Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

10-1-1958

Economic Theory of Teams. Chapter 2

Jacob Marschak

Roy Radner

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Marschak, Jacob and Radner, Roy, "Economic Theory of Teams. Chapter 2" (1958). Cowles Foundation
Discussion Papers. 279.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/279

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/279?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION DISCUSSION PAPER KNO. 594&-

Note: Cowles Foundation Discussion Papers are prelimi-
nary materiels circulated privately to stimmlate
private discussion and critical comment. Refer-
ences in publications to Discussion Papers (other
than mere acknowledgment by & writer that he hes
access to such unpublished material) should be
cleared with the author to protect the tentative
character of these papers.

Economic Theory of Tetms*
Chapliy 2
J. Margchak end R. Radner

October 29, 1958

- ;
Regearch undertaken by the Cowles Commission for Resesrch

in Economics under Contract Nonr-358(01), NR O47-006 with the
Qffice of Naval Resessrch




Economic Theory of Teams

J. Marschak and R. Radner

CHAPTER 2

ORGANIZATIONAL FORM: INFORMATION AND DECISION FUNCTIONS

1. Rule of action. So far we have discussed the consistency of
decisions and emerged with the concept of the expected payoff as cur
primary tool for the evaluation of actions under uncertainty. Given
the (subjective) probability distribution of the states of the environ-
ment, the best éction is the one with the highest expected payoff.
Choice under certainty is a special case, with probability one assigned
to one particular state of environment.

We now modify =-- and, in a sense, generalize -- the problem in
the following way: the individual chooses, not among actions but among

rules of action. A rule of action (also called a decision rule, &

strategy, or a declsion function) is a schedule that determines in advance,

for each possible future Information, the action that will be taken in
response to it. Rules of action (sometimes called "r8les") for the
individual members of an organization are essential for the very con-
cept of organizetion as defined by us at the outset. The search for -
the best rules of action will be seen to be esgential to the econcmic -
theory of teams. It 1s also essential for a realistic theory of single-
person decisions since one often has to decide in advance how to respond
to each of possible future contingencies., This will be shown in various
examples in the present and the next chapter. Tt will be seen that --
ag emphagized by A. Wald { ] and by von Neumann and Morgenstern

[ ] == this introduction of the possibility of using new information



does not alter the basic features of the decision problem. Formally,
the rules of action will now play the same role as did the actions
themselves in the previous chapter.

The "future" information that enters in the decision rule is to
be distinguished from "prior" informetion. The prior information
consists in the description of the set X of possible states x of
the environment, the probability distribution ¢ on X , the set A
of alternative actions a , and the payoff function w . In what
follows, information will always mean future information. This will
be defined more precisely in Section 2, but we shall first use a
familiar example to illustrate the meaning of our concepts.

Consider a firm producing a single commodity for a market in which
the price is set by the government at the veginning of each year, at
which time the firm sets its production for the coming year. If the
goal of the firm is to maximize profits for the coming year then under
the usual assumptions of decreasing marginal costs, etc., we get the
familiar rule: "Choose the level of production that will meke marginal
cost equal to price." This rule defines, implicitly, & functional
relation between the action -~ viz., the quantity a produced ~-- and

the information -« viz., the price y Bet by the government, say,
a =aly) .

Thus a 1s the decision function prescribed by economic theory.
One can, of course, imagine other decision functions for this
firm, say the one implied by the rule: "Choose the level of production

such that average cost is ninety percent of price." (This decision



function typically will not meximize profits, however.) Another decision
function, although a somewhat "degenerate" one, is the constant function,
nemely, the rule that fixes the same level of production year after year,
whatever the price happens to be.

In genersl, let Y be the set of possible informations; then =a

decision function o i1s & function from Y +to the set A of alter-

netive actions. (In the example of the firm just given, Y 1s the set
of possible prices, and A 1is the set of alternative levels of pro-
duction.) An action a depends on the informetion y thus: a - a(y).
The set of alternative decision functicns will be denoted by ila} .

We can now rewrite the payoff w{x,x) as ofx,a(y)] where x is the
generic element of X and y 1is the generic element of Y . If yl
and y, are elements of Y we shall alsoc say that they are two values

of the information varieble y . We shall show presently the relation

between X and Y .

2. Informgtion. We have denoted by wlx, a(y)] the payoff when
the true state of the environment is x , and the sction is based on
informetion y and on the rule ¢« . Clearly not all imaginsble
aspects of environment are relevant to the payoff of a particular
action. The profit that. I may realize on the purchase of domestic
natural gas stock may depend on the alternation of seasons but not
perceptibly on the rest of the astronomical data, nor on the dynastic
changes among Uganda chieftains. Hence in the formulation of the
decigion problem the detail with which the set X of possible states

of environment is desceribed, will depend, at least in part, on the



nature of the payoff function. We shall presently see that it will

#*
also depend on the available types of information.

*

To avoid certain technical mathematical complications, we will assume
that the set X 1is finite, except in some special applications, in
which cases the reader will be warned.

Typically, information will give only a partial description of
the state of the world; this description can have varying degrees of
completeness. For example, instead of getting a complete list of today's
closling prices on the New York Stock Exchange, one may get information
only about all the gas stock prices; or only about the average of all
stock prices; or only about the average gas stock price. Each of these
types of information specifies some set of states of the environment
within which the true state lies. This set 1s, of course, the set of
all states that have in common the partial description given by the
information. Thus, to be told that the average closing stock price was
55, 1s to be told that the list of prices is among the set of all those
ligts that have an average of 55.

Thus each information y {an element of Y), is identified with
a particular subset of X . The information relevant to the motorist's
decision in the traffic mey be & signasl, green or red. Thug the set
Y consists of two elements. The set X of all possible traffic situe
ations is thus partitioned in two subsets; if traffic is in one subset
the signal is green, otherwise it is red. This partitioning defines 1 ,

the information structure; given 1 , certain signals (symbols) are

assigned to certain subsets of X .



Note that a decision has sometimes to be btaesed on information that
reflects aspects of enviromment which, in fact, do not influence the
payoff. For example, in choosing the parts of a country in which a
campalgn against infantile diseases is mcst urgent, one mey have to
base the decision, in the absence of better data, on mortality figures
not broken down by age groups. The decision is then made on what is
sometimes called "erroneous" information. There is really no need for
& speclal concept of incorrect information. Every item of information
1s correct with respect to some aspect of the state of the environment
although that aspect may be irrelevant to the payoff. Thus, instead
of saying that the results of a market survey are "incorrect," we shall
say that those results reflect not only the responses of the people
interviewed, but also the charscteristics of the interviewer, the method
of recording the data, etec.; and that, if one ignores this nature of
the particular information he can make poor decisions. Sometimes it
is convenient to say that the environment variable x consists of a

= true state, and x_ = the

pair of variables: x = (xl’XE) vhere x o

1
error of observation. See Example F in Chapter 3.

In summary, then, an item of information represents a subset
of the states of the enviromment; and, in the formulation of a decision
problem, the states of the environment must be described in sufficient
detall to cover, not only those aspects relevant to the payoff function,

but also those aspects relevant to the type of information on which the

decisions may be based.



3. Information structure. Organizational form. Information can be

regarded as the outcome of "information-gathering." A given method

of information~gathering applied to the true state of enviromment x ,
results in & particular information. For example, consider again our
stoek price example, where Xx , the true state of environment (in its
aspect relevant to the payoff) is the complete list of prices; whereas
¥y 1is the average price. To each X corresponds a y ; this relation

we have already called information structure (it may also be called

information function), and denoted by 7 . Thus y = n(x). Each

method of information gathering -- the getting as well as processing
of data -~ is characterized by a particular information structure.

Thus, if x still denotes the complete list of prices, them y' = n'(x}

may be the average price of gas stocks, y" = n"(x) may be the price
of a particular gas stock; y''' = n'''{x) may give a range of prices
that includes this price, and y"" = n""(x) may be the quotation of

this price given by a notoriously inaccurate local broker. We have
thus enumerated five different information structures. (A good term
might also be "information filters.")

Formally, if Y denotes the set of possible informations, i.e.,
outcomes of information-gathering, then an information structure is
a function 1 from X , the set of possible states of the environment,
te Y .

Since a particular informetion (signal) y is identified with
some subset of the set X , it follows that every information structure

is some partitioning of X 1into an exhaustive family of mutually

exclusive subsets, each subset corresponding to a particular information.



This picture of information structure is sometimes helpful when one
attempts to visualize the comparison between different information
structures. We shall see that making a partition "finer" permits a
better cheolce of decisions and thus may make the corresponding
information structure more valuable; whereas making the partition
"coarser" results in a less valuable structure. We will return to
a more detalled discussion of the ccmparison of information structures
in Sectiocns 7 and 8 of this Chapter.

For the purposes of this book it will be convenient to give to
the pair (n,a) -- the combination of an information structure with
a decision rule possible under this structure -~ 8 special name: the
"organizational form."

4. Expected payoff reformulated. Since;'given the information

structure 1 and the true state of environmment x , the information
¥y 1is determined, y = n(x) , We can rewrite the payoff again, as
follows:

w(x,a) = olx,aly)] = olx,a(n(x)].

Hence, given the true state of envirocnment, the payoff is determined
by the information structure, the decision function, and the payoff
function. Using now the probability distribution @ , we can write

the expected payoff thus:

(1) £ oo(x,a(n(x)) ¢ (x) = @ (0,15 w®)
X

say: This quantity depends on the non-contreclled conditions w, @ ;



and on the decision function « and the information structure 1n .
In general, these latter two functions are under the control of the
decision meker; He has at his disposal more than one pair (a,n) and
he will choose that pair which makes the expected payoff U a maximum.
This Jjustifies our previcus assertion that the problem of choosing the
best decision function {and we may now add the best information structure)
is formally the same as the simpler one of chcosing the best action.

We shall be often able to simplify the discussion by assuming n
as given, leaving thus only o to the individusl's choice.

We shall again consider the example of a firm (see Section 1 above)
but shall now introduce an additional factor into the deseription of
the states of the environment, namely, the price of an important raw

material. We shall denote by x. the price of product, and by x

1 2

the price of raw material. Suppose that, at the time the decision about
the level of production is to be made, it is not known what price will
have to be paid for the raw material during the coming year. Thus, the

information variable y is not identical with the state of environment,

X . The latter is described by the pair
x = (x,,%,) ;

the information y 1is described by price xl alone; the information

structure is given by
n(x) = xl .

Iet ue assume this to be the only information structure available.

Suppose that the cost of producing a quantity a , for givem x

5 is



X (xe,a); and that the firm takes as its measure of utility the net

profit; then the payoff function is

(2) w(xl,xa,a) = x,8 -\{(xg,a).
If the firm decides upon a rule that tells it to produce the quantity
a = a(xl) when it learns that the price of the product is to be Xy

(regardless of x.) then the payoff for any state (xl,xe) is

)
u = w(xl,xg,a) = x; alx)) - Wxyalx,))

The prices x5 and X, will have some Jjoint probability distribution
¢(xl,x2) and the decision function o will be evaluated by the expected
value of the payoff u Just given.

The reader is invited tc go over the list of concepts and
the Figure 1 at the end of this chapter, and to consider the central
and the right-hand part of Figure 1, (neglecting for the moment its
left-hand side, dealing with costs of information). Circles are sets;
boxes are functions from one set to another. Thus the box "information
structure’, 7 , is a function from the set of states of nature, X, to
the set of informations, Y. Box "decision rule", o , is a function

from Y +to the set of actions, A; w is a function from A and X

+*
to the set of payoffs (set of real numbers). The circle "probability"

"

¥ They are called here "gross payoffs," as the organizational costs,
dealt with on the left-side of the diagram, are still to be deducted.

is the set of all non-negative numbers not exceeding 1, and the box

"probability function" assigns some such number to each state of nature.
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To the sets "probability" and "gross payoff" the operation of "weighted
averaging" is applied (not represented by a box), to yield the expected
payoff. Note also that the box "decision rules" is itself enclosed in

a (dotted) circle; this conveys the fact that a given information rule

a 1is itself an element of a set o of decision rules among which a
choice has to be made; the circle is "dotted" to convey that unlike
"Nature","Action" etc., the decision rule is a thing to be chosen. Another
such thing.is the "information structure": the particular box representing
a particular information structure 1 1is an element of a set of available

information structures, from which a choice is being made.

5. Maximizing Conditional Expectations. A decision function is best if

it results in the largest possible expected payoff, i.e., the largest
possible value of Ew(x,a). We shall now show thet the nature of Eu(x,a)
enables one to give a meore detailed characterization of a best decision
function.

First, consider the situation in which the decision-maker finds
himself, after he has received the information n(x) = y . He is about
to take an action, a(y), and the consequence of this actlon is (typically)
uncertalin, since he knows only that the true state of the environmment is
one of the (typically) many that could have resulted in the perticulat-
informaticen:-y .. In:other words) the:cocnsequence oft the acticn «fy) is
a prospect, in the sense defined in Section 1.8; we shall dencte this pro-
oooet Uy

What are-tle probabllities asscciated with the prdspect . ? They

are clearly the conditional probabilities of the states x , given
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",

that n{x) = y . These conditional probabilities Pr {xiq(x) = ?} ,
where the vertical bar is, as usual, to be read "given that," are some-
times called "posterior probabilities,"” i.e., the probabilities of the

states x after the information y has been received. The expected

utility of the prospect ny is the conditional expectation

(5.1) E {UJ(X:G(Y)) | alx) = y} =2 wlxaly)) Pr{XIﬂ(X) = y} )

The prospect ﬁy » however, only arises with a certain probability,
namely, the probability that the information recelved is y . Thus the

consequence of using the decision function o is a probability mixture

of all the various prospects ny , corresponding to varying y (see
Section 1.9). The utility of this over-all prospect is therefore a
weighted average of the utilities of the prospects ny (the weight being,
for each value of y , the probability Pr{n(x) = y] that this partic-
~ular value of y is observed). Hence, to meke this average utility as
large as possible, the decision~maker must make the utility for each
prospect “y &5 large as possible, 1.e., choose an action that maximizes
the expression (5.1).

Thus we have arrived at the following theorem: For o to be a

best decision function, it is necessary and sufficient that, for every

¥, a(y) be an action that maximizes the conditional expected payoff

given 7(x) =y .

To illustrate, consider the last example of the production decision
problem (Section 4). Here x = (xl’XE)’ y = n(x) = X, . For any level

of production & , the expected net profit, given cutput price Xy is

(5.2) E {;ix,a) | xi} = X8 - E {&(xa,a)lxi}
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(see equation (4.2)). Setting the derivative, with respect to a , of
this last expression equal to zero, we find that the best value of a ,

*
given x , must satisfy

¥ It is of course assumed that the various ccnditions necesgary for
this "marginal analysis”" to be valid are satisfied.

(5.3) E {jga \{(xg,a)lxé} = x,

>

In other words, "conditicnal expected marginal cost must equal price."

6. Cost of Decision. In our definition of & best decision function we

have thus far ignored one lmportant factor, the costs of using & decision
function. The mere calculation of the action prescribed by a complicated
decision function for given information may be a costly procedure. Beyond
this, some decision functions may invclve greater "administrative" expense
than others. BSome of the decision costs are fixed once the decision function
@ 1is chosen. Others depend on the state of the world, x (in particular
they might depend on the informaticn y), and are therefore themselves
variables. Thus, in general, we may express decision cost as some function
of o and x , 8(x%,a), say. Because of decision costs {and of the costs
of information to be discussed in Section 9) it is appropriate to call the
expected payoff Ew(x, a(y)) the gross expected payoff. If payoffs as
well as decision costs are measured in money, the best decision function
would be one that maximizes, not the gross expected payoff but 1ts excess
over the decigion cost; i.e., 1t maximizes the quantity Bw(x, afy)) -

_"E 8(x,a), where y = n(x) and the expectation is taken with respect tc x .
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Unfortunately, there has been very little theoretical analysis of
costs of decision that we are aware of, and, aside from this brief
acknowledgement of the importance of these costs, they shall play no

role in our theory.

7. The Value of an Information Structure. Once a best decision function

has been chosen, given the informetion structure, nothing more can be
achieved in the way of increasing the expected payoff without changing
the information structure itself. A different information structure
would, of course, typically require a different best decision function,
and might possibly result also in e higher expected payoff. Thus one

is led tc a natural definition of the difference in value between two

information structures as the difference in the meximum expected payoffs

that can be achieved through their use.

When compering information structures, there is an abvious "zero."
Consider the clags of all constant infcmation structures, i.e., the
clags of all functions 1 suck that informastion n(x) is a constant,
independent of the value of x . The partition of the set X of states
of the environment that is associated with a constant information structure
has only one element, the set X 1tself. A constant information struc-
ture implies, of course, a constant decision function (the most extreme
form of routine!). It is clear that & constant information function gives
no information at all that has not already been incorporated into the
formulation of the decision problem. Therefore it is appropriate to assign

to it the value zero. This suggests that one define the absolute value

of an information structure as the difference in value between it and =

constant information structure. This gquantity can never be negative; the
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set of decision functions aveilable toc a person using a non-constant
information structure includes all of the decision functions that are
available to a person using constant informetion structure (viz., all
constant decision functions), and possibly more. Hence the first person
cannot do worse than the second. There is no damage in knowledge!

If we denote the expected payoff for an information structure 1
and a decision function o by €(a,n), -- see equation (L4.1) -- then

the above definition can be expressed symboliclally thus:

(value of 1) = max @(a,n) - max E a{x,a).
a a

The meximum expected payoff yielded by a given information structure
will be denoted by

~

Q(n) = max Q(a,n).
[0

8. PFineness of Information Structures. Is it possible for one informa-

tion structure to be more veluable than another, or at least not less
valuable, whatever be the basic payoff function w ? The answer 1s yes,
and the characterization of such a relationship ls provided by the con-
cept of fineness. We shall say that the information structure n' 1is
finer than n" if the partition of X corresponding to n' is a sub-

1

partition ©f that corresponding -to 1", i.e., if every set in the first
partition ié contained in some set of the second. (Thus 7' tells us all

n'" can tell, and possibly more besides.)%

*  In another terminology, n' is called an extension of 17", and n"
a contraction of n' .

For exsmple, if X 1s the set of all numbers between O and 1, and

' partitions X into ten equal intervals, while 1¢" partitions X into
n
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o hundred equal intervels, 4" is finer than n' (%" has one digit more!).
If X is a set of all pairs (xl,xe) of integers and under 7' each pair
constitutes a subset, while under " all pairs with the same value of
X constitute a subset, n' is finer than 7%". If %' end 1" correspond
to the same partition they are said to be equivalent. Clearly, not of
every pair nu', 1" can it be said that one of them is Tiner than the
other or that they are equivalent: For example, let X be the set of
all numbers between O and 1; let n' be the partition of X into two
sets: "elements of X larger than 1/2", and the "other elements of X";
and let 17" partition X into "elements of X larger than 2/3", "ele-
ments of X smaller than 1/3" and “other elements of X." Then 7" is
not finer than 7' in the sense defined; nor is 7' finer than 4"; nor
are they equivalent. {Thus the relation "finer than" induces only a
partial, not a complete ordering of partitions of X).

The significance, for the present question, of the concept of fine-
ness lies in the following theorem: Suppose the probability distribution

oen X assigns positive probability to every state x in X ; then the

value of n' 1is at least as great as the value of 1n" for every payoff

function w if, and only if, n' is finer than 1¢" .

The "if" part of this theorem is fairly obvious, for the set of
decision functions available to a perscon using n' essentially includes
all of the decision functions available to a person using 19", and
possible mere, so that the first person cannot do worse than the second.
(A special case of this was presented in the preceding section, with "

a constant function.)
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The "only if" part of the theorem is perhaps not quite so obvious.
Suppose 7' 1s not finer then %" nor is %" finer than 7', nor are
they equivalent. Then there must exist three states of nature xl,xe,x5

such that, under the partition corresponding to 1q' , X, and x5 but not

* are included in the:same subset; while under the partition corresponding

to n", x, and x_ but not x, are in the same subset:

1 3 2
n'(x) = n(xg) A at(x))

i

T]"(Xl) nu(x3) % ,qu(xe) R

Now consgider a decision problem in which it is sufficiently more important
to distinguish between x, and %3 than between x, and Xg (it is
easy to construct such problems: see Chapter 3, Example B. Then 1q'
would be more valuable then n" ; whereas the situation would be reversed

in & problem in which it is very important to distlinguish between x. and

e
x3 , but not between xl and x5 .

One interesting corollary of this theorem is that it is impossible
to define a single measure of the "amount" of information (without regard
to the payoff function), such that if one information structure provides
a greater amount of information than snother, the first will be more
valuable than the second, for every payoff function. A measure of the
amount of information independent of the payoff function and depending
only on the probabilities of the laternative signals y was proposed by
C . Shannon | ]. In the simple case when the signals are finite
in number and equiprobable, Shannon's measure 1s an increasing function

(the logarithm) of the number of signals. For example, if x is uniformly

distributed over the set X which is an interval, divided intc n equal
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sub-intervals, and if the information y = n(x) consists in stating

the sub-interval into which the number =x falls, then Shannon's measure

is the larger, the larger n . Yet this ranking of information structures
according to the number of sub-intervals need not coincide with the ranking
of the values of those information structures. In our Example B, Chapter
3, the payoff function is such that the value of information is highest
when the number of sub-intervals is 2 or any even number; so that is is
more valuable to use two equal sub-intervals than to use one hundred and

one!

9. Cost of Information Structure. Information, like decision, typically

costs something. The information structure that results in the highest
expected payoff may involve costs of decigion and of information that
are so high as to make some other information structure prefersable.

Cne part of information costs is fixed once the information structure
is chosen. For example, one may choose to base his future decisions on
the outcome of a sample of a fixed size; or on the information of a fore=
caster who charges a fixed fee regardless of the outcome of each forecast.
Ancther part of information costs is a random variable whose value depends
on the actual gtate of the world. For example, instead of fixing the
sample size in advance, one may make it dependent on the outcome of
obgervations whether to continue or -- if they have already been signif-
icant enough -- to stop them (sequential sampling). One may arrange with
the forecaster to pay him larger sums for thcse forecasts that prove to
be more successful. One may alsc arrange to pay him a fixed overhead sum

plus a success bonus. Thus, in general, total information cost will be a
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rendom variable. The cost will depend on the actual state of the world
(x) the information structure used (n); it can be expressed as 7(x,q),
say. The expected information cost, E y(x,n) (where the expectation
is taken with respect to x) depends on the functions 1n and % and on
the probability distribution ¢ on X .

As in the case of decision cost function & , litile is known
about the information cost function ¥ . It is important to note that,
unlike the value of information, the cost cf information typically does
not depend in a direct way on the payoff function. Like Shannon's
amount of information, the cost of information does depend on mathe-
matical properties of the set Y of signals, viz., on the probability
distribution over this set. This, in turn, depends on the information
structure 17 and on the probability distribution ¢ over the set X
of states of nature. However, two systems of signals with the same
probability distributions may involve different costs. The cost in
time that it takesg a decision maker to get information on his own, or
the money cost that is charged in the market of purchaseable information
services, depend on additional factors. The fees for information services
depend, for example, on the relative bargaining positions of sellers and
buyers of such services, so that, ultimately, the values of a given
information structure -- not its value for the particular decision
maker alone but for other users of this kind of information as well --
do influence the cost of information. This subject matter has been
opened up by Good | ] and McCarthy [ ], but we shall not pursue

it here.
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10. Net expected payoff. If the payoffs as well as the costs of

decision and information are measured in money, we can formulate the
decision problem as that of finding the decision function and the ine
formation function that Jointly maximize the net expected payoff. This
is the difference between the gross expected payoff Ew(x,a) and the
total of expected decision and information costs. The left side of our

Figure 1 helps to illustrate this. The maximum net expected payoff is

then
max Ew(x,a(n(x})) - E 7(x,q) - E 8(x,a)
2T .
= max 2 (aﬂ:ﬂ5w;7.!6:q)) ’
o,

say. The right-hand side expression emphasizes the distinction between
the givens of the problem (the functions w, ¥, &, ¢) and the controlled
variables (the functions «,n). The optimel pair au% depends entirely
on the given functions w, 7, 8 and ¢ . The subject of single-person
decision theory can be sald to be this: to determine how the properties
of the optimal decisions and information functions depend on properties
of the givens: the payoff function o (which, for example, may be linear,
non-linear, etc.); the probability distribution ¢ (which, for eXample,
may be characterized by larger or smaller correlations between environment
variables); and the decigion and information cost functions, & and Y .
From the point of view of general utility theory as discussed in
Chapter 1, the separation, and subtraction, of "costs" from "gross
payoff" is not permissible except in special cases. The decision maker
agsigns a utility to each ocutcome of his decizions and of the state of

the worid. If he has to sacrifice time or other things to achieve certain
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other things, the "outcome" is the combination of the sacrifices and
the achievements. The utility assigned to this combination is not,
in general, representable as a difference between some "utility of
things achieved" and "disutility of things sacrificed.” However, because
cf its simplicity, the assumptlion that such separation of achievements
from sacrifices is possible has great methodological advantages, at
least as an epproximation. This approximation may be quite a close
one in a soclety in which there i1s a market for a great many things
including the time of the people who make decisions and convey infor-
metion. This permits us to put a monetary value on gross payoff as
well as on informaticn and decision costs, and consequently on the net
payoff.

The problem of decision making, especially in its applicaticns
to several-person organizations, is so full of subtle complications that
it seems worthwhile to make the agsumption of separable achievements

and sacriflices In order 4o throw scme light on the problem.

11. Summary of concepts. Our briel sketch of the single-perscn

crganization problem is complete, and this seems to be & good place

Tor & list of the concepts, and the symbols denoting them, that will

be used in the following chapters. The reader will notice that not

all the concepts that have been introduced in this chapter are included
in the list. 8Some of them, such as "prospect" and "outcome function,"
have already fulfilled their roles as introductory or intermediary

ideas.



Symbol

(G':TI)

Q(a,n)
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Concept

The set of aliernative actions, a, available

to the decision-maker.

The set of (mutually exclusive) states, x, of
the environment. The uncertainty about x 1is

expressed by & probability distribution on X .

The payoff functicn, a real-valued function om
(A,X). w(x,a) is the payoff, in utility, to
the decision-maker when he takes actlon a,

and x 1ig the true state of the environment.
The set of possible cutcomes, y, of observation.

An information function {(or structure): a
funetion from X to Y. n(x) is the outcome
of observation when x 1s the true state of

the environment.

A decision function (or decision rule): a
function from Y to A . afy) is the action
prescribed by the decision funetion a +when

y 1s observed.

An organizational form
The (gross) expected payoff resulting from the
use of the information structure n and the

decigion function a .

2(a;n) = E ofx,aln(x)1)
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Symbol Concept
ﬁ(n) The value of the information structure 1 .

aln) = max Qfa,m)

max Euw(x,a)
y(x,m) The cost of the information structure n .
B(x,a) The cpst of the decision rule o .

The decision maker should choose that information structure n
and decision function « that maximlzes the net expected payoff

a{a,n) - E 7(x,1) - E 8(x,a)
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