfies the conditions of Theorem 2(a), and by(x) and vy1(x) are as defined in Theorem
2.

(b) IfTj(z) = Tj(x),...,Dip@)T, with Tj(z) # 0, for some € =2,...,p, then

P
(nht? 1/2{% 7] }:>N{ ZPJE )be(z 7ZF£ ) vge (2 }7 j=1....p,

=2

where h satisfies the conditions of Theorem 2(b), and by(z) and ve(x) are as defined in Theorem
2.

then the asymptotic covariance of {(nh®)"/*3;(z), (nhd) yi(x)} s Fﬂ( )1 (z)v11 (), i, ) =
1,...,p, with h satisfying the conditions of Theorem 2(a).
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(c2) If Ti(z) = Ta(x),...,Tip(@)T and T;(z) = (Tj1(x),...,Tjp(x))T, with Ty(x) # 0, for some
¢ = 2,...,p, and T'ji(z) # 0, for some { = 2,...,p, then, the asymptotic covariance of
{(nhH)Y2,(z), (nh4)Y25,(2)} is Yb_, Tie(z)Tje(@)vee(x), 4,5 =1,...,p.

(C3) [f FZ(I) = (I‘Z»l(x),O, cen ,O)T, le(ﬂf) 7é O, and P](I) = (le(ﬁ), ‘o ,Pjp(l’))T with Pjg(ﬁ) 7é 0,
for some £ = 2,....p, then, the asymptotic covariance of {(nh%)Y/?7;(x), (nh®2)Y/23;(z)},
i,7=1,...,p, is zero, where h satisfies the conditions of Theorem 2(a) for 7;(xz) and Theorem
2(b) for 7;(x).

(d1) Let ‘A/(/i) be defined in identical way to V after replacing a(z) by y(x).  Then, for T;(z),
I';(x) and h satisfying the conditions of part (cl), the (i,7) element of V(H) is a consistent

estimator of the asymptotic variance—covariance Iy (z)Lj1(z)vi1(z), 4,5 = 1,...,p, of part

(cl).

(d2) For T';(z), I';(z) and h satisfying the conditions of part (c2), the (i,j) element of ‘//\'@) is
a consistent estimator of the asymptotic variance—covariance Y ,_o Dio(x)Tje(x)vp(), i,j =

1,...,p, of part (c2).

4 Empirical Illustration

We implemented our procedures on the transport choice dataset described in Horowitz (1993). There
are 842 observations on transport mode choice for travel to work sampled randomly from the Wash-
ington D.C. area transportation study. The purpose of our exercise (and Horowitz’s) is to model
individuals choice of transportation method (DEP, which is 0 for transit and 1 for automobile) as
it relates to the covariates: number of cars owned by the traveler’s household (AUTOS), transit
out-of-vehicle travel time minus automobile out-of-vehicle travel time in minutes (DOVTT), transit
in-vehicle travel time minus automobile in-vehicle travel time in minutes (DIVTT), and transit fare
minus automobile travel cost in 1968 cents (DCOST).

Horowitz compared several parametric and semiparametric procedures suggested by the following

models:

H1: Pr(Y =1|X =z) = ®(8z)

H2: Pr(Y = 1|X =2) = F(pTx)
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H3: Pr(Y =1|X = 2) :(I)( 5Ty )

V(a:)l/2

H4: Y = 1(87X +u > 0),

where in the single index model (H2) the scalar function F(-) is of unknown form, while in the
random coefficient probit model (H3) V(z) = 2'¥z in which ¥ is the covariance matrix of the
random coefficients, and in (H4) the distribution F,x(-) of u given X is of unknown form with
median(u|X) = 0.1 To estimate H2 he used the Klein and Spady (1993) procedure, while to
estimate H4 he used both the Manski (1975) maximum score and the Horowitz (1992) smoothed
maximum score methods. We fit a local probit to the dataset; thus our local model can be written

as
E(Y|X =) = ®(y(2)"2),

where 7(-) is of arbitrary unknown form. This can be interpreted as a random coefficient probit,
except that the variation in parameters is driven by the conditioning information rather than by
some arbitrary distribution unrelated to the covariates. Note that if H1 were true, then we should
find that our estimated +'s are constant with respect to z, while if either H2 or H3 were true, we
should find that ratios of slope parameters are constant, i.e., v;(x) /ve(x) , j,¢ = 2,...,p, does not
depend on z.!!

For each point =, we found 7(z), and hence g(z) = ®(3Tx), by minimizing

n

S {Yi— o0 X)) Ku(Xi—a)

i=1
with respect to . The parametric probit values provided starting points and a BHHH algorithm

was used to locate the maximum. Convergence was typically rapid. The kernel was a product of

10For notational consistency with the rest of the paper we let the first element of x be a constant and call its
parameter the intercept and the remaining parameters slopes.

UNote that in our model, v;(z) /ve(z) = aj(x) Jae(z) , for j, 0 =2,...,p.
The comparison between H4 and our nonparametric regression is less clear as H4 is based on conditional median
restrictions rather than conditional mean restrictions. If the data were generated by H4, then is hard to see what the
regression function might be since the distribution of (u|X) is arbitrary. What can be said here is that the H4 model
provides interpretable parameters for this particular latent model, while the nonparametric regression formulation is

better geared to evaluating effects in the observed data.
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univariate Gaussian densities and the bandwidth was of the form H = hSY/ 2 where S was the sample

covariance matrix of the regressors. The constant T was chosen to minimize
~ 2
CV(h) => {Y; — (X)) m(X;),
j=1

where 7(-) is a trimming function and g_; is the leave-one-out estimate of ¢, see Hardle and Linton
(1994). Figure 2 shows the cross-validation curve plotted against the logarithm of bandwidth for
three different trimming rates. In each case, approximately the same bandwidth, h = 0.917, was
chosen.’ In Figure 3 we plot the fitted function against the fitted parametric regression ® (37 Xj).
We present different curves for households with zero autos, one auto and two or more autos. The
differences between these subsamples are quite pronounced. Figures 4 show the estimated local
parameters (together with the corresponding parametric 7; shown as the horizontal line) versus their

own regressors along with a smooth of these points and 99% symmetric pointwise confidence intervals.
*** FIGURES 2-4 HERE ***

That these parameters are widely dispersed is consistent with Horowitz’s findings against the fixed
coefficient probit. There appears in some cases, notably in-vehicle time, to be a pronounced trend
in the parameters.

Finally, we investigated the ratios 7;(x) /7,(z) and found many to exhibit non-constancy. Four
of these plots are shown in Figures 5 where the dependence of the local slope parameter ratios on
the regressors is clear.!® This dependence suggests the presence of interactions (lack of separability)
among the regressors in the utility function of these individuals, a feature not captured by the other

models.

**¥* FIGURE 5 HERE ***

5 Concluding Remarks

Our procedure provides a link between parametric and nonparametric methods. It allows one to
shrink towards a favorite nonlinear shape, rather than towards only constants or polynomials as was

previously the only available options. This is particularly relevant for binary data, where polynomials

12WWe chose the bandwidth from the least trimmed dataset because it is most representative of the data itself. In
any event, the results are not greatly affected.

13As in Figures 4, the corresponding parametric probit ratio is shown as the horizontal line for comparison.
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violate data restrictions, and in nonlinear time series estimation and prediction problems where
parametric information is useful.

As with any smoothing procedure, an important practical issue that needs further attention is the
bandwidth choice. In section 4 we used cross-validation. An alternative is to use the expression for
the optimal bandwidth implied by the bias and variance expressions of Theorem 2 and its corollary
to construct plug-in bandwidth selection methods. To implement these procedures, one must obtain
estimates of g,, using in place of m a model that includes m as a special case. Proper study of this
issue goes beyond the scope of this paper. Interested readers can consult Fan and Gijbels (1992) for

further insights into this problem.

A Appendix

PrROOF OF THEOREM 1. We present the main argument for the case that s = 0. The proof follows
the main steps of similar results in the literature (see for example Pétscher and Prucha (1991, Lemmas
3.1 and 4.2) or Andrews (1993, Lemma Al)). It relies on the use of the identification assumption
A2 and a uniform strong law of large numbers (Lemma USLLN) which is proved in Appendix B.

Lemma USLLN in particular guarantees that

Sup ‘Qn(xv a) o Qn(mva)’ —0 a.s., (14)

xeXyp,acA

where
Qu(z,a) = E[{Y —m(X,a)}’ Ky(X — )]

= E[{g(X) - m(X,a)}’ Ky(X —2)] + E{c*(X)Ku(X — 2)}.
Now rewrite

Q,(z,0) = /{g(ac —vh) —m(z — vh,a)}” fx(z — vh) K (v)dv + /az(x —vh) fx(z — vh)K(v)dv

by a change of variables. Then, by dominated convergence and continuity (assumption Al),

sup |@n('r7 a) - Q(ﬁ, Oé)| - 07 (15)

.Z’GX(),OCG.A

where convergence is uniform in « by virtue of the uniform continuity of m over A.
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Assumption A2 now guarantees that: for any d-neighborhood ®3(x) of ®¢(x), § > 0, there is an
e > 0, such that for any A(z) C A, \®§(z),

inf inf Q(r,a)— Q{z,a’(z)} >« (16)

z€Xy acA(z)

But this implies that there exist an n, 0 < n < ¢, such that

Pr (pu[M.,(z), Po(z)] > 6, for some = € X)) <
Pr(Q(z, M, (z)) — Q(x, Po(x)) > n, for some z € Ay) — 0 a.s., (17)
where Q(z, M,,(z)) denotes Q(z,a(x)) for any a(z) € M, (z) (similarly for Q(z, ®y(z))), and “—

0 a.s.” holds provided sup, ¢, |Q(z, My(x)) — Q(z, Po(x))| — 0 a.s. Using (14), (15) and (16), the

latter follows from

0 < infecx, [Qz, Mn(z)) — Q(z, Po(2))] < sup,ey, [Qz, Mn(2)) — Q(z, Po(z))]

< supe, [Qz, Mn(2)) = Qu(, M (2))] + sup,e, [@n (2, Ma(2)) — Qz, Po(2))]
< Supex, [Q(z, M (2)) = Qu(, Mu(2))] + 8uD,cx, [@n (2, Po(2)) — Q(z, Po(2))]
< 28UD,e e [@n(T,0) = Q(7,a)] — 0 a.s.

Therefore, (17) follows. This, together with the uniform continuity of m(-, &) and @, (-, @) in @ imply
that for any a(z) € M,,, m{z,a(z)} — g(z) a.s., and Q.{z,a(z)} — o*(z)fx(x) a.s.
Assuming now a general s > 0, we modify the above argument as follows. First apply an s*

order Taylor theorem to g(z — vh) — m(z — vh,a) and write Q,,(z, @) as

2
s

Q,(z,a) = / [Zhj > Z—T{D“g(m)—ng(x,a)}—l—thn(x,a) fx(z — vh)K (v)dv
i=0 A{alal=5}

+ / o*(z — vh) fx(x — vh) K (v)dv,
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where

Ua * a * a a
Rn(x,a) = Z J[{Dag(x (U7h))_Dmm(x (U,h),@)}—{D g(x)—Dmm(x,oz)}],
{a|al=s}
where x*(v, h) are intermediate between = and x — vh. Note that R, (z,a) = o(1) uniformly in z and

. Let @, (z, ) be the same as @, (z, ) but without R, (z,a). Then,

sup [ (2,0) ~ Qi )| = ofh?)

z€Xy,acA

by our continuity and compactness assumptions. Furthermore, by our uniform convergence result, the
rate in (14) is (logn/nh?) 2 , which is smaller order than h* under the stated bandwidth conditions.
To minimize @ (z,a) one proceeds recursively, first minimizing Cy(z, «) with respect to o, then
Ci(z, ) with respect to a € ®g(z) etc. This is because the cross-product terms are zero and for
each j, fx(z — vh) only enters proportionately and is independent of v to first order. Under our
conditions in part (iv), there is a unique minimum a°(z) to this higher order. In any case, condition

A2 ensures that the set ®,(x) is identified in this generalized sense. [

PROOF OF THEOREM 2. We deal with bias and variance terms separately. Let H = diag(1,h,...,h)
be a p X p, p = d+ 1, diagonal scaling matrix, and let e; and E» denote the following p x 1 and p X d
arrays e; = (1,00)7, Ey = (04,1;)", where 04 is a d x 1 vector of zeros and I, is the d x d identity
matrix. Our assumptions guarantee the following

Given Assumptions A0-A1, A3, B1-B2, and our bandwidth conditions, a(z) — a%(z) a.s., a°(z)
a unique interior point of A,, x interior to X’. Therefore, there exists a sequence {@,(z)} such that
a,(z) = a(z) a.s. for n sufficiently large, and each @,(x) takes its values in a convex compact
neighborhood of a°(z) interior to A,. In what follows we eliminate the dependence on z of the
coefficients « to simplify notation.

Given Assumption B2, an element-by-element mean value expansion of 9Q,,(z,@,)/0a about o’
gives (Jennrich (1969, Lemma 3)):

8Qn — aQn 0 82Qn *\ [— 0
%0 (z,00n) = 8_04(3:’05 )+ W(fﬂaan)(an —a),
where a;, is a random variable such that oy, ; lies on the line segment joining @,; and a?, 1=1,...,p,

and hence, af — aY

, a.s. Since @,, = a a.s. for n sufficiently large, and since 9Q,(z,@)/0xr =
0 whenever & is interior to A,, it follows that the left-hand side of the expansion vanishes a.s.
for n sufficiently large. Premultiplying by (nh%)/2H~!, inserting the identity matrix H~'H and

rearranging gives
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(nh®2H (@, — ) = —{H 2% (z,az)H '} (nh®)V2H 1922 (2, a0)
(18)
= Au(z,a)"t (nh)V28,,(z, ),
where A, (z,a}) = H'0?Qu(z, o) /0ada” H™, and S, (z,a’) = —H'0Q,(z,a’)/da.
The two main steps of the proof consist in showing that [1] A, (x,a*) converges to a positive

definite limit matrix, and [2] (nh9)Y/2S,(z, ) satisfies a multivariate central limit theorem.

PRrROOF OF [1] Write A, (z, ) as

Ap(z,0) = H 'Ry (2, °)H ™ + {Rpy (7, 0%) — Rpp(z,0)YH ' + H ' Ryo(z, ) H ™,

where Ri(z,a) = 2n7 13" mo(X;, a)mI(X;, a)KL(X; — ), and Rps(z,0) = 2n7 1Y " {V; —
m (X, @) }maa(Xi, o) Kp(X; — ).
We will show below that

[ Rua (2, 0")H! = Ay (2, 0°)]| = 0p(h), (19)
|HH{ R (2, 03) = Ru1(z,0°) }H || = 0,(1), and (20)
| H™! Rua(, 00 ) H™ || = 0(1), (21)

where
aip(z,a®) hap(z,a?)
An(z,0%) =2 : (22)
hagi(z,a)  Axp(z,a?)
with ai;(z,a%) = fx(z), Agw(z,a®) = fx(x)us(k)Ils, where I is the d x d identity matrix, and
aa(z, o) = ad (z,a") = po(k){ D fx (@) + 5 fx (@) [tr{ Domae (2, %)}, . . ., tr{Dymyqe (2, a%)}]}, where
Dfx(xz) = 0fx(x)/0x. Here, Dymy,(x,), £ =1,...,p, denotes a d X d matrix with (¢, j) element
Pm(z, a)/0cdx;0x;. Note that A,(z,aP) is a positive definite matrix as n — oo given Assumptions
Al and B4.

PROOF OF [2] Write S,,(x,a’) as

Sn(xu ao) - Snl (fL’, ao) + SnQ(xu ao) + SnB(£7 040)7
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where

S (z,a%) = 2H 'n~ Zul{el + By(X; — 2) YK (X, — ), (23)
Spa(z,0%) = 2H™! _IZuZ{ma X;,a%) —e; — By(X; — 2)} Kp(X; — ), (24)
Sp3(z,0%) = 2H 'n7! Z[g(Xl) — m(Xi, a®)ma(Xs, a®) K (X; — ). (25)

We will show below that
(nh) /281 (x,0%) = N(0,B), (26)

where B = 40%(z) fx (z)diag(vo(k), va(k), . .., va(k)). Furthermore,

[(nh®)2Sps(, a%)|| = Op(h), and (27)
1S3 (2, 0°) — h*He(w, o) = Op(h"), (28)
where
c(x,a®) = (c1(z,a%), ..., cp(x,a®))T, (29)
with

cr(z, ) = po(k) fx(z)tr(Ag),

ci(z,a”) = pa(k){D;fx(x)Aj; + fx(z meAMJr ZAW

+/’L2 {D fX ZATT+ZDfX ]5+A5j]+fX sz]rr ss
T#£j s£j r#s
d

XY bt N ) 3 YA

rets rets r#j s—1
for j =2,...,p, where D, fx(z) = 0fx(x)/0x;, A;; = 0*[g(x) —m(x,a)]/Ox;0x; is the (i, ]) element
of Ags, 37, ., denotes Zleﬂ,#, >,z denotes P Z(TiZL#S? mi;r = 0®m(x, a’)/0x;0x;0z,, and
Ajjr = 03g(z) — m(z, a®)]/0x;0x ;0.

Using these results, we can now calculate the bias and variance of the regression and first derivative

estimates :
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[BIAS]: From (18)-(29), and the equivalence between & and @, for n sufficiently large, it follows
that the (asymptotic )bias is

E(@—a) = H'A,(z,a®)'h*Hc(z,a®)} + O(hY),

fx'(x) —hpy (k) fx* (z)ag c1(z,a?)
= h?l hey(z,a®) | +O(hY)

—py (k) fx*(@)aly  h7luy (k) fx (@) 1a | | hey(w,a)

where the last equality follows from the inversion of the block matrix A, (z,a’). Therefore, the bias

of @ is given by h?b(z) + O(h*) = h2(by(x), ..., by(x))T + O(h*), where

ol

bi(@) = oo (R)ir(As) (30)

is the constant of the regression estimate bias at =, while the constant of the bias E(a; — oa?) at x of

the first derivative estimate with respect to x;_1, j =2,...,p, is given by

pa(k) fx () fx(@)

_ U (W) = B®) [Difx@) I 1 pg(k) &
- 2{( 11 (k) ){ Fx(@) AJJ+2TZ; jrr 7‘7‘} 3 (k) ZA

bj(x) _ %{ Cj(ﬁ,Oé ) . uQ(k)tr(AM)[Dij(x)—I—%fx(m)tr{Djmm(x,ao)}]}

r=1 (31)
(i L) D fX P45t + 3 Y ma,
s#j r#£s r#£s
+% DD A } .
r#£j s=1
[VARIANCE]: From (18)-(29), we have (asymptotically)
Var {(nhd)l/QH(an —a”)} = Ay(z,0") 'BA,(z,0°) " =V (),
where
V(z) = [0%(2)/ fx (x)|diag(vo(k), va(k)/ 13 (K), . .., va(k)/ p3(K)) + O(R). (32)

It now follows easily from the above results, and the equivalence between & and @, for n
sufficiently large, that
(nhH'V2H(@ — o — h?b(z)) = N {0,V (x)} .

The scaling (nh?)'/2H shows the different rate of convergence for the regression estimator, (nh?)'/2,

and for the partial derivatives, (nh??)1/2, This implies we must choose a different rate for h, see

26



parts (a) and (b) of the theorem, depending on whether we are interested in estimating the regression
function or the partial derivatives. Note that the fastest rate of convergence in distribution in parts

(a) and (b) of the theorem is given by 0 < ¢ < oo (i.e., no undersmoothing.)

It remains to show (19)-(21) and (26)-(28):
PROOF OF [(19)]: An element-by-element second order mean value expansion of mq(X;, a)

about x gives:

ma(XZ-, ao) = € + EQ(XZ — l’) + %(Ip & (Xz — x)T)mam(Xf, Oéo)(XZ — ,T)

+ 31, @ (Xi — )" Maae (X}, ) (X; — 2) (33)

_ [ !
(Xi — )

= +blu

where the first equality follows from the reparameterization chosen, and M., (z, @) is a pd X d matrix
consisting of p dxd blocks Dymg,(x,a), £ =1,...,p, with Dymg,,(x,«) as defined after equation

(22). Thus,
Roi(z,a®) = 2n71370 (a4 + bi)(a; + b)) Kp(X; — x)

(34)
= 27171 Z?:l[aiazr + a,bZT + b,aZT + beZT]Kh(XZ — .T)
Now,
n! Z a;al Ky(X; — )
1 1 1 (Xz — .T)T
=n KX, —x
; (Xi—z) (Xi—2)(X; —a)" ( )
(35)
fx(z) h2ps (k) DT fx () Op(h?)  0p(h?)
= + ,
Wua(k)Dfx(x)  hua(k) () 0p(2)  op(I?)

by standard results from kernel density estimation, see Wand and Jones (1995, Chapter 4).
Similar calculations with the other terms in (34) yield

n

n! Z a;bl Kip(X; — )

=1

27



= n! Z bial K,(X; — )
i=1

(36)
sh2ua(k) fx (@)tr{ Dimge(2,0)} ..o 3hPua(k) fx (2)tr{ Dymy,(z, o)}
Op (") Op(h*)
and .
n Y bib] Kn(X; — z) = Op(hY). (37)

Equation (19) now follows easily from (34)—(37).
PROOF OF [(20)]: Equation (20) follows directly by dominated convergence given of — o’ a.s. and

the boundedness of mg(z, @) uniformly in « implied by Assumption Al.
PROOF OF [(21)]: Write

Rpa(z,0) = 2n7! Zuimaa(Xi, a)Kp(X; — x)
+2n7} Z[g(Xi) — m(X;, @) Maa(Xs, ) Kp(X; — )
= Tu(z,a)+ Th(x, ).
E[T(z,a)] = 2/E(U|X)mw(X, a)Kp(X — 2) fx(X)dX =0,
by (1), while

BTz, )] = 2 [[g(X) —m(X,a)]maa(X, a) Kn(X — 2) fx(X)dX

= 2[g(z) — m(z, @)|Maa(X, @) fx ()

uniformly in « by dominated convergence and continuity (Assumptions Al and B2-B3). In particular,
||ET o (x, a)|| — 0 for any o, — o since g(x) — m(z,a’) = 0. Then, Assumptions A0-Al, A3,
B1-B4, and our bandwidth conditions provide enough regularity conditions to apply Lemma USLLN
(with ¢,(Z, 0) replaced by uma. (X, a) K{h™(X—z)} and [g(X)—m(X, @)|maa(X, a) K{h ™ (X —2)},
respectively, with Xy = {z}) to show that

SUP(a.do(2)}<s || Tn1 (2, @)|| — 0 a.s., and

SUD {0, B0 (2) 1 <6 || Th2(x, ) — E[The(z,a)]|| — 0 a.s.
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This implies (21).
PROOF OF [(26)]: Tt is clear from (23) and (1) that S,1(z,a®) is a sum of independent random

variables with mean zero and

<
&

h

Var {(nh®) 25} = an [ o) [( 1 >]“ IR — ) f (X)X

= 4/02(x+hv)fx(x—|—hv)

= B+ O(h).

Finally, S,; obeys the Lindeberg-Feller central limit theorem, see Lemma CLT below.
ProOF oF [(27)]: From (24) and (33)

Spo(z,a”) =2H ™! Zui{%(fp @ (X; — ) Migga (X[, ) (X; — 2) VK (X; — 7).
i=1

Thus, E{S,2(z,a’)} =0 by (1), while
Var { (nh)/28,5(z, o)}

_ nE / o2(z + ho) fx ( + ho)
X [(I, @ 01 ) gge(x + ho*)o0"m2, (z + ho*)(I, ® v)| K (v)do} H !
= O(h?).
PROOF OF [(28)]: Doing a third order Taylor expansion of g(X;) —m(X;,a®) about z, and recalling

that g(z) = m(z,a®) and g,(z) = m.(z,a’) thanks to the reparameterization, we get

9(Xi) —m(Xi,a®) = 3(Xi—2)TAw(X; — )
(X = 2)7 @ (X — 2)7) Agaa(Xi — ) +7(X;, 0°)

= dy +d3 +r(X;, a0,
where T(X,»,ao) denotes the remainder term, and A, is the d? x d matrix of third order partial

derivatives with respect to x. Using this expansion and (25) and (33) we can write

n

Spa(x,0°%) = 2H '™ “(dy; + dsi) (a; + b)) Kn(X; — ). (38)

=1
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We will show that F {S,3(z,a")} = h?He(z,a®) + O(h*), while Var{S,s(z,a®)} = O(h®).
An analysis of (38) similar to that carried out in (34)-(37) yields

2H ! Z dyia; Kp(X; — )

i=1
“ 1
= H '™ (X;—2)TA(X; — 1) [ ] Kin(Xi — )
ZZ:; (Xi —x)
_ g h? [T AvK (v) fx (x + hv)dv 4 o,(h?)
h* [T Aguovt D fx (x + ho) K (v)dv + o, (h*)
= h*Hw + o,(h?),
say, where w = (w1, ..., w,)T is a px1 vector with wy = pa(k) fx (2)tr(As), and w; = ps(k)D; fx () A+

(KD, fx(2) 32,25 Arr + 30,25 Dsfx (2)[As + Agjl}, § = 2,...,p. Similarly,

H™'n™ " doibi Ki(X; — )
i=1

n

1

— §H*1nf1 D (X = 1) Aga(Xs — 1) (1, @ (Xi — ) )M ( X7, 00) (X — 2) Kn(X; — )
i=1
h* [T Agpv(L, @ vT)  Dimgg(z + hw*,a®) vK(v) f(z + hv)dv
= 1 H1 :
2

R [ 0T Agev(I, @ v7)  Dymgg(x + hv*,a®) oK (v) f(x + hv)dv

= hidiag(h® h,...,h)z + o,(h?),

say, where z is a p X 1 vector with

d d d
z; = % Z Z Z Z fx (@)myseAryvpv00, K (v)dv
= %fX( {,LL4 Z m]rrA'r"r‘ + ,LLQ )[Z Z mj'r‘rAss + Z Z mjrsArs + Z Z mj'r‘sAsr]}-

= r#s r#£s r#£S

Furthermore,

1 71 Zd&ath )

1,1 Z ® (Xi — 2)" Ao (Xi — ) [



lel h* (07 @ vT)AygrvvT D f (z + ho) K (v)do

3 h* (07 @ vT)Aygzvv fx (z + ho) K (v)dv
1
— gthiag(h2, h,...,h)q+ o,(h?),

say, where q is a px 1 vector with ¢; = % fx (z){pa(k) S Ayt pd(k) >t S A =2, p
(the first element ¢ is not given in detail for being of smaller order of magnitude).
Similar analysis shows that n™! > | ds;b; K, (X; — ) = O,(h®), and hence can be ignored. Thus,

we have
E{Su3(x,a°)} = h*Hw + h*diag(h*, h, ..., h){z + q} + O(h*) = h*Hc(z, ) + O(h?Y).
Furthermore, S,3(z,a’) — E{Sns(z,a’)} = O,(h*), hence
Var{Sys(z,a’)} = O(h%),

which implies (28). |

LEmMMA CLT. The standardized sum S, obeys the Lindeberg-Feller central limit theorem, specif-

veally
(nh$)'/2S,, = N(0, B).

PRrROOF. For any p x 1 vector ¢, let ¢''S,1 = Y1 | tni, where t,; = 2n~'c"H ey + Ea(X; —

x) } K (X; — x)u;. Note that for each n, t,; are i.i.d for i = 1,...,n, with common variance
s2 =4n~thdcT {/(61 + Ey) (e + Eyv) K2(v)o?(x — vh) fx(z — Uh)dv} c.

Furthermore, |t,1| < 2n~'h=%|7|, where 7 = " {e; sup K (v) +sup (|[v1], ..., |vg|])" K (v)}u is a random

variable not depending on n. Therefore, for any ¢ > 0,
8,,;2 Z E[tizl[{|tnz|>55n}] S 862E[h*d@T@u2 ][{‘T|>€/n1/2hd/2}]7
i=1
for some &' > 0, where O = c"H e, + Eo(X — 2)} K{h™ (X — 2)} and s% = nh?s? /4 = O(1).
Here, I; 4, denotes the indicator function of the event A.

Since
E[@T@Uthd][{‘T|>€/n1/2hd/2}] < E[@T@u2hid] < 00,

we can apply Fubini’s theorem to show that
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E©"0u*h™I (Irmermoner}] = / ©"On™J,(X)dPx,
where for some £”,
Jn(X) =F {UQ][{‘U|>€//n1/2hd/2}|X} —0 as. X

by dominated convergence. Therefore, the Lindeberg condition is satisfied. Since ¢ was arbitrary,

the asymptotic normality of S,,; follows by the Cramér-Wold device. [

B Appendix

Here, we use linear functional notation and write P¢ = [ (dP for any probability measure P and
random variable ((Z). We use P, to denote the empirical probability measure of the observations
{Z,...,Z,} sampled randomly from the distribution P, in which case P,( =n~*Y "  ((Z;). Simi-
larly, let Px be the marginal distribution of X under P, and let P, be the corresponding empirical
measure. For a class of functions F, the envelope I is defined as F' = supscz |f|. For 1 < s < o0,
and G some probability measure on R? | we denote by L*(G) the space of measurable real functions
on R? with ([ |f|*dG)Y* < oco. In what follows, G will usually be the population measure P or
the empirical measure P,,. Moreover, for F C L*(G), we define the covering number Ny(e¢, G, F) as
the smallest value of N for which there exist functions gy, ..., gy (not necessarily in F) such that
min;<n(G(f—g;)%)Y* < e for each f in F. Furthermore, the e-entropy of F with respect to the L*(G)
metric is defined as log N,(e, G, F). Finally, the notation z,, < y,, means z,/y, — 0 as n — oco. By

virtue of our assumptions we have the following facts: sup,c 4 sup,c x8 Cj(z,a) < oo for all relevant
Js SUP.cxs 0%(z) < 7% < oo, and sup.cxs fx(2) < f < oo, for some 6 > 0.

Jennrich (1969) proves consistency of the parametric nonlinear least squares estimator for the
parametric regression functions m(-,0): 6 € O, under the assumptions that © is compact, and
that the envelope condition [ supycg |m(z,0)|*dPx(z) < oo holds. For the uniform consistency
of our estimator we require a similar envelope condition, and we need to show that the covering

numbers do not grow exponentially fast, namely that n~! log Ny (¢, G, F) Eit 0, where L denotes
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convergence in outer probability.!* This entropy condition is satisfied by many classes of functions.
For example, if the functions in F form a finite-dimensional vector space, then F satisfies the entropy
condition (see Pollard (1984, Lemmas I1.28 and I1.25). In the proof of our next lemma we will use the
entropy lemma of Pakes and Pollard (1989, Lemma 2.13) which establishes the equivalence between
the entropy condition Ny(eGF,G,F) < Ae "W of a class of functions F indexed by a parameter
satisfying a Lipschitz condition on that parameter (Assumption A1), and the compactness of the

parameter space.

LEMMA (ENTROPY). Let Gx denote an arbitrary probability measure on X, and F = {f(-,0) :
0 € ©} be a class of real-valued functions on X indexed by a bounded subset © of RP. Suppose that
f(-,0) is Lipschitz in 0, that is, there exists a A > 0 and non-negative bounded function ¢(-), such
that

|f(z,0) — f(z,0%)] < ¢(x)]|0 — 6%||* for all z € X and 0,6* € O.

Then, for the envelope F(-) = |f(-,00)] + M¢(-), where M = (2,/psupgee ||0 — 0o])* with 0y an
arbitrary point of O, and for any 0 < € < 1, we have

Ni(eGF,G,F) < AW,

where A and W are positive constants not depending on n.

Proor. Pakes and Pollard (1989, Lemma 2.13).

The class of functions F satisfying Assumption Al is what Andrews (1994) calls a type II class.
Classes of functions satisfying Ni(eGF,G,F) < Ae™" are said to be Fuclidean classes (c.f. Nolan
and Pollard (1987, p.789)).

We will also use Pollard (1984, Theorem I1.37) (with his 62 replaced with k%) in order to derive

the rate of the uniform convergence of our estimator.

4Given an underlying probability space (Q,G,P), the outer probability for A C Q is defined as P*(4) =
inf{P(B): AC B, B €G}. The reason for needing outer probability is due to the fact that the random covering
numbers need not be measurable with respect to P, even if the class of functions is permissible in the sense of Pollard
(1984).

33



LEMMA (POLLARD).  For each n, let F, be a permissible class of functions whose covering
numbers satisfy Ni(e,G,F) < Ae W for 0 < e <1, where G is an arbitrary probability measure, and
A and W are positive constants not depending onn. Ifnh%a? > logn, |f.| < 1, and (Pf?)Y/? < h/?
for each f, in F,, then

sup |P,fn — Pfn| < hay, a.s.
fn€Fn

PROOF. Pollard (1984, Theorem 11.37) with his 62 replaced with h. n

The following lemma provides a uniform strong law of large numbers for our criterion function

which is needed in the consistency proof of the estimator.

LeEMMA (USLLN). Let6 = (z,c) be an element of © = Xy x A, where Xy is a bounded subset of
R%. Let Q, = {qu(-,0) : 0 € O} be a class of functions with ¢,(Z,0) = {Y —m(X,a)}* K{h~'(X —
z)}. Moreover, let Q,(0) = h™4P,q,.(Z,0) and Q,,(0) = h~4Pq,(Z,0). Under assumptions A0-A4,

0 12
sup |Qn(0) — Q,(0)] = O, ({%} ) a.s. (39)

0co

Proor. Without loss of generality we replace g,(-,6) by
Qn(Za 9) = [{g(X) o m(Xa a)}Q + U’Q] K{hil(X - x)}v

where equation (1) was used to eliminate the cross product term. Observe that the functions g, (-, 0)
depend on n through A , and that they are not necessarily uniformly bounded.
In order to facilitate comparison with similar arguments in the literature, we break the proof into

several steps.

PERMISSIBILITY. The boundedness of the index set © = A x A and the measurability of the
relevant expressions are sufficient conditions to guarantee that the class of functions Q,, = {¢.(+,0) :
0 € O} is permissible in the sense of Pollard (1984, Appendix C) for each n, which suffices to

ensure that Q,, is permissible. Permissibility imposes enough regularity to ensure measurability of
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the supremum (and other functions needed in the uniform consistency proof) when taken over an

uncountable class of measurable functions.

ENVELOPE INTEGRABILITY. Let G, = {sup,c.4[9(X) — m(X,a)|* + |u|*} | K{h (X — z)}| be

the envelope of the class of functions Q,,. Assumptions Al and A3 are sufficient to guarantee that

Pg,, < oc. (40)

To see this note that

Pq, < PxR(X)|K{h (X —2)} +Pu*K{h (X —2)}|
= he / R(x + ) fx(z + hv)| K (v)|dv + h* / o?(z — vh) fx(x + hv)| K (v)|dv
— WR(@)fxla) [ 1K@+ W@ fxle) [ K@)+ o(v)

< REKTf(R+3){1+0(1)} = O(h?),

where the first line follows by assumption Al, and the second line follows by a change of variables
and noting that Pu?|K{h™'(X — z)}| = Pxc*(X)|K{h™'(X — z)}| by iterated expectations. The
third line follows by dominated convergence and A4 (h — 0), and the last line by assumptions Al
and A3. This establishes (40).

Given the permissibility and envelope integrability of Q,,, a.s. convergence to zero of the random
variable supg |Qn(0) — Q,(0)] is equivalent to their convergence in probability to zero. See Giné
and Zinn (1984, Remark 8.2(1)) or Pollard (1984, Proof of Theorem I1.24) and references therein.

TRUNCATION. The envelope integrability (40) allows us to truncate the functions to a finite

range. Let (3, be a sequence of constants such that 3, > 1, (3, — oo. Note that
Sgp |PnQn - PQTL| S Sgp |PnQn ][{qngﬁn} - PQnI[{qngﬁn}|

+ Sup Polanl g, .1 + sup Plqlg,>p.}-

Since |g,| < 7, for all ¢, € Q,,, the last two terms sum to less than P,q, I ~s.} + Pq,Ig, >p,;- This

converges almost surely to 2Pq, I ~3,;. Since g, I 3,3 are dominated by g,, and g, Ig 5.1 — 0
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as (3, — o0, it follows that Pg, Iz ~s,3 = o(1) by dominated convergence.'® Thus we can concentrate

on the truncated class

Qﬁ(n) = {qg(n) = Qn][{qngﬁn} D Gn € Qn} .

SCALING. Given that the class Qg, is uniformly bounded, that is \Qn][{qng,@n}’ < 3, for all
functions in Qg,, we can consider, without loss of generality, the scaled class
QZ(n) = {qﬁ () = 45() /Bn t qam) € Qg(n)}, where |qg(n)| < 1 for all Ty € QZ(n)' Note that
Pq, g >p.1/Bn = 0(1/B,), so that the truncation step is not affected by the scaling. It then follows
from Pollard (1984, Theorem II.37) applied to the class QF ) and A4 that

sup | Py — P | < hla, a.s., (41)
()
provided
sup {Pqﬁ(n) V2 g (42)
B(n)
and
sup Ni(e, H, Q) < As W for 0 <e <1, (43)

where the supremum is taken over all probability measures H, and A and W are constants indepen-
dent of n.

Consider condition (42). Since |gj,,)| < 1 uniformly over Qj,, it follows that

Pggly < Plgsm
= [ B o) = m(X, )} ] KX = )T <0,y P
_ / B [{g(t) — m(t, a) ¥ + 02(6)] K (W™ (¢ — 2))| fx ()iq, <, dt
— B / B2 [{g(x + hv) — m(z + hv, @)} + 02 (x + ho)] K (v)|fx(z + ho)lg, <,ydt

< hl

5Note that PQ, = O(h?) implies that any 3,, would suffice for large enough n.
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since the integral is an average of functions uniformly bounded by 1.

Consider now the covering number condition (43) that require Q;(n) to be a Euclidean class. Note
that the functions in Qf .\, a5y = 5, [{m(X, a®) —m(X, )} + uﬂ K{h™ (X — 2)}L <p,}, are
composed from the classes of functions M = {dm(-,a) : a € A, § € R}, U = {y? : v € R},
K={K@xTp+n) : peR% nc R} with K a measurable real valued function of bounded variation
on R, and the class of indicator functions of the envelope Z = {I(£g,, < 1): £ € R}. The Euclidean
property of Qg(n) will follow if each of the functions used to construct . themselves form Euclidean
classes, as sums and products of Euclidean classes preserve the Euclidean property. See Nolan and
Pollard (1987, Section 5) and Pakes and Pollard (1989, Lemmas 2.14 and 2.15) among others (see
also the stability results of Pollard (1984) and Andrews (1994, Theorems 3 and 6)).

The Euclidean property of the class M follows directly from Pakes and Pollard (1989, Lemma
2.13) and A1. The class I forms a VC (Vapnik-Cervonenkis)-graph class'® by Pollard (1984, Lemma
I1.28), and it follows from Pollard’s (1984, Lemma I1.25) Approximation Lemma that ¢/ is a Euclidean
class. The Euclidean property of K follows directly from Nolan and Pollard (1987, Lemma 22(ii))
(see also Pakes and Pollard (1989, Example 2.10)). Finally, the Euclidean property of M, U, and
IC imply that the half-spaces defined by the inequalities g,, < 3, form a VC class and therefore the
class of indicator functions Z with envelope 1 is a VC—graph class, so that another application of
Pollard’s (1984, Lemma I1.25) ensures its Euclidean property.

In view of the definition of Q,(0) = hyP.q(-, ), and Q,(0) = hqPq(-, -), of (41), and of the
truncation argument, it follows that

1p[Q,(0) = Qu(O)] = 0y o) a5 (44)

Pollard’ss Lemma imposes the constraint a,, > {logn/(nh?)}/2. Choosing «,, = {logn/(nh?)}/?

gives the final result of the lemma

0co

oS T 1/2
mM%@—@@FQMMﬂ%G%%}> 0. (45)
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FIGURE 1. Comparison of local linear bias term |g,.(x)| and local logit bias term |gu () —mg. ()|

against covariate x, when the true regression is probit.

FIGURE 2. Crossvalidation curve against logarithm of bandwidth for four different trimming

rates.

for

FIGURE 3. Local probit g(z) against parametric probit fit ®(37z), where
z = {1, AUTOS, DOVTT, DIVTT, DCOST}
zero autos (0), one auto (1), and two auto (2) households.

FIGURE 4ABCD. Local 7;(x) against z; with local linear smooth of points and 99 confidence

interval. Parametric 7; (horizontal line) is shown for comparison.

FIGURE 5ABCD.
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