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UNCOVERING INTRATUMORAL AND INTERTUMORAL HETEROGENEITY 
AMONG SINGLE-CELL CANCER SPECIMENS 

William S Chen, Nevena Zivanovic, David van Dijk, Guy Wolf, Bernd Bodenmiller, and 
Smita Krishnaswamy. Department of Genetics, Yale University, School of Medicine, 
New Haven, CT. 

ABSTRACT 

While several tools have been developed to map axes of variation among individual cells, 

no analogous approaches exist for identifying axes of variation among multicellular 

biospecimens profiled at single-cell resolution. Developing such an approach is of great 

translational relevance and interest, as single-cell expression data are now often collected 

across numerous experimental conditions (e.g., representing different drug perturbation 

conditions, CRISPR knockdowns, or patients undergoing clinical trials) that need to be 

compared. In this work, “Phenotypic Earth Mover's Distance” (PhEMD) is presented as a 

solution to this problem. PhEMD is a general method for embedding a “manifold of 

manifolds,” in which each datapoint in the higher-level manifold (of biospecimens) 

represents a collection of points that span a lower-level manifold (of cells). 

PhEMD is applied to a newly-generated, 300-biospecimen mass cytometry drug 

screen experiment to map small-molecule inhibitors based on their differing effects on 

breast cancer cells undergoing epithelial–mesenchymal transition (EMT). These 

experiments highlight EGFR and MEK1/2 inhibitors as strongly halting EMT at an early 

stage and PI3K/mTOR/Akt inhibitors as enriching for a drug-resistant mesenchymal cell 

subtype characterized by high expression of phospho-S6. More generally, these 

experiments reveal that the final mapping of perturbation conditions has low intrinsic 

dimension and that the network of drugs demonstrates manifold structure, providing 

insight into how these single-cell experiments should be computational modeled and 



visualized. In the presented drug-screen experiment, the full spectrum of perturbation 

effects could be learned by profiling just a small fraction (11%) of drugs. Moreover, 

PhEMD could be integrated with complementary datasets to infer the phenotypes of 

biospecimens not directly profiled with single-cell profiling. Together, these findings 

have major implications for conducting future drug-screen experiments, as they suggest 

that large-scale drug screens can be conducted by measuring only a small fraction of the 

drugs using the most expensive high-throughput single-cell technologies—the effects of 

other drugs may be inferred by mapping and extending the perturbation space.  

PhEMD is also applied to patient tumor biopsies to assess intertumoral 

heterogeneity. Applied to a melanoma dataset and a clear-cell renal cell carcinoma 

dataset (ccRCC), PhEMD maps tumors similarly to how it maps perturbation conditions 

as above in order to learn key axes along which tumors vary with respect to their tumor-

infiltrating immune cells. In both of these datasets, PhEMD highlights a subset of tumors 

demonstrating a marked enrichment of exhausted CD8+ T-cells. The wide variability in 

tumor-infiltrating immune cell abundance and particularly prominent exhausted CD8+ T-

cell subpopulation highlights the importance of careful patient stratification when 

assessing clinical response to T cell-directed immunotherapies. 

Altogether, this work highlights PhEMD’s potential to facilitate drug discovery 

and patient stratification efforts by uncovering the network geometry of a large collection 

of single-cell biospecimens. Our varied experiments demonstrate that PhEMD is highly 

scalable, compatible with leading batch effect correction techniques, and generalizable to 

multiple experimental designs, with clear applicability to modern precision oncology 

efforts. 
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INTRODUCTION 

Bulk vs. single-cell profiling 

Next-generation sequencing (NGS) has revolutionized the way in which diseases can be 

studied. Bulk DNA sequencing (DNA-seq) of germline biospecimens can be leveraged to 

discover disease-specific polymorphisms and to investigate disease heritability at an 

unprecedented scope and level of detail (1–3). In the setting of cancer, bulk DNA-seq of 

liquid- or solid-tumor biopsies has been used to identify somatic alterations (e.g., 

mutations, copy number alterations, and structural variants) that can serve as biomarkers 

prognostic of clinical outcomes and predictive of response to therapies (4–9). 

Complementarily, bulk RNA-sequencing (RNA-seq) has been used to quantitate gene 

expression of protein-coding genes and long non-coding RNAs at the exon level of 

resolution. Paired with proteomic assays, NGS approaches have facilitated our 

understanding of cellular biology and genomic drivers of disease at all steps of the central 

dogma, from DNA to RNA to protein. 

 While instrumental in building our foundational understanding of cancer 

genomics, bulk tumor profiling faces the notable limitation of being unable to resolve 

intratumoral heterogeneity. By nature of the sample preparation procedure for bulk NGS, 

DNA or RNA fragments are isolated from all cells of a biospecimen in aggregate, and 

per-cell read counts cannot be determined. Thus, genomic variants identified via bulk 

DNA-seq can only be interpreted as being present in some fraction of profiled cells. 

Moreover, it is impossible to determine which of the variants co-occur in a given cancer 

cell. The readout of bulk RNA-seq is similarly coarse in that the reported expression of a 

given gene represents the average expression across all cells in the biospecimen without 
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any consideration of cell-to-cell variation. In practice, when comparing expression values 

across biospecimens measured using bulk profiling or when performing association 

studies between specific DNA variants and clinical phenotypes, a simplifying assumption 

is often made that all (or at least a substantial-enough proportion of) cells in each 

biospecimen harbor the genomic variant or gene expression signature of interest. In 

reality, this assumption may not always be valid, and bulk measurements may fail to 

accurately reflect the expression profiles of individual cells. Bulk profiling may also fail 

to detect true biological differences between experimental conditions.  The following 

example demonstrates these concepts more concretely and highlights the utility of single-

cell analytical approaches for accurately characterizing and distinguishing between 

multicellular biospecimens.  

Consider a multi-specimen dataset consisting of immune cells with collectively 

variable expression of CD4 and CD8. Each specimen is comprised of a cell population 

that fits one of four distribution patterns, as shown below (Figure 1A). Each Group A 

specimen consists of a homogeneous immune cell population characterized by 

intermediate expression of both CD4 and CD8. Each Group B specimen consists of two 

similarly-abundant immune cell subpopulations: one CD4+ and one CD8+ subpopulation. 

Group C specimens consist of a mixture of CD4+, CD8+, and CD4/CD8 double-positive 

(DP) immune cells. Group D specimens consist of one CD4+ and one CD8+ 

subpopulation of roughly equal abundance and one additional rare subpopulation of 

CD4/CD8 double-negative (DN) immune cells. Note that these immune cell subtypes 

(CD4+, CD8+, DP, and DN) have been reported to exist in normal thymus as well as 

various disease states (e.g., breast and hematologic malignancies (10, 11)). The simulated 
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experiment consists of 32 specimens in total (eight of each of Groups A-D). By design, 

the bulk (average) expression of CD4 and CD8 for each biospecimen is roughly the same 

for all biospecimens, regardless of differences in cell subpopulation characteristics. 

 

Figure 1. a) Single-cell profiles of each multicellular biospecimen in a computationally-generated immune 
cell dataset. Each point represents a single cell. Groups A-D each have 8 biospecimens that fit the single-
cell profile (i.e., are comprised of some combination of the cell subpopulations depicted) for a total of 32 
biospecimens. By design, all biospecimens have roughly the same bulk expression (mean across all cells) 
of CD4 and CD8. b) Diffusion map embedding generated by embedding a specimen-to-specimen distance 
matrix, where pairwise distances between specimens were computed by taking the Euclidean distance 
between specimens represented as bulk expression of CD4 and CD8. Bulk expression profiles do not 
adequately reflect the biological differences between specimens in this dataset and cannot be used to 
distinguish specimens in a biologically meaningful way. c) Diffusion map embedding generated by 
embedding a PhEMD distance matrix, which accounts for the single-cell characteristics of each specimen 
(see “Overview of PhEMD” in Results section). PhEMD successfully distinguishes specimens with 
different single-cell profiles from one another.  

Next, consider the aim of relating the 32 specimens to one another in a 

biologically meaningful way. This could be done by generating a low-dimensional 

embedding that could be visualized to view the similarity of any two specimens relative 

to the rest and to identify groups of similar biospecimens. First, consider an approach 
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using bulk expression measurements. A biospecimen–biospecimen distance matrix can be 

generated by computing pairwise (Euclidean) distances between each pair of 

biospecimens, with each biospecimen represented as the average expression of each gene 

(i.e., CD4 and CD8) across all cells in the biospecimen. This distance matrix can then be 

embedded and visualized in two dimensions using the diffusion map nonlinear 

dimensionality reduction approach. The result is an embedding that fails to differentiate 

specimens based on biologically important differences. Specifically, specimens of the 

same known, ground-truth subtype (i.e., Group A-D) failed to map to similar parts of the 

resulting embedding (Figure 1B). 

A better approach to comparing these specimens is to compare the presence and 

abundance of all single-cell subpopulations in each specimen. I aim to formalize such an 

approach in this thesis and demonstrate that it can be used to effectively distinguish 

single-cell specimens from one another that cannot be distinguished based on bulk or 

average expression patterns. In the above example, the approach yields a final low-

dimensional map that vastly outperforms a bulk approach (Figure 1B) and successfully 

differentiates specimens based on biologically important differences in cell subpopulation 

characteristics and proportions (Figure 1C).  

 The exploration of cell-to-cell variation within a given biospecimen has been 

facilitated by the recent development of single-cell expression profiling (measurement of 

gene expression on a per-cell rather than average-across-all-cells level). Early studies 

leveraging these technologies have uncovered important insights not previously identified 

by bulk profiling. Several studies have highlighted the compositional heterogeneity of 

tumors as a mixture of specific cancer and non-malignant (e.g., immune and stromal) cell 
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types and have revealed profound cellular heterogeneity among melanoma (12), clear-cell 

renal cell carcinoma (ccRCC) (13), and breast cancer cells (14), even within a single 

tumor biopsy. Additional studies have used single-cell profiling to better elucidate cell 

signaling, differentiation, and reprogramming in the context of cancer (15), aging (16), 

and other physiologic and disease processes (17–19). Among else, single-cell profiling is 

particularly useful for studying cancer, as cancer is understood to arise from the genomic 

mis-programming of a single cell and the downstream sequelae. While the analytical 

approaches presented in this work are generalizable to studying many biological 

phenomena at a single-cell level, the focus of this thesis will be on leveraging single-cell 

technologies to better understand cancer progression, cellular response to 

chemotherapies, and the tumor microenvironment. 

Approaches to characterizing axes of variation among a collection of cells 

As the readout of single-cell expression profiling is highly complex, new computational 

tools have been developed in parallel with single-cell profiling techniques in order to 

facilitate the extraction of biological insights. A particularly challenging property of 

single-cell expression data is its high dimensionality: each biospecimen is comprised of 

many cells, each of which is represented by tens to thousands of gene or protein 

measurements. The analysis of high-dimensional data, especially in unsupervised or 

exploratory settings, often introduces various challenges that are collectively referred to 

as the “curse of dimensionality” (20, 21). While the ambient dimension of single-cell data 

is often high (equal to the number of genes or proteins measured), the intrinsic 

dimension, or minimum number of variables needed to represent the data adequately, is 

often much lower. Mapping single-cell data from its ambient dimension to this lower-
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dimensional space is termed “dimensionality reduction,” which is often a critical first 

step for learning and visualizing the ways in which cells vary. It is also instrumental in 

identifying distinct, biologically meaningful cell subpopulations (e.g., by clustering cells 

in the lower-dimensional space). The following subsections provide an overview of 

several of the leading dimensionality reduction techniques for learning and visualizing 

axes of cell-to-cell variation among a set of cells measured using single-cell expression 

profiling. In the below subsections, each “dataset” refers to a heterogeneous cell 

population and each “point” represents a single cell, characterized by multiple measured 

features (i.e., gene expression values). 

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a dimensionality reduction technique that aims to 

find new, uncorrelated variables (“principal components”) that successively maximize 

variance while minimizing information loss from the original dataset (22). It does so by 

performing an orthogonal transformation of the original dataset such that the new 

variables are linear combinations of features in the original ambient-dimensional space. 

This transformation can be computed as the solution to an eigenvalue/eigenvector 

problem, in which principal components are defined as eigenvectors of the covariance 

matrix and corresponding eigenvalues represent the proportion of the data variance 

explained by the eigenvectors.  

PCA is useful in many settings for learning a low-dimensional representation of 

the data, although it does make several key assumptions. Firstly, it assumes that the 

principal components are appropriately modeled as linear combinations of the original 

dimensions. Secondly, PCA assumes that principal components are orthogonal to one 
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another. Thirdly, PCA assumes that the input data are scaled and normalized 

appropriately prior to application, as the approach is not scale invariant. In the event that 

any of these assumptions are violated, PCA may fail to recover optimal axes of variation 

in the data. Additionally, by design, PCA prioritizes preserving global structure (i.e., 

distances between faraway points) over local structure (i.e., distances between points 

within the same “neighborhood”) when mapping from high- to low-dimensional space. 

Thus, the approach is especially sensitive to outliers and measurement noise. 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a popular dimensionality 

reduction approach that preserves local relationships between points when mapping them 

from an ambient-dimensional to low-dimensional space (23). Put another way, points that 

are close to one another in the original representation of the data are mapped to be close 

to one another in the final low-dimensional t-SNE space. Consider two points i and j 

denoted by xi and xj respectively in the ambient-dimensional space and yi and yj 

respectively in the low-dimensional space. t-SNE first models each point in the ambient-

dimensional space as a Gaussian probability distribution centered on the actual 

coordinates of the point (with a data-dependent variance proportional to a user-specified 

“perplexity” value), then computes pairwise similarity between points xi and xj as the 

conditional probability Pj|i that xi would select xj as its neighbor if neighbors were 

selected in proportion to their probability density under a Gaussian centered at xi (24). An 

analogous conditional probability Qj|i is computed between points yi and yj in the low-

dimensional t-SNE space, wherein points yi and yj are modeled as Student t-distribution 

with one degree of freedom (rather than as a Gaussian distribution). The final low-
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dimensional embedding is learned through gradient descent by minimizing the Kullback-

Leibler (KL) divergence between P and Q. In the perfect case, the difference between Pj|i 

and Qj|i is zero for all i and j, i.e., the pairwise relationships between points are perfectly 

preserved in the ambient and t-SNE dimensions.  

Strengths of t-SNE include non-linearity, which renders it superior to linear 

approaches such as PCA when applied to curved manifolds, and preservation of local 

structure, which reveals subtle differences between similar yet distinct cell 

subpopulations. A limitation of t-SNE is its high computational resource demands. In its 

exact form, t-SNE has a quadratic time and space complexity, making applications to 

datasets larger than 10,000 points often computationally intractable. To mitigate this 

issue, various approximations and optimizations have been developed (25–27). Another 

limitation is the loss of global structure preservation in the final embedding. t-SNE 

effectively identifies neighborhoods of points but generally yields disjoint “clouds” of 

points. Thus, continuous (e.g. cellular differentiation) processes and trajectories are often 

fragmented in the t-SNE embedding, and relative distances between faraway points or 

clusters in the embedding are not preserved (28).  

Uniform Manifold Approximation and Projection (UMAP) 

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality reduction 

approach that has been recently popularized due to its purported advantages over t-SNE 

in terms of improved scalability and preservation of both local and global data structure 

(29). Similarly to t-SNE, UMAP models points as probability distributions and performs 

gradient descent to iteratively “move” points more similar to one another in the ambient-

dimensional space to be closer to one another in the low-dimensional embedding. 
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However, among other minor differences, UMAP omits the normalization of probabilities 

used in t-SNE (thus improving runtime) and uses binary cross-entropy instead of KL 

divergence as the cost function when comparing relationships between points in the 

ambient-dimensional and low-dimensional spaces. UMAP also employs a graph 

Laplacian approach to assigning the initial coordinates of the points in low-dimensional 

space (prior to the first iteration of gradient descent), in contrast to the random 

initialization employed by t-SNE. Early studies have claimed advantages of UMAP over 

t-SNE in terms of faster computational runtime, greater preservation of global data 

structure, and increased reproducibility of results across different iterations. However, 

there is ongoing debate as to whether global structure is truly better preserved using 

UMAP than t-SNE and if so, why exactly this may be (30). 

Tree-based approaches 

Several graph-based approaches have been developed to explicitly model single-cell 

expression datasets as an interconnected “web” or “tree” of cells. Particularly aimed at 

organizing and visualizing data with intrinsic trajectory structure (e.g., bifurcating 

differentiation processes), these approaches typically represent cells as nodes and 

relationships between similar cells as edges between nodes. Distances between cells can 

then be defined as the shortest path between representative nodes (i.e., minimum number 

of edges separating one cell from the other or, in the event of weighted edges, minimum 

sum of edge lengths in a path from one cell to the other). Several particular single-cell 

tools that employ such an approach include SPADE (31), Wishbone (32), and Monocle2 

(33). These approaches are particularly useful for modeling continuous manifolds and for 

resolving local neighborhood structure. A key limitation of most tree-based approaches is 
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poor scalability. In practice, when working with large datasets, these approaches often 

require cell subsampling or prior identification of “landmark points” which may then 

collectively comprise a relatively small number of graph nodes. Additionally, the number 

of branches recovered in the final tree can vary greatly and is often dependent on user-

defined parameters, which may be challenging to tune if the expected number of branches 

is not known a priori. 

Diffusion maps 

Diffusion maps are another nonlinear dimensionality reduction technique based on the 

idea that a collection of points (e.g., cells) may be modeled such that a given point (e.g., 

cell) may “transition” to another point (e.g., similar cell state) with a probability 

proportional to the known similarity of the two points (34). Diffusion maps first model 

points as an interconnected graph, with connectivity between points generally based on 

their distance in the ambient-dimensional space (e.g., Gaussian kernel, which prioritizes 

preservation of local neighborhood structure). The point-to-point connectivity metric is 

then used to represent the probability of “transitioning” from one cell to another in one 

step of a random walk. A diffusion process is then performed over a diffusion time t (i.e., 

t-step random walk), wherein the local connectivity of the data is used to reveal the 

global geometric structure of the data. The end result is a set of t-step transition 

probabilities, which can be used to embed a low-dimensional map that captures both local 

and global structure in the data. Diffusion maps are particularly well-suited for modeling 

single-cell datasets with known trajectory structure and are modeled on underlying 

principles that reflect our intuitive understanding of cellular differentiation processes 

(e.g., “transition” from one cell state to the next). Diffusion maps are also attractive for 
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their nonlinearity and inherent denoising properties. Limitations of diffusion maps 

include high computational runtime and sensitivity to scale parameter σ, which 

determines the scale at which the data are visualized (35). In the traditional 

implementation of diffusion maps, a fixed σ is used for all points in the dataset, often 

imposing a tradeoff between preserving global and local structure with a bias toward 

preserving global structure (34, 35). However, subsequent adaptations to the original 

implementation proposed by Coifman and Lafon have been developed to better preserve 

local structure (36).  

PHATE 

Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE) is a 

nonlinear dimensionality reduction technique that aims to preserve both local and global 

structure when mapping from high- to low-dimensional space (37). Similarly to diffusion 

maps, PHATE models cell-to-cell connectivity as one-step transition probabilities in a 

random walk model and then performs the diffusion process over diffusion time t to 

determine t-step transition probabilities. However, PHATE employs a distance metric 

(“potential distance”) between points in the diffusion space distinct from the “diffusion 

distance” metric used in diffusion maps. In so doing, PHATE better preserves both local 

and global data geometry and yields a more stable embedding than diffusion maps (37). 

Characterizing axes of variation among a collection of multicellular cancer 

specimens 

The multitude of dimensionality reduction techniques described above have been adopted 

and adapted to elucidate clusters, patterns, and progressions from high-dimensional 
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single-cell data. These techniques all rely on the ability to create a geometry from 

datapoints by comparing them on the basis of their features. More specifically, these 

techniques often compute a distance between the datapoints (i.e., cells) in order to 

organize cells into lower-dimensional embeddings, such as diffusion maps or t-SNE 

embeddings, in order to extract biologically meaningful clusters (i.e., cell subtypes) or 

trajectories (e.g., cell differentiation pathways) from the data. 

However, single-cell experimental designs are becoming increasingly complex, 

with data now often collected across numerous experimental conditions to characterize 

libraries of drugs, pools of CRISPR knockdowns, or groups of patients undergoing 

clinical trials (12, 13, 38–42). The challenge in these experiments is to characterize the 

ways in which not only individual cells but also multicellular experimental conditions 

vary. Comparing single-cell experimental conditions (e.g., distinct perturbation 

conditions or patient samples) is challenging, as each condition is itself high-dimensional, 

comprised of a heterogeneous population of cells with each cell characterized by many 

gene measurements. Each “datapoint” in such settings should then be a patient or an 

experimental condition, which has a collection of measurements associated with it instead 

of a single measurement. In this setting, a datapoint is no longer a single set of features 

(i.e., a vector) but a collection of observations, each containing its own features (i.e., a 

two-dimensional matrix). Thus, existing techniques can no longer be directly applied for 

analysis in a straightforward manner. 

While two prior studies presented approaches to comparing two single-cell 

biospecimens (43, 44), no existing methods address the problem of simultaneously 

relating many biospecimens and identifying biologically meaningful ways in which they 
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differ. In this work, Phenotypic Earth Mover’s Distance “PhEMD” is presented as a novel 

“manifold-of-manifolds” approach to mapping the key axes of variation among a large 

set of experimental conditions. PhEMD first leverages the observation that the structure 

of a single-cell experimental condition (i.e., multicellular biospecimen) can be well 

represented as a low-dimensional manifold (i.e., cell-state embedding) using techniques 

such as PHATE or diffusion maps. In this first-level manifold, individual datapoints 

represent cells, and distances between cells represent cell-to-cell dissimilarity. PhEMD 

models the cellular state space of each experimental condition as a “low-level” manifold 

and then models the experimental condition state space as a “higher-level” manifold. The 

ultimate goal of PhEMD is to generate this higher-level manifold, in which each 

datapoint represents a distinct experimental condition and distances between points 

represent biospecimen-to-biospecimen dissimilarity. In this work, the properties and 

potentially applications of this final higher-level manifold are explored in depth. Namely, 

the manifold can be visualized and clustered to reveal the key axes of variation among a 

large set of experimental conditions. Such embeddings can also be extended with 

additional data sources to impute experimental conditions not directly measured with 

single-cell technologies. 

The accuracy of PhEMD is first validated on a synthetic dataset with known 

underlying data geometry. PhEMD is then applied to a newly-generated single-cell 

dataset to reveal insights into cancer progression and cancer drug-perturbation effects. 

Specifically, the dataset represents a large perturbation screen performed on breast cancer 

cells undergoing TGFb1-induced epithelial-to-mesenchymal transition (EMT), measured 

at single-cell resolution with mass cytometry. EMT is a process that is thought to play a 
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role in cancer metastasis, whereby polarized epithelial cells within a local tumor undergo 

specific biochemical changes that result in cells with increased migratory capacity, 

invasiveness, and other characteristics consistent with the mesenchymal phenotype (45). 

In the drug-screen experiment, each perturbation condition consists of cells from the 

Py2T breast cancer cell line stimulated simultaneously with TGF-b1 (to undergo EMT) 

and a unique kinase inhibitor, with the ultimate goal being to compare the effects of 

different inhibitors on our model EMT system. PhEMD is used to embed the space of the 

kinase inhibitors to reveal the main axes of variation among all inhibitors with respect to 

their effects on breast cancer cells undergoing EMT. Reproducibility of results is assessed 

through three biological replicates. Additionally, the drug-effect findings are further 

validated by showing that they are consistent with the drug-effect findings of a previously 

published study that profiled the drug-target binding specificities of several of the same 

drugs as those used in the present drug-screen experiment. 

PhEMD is also applied to two distinct single-cell datasets to reveal insights into 

variation in the immune cell infiltrate of solid tumors profiled with single-cell resolution. 

The first dataset consists of a collection of 17 melanoma samples profiled using single-

cell RNA-sequencing (scRNA-seq) and the second is comprised of 75 clear-cell renal cell 

carcinoma (ccRCC) samples profiled using mass cytometry. These experiments yield a 

low-dimensional map of patient tumors that highlights profound inter-tumoral 

heterogeneity with respect to tumor-infiltrating immune cells, demonstrating the potential 

utility of PhEMD for disease subtyping and patient stratification (e.g., for immunotherapy 

trials or clinical outcomes studies). Collectively, the analyses present a new generalizable 

analytical framework for organizing single-cell data and reveal new potential strategies 
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for identifying effective cancer therapies. 

 

Hypothesis 

A “manifold-of-manifolds” approach to modeling multi-specimen single-cell data can 

accurately identify axes of variation among biospecimens and simultaneously reveal 

insights into both intra- and inter-specimen heterogeneity.  

 

Specific Aims 

Aim 1: Develop a robust tool for uncovering axes of variation among single-cell 

biospecimens 

Aim 2: Characterize the differing effects of 233 small-molecule inhibitors on breast 

cancer epithelial–mesenchymal transition (EMT) 

Aim 3: Characterize the immune cell subpopulational variation among melanomas and 

among clear-cell renal cell carcinomas (ccRCCs) 
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MATERIALS AND METHODS 

The PhEMD analytical approach 

In single-cell data, each cell is characterized by a set of features, such as protein or 

transcript expression levels of genes. The purpose of measuring these expression-based 

features for each cell (e.g., via single-cell RNA-seq or mass cytometry) is to answer 

biological questions especially related to the cell subpopulations present in a 

biospecimen. In particular, the features may be used for defining phenotypes of cells  (38, 

46), resolving cellular dynamics using transition-process modeling (32, 33, 47), and 

studying signaling networks (18, 48). In sum, the features are shared, quantitative 

characteristics of cells that may be used to organize a set of cells into a data geometry. An 

analogy can be made when attempting to compare single-cell specimens rather than 

individual cells. A biospecimen is a collection of cells. In order to compare single-cell 

biospecimens for the purpose of organizing a set of cell collections (e.g., different patient 

specimens or perturbation conditions), one must first determine useful features for a cell 

collection. Previous studies have shown that cell subtypes are highly useful features that 

are shared across all specimens and can be quantitatively measured (46, 49). Moreover, 

they can be used to represent single-cell specimens efficiently for downstream analyses. 

Just as transcript counts can be measured for selected genes in a single cell, so can cell 

counts be measured for selected cell subtypes in a cell collection. 

In the present work, PHATE is used for the task of defining cell subtypes (37). 

PHATE is a diffusion-based single-cell dimensionality reduction technique that both 

identifies unique cell subpopulations and relates them to one another on a low-

dimensional manifold that can be visualized. Of note, PHATE preserves an information 
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theoretic distance between points (i.e., cells) in the diffusion space to derive a stable low 

dimensional embedding that reveals local, global, continual, and discrete non-linear 

structures in single-cell data. By applying PHATE to an aggregate of cells in a single-cell 

experiment, we can represent a biospecimen as the relative frequency of cells in each cell 

subtype. This representation of single-cell specimens is consistent with the “signatures-

and-weights” representation of multidimensional distributions, first formalized by Rubner 

et al. (50), that was found to yield optimal data representation efficiency in other 

computer vision applications. In our case, a “signature” can be thought of as a distinct 

cell subtype (e.g., memory B-cells or CD8+ effector T-cells), and the corresponding 

“weight” represents the proportion of cells in a given specimen assigned to the cell 

subtype. However, comparing single-cell specimens represented as such is still a non-

trivial task. Many studies represent single-cell specimens as their cell subtype 

composition and use known class labels (e.g., normal lung vs. lung adenocarcinoma) to 

group specimens and perform class-based comparisons (e.g., identifying cell subtypes 

enriched in a disease state) (39, 40). However, this approach is limited to comparing a 

few predefined classes of specimens and does not reveal insights into intra-class 

heterogeneity. Other studies organize a set of many single-cell specimens based on their 

relative frequency of one or a few important cell subtypes (41, 46, 51). However, this 

approach requires a priori knowledge of the most important cell subtypes and does not 

provide a complete view of specimen-to-specimen dissimilarity, especially in the context 

of high intra-specimen cellular heterogeneity. 

The ideal metric for comparing specimens should take into account both the 

difference in weights of matching bins (e.g., number of epithelial cells) for all bins and 
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the dissimilarity of the bins themselves (e.g., intrinsic dissimilarity between epithelial and 

mesenchymal cells). As a simple example using the EMT model, for a specimen with 

80% mesenchymal, 10% transitional, and 10% epithelial cells, we would expect a 

specimen with 50% mesenchymal, 40% transitional, and 10% epithelial cells to be more 

similar (closer in distance) than a specimen with 50% mesenchymal, 10% transitional, 

and 40% epithelial cells. This would be consistent with our intuitive sense of distance 

because 80-10-10 represents that most cells have fully transitioned from epithelial to 

mesenchymal states, 50-40-10 represents that most cells have partly or fully transitioned, 

and 50-10-40 represents that almost half of the cells have not transitioned at all. Earth 

Mover’s Distance (EMD) is a distance metric that mathematically encodes this intuition 

and can be used to yield a final singular measure of distance, or dissimilarity, between 

two specimens (50). EMD can be conceptualized as the minimal amount of “effort” 

needed to move mass (e.g., cells) between bins of one histogram so that its shape matches 

that of the other histogram (i.e., all matching bins of two histograms have the same 

counts). Mathematically, EMD is defined by the following optimization problem: 

EMD(%,') =
∑ ∑ +,-.,-

/
-01

2
,01

∑ ∑ +,-
/
-01

2
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,01  is minimized subject to the following constraints: 
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Definition 1. Earth Mover’s Distance as an optimization problem. 
P = {(p1, ;<@), … , (pm, ;<A)}, where pi represents histogram bin i in the initial starting 
signature P and ;<=  represents the amount of “mass” present in bin i. Similarly, 
Q = {(q1,	;>@), … , (qn, ;>C)}, where qj represents histogram bin j in the final signature Q 
and ;>?  represents the amount of “mass” present in bin j. +,-  represents the “flow” or 
amount of mass moved from bin pi to bin qj. .,- represents the “ground distance” 
between bins pi and qj. Constraint 1 ensures that P and Q are the starting and final 
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signatures, respectively. Constraints 2 and 3 ensure that no more mass is moved from any 
bin pi than is present initially.  

EMD has been used in various applications including image retrieval (50, 52), 

visual tracking (53), and melodic similarity musical analysis (54): all tasks that require 

accurate comparison of multidimensional distributions (analogous to comparing single-

cell specimens). Additionally, a prior study demonstrated proof-of-concept that Earth 

Mover’s Distance can be used effectively to differentiate flow cytometry specimens of 

phenotypically distinct individuals (55). By design, EMD is a distance measure between 

probability distributions that is particularly invariant to small shifts in data (i.e., noise or 

technical variability) across specimens (50, 55). EMD also gives a “complete” measure of 

overall dissimilarity between two specimens, largely attributable to the fact that it takes 

into account both the difference in height of corresponding histogram bins between 

specimens (e.g., number of epithelial cells) and the concept that certain bins (e.g., cell 

subtypes) have a smaller “ground distance” (i.e., are more similar) than others. Including 

ground distance between bins in the EMD computation allows us to incorporate the idea 

that it requires more “effort” to move mass to a faraway bin than to a nearby bin (i.e., it 

requires more effort to convert cells to a more dissimilar cell signature than to a more 

similar cell signature). Recall that each cell subtype is associated with various different 

datapoints (individual cells assigned to that subtype), so it can be represented as the 

centroid of the cluster of cells that comprise it. In our application, we define the ground 

distance between two cell subtypes as the manifold distance between the cluster centroids 

of the two cell subpopulations representing the subtypes. 

EMD is used to compare a pair of single-cell specimens, but the issue remains of 

how to relate a large set of samples simultaneously. For this task, we employ a manifold 
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learning approach that assumes the intrinsic geometry of the data can conceptually be 

modeled as a low dimensional manifold (i.e., a collection of smoothly-varying, locally 

low-dimensional data patches), which is derived from the high-dimensional ambient 

space of collected features (56). Such methods aim to uncover this intrinsic geometry by 

first capturing local neighborhoods, then using them to form a rigid structure of nonlinear 

relations in the data, and finally embedding this structure in a low-dimensional (e.g., 2D 

or 3D) space via a new set of features that preserve those relations (e.g., as distances). 

Local neighborhood (and subsequently global network) structure is learned by first 

computing EMD between each pair of single-cell specimens; distances between “nearby” 

specimens are then preserved in the final learned manifold. 

Leveraging the properties of EMD and manifold learning, we developed PhEMD 

as a novel “manifold-of-manifolds” approach to simultaneously relating a large set of 

single-cell specimens (Figure 2). PhEMD first aggregates cells from all biospecimens and 

applies a single-cell embedding technique (e.g., PHATE) to model the cell-state space 

(i.e., “first-level manifold”). PHATE simultaneously identifies all cell subtypes and 

relates them in a low-dimensional embedding. After constructing the PHATE cell-state 

manifold, PhEMD represents each biospecimen to be compared as a frequency histogram 

capturing relative abundance of each cell subtype (i.e., distribution of cells along a 

manifold). In the event that subsampling is performed when constructing the PHATE 

cell-state manifold, cells are assigned to a subtype using a nearest-neighbor approachA. 

PhEMD then uses EMD, incorporating manifold-distance as ground-distance between 

                                                
ATo assign cell x, which is not initially included in the construction of the PHATE cell-state embedding, to 
a cell subtype, we first identify cell y in the initial embedding that was most similar to cell x, i.e. the cell 
with the lowest Euclidean distance from cell x. Cell x is then given the same cell subtype assignment as cell 
y. 
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bins, to compare two relative abundance histograms and derive a single value 

representing the dissimilarity between two single-cell specimens. PhEMD computes 

EMD pairwise for each pair of specimens to generate a distance matrix representing 

specimen–specimen dissimilarity. Finally, using this distance matrix, PhEMD generates a 

low-dimensional embedding of single-cell specimens (i.e., “higher-level manifold”) using 

diffusion maps to highlight specimen–specimen relationships in the context of overall 

network structure (57). Diffusion maps are useful in this case as they learn a nonlinear 

mapping of samples from high- to low-dimensional space, capture both local and global 

structure, and have intrinsic denoising properties. PhEMD identifies and visualizes 

clusters of similar samples based on the compositional similarity of their respective cell 

populations.  
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Figure 2. a) Flow diagram outlining the sequential steps performed in the PhEMD analysis pipeline. b) 
Schematic of the EMD computation, which accounts for both the differences in heights of matching bins 
and the intrinsic similarity of bins. c) Visual representation of “ground distance” (dissimilarity) between 
cell subtypes. The ground distance between subtypes C-2 and C-6 can be conceptualized as the length of 
the dotted path drawn in grey. 
 

Pseudocode for the PhEMD algorithm is shown below in Algorithm 1. 

Algorithm 1  
1: procedure PhEMD(multispecimen.data)    

⊳Map first-level manifold (e.g., cell-state embedding) 
2: data.all←aggregateData all specimens(multispecimen.data) 
3: first.level.embedding←embedDatapoints(data.all) 
4: first.level.clusts←clusterPoints(first.level.embedding) 
5: cluster.ground.dists←computeGroundDists(first.level.embedding; first.level.clusts)  

	
⊳Map higher-level manifold (e.g., single-cell specimen embedding)  

6: specimen.clus.prop←GetClusterProportions(data.all; first.level.embedding; first.level.clusts)  
7: for each pair of specimens si; sj do  
8: Dists[i; j]←EMD(cluster.ground.dists; specimen.clus.prop[i]; specimen.clus. prop[j])  
9: specimen.embedding←DiffusionMap(Dists)  
10: specimen.clusters←ClusterSpecimens(Dists)  

 

Data collection and processing 

Py2T cell culture and stimulation 

Py2T murine breast cancer cells were obtained from the laboratory of Gerhard 

Christofori, University of Basel, Switzerland (58). Cells were tested for mycoplasma 

contamination upon arrival and regularly during culturing and before being used for 

experiments. Cells were cultured at 37°C in DMEM (Sigma Aldrich), supplemented with 

10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, and 100 µg/mL streptomycin, at 5% 

CO2. For cell passaging, cells were incubated with TrypLE Select 10X (Life 

Technologies) in PBS in a 1:5 ratio (v/v) for 10 minutes at 37°C. 

Human recombinant TGF-b1 was purchased from Cell Signaling Technologies as 

lyophilized powder and was reconstituted in PBS containing 0.1% carrier protein, 

according to the manufacturer’s protocol to 400 ng/mL. The stock solution was kept at -
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20°C until use. For daily treatment, TGF-b1 stock was diluted into medium to 40 ng/mL 

working concentration. Following small-molecule inhibitor treatment, 10 µL TGF-b1 was 

added to the cells for a final concentration of 4 ng/mL. As a control, PBS containing 

carrier protein diluted with growth medium was used. 

Small-molecule inhibitors 

A library of 234 small molecule kinase inhibitors was purchased from Selleckchem 

(Table S1). Small-molecule inhibitors were distributed within the 60 inner wells of five 

separate 96-well format deep well blocks with exception of wells within row E, which 

contained DMSO. Stock solutions of 2 mM small molecule inhibitor in DMSO were kept 

at -80°C until used. For daily treatment, the stock solution was equilibrated at room 

temperature for 1 h and then 5 µL of stock solution was added 995 µL of medium. Small-

molecule inhibitor (or DMSO) was added to cells once per day, immediately after the cell 

growth media change and before application of TGF-b1. Small-molecule inhibitor 

treatment was performed by adding 10 L of pre-diluted reagent to the cells in 80 µL cell 

growth medium; this resulted in a final concentration of 1 µM of small-molecule inhibitor 

and 0.1% DMSO. 

Chronic kinase inhibition screen 

For the chronic inhibition experiment, Py2T cells were seeded in 96-well plates (TPP, 

Techno Plastic Products AG) with a seeding density of 1800 cells per well in 80 µL of 

growth cell media. Only the 60 inner wells were used for analysis. In order to acquire 

sufficient sample size, five 96-well plates were used for single condition. After seeding, 

cells were allowed to recover for 36 hours to reach 50% confluence. Cells were treated 

simultaneously with TGF-b1 or vehicle (PBS) and small-molecule inhibitor or vehicle 
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(DMSO) for 5 days, and medium was changed daily. All pipetting procedures were 

performed at room temperature using a Biomek FX Laboratory Automation Workstation 

(Beckman Coulter) supplied with 96-well pipetting pod. 

In addition to experimental conditions treated with small-molecule inhibitors, at 

least five “uninhibited” control conditions and five “untreated” control conditions were 

included on each 96-well plate. Uninhibited control conditions were those in which TGF-

b1 was applied to induce EMT in absence of any inhibitor. Untreated control conditions 

were those in which neither TGF-b1 nor inhibitor was applied and no EMT was induced. 

Cell collection 

The cell collection protocol was performed using a Biomek FX Laboratory Automation 

Workstation. The cell growth medium was removed using the multiple aspiration 

pipetting technique, and cells were washed twice with 37°C PBS. Dissociation reagent 

TrypLE Select 10X (Life Technologies) was diluted into PBS at a 1:5 ratio (v/v) was 

added to the cells and incubated for 10 min at 37°C. Cells were detached from plates. 

Five identically treated 96-well plates were combined into a single deep well block and 

were fixed for 10 min with PFA at the final concentration of 1.6% v/v. PFA was blocked 

with the addition of 600 µL 10% BSA in CSM. The cells were centrifuged for 5 min at 

1040g, at 4°C. The supernatant was removed and the cells were resuspended in 300 µL of 

-20°C MeOH. Samples were then transferred onto dry ice and to -80°C storage. 

Metal-labeled antibodies 

Antibodies were obtained in carrier/protein free buffer and labeled with isotopically pure 

metals (Trace Sciences) using MaxPAR antibody conjugation kit (Fluidigm) according to 

the manufacturer’s standard protocol. After determining the percent yield by 
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measurement of absorbance at 280 nm, the metal-labeled antibodies were diluted in 

Candor PBS Antibody Stabilization solution (Candor Bioscience GmbH) for long-term 

storage at 4°C. Antibodies used in this study are listed in Table S2. 

Mass-tag cellular barcoding and antibody staining 

Cell samples in methanol were washed three times with Cell Staining Media (CSM, PBS 

with 0.5% BSA, 0.02% NaN3) and once with PBS at 4°C. The cells were then 

resuspended at 1 million cells/mL in PBS containing barcoding reagents (102Pd, 104Pd, 

105Pd, 106Pd, 108Pd, and 110Pd; Fluidigm) were conjugated to bromoacetamidobenzyl-

EDTA (BABE, Dojindo) and two indium isotopes (113In and 115In, Fluidigm) were 

conjugated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris-acetic acid 10-maleimide 

ethylacetamide (mDOTA, Mycrocyclics) following standard procedures. Cells and 

barcoding reagent were incubated for 30 min at room temperature. Barcoded cells were 

then washed three times with CSM, pooled and stained with the metal-conjugated 

antibody mix (Table S2) at room temperature for 1 hour. Unbound antibodies were 

removed by washing cells three times with CSM and once with PBS. For cellular DNA 

staining, an iridium-containing intercalator (Fluidigm) was diluted to 250 nM in PBS 

containing 1.6% PFA, added to the cells at 4°C, and incubated overnight. Before 

measurement, the intercalator solution was removed and cells were washed with CSM, 

PBS, and doubly distilled H2O. After the last wash step, cells were resuspended in MilliQ 

H2O to 1 million cells/mL and filtered through a 40-µm strainer. 

Mass cytometry data processing 

EQ Four Element Calibration Beads (Fluidigm) were added to the cell suspension in a 

1:10 ratio (v/v). Samples were measured on a CyTOF1 system (DVS Sciences). The 
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manufacturer’s standard operation procedures were used for acquisition at a cell rate of 

∼300 cells per second as described previously (59). After the acquisition, all FCS files 

from the same barcoded sample were concatenated using the Cytobank concatenation 

tool. Data were then normalized and bead events were removed (60). Cell doublet 

removal and de-barcoding of cells into their corresponding wells was done using a 

doublet-free filtering scheme and single-cell deconvolution algorithm (61). Subsequently, 

data were processed using Cytobank (http://www.cytobank.org/). Additional gating on the 

DNA channels (191Ir and 193Ir) was used to remove remaining doublets, debris, and 

contaminating particles. Final events of interest were exported as .csv files. 

 

In-depth analysis of breast cancer EMT cell-state space and drug-inhibitor manifold 

from a single mass cytometry run 

CyTOF measurements of cells undergoing unperturbed and perturbed EMT were 

generated and processed as described above. Data were then pooled from all 

experimental conditions, taking an equal random subsample from each condition to 

generate the cell-state embedding. Cell state definitions and relationships were modeled 

with PHATE. Subsequently, all cells from all experimental conditions were assigned a 

cell subtype using a nearest-neighbor approach. 

Next, the cell subtype composition of each inhibition condition (i.e., relative 

frequencies of each cell subtype that sum to one for each sample) was determined. Using 

this cell subtype frequency-based representation of inhibition conditions, EMD was 

computed pairwise between single-cell samples. Euclidean distances between cluster 

centroids in the PHATE space (which approximate diffusion-based potential distances 
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derived from the expression data native dimensions (37)) were used as a measure of 

intrinsic dissimilarity between cell subtypes for the EMD ground-distance matrix. EMD 

in this case represented the minimum “effort” required to transform one inhibition 

condition to another (conceptually equivalent to the total “effort” needed to move cells 

from relatively “overweight” parts of the branched, continuous, EMT cell-state manifold 

to relatively “underweight” parts). The EMD between every pair of inhibition conditions 

was computed to construct a network of drug inhibition conditions, represented as an 

EMD-based distance matrix. The resulting distance matrix was embedded using the 

diffusion map approach (as implemented in the ‘destiny’ Bioconductor R package (36)) 

and partitioned using hierarchical clustering (applied to the untransformed distance 

matrix) to highlight inhibitors with significant effects on EMT or similar effects to one 

another. 

 

Integrating batch-effect correction to compare 300 EMT inhibition and control 

conditions measured in five experimental runs 

CyTOF measurements of cells undergoing unperturbed and perturbed EMT were 

generated and processed as described in the above sections. Markers shared across all 

batches (n = 31) were used for downstream analyses. Data were pooled from all 

experimental conditions on a per-batch basis. Expression values were then linearly scaled 

for each gene to ensure all values were positive and in the same range across batches. 

After this initial normalization, an equal random subsample of cells from each batch 

(20,000 x 5) was used as the input for canonical correlation analysis (CCA) (62). CCA 

mapped expression data from each batch into an aligned, 8-dimensional space shared by 
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all batches. The cell state manifold and cell subtype definitions were modeled by 

applying the PHATE dimensionality reduction and clustering method to the eight 

dimensions of the CCA-aligned space as input. 

All cells from all experimental conditions were assigned a cell subtype using a 

nearest-neighbor approach. Next, the cell subtype composition of each inhibition 

condition (i.e., relative frequencies of each cell subtype that sum to one for each sample) 

was determined. Using this cell subtype-based representation of inhibition conditions, 

EMD was computed pairwise between single-cell samples. The ground distance (i.e. 

intrinsic dissimilarity) between cell subtypes was defined as the Euclidean distance 

between their respective centroids in the three-dimensional PHATE space. The resulting 

specimen-to-specimen distance matrix was embedded using the ‘destiny’ Bioconductor R 

package (36) and partitioned using hierarchical clustering (applied to the untransformed 

distance matrix) to identify 13 clusters of inhibitors with similar effects on EMT. 

 

Intrinsic dimensionality analysis of the EMT perturbation state space 

The bias-corrected maximum likelihood estimator approach was used to assess the 

intrinsic dimensionality of the EMT perturbation state space (63). The specimen-to-

specimen distance matrix for the 300 samples was computed as described above and the 

intrinsic dimensionality of this embedding was estimated using the ‘ider’ R package (64). 

Intrinsic dimensionality was estimated over a range of values for knn parameter F from 1 

through 100. The final value of intrinsic dimensionality was determined by examining the 

stable estimated value across a range of sufficiently large values for F	(defined as >30). 
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Imputing the effects of inhibitions based on a small measured dictionary 

A previously published sampling technique for identifying landmark points of an 

embedding was applied to assess whether the network geometry of all 300 inhibition and 

control conditions could be captured using a smaller subset of conditions (65). The 

technique, called “incompletely pivoted QR-based (ICPQR) dimensionality reduction,” 

learns a concise embedding of a large collection of datapoints by identifying a subset of 

“landmark points” that collectively capture the geometry of the full collection of samples. 

The fundamental concept is that these H	landmark points comprise an H-dimensional 

subspace and that all other existing and new points can be mapped in relation to these. 

ICPQR identifies the concise “landmark point” dictionary based on known pairwise 

distances between samples (e.g., our EMD-based distance matrix of sample-to-sample 

distances). The ICPQR procedure was applied as follows: first, the PhEMD distance 

matrix containing pairwise distances between our 300 experimental conditions was 

converted to an affinity matrix using a Gaussian kernel (I = 2) and Markov-normalized 

to obtain probabilities. The (ICPQR) dimensionality reduction technique was then 

applied to this affinity matrix, using a K distortion parameter of 0.01, to identify 34 

landmark points. To assess whether the 34 landmark points adequately captured the 

geometry of the full collection of 300 samples, the landmark points identified were then 

used to impute the geometric coordinates of the remaining (non-landmark) points using 

the out-of-sample extension technique associated with ICPQR (65). The result was a 34-

dimensional embedding of all 300 samples. We computed a 300x300 distance matrix 

based on the pairwise Euclidean distances between samples in this 34-dimensional space 
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and then embedded it using the ‘destiny’ Bioconductor R package (36). 

 

Incorporating drug-target binding specificity data to extend the PhEMD embedding 

and predict the effects of unmeasured inhibitors on TGFβ-induced EMT 

We hypothesized that the influence of additional inhibitors on TGFβ-induced EMT could 

be predicted based on knowledge of inhibitor–inhibitor similarity from another data 

source. To test this, we obtained drug-target specificity data from a previously published 

experiment for a set of 39 inhibitors that overlapped between our experiment and theirs 

(66). Saracatinib, ibrutinib, and dasatinib were selected as three nonspecific Src inhibitors 

whose drug-target specificity data were known and whose effects on EMT we wanted to 

predict. Next, a PhEMD embedding was generated based on our CyTOF experimental 

results (not including the three selected inhibitors). To predict the effects of the three 

inhibitors on EMT relatively to other inhibitors in our experiment, we performed 

Nystrom extension on the diffusion map embedding. All 39 inhibitors that were found to 

have an effect on EMT in our experiment and that had known drug-target specificity 

profiles were included in the Nystrom extension. Pairwise distances between each 

“extended” point and each existing point in the original diffusion map were required for 

Nystrom extension. These distances were based on the similarity of drug-target 

specificity profiles between the two inhibitors, defined as (1 − MNO7:P	O787QRS7TU)VW ∗ 4 

for all pairs of inhibitors with known drug-target specificity profiles. The remaining 

pairwise distances were imputed based on known PhEMD-based inhibitor–inhibitor 

dissimilarity and known pairwise drug target specificity-based dissimilarity using the 

MAGIC imputation algorithm (67). 
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A global shift in embedding coordinates between the original diffusion map 

(based on PhEMD distances) and the Nystrom extension points (based on normalized 

cosine similarity using drug-target specificity data) was observed. This was likely due to 

a difference in scale between PhEMD-based distances and cosine similarity-based 

distances. Nonetheless, we were able to use the Nystrom extension points alone to predict 

the effect of the three selected inhibitors on EMT. First, we visualized the Nystrom 

extension embedding to show the predicted relation of the three inhibitors to other 

inhibitors with known (measured) effects on EMT. Next, we used partial least squares 

regression (‘pls’ R package (68)) to predict the cell subtype relative frequencies that 

would result from applying the inhibitors to breast cancer cells undergoing TGFβ1-

induced EMT. Nystrom extension embedding coordinates were used as the input 

variables for the regression model. To validate our findings, we measured the three 

selected inhibitors directly using CyTOF and included them along with the rest of the 

inhibitors in the PhEMD analysis pipeline. We compared the actual to the predicted cell 

subtype relative frequencies and the actual to the predicted embedding coordinates 

relative to other similar, “nearby” inhibitors. To assess prediction accuracy, we compared 

our prediction error to the prediction error of the null hypothesis modeled by first 

randomizing the PhEMD-based and drug target specificity-based distance matrices and 

then generating a predictive model in the same way as in the alternative model. 

Prediction error was defined as the EMD between the predicted and actual (measured) 

cell subtype relative frequency distributions. The null hypothesis was modeled as a 

distribution of EMDs generated by randomizing the PhEMD-based and drug target 

specificity-based distance matrices 1,000 times and subsequently imputing cell subtype 
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frequencies. P-values were computed by performing a permutation test (n=1,000) 

comparing our prediction error to that of the empirical null distribution and applying a 

one-sided significance test at a significance level of 0.05. 

To more comprehensively assess PhEMD as a predictive tool, leave-one-out cross 

validation was performed on the 39 inhibitors with known (measured) cell subtype 

relative frequencies and drug-target specificity data. For each inhibitor, we constructed a 

PhEMD embedding based on known measurements of the 39 others and performed 

Nystrom extension to impute the relationship between the inhibitor and the measured 

ones. We then constructed a partial least squares regression model using the same input 

variables as above to predict the cell subtype relative frequencies of the inhibitor. 

Prediction error was defined the same as above (i.e. EMD between predicted and actual 

cell subtype relative frequency distributions). The null model was also defined in the 

same way as above by randomizing the PhEMD and distance matrices 100 times for the 

prediction of each inhibitor. To determine whether our alternative model was effective, 

we assessed whether the prediction errors in the alternative model (n=39) were lower 

than the EMDs in the null model (n=3,900) using a one-sided Mann-Whitney U-test. 

 

Predicting drug-target binding specificities based on PhEMD results from EMT 

perturbation experiment 

We hypothesized that if the PhEMD embedding were meaningful, it would have 

predictive power. In order to test this, we used the PhEMD embedding of inhibitors to 

predict the inhibitors’ drug-target binding specificities. The drug-target binding 

specificity data were obtained from a previously published study that used a chemical 
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proteomic approach to identify the protein targets of many clinical kinase inhibitors (66). 

We chose to predict the profiles of 39 inhibitors that were present in both the drug-target 

binding specificity experiment and ours, and that had at least 1 protein target identified by 

the binding specificity experiment. Next, we computed a 39-by-39 knn kernel (k=3) using 

the PhEMD inhibitor–inhibitor distances and then row-normalized the resulting matrix to 

1 to turn it into a Markov operator. We then performed a leave-one-out cross validation, 

in which we set one of the inhibitor target values (i.e., drug-target binding specificity 

profiles) in the Klaeger et al. data to be unknown. Note that a drug-target binding 

specificity profile was represented as a vector of length 270, which represented the 

binding specificity between the drug and each of 270 potential protein targets. We 

predicted the drug-target binding specificity values using the MAGIC imputation 

method (67) with the PhEMD Markov operator as input and a diffusion parameter T of 2. 

We computed leave-one-out predictions for each of the 39 inhibitors. To quantify the 

performance of our predictive model, we computed Pearson correlation between the 

original ground-truth (experimentally measured) target values and the predicted values. 

To determine the accuracy of our predictions, we compared our results to a null model, in 

which we randomized the PhEMD matrix 1,000 times and each time ran the prediction 

using this randomized matrix. Prediction accuracy (Pearson correlations) of our 

alternative model (n=39 predictions, one per inhibitor) was compared to that of the null 

model (n=39,000 predictions, 1,000 per inhibitor) using a one-sided Mann-Whitney U-

test. 
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Generation and analysis of dataset with known ground-truth branching structure 

To evaluate the accuracy of the PhEMD analytical approach, high-dimensional single-cell 

data (‘Synthetic Dataset B’) were generated using Splatter, a previously published tool 

designed to simulate single-cell expression data (69). The basic tree structure represented 

in Figure 4A was generating using the following Splatter parameters: nGenes=100, 

de.prob=0.5, path.from=c(0,0,0,3,3,5,5,7,7,7). Each single-cell sample consisted of 2000 

cells sampled from this cell-state manifold at varying degrees of cellular density spread 

across the cell-state space. For Samples A-I, cellular density was concentrated in cell 

subtypes C-1 through C-9 (constituting the main axis), with 55% of Sample A consisting 

of C-1 and C-2 cells and 55% of Sample I consisting of C-8 and C-9 cells. Samples B-H 

consisted of progressively fewer cells in the starting cell states (i.e., C-1 and C-2) and 

progressively more cells in the terminal cell states (i.e., C-8 and C-9). Samples X, Y, and 

Z were enriched for cells in C-10, C-13, and C-14 respectively. Samples J-M were 

comprised predominantly of C-11 cells and Samples N-Q were comprised predominantly 

of C-12 cells at increasing degrees of cell-type enrichment. 

We applied PhEMD to the library-size normalized Splatter data as outlined in 

Figure 2. First, the tree structure was modeled by PHATE based on cells aggregated from 

all biological specimens. Then, the relative frequency of cells across different cell 

subtypes was computed for each specimen. EMD was computed pairwise for all cells 

using PHATE distances as a measure of ground-distance between cell subtypes. A final 

diffusion map embedding of biospecimens was generated using the ‘destiny’ 

Bioconductor R package. 
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Analysis of melanoma single-cell RNA-sequencing dataset 

Data from a prior single-cell RNA-sequencing experiment were downloaded from the 

NCBI Gene Expression Omnibus website, accession number GSE72056 (12). These data 

contained read-count expression values that were log TPM-normalized values. 2 of the 19 

samples were excluded from analysis due to low cell yield of immune cells. Initial feature 

selection was performed by selecting 44 features found in the initial publication 

characterization of this dataset to distinguish between key cell types (12). The PHATE 

model of the cell-state space was constructed using default parameters to identify ten cell 

subtypes. The remaining PhEMD analysis pipeline was completed as described in ‘In-

depth analysis of breast cancer EMT cell-state space and drug-inhibitor manifold from a 

single mass cytometry run’; a final embedding of biopsy samples was generated using the 

‘destiny’ Bioconductor R package and partitioned using hierarchical clustering. 

 

Analysis of clear cell renal cell carcinoma dataset 

CyTOF data from a recent publication characterizing the immune landscape of clear cell 

renal cell carcinoma were downloaded from 

https://premium.cytobank.org/cytobank/projects/875 (13). Cell data were filtered and 

normalized using the method described in Methods section titled ‘Mass cytometry data 

processing’. The PHATE model of the cell-state space was constructed with a diffusion 

parameter t = 40 to identify ten cell subtypes. The remaining PhEMD analysis pipeline 

was completed as described in ‘In-depth analysis of breast cancer EMT cell-state space 

and drug-inhibitor manifold from a single CyTOF experiment’. 
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Statistical methods 

Statistical tests were performed as detailed in the above subsections. Differences in group 

medians were assessed using a Mann-Whitney U-test. Benchmarking of prediction 

accuracy (point estimate) against a null distribution was performed using a permutation 

(i.e., randomization) test. All statistical comparisons were performed at a two-sided 

significance level of 0.05 unless otherwise stated. 

 

Data availability 

The mass cytometry data that support the findings of this study are available at 

https://community.cytobank.org/cytobank/projects/1296. Any additional data supporting 

the findings of this study are available upon request. 

 

Code availability 

PhEMD (“Phenotypic Earth Mover’s Distance”) takes as input a list of H matrices 

representing H	single-cell specimens. An R implementation of PhEMD is publically 

available as a Bioconductor R package (package name: ‘phemd’) and can alternatively be 

downloaded from https://github.com/KrishnaswamyLab/phemd. Note that the cell-state 

space for all analyses presented in this manuscript was modeled using the PHATE 

method. However, alternative approaches are viable, and we have provided support for 

PHATE (37), Monocle2 (33), and Louvain community detection (as implemented in the 

Seurat software package (62)) for this purpose in the R package. 
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All in vitro EMT drug-screen experiments including CyTOF profiling of cells were 

performed by collaborator Nevena Zivanovic (NZ) at the University of Zurich in the 

laboratory of Prof. Bernd Bodenmiller. Data quality assurance of these data was 

performed jointly by the author of this thesis (WSC) and NZ. WSC obtained the data for 

all other single-cell datasets as described above, wrote the software implementation of 

PhEMD, and performed all computational analyses presented. 
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RESULTS 

Overview of PhEMD 

PhEMD is a method for embedding a “manifold of manifolds,” i.e., sets of datapoints in 

which each datapoint itself represents a collection of points that comprise a manifold. In 

the setting of analyzing single-cell data, each datapoint in the “manifold of manifolds” 

represents an experimental condition (i.e., single-cell specimen), which is itself 

comprised of a heterogeneous mixture of cells that span a cell-state manifold. PhEMD 

first embeds each biospecimen as a manifold and then derives a pairwise distance 

between the manifolds. Deriving an “higher-level” embedding then involves using these 

pairwise specimen-to-specimen distances to find a coordinate system (i.e., axes of 

variability) such that each point represents a specimen, and the distance between the 

points represents the dissimilarity between specimens. PhEMD derives such an 

embedding using the following general steps (Figure 2): 

1. Compute a distance between each pair of datasets (i.e., experimental conditions) 

as follows: 

a) Embed points within each dataset using PHATE (37). 

b) Cluster datapoints using spectral clustering. 

c) Represent each dataset as a vector of relative cluster proportions. 

d) Compute the distance between two datasets using Earth Mover’s Distance 

(EMD). 

2. Take the distance matrix derived from the previous step and compute a diffusion 

map embedding of the data (34). 
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When specifically applied to single-cell data, PhEMD leverages PHATE and spectral 

clustering to define cell subtypes, EMD to compute pairwise distances between 

biospecimens (based on their cell subtype relative abundances), and the diffusion map 

approach to generate a final low-dimensional embedding of biospecimens. Pseudocode 

and additional details on the PhEMD algorithm can be found in Methods. 

 

Comparing specimens pairwise using Earth Mover’s Distance (EMD) 

A critical component of deriving the correct single-cell specimen embedding is 

computing accurate specimen-to-specimen distances. Two existing methods for doing so 

are cellAlign (43) and sc-UniFrac (44). However, both impose limiting assumptions or 

faced scalability issues that are addressed in our implementation of EMD. 

cellAlign was designed to compare two experimental conditions (i.e., two 

heterogeneous cell populations) by first modeling each condition as an unbranched 

trajectory of cells, then assigning a pseudotime value to each cell based on its ordinal 

position in the trajectory, and finally computing a distance between the two experimental 

conditions as the “cost” of aligning the two pseudotemporal trajectories. By nature of its 

implementation, cellAlign cannot be applied to cell populations sampled from branched 

cell-state trajectories, as it assumes cells with the same pseudotime value have identical 

gene expression profiles (an assumption violated in the setting of branched cell-state 

trajectories). Our implementation of EMD does not make such an assumption and is thus 

more flexible for analyzing datasets with branched cell-state trajectories. 

sc-UniFrac is a different method that was similarly designed to compare two 

single-cell experimental conditions but that faces scalability issues. Its memory 
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requirements exceed that of a standard laptop (2.5 GHz Intel Core i7 processor, 16 GB 

RAM) when attempting to compare experimental conditions containing collectively 

greater than 40,000 cells using default parameters. This prevents it from being useful for 

analyzing large multi-specimen datasets such as our drug-screen experiment spanning 

300 experimental conditions and over 1.7 million cells. In contrast to sc-UniFrac, which 

is unable to be run on a laptop to analyze a set of 40,000 cells from two or more 

experimental conditions, PhEMD can be successfully run on the same laptop to analyze a 

set of over 360,000 cells from 60 experimental conditions in under 10 minutes. In light of 

these memory-based limitations of sc-uniFrac, we compared the runtime of our 

implementation of EMD to sc-uniFrac using a smaller dataset consisting of 20 single-cell 

specimens each containing 500 cells sampled from a cell-state tree (“Synthetic Dataset 

A”). The cell-state tree was generated using the Splatter R package and was characterized 

by four branches sharing a single branch point. Our implementation of EMD correctly 

recovered the known cell-state space of the dataset (Figure 3A) and had faster empiric 

runtime than when analyzing datasets including more than 21,000 cells in total (Figure 

3B). 

 
Figure 3. a) PHATE embedding of the cell-state space of Synthetic Dataset A colored by cell-subtypes 
identified by PHATE. b) Runtime comparison between PHATE and sc-UniFrac applied to datasets of 
increasingly larger sample sizes. 
 

In sum, unlike cellAlign, which can only be applied to datasets in which all cells 
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across all specimens were mappable to a single unbranched trajectory (e.g., a simple 

differentiation process), our approach can be used to compare specimens comprised of 

cells sampled from an underlying cell-state manifold that is potentially branched. 

Compared to sc-UniFrac, our implementation of EMD is much more scalable, allowing 

for the efficient pairwise comparison of multiple specimens as is required to generate a 

final embedding containing many single-cell specimens.  

 

Evaluating accuracy of PhEMD in mapping multi-specimen, single-cell dataset with 

known ground-truth structure 

We first applied PhEMD to simulated single-cell data with known ground-truth structure 

to determine whether PhEMD could accurately model both the cellular heterogeneity 

within each specimen and the specimen-to-specimen heterogeneity based on cell subtype 

relative abundances. The simulated cells lay on a continuous branched trajectory, wherein 

progression along a branch represented concurrent changes in gene expression in select 

differentially expressed genes (69). The distribution of cell density across branches was 

varied between specimens to simulate a heterogeneous multi-specimen dataset. PhEMD 

correctly recovered the branched cell-state manifold structure using PHATE (Figure 4A-

B). The specimen-to-specimen EMD-based comparison and resulting PhEMD embedding 

were also found to be accurate (Figure 4C).  
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Figure 4. a) Ground-truth tree structure of the cell-state space of Synthetic Dataset B (see Methods for data 
parameters). b) PHATE embedding of the cell-state space of Synthetic Dataset B, colored by cell-subtypes 
identified by PHATE. Grey dotted line denotes major axis (comprised of cell subtypes C-1 through C-9) 
along which density is modulated for biospecimens A–I. c) Diffusion map embedding of biospecimens. 
Points colored black and labeled A–I represent samples that have density concentrated at various clusters 
along the trajectory from C-1 (“starting state”) and ending at C-9 (“terminal state”) highlighted in grey. The 
alphabetical ordering of samples from A–I correspond to increasing intra-sample relative proportions of 
starting state to terminal state points. Samples X and Y represent specimens with cells concentrated in 
clusters C-13 and C-14 respectively (i.e. highly similar cell subtypes), and Sample Z represents a specimen 
with cells concentrated in cluster C-11 (highly dissimilar to cell subtypes C-13 and C-14). d) Relative 
frequency histograms representing distribution of cells across different cell subtypes for selected samples 
forming a sub-trajectory in the biospecimen embedding. 
 

The accuracy of the final PhEMD biospecimen map was then assessed as follows. 

First, we examined the single-cell specimens in which a large number of cells were 

concentrated in a single branch. We found that specimens with cellular density 

concentrated in branches close to one another on the cell-state manifold (e.g. Samples X 

and Y) tended to map to regions close to one another on the biological-specimen 

manifold compared to specimens with cellular density concentrated in branches far from 
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one another on the cell-state manifold (e.g. Samples X and Z). Next, we examined 

Samples A–I: specimens in which cellular density was modulated so that Sample A had 

cells mostly in the arbitrary “starting” state of the manifold, Sample I had cells mostly in 

an arbitrary “terminal” state, and Specimens B through H had progressively fewer cells in 

the “starting” state and more cells in the “terminal” state. We found that in the final 

biospecimen embedding, Samples A–I appropriately formed a trajectory and were 

ordered based on their intra-specimen relative proportions of “starting state” to “terminal 

state” cells. Finally, we examined Samples J-Q: specimens in which point density was 

concentrated in intermediate branches diverging from the main trajectory of the cell-state 

manifold (i.e., cell subtypes C-11 and C-12). We found that PhEMD correctly mapped 

these specimens to distinct branches in the final single-cell specimen embedding and 

correctly ordered them in terms of increasing enrichment of the C-11 and C-12 cell types. 

Overall, this demonstrated that our approach accurately inferred both the cell-type 

frequencies in each specimen and the similarity between cell subtypes.  

 

Assessing the differing effects of selected drug perturbations on EMT in breast 

cancer 

To study key regulators of epithelial-to-mesenchymal transition (EMT) in breast cancer, 

we performed a drug screen consisting of 300 inhibition and control conditions, 

collectively inhibiting over 100 unique protein targets in murine breast cancer cells 

undergoing TGFβ1-induced EMT (Figure 5, Table S1). These specimens collectively 

contained over 1.7 million cells measured in a total of five mass cytometry runs. Time-of-

flight mass cytometry (CyTOF) was used on day 5 of cell culture to measure the 
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concurrent expression of 31 protein markers in each cell (Table S2), and PhEMD was 

used to model both the cell-state transition process and the perturbation-effect manifold. 

Batch correction was performed using canonical correlation analysis (CCA) prior to 

modeling the cell-state and single-cell specimen embeddings in order to analyze all 

experimental conditions across all plates simultaneously. 

Figure 5. Experimental design for measuring perturbation effects of small molecule inhibitors on TGFβ1-
induced EMT. 
 

Batch effect correction in multi-run EMT experiment 

Batch effect is a well-known problem when comparing data from multiple single-cell 

RNA-sequencing (62, 70) or CyTOF (71, 72) experiments. Because of this, single-cell 

specimens are ideally processed and measured in a single batch. However, comparing 

specimens across experimental runs is still of great interest. In some cases, the sheer 

number of specimens makes simultaneous processing impossible. In other cases, the 

experimental design (e.g. time-series analysis) precludes sample processing on the same 

plate or gene profiling of all specimens simultaneously. In order to enable these sorts of 
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experiments, a number of methods have been recently published that correct for batch 

effect. We chose canonical correlation analysis (CCA), a new feature of the popular 

Seurat package, as our batch correction tool and demonstrated that PhEMD can leverage 

existing batch correction methods to compare hundreds of specimens from five 

experimental runs. 

To assess the presence of batch effect in our multi-plate experiment prior to batch 

effect normalization, we performed t-SNE dimensionality reduction on an equal, random 

subsample of cells from each batch (Figure 6). Since each batch used the same Py2T 

breast cancer cell line and contained a relatively similar mix of inhibition and control 

conditions, batches were expected to have more shared than non-shared cell subtypes. If 

true, this phenomenon would appear as extensive inter-plate mixing in most regions of 

the t-SNE cell state space. This is because most sources of variation in the data were 

expected to be attributable not to the plate on which specimens were cultured or CyTOF 

run in which specimens were measured, but instead to specimen-specific biology. 

Visualizing the t-SNE embedding and coloring cells by their original batch (Figure 6A), 

we noticed poor inter-plate mixing. This indicated that batch effect was present in the 

unnormalized data. 
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Figure 6. t-SNE embedding of cells from multiple CyTOF runs based on gene expression data a) pre- and 
b) post-CCA batch correction, with individual cells colored by experimental batch. 

 
We then applied CCA to the expression measurements and ran t-SNE on the 

batch-corrected data (Figure 6B). Reassuringly, we noticed that there was strong inter-

plate mixing when coloring cells in the t-SNE embedding by their original plate. This 

suggests that CCA effectively corrected for the technical sources of variation that 

appeared to be dominating the initial t-SNE embedding based on un-normalized 

expression data (Figure 6A). To assess whether batch effect correction not only removed 

technical sources of variation but also performed accurate data alignment, we examined 

the control conditions present on each plate. Two sets of identical control conditions were 

included on each plate: one set consisted of Py2T epithelial cells cultured with neither 

TGF-b1 nor drug inhibitor (“untreated controls”), and the other set consisted of Py2T 

cells stimulated with TGF-b1 and given no drug inhibitor (“uninhibited controls”). In our 

final clustering of specimens, we found that all of the untreated controls from all 5 plates 

clustered together and consisted almost entirely of the same epithelial cell population. 

Similarly, all of the uninhibited controls from all 5 plates clustered together and consisted 
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predominantly of late-transitional and mesenchymal cells. Moreover, inhibitors targeting 

the same molecular target tended to group together, irrespective of batch (e.g. Clusters D, 

E, F). These findings suggest that CCA accurately aligned the expression data.  

Cell-subtype definition via manifold clustering  

By design, all cells undergoing EMT were derived from the same homogeneous epithelial 

cell population. Thus, a continuous manifold with potentially branched structure (as 

modeled by PHATE) was ideal to model the cell-state space. Applied to the batch-

corrected expression data, and PHATE identified nine cell subtypes across all 

unperturbed and perturbed EMT conditions (Figure 7A-B).  
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Figure 7. a) PHATE embedding of cells from all 300 experimental conditions, colored by cell subtype. b) 
Heatmap representing log2 protein expression levels for each cell subpopulation representing its respective 
cell subtype. c) Diffusion map embedding of control and drug-inhibited conditions, colored by clusters 
determined by hierarchical clustering. d) Individual inhibitors assigned to each inhibitor group. Histograms 
represent bin-wise mean of relative frequency of each cell subtype for all inhibitors in a given group. The 
full list of inhibitors in each group can be found in Table S3.	
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C-1 was characterized by the following expression pattern: E-cadherin(hi) b-

catenin(hi) CD24(hi) vimentin(lo) CD44(lo). C-5 and C-6 had roughly the opposite expression 

profile with respect to the markers described above (Figure 7B). E-cadherin is the 

hallmark cell adhesion marker of epithelial cells (73), and vimentin and CD44 are known 

mesenchymal markers involved in cell migration (73–76). Moreover, recent studies found 

high CD44:CD24 expression to be indicative of breast cancer cell invasiveness and an as 

an EMT endpoint, suggestive of mesenchymal properties (77–79). C-3 was characterized 

by low-intermediate expression of both E-cadherin and vimentin, and C-4 was 

characterized by cells with intermediate levels of E-cadherin and vimentin and increased 

expression of p-MEK1/2, p-ERK1/2, p-p38-MAPK, p-GSK-3, and p-NFkB-p65. These 

subtypes were consistent with the “hybrid” cancer cells that co-express epithelial and 

mesenchymal markers (E+/M+) and simultaneously demonstrate both epithelial and 

mesenchymal properties (80–82). Altogether, the subtypes identified by PHATE are 

consistent with known epithelial, mesenchymal, and “hybrid” EMT cell phenotypes, and 

the trajectory defined by subtypes C-1 through C-6 in our model represent the epithelial-

to-mesenchymal transition process that one would expect to recover in our dataset. 

In addition to modeling the main EMT trajectory, the PHATE cell-state 

embedding identified additional cell subtypes mapped to regions of the cell-state 

manifold off of the main EMT axis. C-7 and C-8 were mapped close to the C-6 

mesenchymal subtype. C-7 was characterized by high expression of vimentin, CD44, 

cyclin B1, and pRb, and C-8 was characterized by high expression of vimentin, CD44, 

and phospho-S6. C-9 demonstrated high E-cadherin and cleaved caspase-3 expression 

and was consistent with an epithelial subpopulation undergoing apoptosis. By analyzing 
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our single-cell data with PHATE, which applied no prior assumptions on the intrinsic 

geometry of the cell-state embedding, we were able to uncover a more complex, 

continuous model of EMT than has been previously reported.  

Constructing and clustering the EMD-based drug-inhibitor manifold 

After modeling the EMT cell-state space with PHATE, PhEMD mapped the experimental 

variable (i.e., multicellular biospecimen) state space as a low-dimensional embedding 

(Figure 7C). Hierarchical clustering revealed clusters of inhibitors with similar net effects 

on EMT. Moreover, “uninhibited” controls (TGF-b1 applied in absence of any inhibitor) 

and “untreated” controls (neither TGF-b1 nor inhibitor applied) were included to 

distinguish inhibitors with notable effects on EMT. 

The final embedding of drug inhibitors highlighted the variable extent of EMT 

that had occurred in the different inhibition conditions (Figure 7C-D). This diffusion map 

embedding was low-dimensional with an intrinsic dimensionality of 2.4 (Figure 8), 

implying relatively few axes of variation that could be appropriately visualized in three 

dimensions.  
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Figure 8. Intrinsic dimension of the PhEMD embedding comprised of 300-sample multi-batch EMT 
inhibition and control conditions, computed using the maximum likelihood estimation (MLE) approach 
over a range of “k” (k-nearest-neighbors parameter) values. 
 

Fourteen inhibitor clusters (Clusters A-N) were identified (Table S3). Cluster A included 

the untreated controls and the TGFβ1-receptor inhibitor condition, each of which 

consisted almost entirely of epithelial cells (C-1). These were experimental conditions in 

which EMT was effectively not induced. On the other hand, Cluster I included all 

uninhibited control conditions and inhibitors ineffective at modulating EMT; inhibitors in 

this cluster were found to have mostly mesenchymal (C-6) cells. Clusters B through H 

included inhibitors that had generally decreasing strength with respect to halting EMT 

(Figure 7C-D). The inhibitors in Clusters J and K formed a prominent trajectory off the 

main EMT-extent trajectory in the inhibitor embedding (Figure 7C). Clusters J and K 

were enriched in cell subtype C-8, with Cluster K inhibitors inducing cell populations 

that were almost entirely comprised of C-8 cells. 
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All of the Cluster K inhibitors targeted PI3K, Akt, or mTOR protein kinases – 

three members of a well-characterized pathway. Compared to the predominant 

mesenchymal subtype observed in the uninhibited controls (C-6), C-8 was comprised of 

cells with similarly high expression of vimentin and CD44 and markedly higher 

expression of phospho-S6 (Figure 7). This expression profile was consistent with an 

alternative-mesenchymal EMT subtype. Examining the cell yield of these inhibitors 

compared to the respective uninhibited control conditions in their respective batches, we 

found that the cell yield of the Cluster K inhibitors was on average 60% lower than the 

TGFβ1-only controls (Table S4). Based on these findings and a prior report that high 

expression of phospho-S6 was associated with resistance to PI3K inhibitors (83), the C-8 

subtype is likely a mesenchymal cell population relatively resistant to inhibition of the 

PI3K-Akt-mTOR axis. 

In general, small molecule inhibitors that had the same molecular target tended to 

cluster together, consistent with the intuitive notion that drugs with similar mechanisms 

of action likely have similar net effects on a given cell population (e.g. Cluster C, Cluster 

G). However, several inhibitors with the same reported primary target generated different 

resulting single-cell profiles and were clustered into different inhibitor clusters. This 

phenomenon may be due to differences in inhibitor potency and differences in off-target 

effects. 

 

Analyzing EMT perturbations measured in a single CyTOF run 

An analysis of a subset of 60 inhibition and control conditions measured in the same 

mass cytometry run (and hence not requiring batch normalization) was performed to 
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assess whether applying PhEMD to batch-normalized and single-batch expression data 

would yield consistent results. Three replicates involving independent cell culture 

experiments measured in distinct mass cytometry runs were analyzed to demonstrate 

reproducibility of results. 

Cell subtype definition via manifold clustering  

Our model of the cell-state space identified eight unique cell subtypes across all 

unperturbed and perturbed EMT specimens (Figure 9A-B). These included the starting 

epithelial subtype (C-1), main mesenchymal subtype (C-5), and transitional subtypes on 

the major EMT-axis (C-2 through C-4). C-1 was characterized by the following 

expression pattern: E-cadherin(hi) β-catenin(hi) CD24(hi) vimentin(lo) CD44(lo). C-4 and C-5 

had roughly the opposite expression profile with respect to the markers described above 

(Figure 9). C-6 through C-8 had expression profiles consistent with C-7 through C-9 in 

our multi-batch experiment (Figure 7B, Figure 9B). Altogether, the cell subtypes 

recovered in the single-batch and batch-normalized experiments were consistent with one 

another and with known EMT cell subtypes. 
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Figure 9. a) PHATE embedding of cells from all conditions of a single CyTOF run representing perturbed 
EMT cell state landscape, colored by cell subtype determined using spectral clustering. b) Heatmap of 
mean log2 protein expression levels for each subpopulation of cells representing a distinct cell subtype. c) 
Embedding of drug inhibitors, colored by clusters assigned by hierarchical clustering. d) Individual 
inhibitors assigned to each inhibitor group. Histograms represent bin-wise mean of relative frequency of 
each cell subtype for all inhibitors in a given group. The full list of inhibitors in each group can be found in 
Table S5. 
 

Note that in order to construct the cell-state manifold more efficiently, it was 

beneficial to generate the reference cell-state embedding on a subsample of all cells 

across all single-cell samples (and then to map unembedded cells to cell subtypes using a 

nearest-neighbor approach). For the analysis of our EMT dataset, we chose to subsample 

200 cells from each experimental condition. To assess whether this subsampling 

procedure had adverse effects on recovering accurate sample-to-sample distances, we 

first performed such a process on Synthetic Dataset A. We found that the sample-to-

sample distances were accurate (Pearson ρ > 99% between computed and ground-truth 

distances) when subsampling 200 cells from each sample, even when the 200 cells 

comprised as little as 1% of all cells in each sample. We then assessed whether the 
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subsampling procedure introduced variability into the sample-to-sample distances 

computed on our EMT dataset by comparing the correlation of results from 20 different 

random subsamples applied to the same EMT dataset. We found that the correlation 

between sample-to-sample distances across any two runs was greater than 98%. 

Altogether, these results demonstrated that 200 cells were an adequate subsampling size 

to yield stable results and that PhEMD was robust to different cell subsamplings.  

Constructing and clustering the EMD-based drug-inhibitor manifold 

After modeling the EMT cell-state space with PHATE, we used PhEMD to map the 

experimental variable (i.e., single-cell specimen) state space as a low-dimensional 

embedding. Specifically, EMD was computed pairwise between specimens based on cell 

subpopulational differences among samples, and these specimen-to-specimen distances 

(i.e., measures of dissimilarity) were used to generate a final low-dimensional diffusion 

map in which specimens mapped closer to one another represented samples with more 

similar cell subtype relative abundances (Figure 9C). The embedding of drug inhibitors 

constructed as described above was then partitioned by applying hierarchical clustering to 

the network of inhibitors. Note that the hierarchical clustering was performed on the 

EMD-based sample-to-sample distance matrix prior to applying diffusion map 

dimensionality reduction. Hierarchical clustering revealed clusters of inhibitors with 

similar net effects on EMT; inhibitors assigned to the same cluster were assumed to have 

similar effects on EMT. Moreover, by including “uninhibited” controls (samples in which 

TGF-b1 was applied to induce EMT in absence of any inhibitor) and “untreated” controls 

(samples in which neither TGF-b1 nor inhibitor was applied and no EMT was induced) in 

our experiment, we were able to identify inhibitors with notable effects on EMT. Those 
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inhibition conditions that clustered with uninhibited controls likely had little to no effect 

on EMT, whereas those that clustered with untreated controls halted EMT strongly and 

likely at an early stage. 

The final embedding of drug inhibitors revealed a manifold structure that 

highlighted the variable extent of EMT that had occurred in the different inhibition 

conditions (Figure 9C-D). Partitioning the embedding into nine clusters (Clusters A-I, 

Table S5), we found that Cluster A included the untreated controls and the TGFβ1-

receptor inhibitor condition, each of which consisted almost entirely of epithelial cells. 

These were the experimental conditions in which EMT was actually or effectively not 

induced. On the other hand, Cluster H included all five uninhibited control conditions and 

inhibitors ineffective at modulating EMT; inhibitors in this cluster were found to have 

mostly mesenchymal cells. Clusters B through G included inhibitors that had generally 

decreasing strength with respect to halting EMT (Figure 9C-D). The EGFR and MEK1/2 

inhibitors in Clusters B and C strongly inhibited EMT, as indicated by a marked 

predominance of epithelial cells at time of CyTOF measurement. Cluster G mostly 

consisted of Aurora kinase inhibitors and was characterized by a mixture of epithelial, 

transitional, and mesenchymal cells with a relatively high proportion of C-4 cells 

(consistent with the E+/M+ “hybrid” EMT phenotype).  

The three inhibitors in Cluster I formed a small branch off the main EMT-extent 

trajectory in the inhibitor embedding (Figure 9C). These three inhibitors targeted PI3K 

and mTOR and each demonstrated a cell profile characterized by a relatively high 

proportion of C-6 cells. Examining these results alongside measurements of cell yield in 

each inhibition condition (Table S4), we attributed the relatively greater proportion of C-
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4 cells in the setting of Aurora kinase inhibition and of C-6 cells in the setting of 

PI3K/mTOR inhibition to preferential drug-induced death of other cell types. C-4 and C-

6 cells were not uniquely generated by these inhibition conditions, as they were observed 

in other samples including the uninhibited EMT control conditions (Figure 9C), but 

appeared to have increased cell viability relative to other EMT cell types, especially in 

the setting of targeted kinase inhibition (Table S4). Note that these findings were 

consistent with those of the multi-batch experiment performed on batch-normalized data. 

Altogether, consistent results were observed across all single-batch and multi-batch 

analyses with respect to the resulting cell-state and higher-level biospecimen embeddings, 

demonstrating PhEMD’s reproducibility and robustness to batch-normalized data (Figure 

7, Figure 9–10). 
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Figure 10. a) Cell subtype expression patterns and cell-state embeddings for three independent 
experimental replicates. b) PhEMD biospecimen embeddings and inhibitor clusters for three independent 
experimental replicates. The full list of inhibitors in each group can be found in Table S5. 

 
Imputing the effects of inhibitors based on a small measured dictionary 

In our model breast cancer system, we were able to use PhEMD to assess the effects of a 

large panel of inhibitors on TGFβ1-induced EMT. We found that these inhibitors could be 

grouped into clusters based on the similarity of their effects and embedded in low 

dimension (with an intrinsic dimensionality of 2.4) to highlight complex, non-linear 

relationships between samples. Visualizing this embedding of inhibition conditions in 3D, 

we found that samples were distributed with varying density along a branched, 

continuous manifold. For example, the embedding space containing Cluster H inhibitors 

was characterized by high point density, while the embedding space containing Cluster B 

points was more sparsely populated (Figure 7C). We also noted that clusters often 

contained multiple inhibitors that targeted the same protein kinases. These findings 

suggested that we may have been able to capture the geometry of the drug-inhibition state 

space without measuring every single inhibition condition. If true, this finding would 

have implications for potentially reducing the cost of conducting single-cell drug-screen 

experiments, as it would suggest that only a small fraction of all inhibitors may need to 

be experimentally tested using expensive single-cell profiling techniques to assess the 

efficacy of a drug. 

To test this hypothesis, we applied a previously published sampling technique to 

our PhEMD embedding (65). The sampling technique used incompletely pivoted QR 

decomposition to identify “landmark points” (inhibition or control conditions) that 

approximately spanned the subspace of the single-cell sample embedding. Using this 
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approach, we identified 34 landmark points that summarized our EMT perturbation state 

space (Figure 11A). The 34 landmark points included samples from all 14 of Clusters A-

N, suggesting they spanned all classes of experimental conditions in our experiment. To 

more fully assess whether the landmark points adequately captured the perturbation 

landscape of our full 300-sample experiment, we applied an accompanying out-of-sample 

extension technique to infer the embedding coordinates of all 300 samples relative to 

these 34 landmark points. The resulting embedding had a similar geometry to that of our 

original 300-sample PhEMD embedding, suggesting that the 34 landmark points were 

sufficient to capture the overall network structure of all 300 measured experimental 

conditions (Figure 7C, Figure 11B). Comparing the pairwise sample–sample distances of 

all 300 samples in the 34-dimensional landmark-point space to the experimentally 

computed EMD sample–sample distances, we found that there was strong correlation 

between these distances (ρ=0.92). These findings supported the notion that redundancies 

may exist in a drug screen experiment, and that one may not need to measure an 

exhaustive set of perturbation conditions in order to infer the effects of all perturbations. 

This highlights a potential opportunity for reducing the cost and improving the feasibility 

of future single-cell drug-screen experiments. Based on our findings, only a small 

fraction (11%) of all inhibitors may need to be experimentally measured using expensive 

single-cell profiling techniques to learn the full spectrum of perturbation effects. 
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Figure 11. a) Diffusion map embedding of 300-specimen EMT experiment, plotting only the 34 landmark 
points identified using a previously published diffusion map sampling technique (see Methods). Points are 
colored based on cluster assignments as determined based on original clustering of all 300 samples (see 
Figure 7C). b) Reconstructed diffusion map embedding, generated by starting with the 34 landmark points 
and using a previously published out-of-sample extension technique to infer the embedding coordinates of 
all 300 samples relative to these 34 landmark points (see Methods). 
 

Validating the PhEMD embedding using external information on similarities 

between small-molecule inhibitors 

We sought to validate our PhEMD drug-screen embedding by comparing the drug-drug 

similarities learned from our experiment (in the context of effects on EMT) to drug-drug 

similarities based on known drug-target binding specificities from a prior 

experiment (66). Since the prior experiment and ours measured an overlapping set of 

inhibitors, they could be conceptualized as two complementary “views” of the same 

shared inhibitors. We hypothesized that for the inhibitors shared between the two 

experiments, one view of the data might inform the other. Intuitively, this would support 

the notion that drugs with more similar protein targets action may tend to have more 

similar effects on EMT (and vice versa). Our approach to assessing this hypothesis was 

twofold: 1) We used a measure of inhibitor–inhibitor similarity, derived from the drug-

target specificity data, to extend our PhEMD embedding and predict the effects of 

unmeasured inhibitors on our model EMT system, and 2) We used our PhEMD 

embedding to predict the drug-target specificity of inhibitors shared between the two 

drug-screen experiments. 

Predicting the effects of three selected inhibitors on breast cancer EMT relatively to the 

effects of measured inhibitors based on known drug-target binding specificities 

For the first task, we sought to evaluate whether we could leverage known information on 

the mechanistic similarity between our inhibitors and additional inhibitors not measured 
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in our experiment to predict the effects of these additional inhibitors on EMT. We 

selected saracatinib, ibrutinib, and dasatinib as three nonspecific Src inhibitors whose 

effects on EMT we wanted to predict. First, we generated a PhEMD embedding based on 

our CyTOF experimental results (not including the three selected inhibitors). Then, we 

obtained drug-target specificity data from a recently published inhibitor-profiling 

experiment for inhibitors that overlapped between our experiment and the recently 

published one (including the 3 Src inhibitors of interest). We used the drug-target 

specificity data to compute pairwise cosine similarities between each of the 3 Src 

inhibitors and the samples in our initial PhEMD diffusion map embedding (that did not 

include the 3 inhibitors). These pairwise similarities were used to perform Nystrom 

extension—a method of extending a diffusion map embedding to include new points 

based on partial affinity to existing points (84–86). In this way, we were able to predict 

the effects of the three Src inhibitors on breast cancer EMT relatively to inhibitors with 

known, measured effects (Methods). 

To validate our extended embedding containing predicted Src inhibitor effects, we 

compared it to a “ground-truth” diffusion map embedding that used known (measured) 

CyTOF expression data for the 3 inhibitors and explicitly included the 3 inhibitors along 

with the rest in the initial embedding construction. Benchmarking our predictions against 

this ground-truth model, we found that our predictive model mapped the three inhibitors 

to the correct phenotypic space (Figure 12A-B). Specifically, saracatinib and ibrutinib 

were predicted to have an effect intermediate to those of specific MEK and EGFR 

inhibitors, and dasatinib was predicted to halt EMT less strongly than the other two Src 

inhibitors. These findings are consistent with ground-truth results based on direct CyTOF 
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profiling and PhEMD-modeling of the three inhibitors (Figure 12B; Methods). 

 
Figure 12. a) Nystrom extension embedding showing predicted effect of 3 selected inhibitors (dasatinib, 
ibrutinib, saracatinib) on EMT relatively to other measured inhibitors. b) PhEMD diffusion map embedding 
showing measured effects of 3 selected inhibitors on EMT. c) Histogram showing distribution of prediction 
error for null model (n=1000 independent permutations). Dotted red line represents prediction error for 
actual prediction (i.e., alternative model). P-values were computed using a one-sided permutation test. 
 

Imputing the single-cell phenotypes of three unmeasured inhibitors based on drug-target 

similarity to measured inhibitors 

We also hypothesized that we could use drug-target information to not only relate 

unmeasured inhibitors to measured ones but also impute their single-cell compositions. 

To test this, we used the Nystrom-extended PhEMD embedding as input into a partial 

least squares regression model. We used this model to impute the cell subtype relative 

frequencies for the three unmeasured (imputed) Src inhibitors (Methods). As validation, 

we compared the predicted cell subtype relative frequencies to ground-truth CyTOF 

results (i.e., actual single-cell measurements) for the three inhibitors. PhEMD accurately 
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predicted the cell subtype relative frequencies for the three inhibitors compared to the 

null model (P=0.01, P=0.01, P=0.03; Figure 12C).  

To assess more generally whether PhEMD could be integrated with 

complementary data to accurately predict perturbation effects, we performed leave-out-

out cross validation on all 39 inhibitors in our CyTOF experiment with known drug-target 

specificity data (Methods). We found that single-cell profile predictions leveraging our 

imputed PhEMD embedding were significantly more accurate than a null model 

(P=0.005). Altogether, these findings suggested that PhEMD offered information that 

could be integrated with additional data sources and data types to support not only 

comparison of biospecimens directly measured but also prediction of single-cell 

phenotypes for additional, unmeasured specimens. 

Predicting drug-target binding specificities based on PhEMD results from EMT 

perturbation experiment 

We found that knowledge of drug-target binding specificity could be used to predict 

inhibitor effects in our model EMT system. We then sought to assess whether the reverse 

was true – whether the learned relationships between inhibitors from our EMT 

perturbation experiment could be used to predict drug-target binding specificities. For 

this prediction task, we used the 39 inhibitors that were present in both the drug-target 

profiling experiment and ours, and that had at least 1 protein target identified by their 

experiment. We then computed leave-one-out predictions using the MAGIC imputation 

algorithm (67) and results from our EMT perturbation screen experiment to predict the 

drug-target binding specificities of each inhibitor. Prediction accuracy was defined as the 

correlation between predicted and measured drug-target binding specificities for a given 
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drug. Our predictive model that incorporated PhEMD results into the prediction was 

significantly more accurate than the null model (P=6.57x10-5; Figure 13). This suggested 

that while the two experiments measured two distinct sets of inhibitor features, the 

inhibitor–inhibitor relationships learned from both experiments were consistent.  

 
Figure 13. a) Probability density functions representing distribution of Pearson correlations between 
predicted and known drug-target binding specificity profiles. The null (n=39,000 predictions from 1,000 
independent permutations) vs. alternative (n=39 predictions) models demonstrated median correlation-
based accuracy of 0.02 vs. 0.25, P=8.2*10-6. Statistical testing was performed using a one-sided Mann-
Whitney U-test. b) Pearson correlation-based prediction accuracy of null (n=1,000 permutations per 
inhibitor) vs. alternative (one prediction per inhibitor) models for predicting the drug-target binding 
specificity of each inhibitor. Given multiple null-model predictions for each inhibitor, the y-axis represents 
mean prediction accuracy of all predictions for a given inhibitor. See Methods for detailed properties of the 
null and alternative models. 
 
 

PhEMD highlights manifold structure of tumor specimens measured using CyTOF 

and single-cell RNA-sequencing 

To demonstrate an additional application of the PhEMD analytical approach, we 

used PhEMD to characterize the specimen-to-specimen heterogeneity in immune cell 

profiles of multiple tumor specimens. We first applied PhEMD to a single-cell RNA-

sequencing dataset consisting of the “healthy” (non-malignant) cells of 17 melanoma 

biopsies. The cell-state embedding identified a total of 10 cell subtypes with gene 
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expression profiles consistent with previously reported subpopulations of B cells, T cells, 

endothelial cells, epithelial cells, NK cells, and monocytes (Figure 14A-B) (12). Cell 

subtypes C-1 and C-2 both represented CD8+ T cells. C-1 demonstrated high expression 

of TIGIT, CTLA4, and LAG3 and was consistent with a T-cell exhaustion profile (87). C-

3 was comprised of CD4+ T cells. C-6 and C-7 represented CD19+ BLK+ B cells with 

differences in the expression of SELL and CCR7. C-8 represented CD14+ monocytes 

(88), C-9 represented PECAM1+ vWF+ CDH5+ endothelial cells, and C-10 represented 

epithelial cells with high collagen expression. 
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Figure 14. PhEMD applied to scRNA-sequencing data of 17 melanoma samples (non-tumor cells only) 
highlights heterogeneous immune response amongst different patients. a) PHATE cell state embedding 
colored by cell subtype. b) Heatmap showing mean RNA expression values of each cluster, colored by a 
log2 scale. c) Diffusion map embedding of samples (colored by group assignment) revealing multiple 
trajectories that represent increasing relative frequency of selected cell populations. d) Summary 
histograms, each representing the bin-wise mean relative frequency of cell subtypes for all samples 
assigned to a given group. The sample IDs (as assigned in the original dataset published by Tirosh et al. 
(12)) of all samples in each inhibitor group can be found in Table S6.  

 
When comparing and mapping patient specimens, PhEMD identified the 

specimen ‘Mel75’ as having a unique immune cell profile characterized by the greatest 

proportion of exhausted CD8+ T-cells. These cell-state and tumor-comparison findings 

corroborated previously published results on the immune cell subtypes and inter-
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specimen heterogeneity present in this cohort (12). In addition to confirming prior 

findings, this analysis yielded an embedding that revealed the manifold structure of the 

single-cell specimen state space. With respect to a reference group of biospecimens 

(Cluster D) that were comprised mostly of CD4+ T-cells and were mapped to one part of 

the manifold, three axes of variation emerged that corresponded to increasing relative 

proportions of B-cells (C-5, C-6), macrophages (C-7), and exhausted CD8+ T-cells (C-1) 

(Figure 14C-D, Table S6). While it was well-understood that a set of individual cells, 

such as those undergoing differentiation, may demonstrate manifold structure (56, 89), 

our PhEMD embedding suggested that a set of patients with a shared phenotype (e.g., 

melanoma) may also lie on a continuous manifold (90). 

To further explore this concept, we applied PhEMD to a mass cytometry dataset 

containing the T-cell infiltrates of 75 clear cell renal cell carcinoma (ccRCC) 

specimens (13). At the cellular level, our analysis recapitulated previous findings of 

important T-cell subpopulations present (13). Cell subtype C-1 represented cells with 

absent or low expression of both CD4 and CD8. C-2 through C-4 represented CD4+ T-

cells with increasing expression of CD4, CD7, CCR7 and FOXP3, consistent with a 

regulatory T-cell profile. C-5 represented CD4+ T-cells with high Ki-67, a well-known 

proliferative marker. C-8 represented CD8+ cells with high expression of CD11b and 

CD45RA.The trajectory from C-6 to C-7 to C-9 to C-10 represented CD8+ T-cells with 

increasing expression of CD8, CD38, CD86, Ki-67, Tim-3, and PD-1. C-9 and C-10 cells 

demonstrated the highest expression of the above markers, consistent with a T-cell 

exhaustion profile (Figure 15A-B) (87). 



 68 

 
Figure 15. PhEMD applied to mass cytometry data of 75 ccRCC samples gated for T-cells. a) PHATE 
embedding of T-cell manifold colored by cell subtype. b) Heatmap showing mean protein expression values 
of each cell subtype cluster, colored by a log2 scale. c) Diffusion map embedding of all tumors colored by 
tumor subgroup, defined by hierarchical clustering. The main axes of inter-sample variability are 
highlighted as dotted-black trajectories. d) Summary histograms, each representing the bin-wise mean 
relative frequency of cell subtypes for all samples assigned to a given group. The sample IDs (as assigned 
in the original publication of these data (13)) of all samples in each inhibitor group can be found in Table 
S7. 

We then modeled the diversity in immune cell signatures as a tumor-specimen 

embedding that could be used to characterize specimen-to-specimen variation (Figure 

15C). A group of tumor specimens (Cluster B) mapping to one end of the PhEMD 

embedding was characterized by a marked predominance of CD4+ T-cells (C-2, C-3), and 

progression toward the other end of the tumor-space manifold represented a relative 

decrease in CD4+ T-cells and marked relative increase in CD8+ PD1+ exhausted T-cells 

(C-9, C-10) (Figure 15C, Table S7). This finding was supported by the initial report of 
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substantial inter-patient variability in T-cell profiles especially related to CD8+ cells (13). 

The detection of a subset of patients with exhausted T-cell enrichment may be of 

particular clinical interest, as immunotherapy agents that combat T-cell exhaustion have 

become a mainstay of advanced-stage ccRCC treatment, but patients continue to have 

highly variable treatment responses (91, 92). Future single-cell tumor-profiling 

experiments assessing treatment response may be able to use PhEMD as a tool to identify 

subgroups of patients that might especially benefit from PD-1 or PD-L1 inhibitor 

immunotherapy. 

 

DISCUSSION 

Here, we have demonstrated the successful mapping of single-cell experimental 

conditions using our proposed PhEMD embedding technique. We extensively studied the 

Py2T murine breast cancer cell line treated with TGF-b1 and perturbed with over 200 

kinase inhibitors, measured using mass cytometry. In this experiment, PhEMD revealed 

the structure of the kinase inhibitor space based on each drug’s effect on the Py2T cell 

populations undergoing EMT. The final embedding of inhibitors was found to have low-

dimensional structure, with drugs mapping to one of three main axes. We have shown 

that the embedding produced by PhEMD is useful in several ways: 

1. Visualizing the experimental variable (i.e., single-cell specimen) state space. 

2. Identifying clusters of similar experimental variable settings (e.g., similar drugs 

with respect to their measured effects on a given cell population). 

3. Characterizing axes of variability among specimens in terms of biologically-
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interpretable differences in the types and abundances of cell subpopulations 

present. 

4. Extending the experimental variable state space through inference of unmeasured 

experimental settings based on similarity to existing (measured) settings. 

PhEMD can enable a new paradigm of searching for effective therapeutic agents by 

identifying a small subset drugs that collectively capture the network geometry of a larger 

drug set. We demonstrated this application by computing a dictionary of 34 experimental 

conditions and showing that these experimental conditions were sufficient to capture the 

network geometry of the 300-specimen state space. This finding has the potential to 

reduce experimental burden in future drug discovery efforts. For example, one can first 

apply PhEMD to measurements obtained using one profiling technique (e.g., mass 

cytometry) to identify a small set of dictionary specimens from a large set of candidates 

and then investigate this smaller set further using complementary technologies that may 

be more limited in scale (e.g., single-cell RNA sequencing). 

The PhEMD embedding can be integrated with additional data sources and data 

types for even larger and richer analyses. By using drug-target specificity data from a 

complementary inhibitor profiling experiment along with data imputation approaches, we 

were able to accurately predict the effects of inhibitors not directly measured in our 

experiment on TGFβ1-induced breast cancer EMT. This approach is useful for analyzing 

drug-screen experiments, as it enables an initial mapping of a modest set of drugs (e.g., 

dictionary points) measured with single-cell resolution to be extended to include 

additional drugs. This application is not limited to perturbation screen data and can be 

useful for imputing the phenotypes of specimens (of any type) that are not directly 
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measured using single-cell profiling. For example, examining a cohort of patients in 

which only some patients were biopsied and genomically profiled, one could potentially 

incorporate a non-genomic based measure of patient–to-patient similarity (e.g., based on 

clinicopathologic features) to predict the single cell-based phenotypes of all patients in 

the cohort. 

We explored the applicability of PhEMD to other experimental designs besides 

drug screens by applying it to single-cell data from two clinical tumor-biopsy cohorts. 

These analyses revealed that PhEMD can uncover manifold structure in the tumor-

specimen space that is biologically meaningful based on the observed proportions of the 

specimens’ cell subpopulations. When applied to the melanoma and ccRCC datasets, 

PhEMD revealed “trajectories” of patients, with the most notable axis in both datasets 

consisting of patients with an increasing proportion of exhausted CD8+ T-cells. It is 

possible that the abundance of tumor-infiltrating, exhausted T-cells may predict response 

to immunotherapy, although additional studies are needed to assess this. The PhEMD 

method may be useful for developing personalized cancer treatment regimens involving 

immunotherapy. 

This study is not without limitations. Our approach specifically compares cell 

subtype relative abundances among biospecimens, which entails normalizing each 

biospecimen by its total cell count. In this setting, since relative abundances by definition 

sum to one for each biospecimen, the Earth Mover’s Distance is a true metric and is 

robust across all pairwise comparisons of biospecimens. Comparing cell subtype relative 

abundances rather than absolute abundances is also often preferable from a biological 

perspective, as biospecimens (e.g., biopsy samples) may demonstrate variation in cell 
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yield that is a technical artifact of little biological interest. Nevertheless, there exist 

experimental scenarios in which cell yield is of biological importance. In future work, we 

aim to incorporate cell yield into specimen-to-specimen comparisons and into the final 

biospecimen embedding. Another area of active investigation is exploring alternative 

methods of embedding the cell-subtype and biospecimen-state space. In the presented 

experiments, PHATE was used to model the cell-subtype space and diffusion maps were 

used to generate the biospecimen-state space. Future work may assess the utility of other 

methods that are potentially applicable for these tasks. 

In the present study, PhEMD was used to characterize mass cytometry and single-

cell RNA-sequencing data, though PhEMD may be applied to data generated by other 

single-cell profiling platforms as well. Many experimental designs may benefit from 

PhEMD—for example, comparisons of specimens pre- and post-treatment (or receiving 

different treatments), time-series analyses of cells undergoing transition processes, and 

organization of heterogeneous-yet-related specimens for the purpose of disease 

subtyping. Additionally, applying PhEMD to large-scale functional genomics (e.g., 

single-cell CRISPR) screens may yield embeddings that reveal complex relationships 

between genes. We have demonstrated in our analysis of over 1.7 million cells across 300 

specimens and five mass cytometry runs that PhEMD is highly scalable and robust to 

batch effect. PhEMD offers the efficiency, flexibility, and model interpretability 

necessary to analyze single-cell experiments of increasingly large scale and complexity. 
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Table S1. List of inhibitors included in EMT drug-screen experiment. 
Compound in DMSO Cas Number  Reported Target Catalog 

Number Plate / Well 

Axitinib 319460-85-0 VEGFR, PDGFR, c-Kit S1005 A / B2 
Dovitinib (TKI-258) 405169-16-6, 804551-71-1 FLT3 S1018 A / B3 
Lapatinib Ditosylate 

(Tykerb) 
388082-77-7, 231277-92-2 (free base), 1187538-

35-7 (4-methylbenzenesulfonate) EGFR, HER2 S1028 A / B4 

Sorafenib (Nexavar) 475207-59-1, 284461-73-0 (free base) VEGFR, PDGFR, Raf S1040 A / B5 

BMS-599626 (AC480) 714971-09-2, 873837-23-1 (HCl), 873837-22-0 
(H2O) EGFR, HER2 S1056 A / B6 

SB 203580 152121-47-6, 224047-03-4, 869185-85-3 (HCl) p38 MAPK S1076 A / B7 
KU-55933 587871-26-9 ATM S1092 A / B8 
LY294002 154447-36-6, 934389-88-5 (HCl) PI3K S1105 A / B9 

JNJ-38877605 943540-75-8, 1093204-17-1 (X methanesulfonate), 
1093204-20-6 (XHCl) c-Met S1114 A / B10 

Brivanib alaninate 
(BMS-582664) 649735-63-7 VEGFR S1138 A / B11 

Saracatinib (AZD0530) 379231-04-6, 893428-72-3 (Fumaric acid), 
893428-71-2 (3H2O) Src, Bcr-Abl S1006 A / C2 

CI-1033 (Canertinib) 267243-28-7, 289499-45-2 (2HCl) EGFR, HER2 S1019 A / C3 
Motesanib Diphosphate 

(AMG-706) 
857876-30-3, 453562-69-1 (free base), 945716-97-

2 (H2O) VEGFR, PDGFR, c-Kit S1032 A / C4 

Sunitinib Malate 
(Sutent) 

341031-54-7, 557795-19-4 (free base), 1126641-
10-8 ( Maleic acid) VEGFR, PDGFR, c-Kit, Flt S1042 A / C5 

Masitinib (AB1010) 790299-79-5, 1048007-93-7 (methanesulfonate) c-Kit, PDGFR, FGFR, FAK S1064 A / C6 
SB 202190 152121-30-7, 350228-36-3 (HCl) p38 MAPK S1077 A / C7 

GSK1904529A 1089283-49-7 IGF-1R S1093 A / C8 
OSU-03012 742112-33-0 PDK-1 S1106 A / C9 
PD 0332991 

(Palbociclib) HCl 827022-32-2, 571190-30-2 (free base) CDK S1116 A / C10 

AG-490 133550-30-8 JAK, EGFR S1143 A / C11 
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AZD6244 (Selumetinib) 606143-52-6, 942275-12-9 (4-
methylbenzenesulfonate) MEK S1008 A / D2 

CI-1040 (PD184352) 212631-79-3 MEK S1020 A / D3 
Nilotinib (AMN-107) 641571-10-0 Bcr-Abl S1033 A / D4 
Tandutinib (MLN518) 387867-13-2, 1227636-16-9 (3H2O) Flt S1043 A / D5 

GDC-0941 957054-30-7, 957054-33-0 (dimethanesulfonate), 
957054-54-5 (xTFA) PI3K S1065 A / D6 

MK-2206 2HCl 1032350-13-2, 1032349-93-1 (free base), 1032349-
77-1 (HCl) Akt S1078 A / D7 

PF-04217903 956905-27-4, 956906-93-7 (methanesulfonate), 
1159490-81-9 (HCl) c-Met S1094 A / D8 

Danusertib (PHA-
739358) 827318-97-8 Aurora Kinase, FGFR, Bcr-Abl, 

c-RET, Src S1107 A / D9 

Triciribine (Triciribine 
phosphate) 35943-35-2 Akt S1117 A / D10 

SNS-032 (BMS-
387032) 345627-80-7, 345627-90-9 (HCl) CDK S1145 A / D11 

BIBF1120 (Vargatef) 656247-17-5, 790241-30-4 (methanesulfonate), 
959761-73-0 (HCl) VEGFR, PDGFR, FGFR S1010 A / F2 

Deforolimus 
(Ridaforolimus) 572924-54-0, 697252-87-2 mTOR S1022 A / F3 

PD0325901 391210-10-9, 870474-62-7 MEK S1036 A / F4 

Vandetanib (Zactima) 443913-73-3, 338992-53-3 (TFA), 524722-52-9 
(HCl) VEGFR S1046 A / F5 

Crizotinib (PF-
02341066) 877399-52-5, 877399-53-6 (acetate) c-Met, ALK S1068 A / F6 

SU11274 658084-23-2 c-Met S1080 A / F7 
Vatalanib 2HCl 

(PTK787) 212141-51-0, 212141-54-3 (free base) VEGFR, c-Kit, Flt S1101 A / F8 

BI 2536 755038-02-9, 876126-71-5 (H2O) PLK S1109 A / F9 
XL-184 (Cabozantinib) 849217-68-1,1140909-48-3 (L-(-)-Apple Acid) VEGFR, c-Met, Flt, Tie-2, c-Kit S1119 A / F10 

PLX-4720 918505-84-7 Raf S1152 A / F11 

Afatinib (BIBW2992) 439081-18-2, 936631-70-8 (Maleic acid), 
1254955-21-9 (XHCl) EGFR, HER2 S1011 A / G2 
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Erlotinib HCl 183319-69-9, 183321-74-6 (free base), 248594-19-
6 (methanesulfonate) EGFR S1023 A / G3 

VX-680 (MK-0457, 
Tozasertib) 639089-54-6, 639090-58-7 (sulfate) Aurora Kinase S1048 A / G5 

PHA-665752 477575-56-7, 1262750-60-6(HCl) c-Met S1070 A / G6 
Brivanib (BMS-540215) 649735-46-6 VEGFR S1084 A / G7 

U0126-EtOH 1173097-76-1, 109511-58-2 (FREE BASE) MEK S1102 A / G8 
Foretinib 

(GSK1363089, XL880) 849217-64-7, 1332889-22-1 (H2O) c-Met, VEGFR S1111 A / G9 

Everolimus (RAD001) 159351-69-6, 1245613-55-1 mTOR S1120 A / G10 
Roscovitine (Seliciclib, 

CYC202)  186692-46-6 CDK S1153 A / G11 

CP-724714 537705-08-1 EGFR, HER2 S1167 B / B2 
ENMD-2076 1291074-87-7 Flt, Aurora Kinase, VEGFR S1181 B / B3 

Amuvatinib (MP-470) 850879-09-3 c-Met, c-Kit, PDGFR, Flt, c-
RET S1244 B / B4 

AMG-208 1002304-34-8  c-Met S1316 B / B5 
AS-605240 648450-29-7 PI3K S1410 B / B6 

AS703026 (pimasertib) 1236699-92-5, 1236361-78-6 (HCl) MEK S1475 B / B7 
CCT129202 942947-93-5 Aurora Kinase S1519 B / B8 

R406 (free base) 841290-80-0 Syk S1533 B / B9 
KU-60019 925701-49-1 ATM S1570 B / B10 
KW 2449 1000669-72-6 Flt, Bcr-Abl, Aurora Kinase S2158 B / B11 
TGX-221 663619-89-4 PI3K S1169 B / C2 
PIK-90 677338-12-4 677338-12-4 S1187 B / C3 

JNJ-7706621 443797-96-4 CDK, Aurora Kinase S1249 B / C4 
TG100-115 677297-51-7, 677297-55-1 (2HCL) PI3K S1352 B / C5 

Staurosporine 62996-74-1 PKC S1421 B / C6 
SB 525334 356559-20-1 TGF-beta/Smad S1476 B / C7 
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XL765 1349796-36-6, 1123889-87-1 PI3K, mTOR S1523 B / C8 

CP 673451 343787-29-1, 343787-32-6 (4-
methylbenzenesulfonate) PDGFR S1536 B / C9 

BS-181 HCl 1092443-52-1 (free base) CDK S1572 B / C10 
WZ3146 1214265-56-1 EGFR S1170 B / D2 
PIK-75 372196-77-5, 372196-67-3 (free base) PI3K, DNA-PK S1205 B / D3 

PD173074 219580-11-7 FGFR S1264 B / D4 
GSK1059615 958852-01-2, 1356195-42-0 (H2O . Na) PI3K, mTOR S1360 B / D5 

Aurora A Inhibitor I 1158838-45-9 Aurora Kinase S1451 B / D6 
HMN-214 173529-46-9 PLK S1485 B / D7 

AT7519 844442-38-2, 902135-91-5 (HCl), 902135-89-1 
(methanesulfonate) CDK S1524 B / D8 

AZD8055 1009298-09-2, 1201799-04-3 (D(-)-Tartaric Acid), 
1201799-05-4 (Fumaric acid) mTOR S1555 B / D9 

BIRB 796 
(Doramapimod) 285983-48-4, 1283526-53-3 (HCl) p38 MAPK S1574 B / D10 

LY2784544 1229236-86-5, 1229236-87-6 (HCl) JAK S2179 B / D11 
WZ4002 1213269-23-8 EGFR S1173 B / F2 

YM201636 371942-69-7, 371933-96-9 (2HCl) PI3K S1219 B / F3 
Vemurafenib 
(PLX4032) 918504-65-1 Raf S1267 B / F4 

ON-01910 1225497-78-8 PLK S1362 B / F5 
Thiazovivin 1226056-71-8, 1228446-06-7 (TFA) ROCK S1459 B / F6 
PHA-793887 718630-59-2, 718630-60-5 (HCl) CDK S1487 B / F7 
Hesperadin 422513-13-1 Aurora Kinase S1529 B / F8 
KRN 633 286370-15-8 VEGFR, PDGFR S1557 B / F9 
TWS119 601514-19-6 GSK-3 S1590 B / F10 

AST-1306 1050500-29-2, 897383-62-9 (free base) EGFR S2185 B / F11 
PD98059 167869-21-8 MEK S1177 B / G2 
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OSI-930 728033-96-3 c-Kit, VEGFR S1220 B / G3 
IC-87114 371242-69-2 PI3K S1268 B / G4 
Ki8751 228559-41-9 VEGFR, c-Kit, PDGFR S1363 B / G5 

SP600125 129-56-6, 67072-00-8 (potassium salt) JNK S1460 B / G6 
PIK-93 593960-11-3 PI3K, VEGFR S1489 B / G7 

BIX 02188 1094614-84-2 MEK S1530 B / G8 
AT7867 857531-00-1 Akt, S6 kinase S1558 B / G9 

BMS-265246 582315-72-8 CDK S2014 B / G10 
AZD8931 848942-61-0, 1196531-39-1 (diFumaric acid) EGFR, HER2 S2192 B / G11 

Raf265 derivative 927880-90-8 VEGFR, Raf S2200 C / B2 
PP242 1092351-67-1, 1173019-76-5 (H2O) mTOR S2218 C / B3 

Palomid 529 914913-88-5 PI3K S2238 C / B4 
TAK-733 1035555-63-5 MEK S2617 C / B5 

DCC-2036 (Rebastinib) 1020172-07-9, 1020172-08-0 (2HCl), 1033893-29-
6 (4-methylbenzenesulfonate) Bcr-Abl S2634 C / B6 

AS-252424 900515-16-4 PI3K S2671 C / B7 
NVP-BSK805 1092499-93-8 (free base) JAK S2686 C / B8 

AMG 900 945595-80-2 Aurora Kinase S2719 C / B9 
AZ628 878739-06-1 Raf S2746 C / B11 

BMS 794833 1174046-72-0, 1174161-83-1 (HCl) c-Met, VEGFR S2201 C / C2 
Cyt387 1056634-68-4, 1056636-08-8 (XHCl) JAK S2219 C / C3 

WP1130 856243-80-6 DUB, Bcr-Abl S2243 C / C4 
LDN193189 1062368-24-4, 1062368-62-0 (HCl) TGF-beta/Smad S2618 C / C5 
CCT128930 885499-61-6 Akt S2635 C / C6 

PF-00562271 939791-38-5, 717907-75-0 (free base), 939791-39-
6 (methanesulfonate) FAK S2672 C / C7 

WAY-600 1062159-35-6 mTOR S2689 C / C8 
ZM 336372 208260-29-1 Raf S2720 C / C9 
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TG101348 
(SAR302503) 936091-26-8, 1374744-69-0 (2ClH.H2O) JAK S2736 C / C10 

AMG458 913376-83-7  c-Met S2747 C / C11 
NVP-BHG712 940310-85-0 VEGFR, Src, Raf, Bcr-Abl S2202 C / D2 

SB590885 405554-55-4  Raf S2220 C / D3 
BKM120 (NVP-

BKM120) 
944396-07-0, 1312445-63-8 (HCl), 1370351-44-2 

(0.5H2O) PI3K S2247 C / D4 

AZD5438 602306-29-6 CDK S2621 C / D5 
A66 1166227-08-2 PI3K S2636 C / D6 

GSK1120212 
(Trametinib) 871700-17-3, 871702-06-6 (sodium salt) MEK S2673 C / D7 

TG101209 936091-14-4 Flt, JAK, c-RET S2692 C / D8 
PF-03814735 942487-16-3 Aurora Kinase S2725 C / D9 

PKI-402 1173204-81-3, 1173204-82-4 (XHCl) PI3K S2739 C / D10 
NVP-BGT226 1245537-68-1, 915020-55-2 (free base) PI3K S2749 C / D11 

R935788 (Fostamatinib 
disodium, R788 

disodium) 

1025687-58-4, 901119-35-5 (free base),1180490-
89-4 (acetate) Syk S2206 C / F2 

CAL-101 (GS-1101) 870281-82-6 PI3K S2226 C / F3 
Indirubin 479-41-4 GSK-3 S2386 C / F4 
OSI-027 936890-98-1, 1187559-66-5 (sodium salt) mTOR S2624 C / F5 

GSK2126458 1086062-66-9 PI3K, mTOR S2658 C / F6 
PCI-32765 (Ibrutinib) 936563-96-1 Src S2680 C / F7 

A-769662 844499-71-4 AMPK S2697 C / F8 
Dacomitinib 

(PF299804,PF-
00299804) 

1110813-31-4, 1042385-75-0 (H2O) EGFR S2727 C / F9 

PHA-767491 845714-00-3, 942425-68-5 (HCl) CDK S2742 C / F10 
Arry-380 937265-83-3 HER2 S2752 C / F11 
PIK-293 900185-01-5 PI3K S2207 C / G2 
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PIK-294 900185-02-6 PI3K S2227 C / G3 
Quercetin (Sophoretin) 117-39-5 PI3K, PKC, Src, Sirtuin S2391 C / G4 
R788 (Fostamatinib) 901119-35-5 Syk S2625 C / G5 

WYE-125132 1144068-46-1 mTOR S2661 C / G6 
AS-604850 648449-76-7 PI3K S2681 C / G7 

KX2-391 897016-82-9, 1038395-65-1 (2HCl), 1080645-95-9 
(methanesulfonate), 1201926-60-4 (Maleic acid) Src S2700 C / G8 

AG-1478 (Tyrphostin 
AG-1478) 153436-53-4, 170449-18-0 (HCl) EGFR S2728 C / G9 

PF-04691502 1013101-36-4 mTOR, PI3K, Akt S2743 C / G10 
ARQ 197 (Tivantinib) 905854-02-6, 1000873-98-2, 1228508-24-4 c-Met S2753 C / G11 

NVP-BVU972 1185763-69-2 c-Met S2761 D / B2 
TAK-285 871026-44-7, 871027-78-0 (methanesulfonate) EGFR S2784 D / B3 

GDC-0068 1001264-89-6 Akt S2808 D / B4 
Desmethyl Erlotinib 

(CP-473420) 183321-86-0, 183320-51-6 (HCl) EGFR S2826 D / B5 

 TG 100713 925705-73-3 PI3K S2870 D / B6 
Wortmannin 19545-26-7, 1405-03-4 PI3K S2758 D / B7 

AZD2014 1009298-59-2 mTOR S2783 D / B8 
Dabrafenib 

(GSK2118436) 
1195765-45-7, 1195768-06-9 (methanesulfonic 

acid) Raf S2807 D / B9 

TPCA-1 507475-17-4 IKK S2824 D / B10 
WHI-P154 211555-04-3, 296234-84-9 (HCl) JAK S2867 D / B11 
CH5424802 1256580-46-7, 1256589-74-8 (HCl) ALK S2762 D / C2 

INCB28060 1029712-80-8, 1029714-89-3 (XHCl), 1197376-
85-4 (2HCl) c-Met S2788 D / C3 

INK 128 (MLN0128) 1224844-38-5 mTOR S2811 D / C4 
Torin 1 1222998-36-8 mTOR S2827 D / C5 

Piceatannol 10083-24-6, 21100-92-5 Syk S3026 D / C6 
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Dinaciclib 
(SCH727965) 779353-01-4 CDK S2768 D / C7 

Sotrastaurin (AEB071) 425637-18-9, 1058706-32-3 (HCl), 1058706-35-6 
(Maleic acid) PKC S2791 D / C8 

Tyrphostin AG 879 (AG 
879) 148741-30-4 HER2 S2816 D / C9 

Semaxanib (SU5416) 194413-58-6 VEGFR S2845 D / C10 
VX-702 745833-23-2, 479543-46-9 p38 MAPK S6005 D / C11 

3-Methyladenine 5142-23-4, 80681-18-1(HCl) PI3K S2767 D / D2 
Tofacitinib (CP-690550, 

Tasocitinib) 477600-75-2, 540737-29-9 (citrate) JAK S2789 D / D3 

BYL719 1217486-61-7 PI3K S2814 D / D4 
SAR131675 1433953-83-3 VEGFR S2842 D / D5 

Tofacitinib citrate (CP-
690550 citrate) 540737-29-9, 477600-75-2 (free base) JAK S5001 D / D6 

MK-2461 917879-39-1, 1196681-15-8, 1170702-87-0 
(sodium salt) c-Met S2774 D / D7 

CEP33779 1257704-57-6 JAK S2806 D / D8 
Tideglusib 865854-05-3  GSK-3 S2823 D / D9 
IMD 0354 978-62-1, 634914-41-3 (sodium salt ) IKK S2864 D / D10 

Dovitinib Dilactic acid 
(TKI258 Dilactic acid)  852433-84-2, 405169-16-6 (free base) FLT3 S2769 D / F2 

WP1066 857064-38-1 JAK S2796 D / F3 
Torin 2 1223001-51-1 mTOR S2817 D / F4 

Baricitinib 
(LY3009104,incb28050) 1187594-09-7, 1187594-10-0 (TFA) JAK S2851 D / F5 

MK-5108 (VX-689) 1010085-13-8 Aurora Kinase S2770 D / G2 
AZD4547 1035270-39-3 FGFR S2801 D / G3 

NVP-TAE226 761437-28-9 FAK S2820 D / G4 

Golvatinib (E7050) 928037-13-2 , 1007601-96-8 (L(+)-Tartaric Acid), 
1007601-91-3 (Fumaric acid) c-Met S2859 D / G5 

Linifanib (ABT-869) 796967-16-3 PDGFR, VEGFR S1003 E / B2 
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Cediranib (AZD2171) 288383-20-0 VEGFR, Flt S1017 E / B3 
Imatinib Mesylate 220127-57-1 PDGFR, c-Kit, Bcr-Abl S1026 E / B4 

Rapamycin (Sirolimus) 53123-88-9 mTOR S1039 E / B5 
Enzastaurin (LY317615) 170364-57-5 PKC S1055 E / B6 

SB 216763 280744-09-4 GSK-3 S1075 E / B7 
Linsitinib (OSI-906) 867160-71-2 IGF-1R S1091 E / B8 

GDC-0879 905281-76-7 Raf S1104 E / B9 
GSK690693 937174-76-0 Akt S1113 E / B10 

AT9283 896466-04-9 Bcr-Abl, JAK, Aurora Kinase S1134 E / B11 
BEZ235 (NVP-

BEZ235) 915019-65-7 mTOR, PI3K S1009 E / C2 

Dasatinib (BMS-
354825) 302962-49-8 Src, Bcr-Abl, c-Kit S1021 E / C3 

Pazopanib HCl 635702-64-6 VEGFR, PDGFR, c-Kit S1035 E / C4 
Temsirolimus (Torisel) 162635-04-3 mTOR S1044 E / C5 

SB 431542 301836-41-9 TGF-beta/Smad S1067 E / C6 
PD153035 HCl 183322-45-4 EGFR S1079 E / C7 

MLN8054 869363-13-3 Aurora Kinase S1100 E / C8 
TAE684 (NVP-

TAE684) 761439-42-3 ALK S1108 E / C9 

XL147 956958-53-5 PI3K S1118 E / C10 
Barasertib (AZD1152-

HQPA) 722544-51-6 Aurora Kinase S1147 E / C11 

Bosutinib (SKI-606) 380843-75-4 Src S1014 E / D2 
Gefitinib (Iressa) 184475-35-2 EGFR S1025 E / D3 

PI-103 371935-74-9 DNA-PK, PI3K, mTOR S1038 E / D4 
Y-27632 2HCl 129830-38-2 ROCK S1049 E / D5 

ZSTK474 475110-96-4 PI3K S1072 E / D6 
NVP-ADW742 475488-23-4 IGF-1R S1088 E / D7 
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ZM-447439 331771-20-1 Aurora Kinase S1103 E / D8 
SGX-523 1022150-57-7 c-Met S1112 E / D9 

MLN8237 (Alisertib) 1028486-01-2 Aurora Kinase S1133 E / D10 
SNS-314 1146618-41-8 Aurora Kinase S1154 E / D11 

E7080 (Lenvatinib) 417716-92-8 VEGFR S1164 E / F2 
WZ8040 1214265-57-2 EGFR S1179 E / F3 
AG-1024  65678-07-1 IGF-1R S1234 E / F4 
BX-912 702674-56-4 PDK-1 S1275 E / F5 

Pelitinib (EKB-569) 257933-82-7 EGFR S1392 E / F6 
TSU-68 252916-29-3 VEGFR, PDGFR , FGFR S1470 E / F7 

LY2228820 862507-23-1 p38 MAPK S1494 E / F8 
AZD7762 860352-01-8 Chk S1532 E / F9 
PD318088 391210-00-7 MEK S1568 E / F10 

Neratinib (HKI-272) 698387-09-6 HER2, EGFR S2150 E / F11 
CYC116 693228-63-6 Aurora Kinase, VEGFR S1171 E / G2 

Tivozanib (AV-951) 475108-18-0 VEGFR, c-Kit, PDGFR S1207 E / G3 
WYE-354 1062169-56-5 mTOR S1266 E / G4 

MGCD-265 875337-44-3 c-Met, VEGFR, Tie-2 S1361 E / G5 
PHA-680632 398493-79-3 Aurora Kinase S1454 E / G6 

AEE788 (NVP-
AEE788) 497839-62-0 EGFR, Flt, VEGFR, HER2 S1486 E / G7 

Quizartinib (AC220) 950769-58-1 Flt S1526 E / G8 
PHT-427 1191951-57-1 Akt S1556 E / G9 

Tie2 kinase inhibitor 948557-43-5 Tie-2 S1577 E / G10 
BGJ398 (NVP-BGJ398) 872511-34-7 FGFR S2183 E / G11 
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Table S2. List of antibodies included in EMT drug-screen experiment. 
Isotope Target Clone Clone 

Reactivity  
Clone 

Applications 
Manufacturer Lot Description and Clone Validation 

(Manufacturer) 
Staining 

Concentrati
on [µg/ml] 

User Clone Validation 
(Py2T by Mass 

Cytometry) 

La139 Purified 
Mouse 

Anti-CREB 
(pS133) / 

ATF-1 
(pS63)  

J151-
21 

Human, 
Mouse, Rat 
(predicted) 

WB, FC BD 558359 https://www.bdbiosciences.com/us/reagents/r
esearch/antibodies-buffers/cell-biology-

reagents/cell-biology-antibodies/purified-
mouse-anti-creb-ps133-atf-1-ps63-j151-

21/p/558359 

2  Py2T, MEK1/2 signaling 
perturbation 

Pr141 pStat5 
(pTyr694) 

47 Mouse; 
Human 

WB, FC BD 2150654 https://www.bdbiosciences.com/us/applicatio
ns/research/stem-cell-research/stem-cell-

signaling/human/purified-mouse-anti-human-
stat5-py694-47stat5py694/p/611965 

4.9 30 min vanadate treatment, 
125µM vs 30 min 

Untreated 

Nd142 pSHP2 
(pTyr580) 

D66F1
0 

Human; 
Mouse; Rat 

WB, IP, FC CST 2 https://www.cellsignal.com/products/primary
-antibodies/phospho-shp-2-tyr580-d66f10-

rabbit-mab/5431 

4 18 h TPA vs Untreated 

Nd143 pFAK 
(pTyr397) 

poly7 Human; 
Mouse 

WB CST 5 https://www.cellsignal.com/products/primary
-antibodies/phospho-fak-tyr397-

antibody/3283?site-search-type=Products 

2.5 5 Days 4 ng/mL  TGFb vs 
5 Days Untreated 

Nd144 MEK1/2  
(pSer221) 

166F8 Human; 
Mouse 

WB, IHC, 
FC 

CST 13 https://www.cellsignal.com/products/primary
-antibodies/phospho-mek1-2-ser221-166f8-
rabbit-mab/2338?site-search-type=Products 

4 30 min 4 ng/mL TGFb + 
Dabrafenib, AZ628 (bRaf, 
cRaf inhibitors) vs 30 min 

4 ng/mL TGFb 
Nd145 Twist poly 

ABD29 
Mouse; 
Human 

IH(P), ICC Millipore ABD29 http://www.merckmillipore.com/NL/en/prod
uct/Anti-Twist1-Twist-related-protein-1-

Antibody,MM_NF-
ABD29?ReferrerURL=https%3A%2F%2Fw

ww.google.com%2F&bd=1 

4 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 

Nd147 c-myc D84C1
2 

Human; 
Mouse 

WB, IF, FC CST 7 https://www.cellsignal.com/products/primary
-antibodies/c-myc-d84c12-rabbit-

mab/5605?site-search-type=Products 

6 18 h TPA vs Untreated 

Nd148 Snail ab1807
14 

Human; 
Mouse 

IHC-Fr, WB, 
ICC/IF, IHC-

P 

Abcam AF3639 https://www.abcam.com/snail-slug-antibody-
ab180714.html 

5 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 

Nd149 Nanog D2A3 Mouse WB, IP, FC, 
IF, ChiP 

BD 2 https://www.cellsignal.com/products/primary
-antibodies/nanog-d2a3-xp-rabbit-mab-

mouse-specific/8822 

3 Not validated by user 

Nd150 
NFkB 
(p65)  

Polyclo
nal 

Human, 
Mouse 

FC, ChIP, 
ICC, 

ChIP/Chip, 
EMSA, IP, 

IHC-P, WB, Abcam NA 
https://www.abcam.com/NF-kB-p65-

antibody-ChIP-Grade-ab7970.html 3 

Not validated by user 
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IHC-Fr, 
ICC/IF 

Eu151 pP38 
(pThr180/p

Tyr182) 

36/p38 Human; 
Mouse 

FC, WB BD 2150665 https://www.bdbiosciences.com/eu/applicatio
ns/research/b-cell-research/intracellular-

antigens/human/pe-mouse-anti-p38-mapk-
pt180py182-36p38-pt180py182/p/612565 

4 30 min vanadate treatment, 
125µM  vs 30 min 

Untreated 

Sm152 pAMPK 
(pThr172) 

40H9 Human; 
Mouse; 
Rat.... 

WB, IP, ICH CST 18 https://www.cellsignal.com/products/primary
-antibodies/phospho-ampka-thr172-40h9-

rabbit-mab/2535 

4 30 min vanadate treatment, 
125µM  vs 30 min 

Untreated 
Eu153 pAkt 

(pSer473) 
D9E Human; 

Mouse; 
Rat.... 

WB, IP, 
IHC, IF, FC 

CST 20 https://www.cellsignal.com/products/primary
-antibodies/phospho-akt-ser473-d9e-xp-

rabbit-mab/4060 

5 30 min 4 ng/mL TGFb +  
GDC09411 (PI3K 

inhibitor) vs 30 min 4 
ng/mL TGFb 

Sm154 pErk1/2 
(pThr202/p

Tyr204) 

20A Human; 
Mouse 

FC, WB BD 2153932 https://www.bdbiosciences.com/us/applicatio
ns/research/intracellular-flow/intracellular-

antibodies-and-isotype-controls/anti-rat-
antibodies/pe-mouse-anti-erk12-pt202py204-

20a/p/561991 

2 30 min 4 ng/mL TGFb +  
PD325901 (MEK1/2 
inhibitor) vs 30 min 4 

ng/mL TGFb 

Gd156 CyclinB1 GNS-
11 

Human; 
Mouse 

WB, IP, FC BD 4241979 https://www.bdbiosciences.com/us/applicatio
ns/research/apoptosis/purified-

antibodies/purified-mouse-anti-cyclin-b1-
gns-11/p/554179 

8 Cyclin B1 vs IdU 

Gd158 pGSK3 
(pSer9) 

D85E1
2 

Human; 
Mouse 

WB, IP, IF, 
FC 

CST 5558BF https://www.cellsignal.com/products/primary
-antibodies/phospho-gsk-3b-ser9-d85e12-xp-

rabbit-mab/5558 

1 30 min 4 ng/mL TGFb + 
MK2260 (AKT inhibitor) 
vs 30 min 4 ng/mL TGFb 

Tb159 pSmad1/5 
(pSer463/S

er465) 

41D10 Human; 
Mouse 

WB, IF, FC CST 9516BF https://www.cellsignal.com/products/primary
-antibodies/phospho-smad1-5-ser463-465-

41d10-rabbit-mab/9516 

6 Not validated by user 

Gd160 CD44 IM7 Human; 
Mouse 

FC  BD 550538 https://www.bdbiosciences.com/eu/applicatio
ns/research/t-cell-immunology/t-follicular-

helper-tfh-cells/surface-
markers/mouse/purified-rat-anti-mouse-cd44-

im7/p/550538 

0.085 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 

Dy162 Vimentin D21H3 Human; 
Mouse 

WB, ICH, 
IF, FC 

CST 5741BF https://www.cellsignal.com/products/primary
-antibodies/vimentin-d21h3-xp-rabbit-

mab/5741 

1 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 

Dy164 pSmad2/3 
(pSmad2(p
Ser465/Ser
467)/pSma
d3(pSer423

/Ser425) 

D27F4 Human; 
Mouse 

WB CST 5 https://www.cellsignal.com/products/primary
-antibodies/phospho-smad2-ser465-467-

smad3-ser423-425-d27f4-rabbit-mab/8828 

2 30 min 4 ng/mL TGFb + 
SB431542 (TGFßR 

inhibitor) vs 30 min 4 
ng/mL TGFb 

Ho165 ß-Catenin D13A1 Human; 
Mouse 

WB, IP, 
IHC, IF, FC, 

ChIP 

CST 8814BF https://www.cellsignal.com/products/primary
-antibodies/non-phospho-active-b-catenin-

ser33-37-thr41-d13a1-rabbit-mab/8814 

2 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 
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Er167 pMARCK 
(pSer167/S

er170) 

D13E4 Human; 
Mouse; Rat 

WB, IF, FC CST 3 https://www.cellsignal.com/products/primary
-antibodies/phospho-marcks-ser167-170-

d13e4-xp-rabbit-mab/8722 

7 Not validated by user 

Er168 CD24 30-F1 Mouse  FC Biolegend 138502 https://www.biolegend.com/en-
us/products/purified-anti-mouse-cd24-

antibody-6616 

3 3 Days 4 ng/mL  TGFb vs 
3 Days Untreated 

Tm169 pPLC 
gamma-2 
(pTyr759) 

K86-
689.37 

Human; 
Mouse 

FC BD 2150657 https://www.bdbiosciences.com/us/applicatio
ns/research/intracellular-flow/intracellular-

antibodies-and-isotype-controls/anti-human-
antibodies/pe-mouse-anti-plc-2-py759-k86-

68937/p/558490 

5 30 min 4 ng/mL TGFb + 
PP121 (PDGFR inhibitor) 
vs 30 min 4ng/mL TGFß 

Er170 pHistone 
H3 

(pSer28) 

HTA28 Human; 
Mouse 

WB, 
CyTOF, 
ICC, IP, 

ICFC 

Biolegend 641002 https://www.biolegend.com/de-
at/products/purified-anti-histone-h3-
phosphorylated-ser28-antibody-5169 

1.5 Untreated Py2T IdU vs 
pH3 

Yb171 pS6 
p(pSer235/

Ser236) 

N7-548 Human; 
Mouse 

FC  BD 2150655 https://www.bdbiosciences.com/eu/applicatio
ns/research/intracellular-flow/intracellular-

antibodies-and-isotype-controls/anti-human-
antibodies/pe-mouse-anti-s6-ps235ps236-n7-

548/p/560433 

2 30 min 4ng/ mL TGFb + 1 
µM PD325901 vs 30 min 

4ng/ mL TGFb 

Yb172 Cleaved 
Caspase 3 

C92-
605 

Human; 
Mouse 

FC, WB, IP CST 559565 https://www.bdbiosciences.com/us/applicatio
ns/research/intracellular-flow/intracellular-

antibodies-and-isotype-controls/anti-human-
antibodies/purified-rabbit-anti--active-

caspase-3-c92-605/p/559565 

5 5 Days Dinaciclib (1µM) + 
4ng/mL TGFß vs 5 Days 

4ng/mL TGFß  

Yb173 pSTAT3 
(pThr727) 

49/pST
AT3 

Human; 
Mouse 

FC, IF, WB BD 2150654 https://www.bdbiosciences.com/eu/applicatio
ns/research/t-cell-immunology/th17-

cells/intracellular-markers/cell-signalling-
and-transcription-factors/human/purified-

mouse-anti-stat3-ps727-49p-stat3/p/612542 , 
https://www.bdbiosciences.com/eu/applicatio

ns/re 

6 Not validated by user 

Yb174 E-Cadherin 36/E-
Cadh 

Human; 
Mouse 

WB, IP, IF, 
IHC 

BD 610182 https://www.bdbiosciences.com/eu/applicatio
ns/research/stem-cell-research/cancer-
research/human/purified-mouse-anti-e-

cadherin-36e-cadherin/p/610181 

1 11 Days Untreated Py2T 
vs 11 Days 4ng/mL TGF-ß  

Lu175 pRb 
(pSer807/8

11) 

D20B1
2 

Human; 
Mouse; 
Rat.... 

WB, IP, IF, 
IHC, FC 

CST 5 https://www.cellsignal.com/products/primary
-antibodies/phospho-rb-ser807-811-d20b12-

xp-rabbit-mab/8516 

4.5 Untreated Py2T IdU vs 
CyclinB 

Yb176 Survivin 71G4B
7 

Human; 
Mouse; Rat 

WB, IP, 
IHC, IF, FC 

CST 14 https://www.cellsignal.com/products/primary
-antibodies/survivin-71g4b7-rabbit-
mab/2808?site-search-type=Products 

4 BIRC5 overexpression 
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Table S3. Clusters of inhibitors with similar effects in multiple-batch EMT drug-screen experiment. 
Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Cluster H 

TAK-733 (MEK12) Ibrutinib (Src) 
Dacomitinib 
(EGFR) 

LDN193189 (TGF-
beta:Smad) AZ628 (Raf) AZD5438 (CDK) AMG 900 (Aurora Kinase) Cyt387 (JAK12) 

Untreated control Trametinib (MEK12) 
GSK2126458 
(PI3K) Afatinib (EGFR) 

Amuvatinib 
(cMet) Foretinib (c-Met) NVP-BGT226 (PI3K) Indirubin (GSK-3b) 

Untreated control Canertinib (EGFR) 
Erlotinib 
(EGFR) CI-1040 (MEK1:2) Torin1 (mTOR) 

Tozasertib (Aurora 
Kinase) PF-00562271 (FAK) NVP-BHG712 (VEGFR) 

Untreated control 
PD0325901 
(MEK1:2) 

Vargatef 
(VEGFR) Selumetinib (MEK1:2) AZD7762 (Chk) SP600125 (JNK12) 

PF-03814735 (Aurora 
KinaseAB) R935788 (Syk) 

Untreated control SB525334 (TGFbR1) 
AST-1306 
(EGFR) KW 2449 (Flt) BEZ235 (mTOR) Bosutinib (Bcr-Abl) TG101209 (Flt) Rebastinib (Bcr-Abl) 

Untreated control SB431542 (TGFR) 
AZD8931 
(EGFR) WZ3146 (EGFR) Dasatinib (Src) Pelitinib (EGFR) BI 2536 (PLK1) Deforolimus (mTOR) 

Saracatinib (Src)  
CP-473420 
(EGFR) IMD 0354 (IKKa)   AT9283 (AuroraK) Sunitinib (VEGFR) 

Untreated control  
WHI-P154 
(JAK3) PD153035 (EGFR)   Barasertib (AuroraK) Vandetanib (VEGFR) 

Untreated control  
AEE788 
(EGFR) PD318088 (MEK12)   CYC116 (AuroraK) AT7867 (Akt) 

Untreated control  
Gefitinib 
(EGFR) WZ8040 (EGFR)   MLN8054 (AuroraK-A) CP 673451 (PDGFRb) 

Untreated control      MLN8237 (AuroraK-A) Ki8751 (VEGFR) 
Untreated control      Neratinib (HER2) R406 (Syk) 
AS703026 
(MEK12)      Pazopanib (VEGFR1) Thiazovivin (ROCK) 
Untreated control      SNS314 (AuroraK-A) XL765 (PI3K) 
Untreated control      TAE684 (ALK) YM201636 (PI3K) 
Untreated control       CEP33779 (JAK2) 
Untreated control       CH5424802 (ALK) 
Untreated control       Dovitinib (FLT3) 
Untreated control       Semaxanib (VEGFR) 
Untreated control       Linifanib (PDGFRb) 

Untreated control       
LY2228820 
(p38MAPKa) 

Untreated control       Rapamycin (mTOR) 
Untreated control       Temsirolimus (mTOR) 
Untreated control       Tie2Kinhibitor (Tie2) 
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Cluster I Cluster J Cluster K Cluster L Cluster M Cluster N 
A-769662 (AMPK) BMS-599626 (EGFR) BKM120 (PI3K) Hesperadin (AuroraKinaseB) PIK-75 (PI3K) Torin2 (mTOR) 
A66 (PI3K) Lapatinib (EGFR) OSI-027 (mTOR) Dinaciclib (CDK2)   
AMG458 (c-Met) AZD8055 (mTOR) PKI-402 (PI3K)    
Arry-380 (HER2) HMN-214 (PLK1) PP242 (mTOR)    
AS-252424 (PI3K) ON-01910 (PLK1) WAY-600 (mTOR)    
AS-604850 (PI3K) PHA-793887 (CDK) GDC-0941 (PI3K)    
TGFb-only control Dabrafenib (b-Raf) MK-2206 (Akt123)    
BMS 794833 (c-Met) TAK-285 (EGFR) GSK1059615 (PI3K)    
CAL-101 (PI3K)  PIK-90 (PI3K)    
CCT128930 (Akt)  AZD2014 (mTOR)    
TGFb-only control  BYL719 (PI3K)    
TGFb-only control  INK128 (mTOR)    
TGFb-only control  PI-103 (PI3K, DNA-PK)    
TGFb-only control  WYE354 (mTOR)    
TGFb-only control  ZSTK474 (PI3K)    
Fostamatinib (Syk)      
KX2-391 (Src)      
NVP-BSK805 (JAK12)      
Palomid 529 (PI3K)      
PF-04691502 (mTOR)      
PHA-767491 (Cdc7:CDK9)      
PIK-293 (PI3K)      
PIK-294 (PI3K)      
Quercetin (PI3K)      
Raf265 (VEGFR)      
SB590885 (bRaf)      
TG101348 (JAK2)      
Tivantinib (c-Met)      
Tyrphostin (EGFR)      
WP1130 (DUB)      
WYE-125132 (mTOR)      
ZM 336372 (cRaf)      
AG-490 (JAK)      
Axitinib (VEGFR)      
…      
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Table S4. Cell yield of each experimental condition in EMT drug-screen experiment 
Dinaciclib (CDK2) 42 
PIK-75 (PI3K) 54 
SP600125 (JNK12) 82 
Tozasertib (Aurora Kinase) 98 
BI 2536 (PLK1) 129 
Hesperadin (AuroraKinaseB) 145 
HMN-214 (PLK1) 237 
IMD 0354 (IKKa) 257 
ON-01910 (PLK1) 288 
Foretinib (c-Met) 294 
Torin2 (mTOR) 298 
WZ3146 (EGFR) 384 
KW 2449 (Flt) 494 
AZD8055 (mTOR) 581 
Canertinib (EGFR) 617 
CYC116 (AuroraK) 630 
PIK-90 (PI3K) 631 
Afatinib (EGFR) 743 
GSK2126458 (PI3K) 755 
PD0325901 (MEK1:2) 803 
GSK1059615 (PI3K) 808 
Torin1 (mTOR) 826 
SNS314 (AuroraK-A) 853 
GDC-0941 (PI3K) 909 
Triciribine (Akt) 914 
PHA-793887 (CDK) 946 
Amuvatinib (cMet) 977 
AT9283 (Bcr-Abl) 1000 
MLN8237 (AuroraK-A) 1010 
Erlotinib (EGFR) 1025 
Everolimus (mTOR) 1028 
BEZ235 (mTOR) 1074 
AS703026 (MEK12) 1086 
MK-2206 (Akt123) 1087 
Barasertib (AuroraK) 1133 
Axitinib (VEGFR) 1155 
AMG 900 (Aurora Kinase) 1199 
ENMD-2076 (Flt) 1210 
AuroraA (inhibitor) 1263 
AZD2014 (mTOR) 1277 
AST-1306 (EGFR) 1318 
INK128 (mTOR) 1328 
AZD8931 (EGFR) 1339 
BMS-265246 (CDK1:cyclinB) 1347 
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Saracatinib (Src) 1409 
Deforolimus (mTOR) 1417 
PF-03814735 (Aurora KinaseAB) 1438 
BS-181 (CDK) 1445 
Untreated control 1457 
AZD7762 (Chk) 1592 
Vandetanib (VEGFR) 1598 
SB525334 (TGFbR1) 1650 
JNJ-7706621 (CDK1:CyclinB) 1711 
XL765 (PI3K) 1742 
CCT129202 (AuroraKinaseABC) 1751 
PD173074 (FGFR1) 1789 
Untreated control 1834 
Untreated control 1907 
Pelitinib (EGFR) 1908 
Vargatef (VEGFR) 1926 
CP-473420 (EGFR) 1939 
Crizotinib (c-Met) 1947 
AT7867 (Akt) 1985 
BYL719 (PI3K) 2011 
Untreated control 2032 
AMG-208 (c-Met) 2047 
NVP-BGT226 (PI3K) 2059 
LY2784544 (JAK2) 2080 
WZ4002 (EGFR) 2117 
CI-1040 (MEK1:2) 2141 
Untreated control 2152 
AT7519 (CDK1:cyclinB) 2156 
Untreated control 2158 
TGX-221 (PI3K) 2180 
Selumetinib (MEK1:2) 2205 
Lapatinib (EGFR) 2210 
BMS-599626 (EGFR) 2211 
Untreated control 2219 
Neratinib (HER2) 2250 
TWS119 (GSK3b) 2259 
KU-60019 (ATM) 2330 
KRN 633 (VEGFR) 2335 
CP-724714 (EGFR) 2359 
PD98059 (MEK12) 2363 
OSI-930 (cKit) 2376 
U0126 (MEK1:2) 2409 
Ki8751 (VEGFR) 2422 
IC-87114 (PI3K) 2445 
Palbociclib (CDK4:6) 2484 
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SNS-032 (CDK2:7:9) 2503 
BIRB 796 (p38MAPK) 2509 
Dasatinib (Src) 2510 
TG100-115 (PI3K) 2521 
YM201636 (PI3K) 2543 
PIK-93 (PI3K) 2559 
Motesanib (VEGFR) 2592 
Staurosporine (PKC) 2612 
BIX 02188 (MEK5) 2622 
Untreated control 2625 
Danusertib (Aurora Kinase) 2644 
PHA-665752 (c-Met) 2695 
KU-55933 (ATM) 2725 
Untreated control 2731 
SU11274 (c-Met) 2761 
LY294002 (PI3K) 2771 
Sunitinib (VEGFR) 2785 
TGFb-only control 2788 
Untreated control 2845 
Dovitinib (FLT3) 2866 
AZD5438 (CDK) 2888 
TGFb-only control 2909 
AS-605240 (PI3K) 2930 
TGFb-only control 2930 
R406 (Syk) 2942 
SB 203580 (p38 MAPK) 2972 
Masitinib (c-Kit) 2977 
Vemurafenib (bRAF) 2996 
TGFb-only control 3001 
TGFb-only control 3006 
Brivanib (VEGFR) 3014 
CP 673451 (PDGFRb) 3036 
OSU-03012 (PDK-1) 3053 
Vatalanib (VEGFR) 3055 
Sorafenib (VEGFR) 3075 
Roscovitine (CDK) 3080 
Tandutinib (Flt3) 3080 
TGFb-only control 3082 
PD153035 (EGFR) 3085 
ZSTK474 (PI3K) 3104 
Trametinib (MEK12) 3126 
Untreated control 3146 
Cabozantinib ( VEGFR2) 3187 
Nilotinib (Bcr-Abl) 3223 
Untreated control 3269 
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TGFb-only control 3282 
MLN8054 (AuroraK-A) 3290 
AEE788 (EGFR) 3297 
WHI-P154 (JAK3) 3330 
PLX-4720 (bRAF) 3343 
SB 202190 (p38 MAPK) 3361 
PI-103 (DNA-PK) 3383 
Untreated control 3425 
Thiazovivin (ROCK) 3441 
AG-490 (JAK) 3465 
PP242 (5Days) 3477 
PF-04217903 (c-Met) 3505 
Brivanib (VEGFR) 3563 
JNJ-38877605 (c-Met) 3622 
Untreated control 3656 
TGFb-only control 3668 
WYE354 (mTOR) 3672 
Temsirolimus (mTOR) 3698 
Pazopanib (VEGFR1) 3763 
PD318088 (MEK12) 3812 
TAE684 (ALK) 3875 
Wortmannin (PI3K) 3902 
GSK1904529A (IGF-1R) 3906 
TAK-285 (EGFR) 3918 
TGFb-only control 3948 
SB431542 (TGFR) 4021 
TG101209 (Flt) 4046 
TGFb-only control 4052 
NVP-BVU972 (c-Met) 4096 
CH5424802 (ALK) 4126 
TGFb-only control 4272 
TAK-733 (MEK12) 4280 
Untreated control 4287 
TGFb-only control 4321 
Rapamycin (mTOR) 4379 
TPCA-1 (IKK2) 4464 
TG100713 (PI3K) 4561 
GDC-0068 (Akt123) 4635 
SAR131675 (VEGFR) 4940 
WP1066 (JAK2) 4973 
PKI-402 (PI3K) 5139 
BKM120 (PI3K) 5148 
Dabrafenib (b) 5279 
WZ8040 (EGFR) 5283 
Untreated control 5294 
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LY2228820 (p38MAPKa) 5340 
NVP-ADW742 (IGF-1R) 5371 
Dovitinib (FLT3) 5387 
Gefitinib (EGFR) 5393 
TGFb-only control 5456 
Semaxanib (VEGFR) 5487 
TGFb-only control 5595 
TGFb-only control 5596 
MK-5108 (Aurora KinaseA) 5609 
TGFb-only control 5624 
Untreated control 5711 
AZD4547 (FGFR) 5713 
Tyrphostin (HER2) 5714 
Piceatannol (Syk) 5827 
TGFb-only control 5832 
NVP-TAE226 (FAK) 5860 
Untreated control 5874 
TGFb-only control 5902 
3-Methyladenine (PI3K) 5947 
Golvatinib (c-Met) 5966 
TGFb-only control 6028 
TGFb-only control 6101 
MK-2461 (c-Met) 6113 
Untreated control 6174 
Bosutinib (Src) 6247 
TGFb-only control 6262 
Tofacitinib (citrate) 6392 
INCB28060 (c-Met) 6412 
TGFb-only control 6445 
TGFb-only control 6454 
TGFb-only control 6515 
Tofacitinib (JAK3) 6555 
Dacomitinib (EGFR) 6561 
TGFb-only control 6633 
Tideglusib (GSK-3) 6677 
Sotrastaurin (PKC) 6685 
TGFb-only control 6688 
Untreated control 6695 
TGFb-only control 6789 
TGFb-only control 6793 
Baricitinib (JAK1) 6864 
Quizartinib (Flt3) 6942 
Ibrutinib (Src) 7074 
VX-702 (p38 MAPK) 7140 
MGCD-265 ( c-MET) 7228 
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TGFb-only control 7335 
Cediranib (VEGFR) 7378 
Linsitinib (IGF-1R) 7397 
TGFb-only control 7443 
TGFb-only control 7610 
TGFb-only control 7667 
E7080 (VEGFR2) 7722 
TGFb-only control 8071 
OSI-027 (F5.csv) 8209 
CEP33779 (JAK2) 8214 
PHA680632 (AuroraK) 8257 
TGFb-only control 8275 
Tivozanib (VEGFR1) 8297 
Linifanib (PDGFRb) 8455 
BX912 (PDK-1) 8462 
GSK690693 (Akt1) 8986 
GDC0879 (B-Raf) 9309 
WAY-600 (mTOR) 9364 
ZM-447439 (AuroraK-A) 9415 
TGFb-only control 9670 
Enzastaurin (PKC) 9894 
PF-00562271 (FAK) 9920 
AG1024 (IGF-1R) 10343 
PHT427 (Akt) 10497 
Imatinib (PDGFR) 10597 
BGJ398 (FGFR1) 10677 
TSU68 (VEGFR1) 10677 
XL147 (PI3K) 11193 
Y-27632 (p160ROCK) 11615 
Tie2Kinhibitor (Tie2) 11676 
SGX523 (HGFR) 12691 
AS-604850 (PI3K) 12762 
A66 (PI3K) 12871 
PIK-293 (PI3K) 14011 
AZ628 (Raf) 14111 
SB216763 (GSK-3a) 14224 
TGFb-only control 14558 
PIK-294 (PI3K) 14641 
CAL-101 (PI3K) 14686 
Palomid 529 (PI3K) 14718 
R935788 (Syk) 14770 
WYE-125132 (mTOR) 14920 
LDN193189 (TGF-beta:Smad) 15493 
TGFb-only control 15640 
Tyrphostin (EGFR) 15705 
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PF-04691502 (mTOR) 15787 
AMG458 (c-Met) 15862 
Untreated control 15898 
Fostamatinib (Syk) 15905 
Tivantinib (c-Met) 15933 
KX2-391 (Src) 16034 
Arry-380 (HER2) 16075 
BMS 794833 (c-Met) 16319 
A-769662 (AMPK) 16487 
TGFb-only control 16537 
Untreated control 16582 
Quercetin (PI3K) 16632 
ZM 336372 (cRaf) 16714 
TGFb-only control 17125 
TG101348 (JAK2) 17243 
NVP-BSK805 (JAK12) 17281 
Untreated control 17555 
Indirubin (GSK-3b) 17809 
Untreated control 18074 
Untreated control 18117 
WP1130 (DUB) 18293 
Raf265 (VEGFR) 18399 
SB590885 (bRaf) 18431 
TGFb-only control 18846 
TGFb-only control 18909 
NVP-BHG712 (VEGFR) 19703 
AS-252424 (PI3K) 21606 
CCT128930 (Akt) 22384 
Cyt387 (JAK12) 22753 
PHA-767491 (Cdc7:CDK9) 24855 
Rebastinib (Bcr-Abl) 25245 
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Table S5. Clusters of inhibitors with similar effects in single-batch EMT drug-screen experiment. 
 
Replicate 1 

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Cluster H Cluster I 
Untreated 
control 1 

AEE788 
(EGFR) 

PD153035 
(EGFR) 

BEZ235 
(mTOR) AZD7762 (Chk) Bosutinib (Bcr-Abl) AT9283 (AuroraK) TGFb-only control 1 PI-103 (PI3K) 

Untreated 
control 2 

Gefitinib 
(EGFR) 

PD318088 
(MEK12)  Dasatinib (Src) 

LY2228820 
(p38MAPKa) Barasertib (AuroraK) TGFb-only control 2 

WYE354 
(mTOR) 

Untreated 
control 3  

WZ8040 
(EGFR)   Neratinib (HER2) CYC116 (AuroraK) TGFb-only control 3 

ZSTK474 
(PI3K) 

Untreated 
control 4     Pelitinib (EGFR) MLN8237 (AuroraK-A) TGFb-only control 4  
Untreated 
control 5     Rapamycin (mTOR) Pazopanib (VEGFR1) TGFb-only control 5  
SB431542 
(TGFR)     Temsirolimus (mTOR) SNS314 (AuroraK-A) AG1024 (IGF-1R)  
     Tie2Kinhibitor (Tie2) TAE684 (ALK) BGJ398 (FGFR1)  
       BX912 (PDK-1)  
       Cediranib (VEGFR)  
       E7080 (VEGFR2)  
       Enzastaurin (PKC)  
       GDC0879 (B-Raf)  
       GSK690693 (Akt1)  
       Imatinib (PDGFR)  
       Linifanib (PDGFRb)  
       Linsitinib (IGF-1R)  
       MGCD-265 ( c-MET)  
       MLN8054 (AuroraK-A)  
       NVP-ADW742 (IGF-1R)  
       PHA680632 (AuroraK)  
       PHT427 (Akt)  
       Quizartinib (Flt3)  
       SB216763 (GSK-3a)  
       SGX523 (HGFR)  
       TSU68 (VEGFR1)  
       Tivozanib (VEGFR1)  
       XL147 (PI3K)  
       Y-27632 (p160ROCK)  
       ZM-447439 (AuroraK-A)  
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Replicate 2 
Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Cluster H Cluster I 

Untreated control 1 AZD7762 (Chk) Gefitinib (EGFR) Neratinib (HER2) 
AT9283 
(AuroraK) 

WZ8040 
(EGFR) Cediranib (VEGFR) AG1024 (IGF-1R) PI-103 (PI3K) 

Untreated control 2 
PD318088 
(MEK12) 

PD153035 
(EGFR) Pelitinib (EGFR) 

Barasertib 
(AuroraK)  CYC116 (AuroraK) BGJ398 (FGFR1) 

WYE354 
(mTOR) 

Untreated control 3 
Tie2Kinhibitor 
(Tie2) 

Bosutinib (Bcr-
Abl) AEE788 (EGFR) 

MLN8237 
(AuroraK-
A)  Linsitinib (IGF-1R) BX912 (PDK-1) 

ZSTK474 
(PI3K) 

Untreated control 4  Dasatinib (Src)  

SNS314 
(AuroraK-
A)  E7080 (VEGFR2) TGFb-only control 1  

Untreated control 5    
BEZ235 
(mTOR)  

MGCD-265 (c-
MET) TGFb-only control 2  

SB431542 (TGFR)      
MLN8054 
(AuroraK-A) TGFb-only control 3  

      Rapamycin (mTOR) TGFb-only control 4  

      
Temsirolimus 
(mTOR) TGFb-only control 5  

      
Tivozanib 
(VEGFR1) Enzastaurin (PKC)  

      TSU68 (VEGFR1) GDC0879 (B-Raf)  
      XL147 (PI3K) GSK690693 (Akt1)  
       Imatinib (PDGFR)  
       Linifanib (PDGFRb)  

       
LY2228820 
(p38MAPKa)  

       
NVP-ADW742 (IGF-
1R)  

       Pazopanib (VEGFR1)  
       PHA680632 (AuroraK)  
       PHT427 (Akt)  
       Quizartinib (Flt3)  
       SB216763 (GSK-3a)  
       SGX523 (HGFR)  
       TAE684 (ALK)  
       Y-27632 (p160ROCK)  

       
ZM-447439 (AuroraK-
A)  
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Replicate 3 
Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G 

Untreated control 1 Gefitinib (EGFR) AEE788 (EGFR) AT9283 (AuroraK) Enzastaurin (PKC) TGFb-only control 1 PI-103 (PI3K) 

Untreated control 2 AZD7762 (Chk) WZ8040 (EGFR) Barasertib (AuroraK) Linsitinib (IGF-1R) TGFb-only control 2 WYE354 (mTOR) 

Untreated control 3 PD153035 (EGFR) Pelitinib (EGFR) CYC116 (AuroraK) LY2228820 (p38MAPKa) TGFb-only control 3 ZSTK474 (PI3K) 

Untreated control 4 PD318088 (MEK12) Neratinib (EGFR/HER2) 
MLN8237 (AuroraK-
A) MGCD-265 (c-MET) TGFb-only control 4  

Untreated control 5 Tie2Kinhibitor (Tie2) Bosutinib (Bcr-Abl) BEZ235 (mTOR) MLN8054 (AuroraK-A) TGFb-only control 5  
SB431542 (TGFR)  Cediranib (VEGFR)  SNS314 (AuroraK-A) AG1024 (IGF-1R)  

  Dasatinib (Src)  Tivozanib (VEGFR1) BGJ398 (FGFR1)  

    TSU68 (VEGFR1) BX912 (PDK-1)  

    XL147 (PI3K) E7080 (VEGFR2)  

     GDC0879 (B-Raf)  

     GSK690693 (Akt1)  

     Imatinib (PDGFR)  

     Linifanib (PDGFRb)  

     NVP-ADW742 (IGF-1R)  

     Pazopanib (VEGFR1)  

     PHA680632 (AuroraK)  

     PHT427 (Akt)  

     Quizartinib (Flt3)  

     Rapamycin (mTOR)  

     SB216763 (GSK-3a)  

     SGX523 (HGFR)  

     TAE684 (ALK)  

     Temsirolimus (mTOR)  

     Y-27632 (p160ROCK)  

     ZM-447439 (AuroraK-A) 
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Table S6. Clusters of biospecimens with similar single-cell profiles in melanoma scRNA-seq experiment 

Cluster A Cluster B Cluster C Cluster D Cluster E 
Mel53 Mel58 Mel60 Mel67 Mel75 
Mel81 Mel65 Mel89 Mel72  
Mel82 Mel71  Mel80  
Mel84 Mel74  Mel94  
Mel88 Mel79    
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Table S7. Clusters of biospecimens with similar single-cell profiles in ccRCC mass cytometry experiment 

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Cluster G Cluster H 
rcc11 rcc12 rcc13 rcc15 rcc16 rcc18 rcc2 rcc55 
rcc14 rcc19 rcc26 rcc34 rcc33 rcc20 rcc27  
rcc17 rcc24 rcc32 rcc40 rcc35 rcc21 rcc28  
rcc36 rcc31 rcc37 rcc41 rcc46 rcc22 rcc29  
rcc42 rcc39 rcc4 rcc43  rcc23 rcc30  
rcc45 rcc5 rcc59 rcc44  rcc3 rcc38  
rcc56 rcc51 rcc64 rcc48  rcc50 rcc75  
rcc57 rcc76 rcc65 rcc53  rcc52 rcc81  
rcc58 rcc9  rcc54  rcc72   
rcc6   rcc60  rcc74   
rcc68   rcc62  rcc77   
rcc69   rcc63  rcc8   
rcc71   rcc67     
rcc73   rcc7     
rcc80   rcc70     
   rcc78     
   rcc79     
   rcc82     
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