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SECOND ORDER APPROXIMATION IN THE PARTIALLY LINEAR
REGRESSION MODEL

BY OLIVER LINTON

We examine the second order properties of various quantities of interest in the
partially linear regression model. We obtain a stochastic expansion with remainder
op(n~2), where u < 1/2, for the standardised semiparametric least squares estimator,
a standard error estimator, and a studentised statistic. We use the second order
expansions to correct the standard error estimates for second order effects, and to
define a method of bandwidth choice. A monte carlo experiment provides favourable

evidence on our method of bandwidth choice.

KEYWORDS: Semiparametric estimation, partially linear regression, kernel, local

polynomial, second order approximations, bandwidth choice, asymptotic expansions.



1. INTRODUCTION

The subject of this paper is the partially linear regression model, considered in

Engle, Granger, Rice and Weiss (1986),

y1=0"Ya+0(Z) + ¢ (1)

where 6(e) is an unknown scalar function and € is a zero mean error orthogonal to
both Y; and 6(e). This model embodies a compromise between employing a general
nonparametric specification g(Y2, Z), which, if the conditioning variables are high di-
mensional, would lead to serious loss of precision, and a fully parametric specification
which may result in badly biased estimators and inconsistent hypothesis tests. The
implicit asymmetry between the effects of Y5 and Z may be attractive when Y5 con-
sists of dummy or categorical variables, as in Stock (1989, 1991). This specification
arises in various sample selection models, see Ahn and Powell (1993), Newey, Pow-
ell, and Walker (1990), and Lee, Rosenzweig and Pitt (1992). It is also the basis of
a general specification test for functional form introduced in Delgado and Stengos
(1994).

We focus on inference about /3. Taking expectations given Z of both sides of (77),
and subtracting this conditional moment from both sides we obtain the estimating

equation

1 — Bl Z] = 57 (Y2 — E[Y2|Z]) +e. (2)

Robinson (1988b) used (higher order) Nadaraya-Watson kernel estimates of the re-

gression functions Ely;|Z] and E[Y2|Z] to construct a feasible least squares estimate

~

B of 3. Under regularity conditions restricting the dimensions of Z and imposing



some smoothness on the above regression functions, he proved that \/ﬁ(ﬁ — ) was
asymptotically normal. When the errors e are normal, this estimator achieves the
semiparametric information bound. See also H.Chen (1988), N.Heckman (1986), and
Speckman (1988) for alternative treatments.

There is some evidence that first order asymptotic distributions provide poor ap-
proximations in practice to the sampling behavior of semiparametric estimators, at
least for the type of sample sizes available with economic data — see the monte carlo
evidence presented in Stock (1989) and Stoker (1993) who find less favourable con-
clusions than Hsieh and Manski (1987). Semiparametric estimators typically require
the selection of a smoothing parameter h(n), frequently called the bandwidth, which
determines the effective degree of parameterisation taken by the nuisance function
for given sample size n, where the number of nuisance parameters must increase with
sample size at a certain rate. Intuition gained in analysing the small sample behavior
of parametric estimators — see Rothenberg (1984b) — suggests that small sample
properties deteriorate with the number of nuisance parameters to be estimated; one
therefore expects semiparametric procedures may incur a substantial small sample
cost reflecting the ambitious goal of estimating an asymptotically infinite number of
nuisance parameters.

A perhaps more serious problem is that the first order approximation does not
reflect the choice of h(n). Frequently, the numerical value of point estimates obtained
can vary quite considerably with bandwidth. Therefore, one must view reported re-
sults with some scepticism. Furthermore, the first order theory does not give any
information about how to choose h(n) in practice, and therefore provides an incom-
plete description of the procedure.

We believe that higher order theory, as expounded in Pfanzagl (1980) and Rothen-
berg (1984a), can address some of the problems presented by the first order theory.



These methods have a long history of application to econometric problems, Phillips
and Park (1988) and Chesher and Spady (1991) being some recent examples, and pro-
vide both qualitative and quantitative information about the properties of estimators
and test statistics beyond that contained in the first order theory.

We derive a stochastic expansion with remainder op(n™2), where 0 <u < 1/2,
for the standardised semiparametric estimator of 3, a standard error estimator, and
a studentised statistic. We derive approximations to the moments of the truncated
expansions which are then used to compare various alternative implementations, to
define second order optimality, and to define an automatic method of bandwidth
choice. Our results are qualitatively similar to those developed in Carroll and Hérdle
(1989) and Hardle, Hart, Marron and Tsybakov (1992) for related semiparametric
problems. However, we extend the analysis in several directions. Firstly, we prove
that our truncated expansions are equal in distribution to the original statistic to
order n~2*, regularity that is frequently established in the Edgeworth approximation
literature — see Rothenberg (1984a) and Robinson (1988a) — and which permits dis-
tributional approximation of the Edgeworth type, see Linton (1992) for some results
in this direction. We also demonstrate that our bandwidth selection method not only
results in a y/n consistent estimator of 3, but one that is second order optimal.

Section 2 discusses the estimator and test statistics, while section 3 gives the
assumptions. Section 4 justifies the expansions, while section 5 gives the second order
moment approximations for the quantities of interest. Section 6 uses the second order
approximations to define a feasible correction to the standard errors, while in section
7 we develop a second order optimality theory. Section 8 reports the results of a small
simulation experiment. Section 9 gives our main conclusions. The Appendix contains
the proofs of all theorems.

. e P
A word on notation. We use = to denote convergence in distribution, — means



convergence in probability, while the symbol ~ denotes asymptotic equivalence in

probability, all holding as n — oo.

2. ESTIMATION

Let the observed data { (YT, ZI)T}7? | where Y; = (Y14, Yoi, s Yns1s)? = (yus, Yor )T,

1

be generated by

== /BTS/Q'L + G(Zz) + €; y Yai = gd(Zz) + Ndi, d= 27 37 3 D + 17 (3)

where 3 is a D by 1 vector of unknown parameters and Z; is a P by 1 vector of
observable regressors, while ¢; and 74 are mean zero conditional on (Z], Y;I)T and
Z; respectively. Subtracting the conditional (given Z) means from both sides of (?77?),
we obtain the regression equation (??). Let v; = y1; — g1(Z;), with g1(Z;) = E[y1:|Zi],
and 7; = (92:, M3, --, 77D+1,»)T. We examine the properties of the feasible least squares

estimator

/\

_1 Zﬁl/\zT anyz SM Sﬁ;: (4)

of 3, where the residuals 7; = y1; — §1(Z;) and Ny = Yas — Ga(Zi), d = 2,..,D + 1, are
derived from nonparametric estimates g, of g4. Hérdle and Linton (1994) reviews a
number of suitable nonparametric regression estimators. We estimate the regression
functions by the local polynomial regression method suggested in Stone (1977) and

further examined in Fan (1992). It is motivated by the following argument.

1T . . . . . .
Let 7; = (72,7}, .., 78 ")T contain all partial derivatives of the generic regression

function g at the point Z; = (Z;y, .., Z;p)" up to order q — 1, with, in particular T =

9(Z;) and 7! = (89/0Z;1, ..,09/0Z;p)T. In total there are m, = 7 distinct

J 0](P



r'th order partial derivatives so that 7; is an m = Z?;é m,. by 1 vector. The function g

can be expanded in a ¢’th order Taylor series so that for Z; in a neighbourhood N(Z;)

1T . :
of Z;, g(Z;) = 7]y, where w;; = (2,2, ..,af; )" contains the corresponding
Taylor coefficients with, in particular, x?j =1 and lej = (Zpn— Zin,., Zip — Zip)".

This suggests estimating 7; by a least squares regression of y; on x;;, for Z; € N(Z;).
In fact, we estimate 7; — down-weighting observations according to their distance
from Z;, and, for convenience, leaving out the 7’th contribution (see Robinson (1987)

for a discussion of this modification) — by

7= (XK. X)X Ky, (5)

with y = (y1,¥2, .-, ¥n)? the generic dependent variable and X; = (z;1, ., 0, ., ;)7 the
n by m data matrix with x;; replaced by a zero vector, while K; is the n by n diagonal
weighting matrix with ¢’th element zero and j’th component k((Z; — Z;)/h). Here,

k(e) is a P—dimensional probability density function and h(n) is a scalar bandwidth.

n

Clearly, 7; is linear in {y; }j:1 , and in particular

i

where {w;;}%_; is a sequence of non-stochastic weights, obtained from (??). This class
of estimators is easy to compute and includes the Nadaraya-Watson estimator — used
by Robinson (1988b) — as a special case (when ¢ = 1). The role of ¢ is similar to that
of kernel order in the higher order kernel method of Bartlett (1963): the pointwise
bias of g(Z;) is of order h? — see Lemma 1 below. Furthermore, the interior bias does
not depend on the design density (it is design adaptive), while there is an automatic

correction for boundary bias, see Fan and Gijbels (1992) for a discussion.



3. ASSUMPTIONS

Al. The fived regressors { Z;}?, have as their support a bounded domain T C RY .

Furthermore, there exists a positive density function f such that

n

! > o(z) - /v(Z)f(Z)dZ,

for any bounded continuous function v(e).

The fixed bounded design assumption is made for technical convenience; it allows
us to avoid the use of trimming factors (such as in Robinson (1988b)) that are neces-
sary when the denominator of w;; gets arbitrarily small. Our theorems are also true for
triangular array designs such as Z,; = i/n, in which case f(Z) = [[y dZ] '1(Z € T),
where I(e) is the usual indicator function, but we have not explicitly included this pos-
sibility to avoid notational inconvenience. The fixed design assumption is frequently
employed in the nonparametric regression literature — see for example Miiller (1988)
and Hérdle (1990). Assumption A1 does not preclude {Z;}” | from having been gen-
erated by some random mechanism. For example, suppose that Z; were iid with

density f, then
Prin™! YLy 0(Zi) — [v(Z)f(Z)dZ] = 1,

see Andrews (1991a). In this case, we can interpret our analysis as being conditional

on {Z;} ,, and our results (Theorems 1-4 below) holding with probability one.

A2. The sequence of vectors u;= (€;, 1o, .., 7]D+1Z-)T are mean zero and independent,
2
o: 0

0 Xy

while €; is independent of n; for all i. Let Eluul| =X(Z;), where 3 =



Then 3(Z) is bounded away from zero and infinity on Y. Finally, assume that for

some integers J and L > 5, Sup;E|[|e;|’] < oo and Sup;E||n;|*] < oc.

Speckman (1988) conditions on both (Y2, 7) and considers only scalar design.
Robinson (1988b) employs a more general P—dimensional random design, where
(Y, Z) are iid, both with unbounded support. Our assumption A2 permits conditional
heterogeneity with respect to Z which was not allowed for in this paper. However, we

shall sometimes impose the following assumption that disallows heteroskedasticity.

A2’. The sequence of vectors u; = (€, N, ..,77D+1i)T are independent and identi-
cally distributed, with mean zero and covariance matrix 32, while €; is independent of

ni. Furthermore, for some J and L > 4: E[|¢;]’] < oo and E[|ni|t] < oc.

Let G; be the class of all t-times differentiable functions g defined on T whose t’th
derivatives satisfy the following Lipschitz condition: there exists ¢ > 0 and I < oo,

such that for all z,z € T and for all s = (sy,..,sp)? with s; + .. + sp < ¢, we have

199(2) — g9 ()] < T|z — z|”,

where ¢()(z) = - 2LF g,

T 0%1210%229..0°P zp

A3. The regression functions G(Z;) = (91(Z;), go(Z:), -, gp+1(Z:))T = (91(Z:), Go(Z) )T, are
all members of G,, where ¢ > 2. Furthermore, f, ¥; € Gy, for 3,1 =1,2,.,D+1.

Finally, we make assumptions about the kernel and the bandwidth sequence.



A4d. nh* — 0 and nh*’ — .

Our bandwidth restrictions are similar to those in Robinson (1988b), except that no

trimming constant is necessary due to our assumption that T is bounded.

A5. The kernel k has bounded support and has one continuous partial derivatives

in each direction. Furthermore, the matrices
Qni = nilhipHileTKiXiHil

are positive definite with smallest eigenvalues bounded away from zero, where H =
diag{Hy, H1, .., Hy_1} is an m by m diagonal scaling matriz with H; a scalar m; by

m; matriz with diagonal element b/, j = 0,1, ..,q — 1.

Asn — o0, Qn — f(Z;)Q2, where Q is a matrix whose elements are the moments of
the kernel k. Lindsay (1989) showed, in the special case P = 1, that  is positive
definite if k(t) takes at least ¢ — 1 distinct values, which would be satisfied by any

continuous kernel.
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The properties of the local polynomial estimator, at both interior and boundary

points, are described in the following:

LEMMA 1 (Fan (1992, Theorem 1) and Ruppert and Wand (1992, Theorem 4.2).
Let 02(Z;) = Var(y;|Z;) for scalar y;, and suppose A1-A5 are satisfied. Then, as

n — 00,
B[] — 7 = hiDlr; ; Var[s) = o*(Z)n *h PHIQ 0, QO H L,

where W,y =n *h PHIX;K2X,H L and Q,; are O(1), while

IDZTi = HilQ;il Zsl—i—..—i—sP:q g(S)(ZZ)w(S)

ni

W =0 PH XK (B 2y, TIE (2 iy ]T = O(1).

4. ASYMPTOTIC EXPANSIONS

Robinson (1988b) gives very general conditions under which /3 is (first order)
asymptotically equivalent to the infeasible least squares estimator 3 that satisfies
vnet' (B — ) = N(0,0?) for any D by 1 vector ¢, where 02 = CTE;UI inmei;nl c is the
usual variance of the least squares estimator under heteroskedasticity, defined through
n s gt L%, and n 1Y ginfe 5T, . We investigate the higher order
properties of 3 defined in (??) and (??) by asymptotic expansions. We also examine

the properties of a standard error estimator and of a studentised statistic in the special
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case of homoskedastic errors. In this case, the asymptotic variance of \/ﬁcT(B — ) is
0* = olc"%, e, where 07 = E[e}] and %, = E[n;n]]. We estimate ¥, by Sy and o
by 62 = S = n 'Y, 22 where & = ; — 37%;. For convenience, we report results
for the scalar standardised quantities T = /nc”(6 — 8)/0, S = \/n(6 — 0)/o, and
W = ﬁCT(B— (3)/5 . An important special case here is where ¢ = (0, ..,0, 1,0, ..,0)”
in which case W can be used to test for the individual significance of the corresponding
parameter estimate.

By a Taylor expansion we have

——1 =1 ——1 =1 =1
CTEW XDEW XN CTEW XDEW? XDE?T’] XN R —
+ + =T"+ Ry,
o\/n on ny/n
(7)

where Xy =n~Y2" | 0,6, with &§ = 0; — f7%;, and Xp = \/H(Sﬁﬁ—im) are second

T = (r_lcTS;anN —

order weighted U-statistics — see Lee (1990) — whose properties are further discussed

in the appendix, while

_ _ =lyv o-1lv o1

R=—0"lc"S_Xp¥,, Xp%,, Xp%,, Xn. (8)

The moments of the truncated statistic T depend on the bandwidth h: in par-
ticular, E[T*] = O(y/nh*?), while Var[T*] = 1+ O(n~'h~"). Thus, the asymptotic

mean squared error of 3,
MSE(h) ~n {1+ 0(n 'h™") + O(nh*)},

is minimized by choosing a bandwidth h(n) = O(n~"), where 7 = 2/(4¢ + P), in
which case a correction to the second moment of 7% of order n~?* results, where
p= (4q — P)/2(4q + P). This bandwidth balances the order of magnitude of variance
and squared bias corrections so that O(nh*) = O(n~'h™") = O(n™?") (when P =1
and ¢ =2, 7 = 2/9 and p = 7/18). Furthermore, Ry = op(n™2").
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In the next section we calculate approximations to the moments of 7%, which
we shall interpret as approximations to the 'moments’ of T This methodology has
a long tradition of application in econometric problems following Nagar (1959) —
see the references in Rothenberg (1984a). When Sup, E[T?] < oo, we expect that
E[T?] = E[T**] + o(n™*"), provided Ry = op(n™2*), but see Srinavasan (1970) for a
cautionary tale in this regard. These conditions are satisfied in the problems examined
in Carroll and Hérdle (1989) and Hérdle, Hart, Marron and Tsybakov (1992), but
not here — 7, S, and W do not necessarily have uniformly bounded moments. In
this case, some additional justification for examining the moments of the truncated
statistic must be given. We establish the stronger regularity that 7" and 7™ have the
same distribution to order n~?* (similar versions of this result can also be obtained
for S and W). Therefore, our moment approximations can be interpreted as the

moments of the approximating distribution.
4.1 Second Order Approzimation for T
In the appendix we obtain

THEOREM 1. Assume that A1-A5 hold, with J and L> M; = Max{12,32u/(3 —
Ap)}, where p = (4q — P)/2(4q + P), and let h(n) = O(n™™), where m = 2/(4q + P).
Then, (1.1) T and T* have the same distribution to ordern=2" (1.2) Sup, E[T**] < oo,

and
(1.3) E[T*] = /nh*" B+ o(n™") ; Var[T*] =1+ n"'h™"V 4 o(n™2),
where the O(1) quantities B andV are

B= U_ICTT;;CQQ V= J_QCTT;WI{Z o2(Z;) Znhppw (9)
i=1 J#i
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with p;; = n_l/Q[Zk#,k# WiiWy; — 2wy;] and 1% = n~' Y1 B;(0)Bi(G>), where for

any function g € G,,

Bi(g) = h™ 1> _wyg(Z;) — 9(Z:)] = O().

J#3

REMARK: When p < 36/80, M; = 12, otherwise higher moments are required.

REMARK: The nonparametric residuals 7); and 7; are not zero mean in general.
This suggests that one may wish to use recentred residuals in the final stage regres-
sion (??). Similar second order moment approximations hold for the intercept OLS
estimator. In this case, the variance is the same as in Theorem 1, but the bias in-
volves the ’demeaned’ curvature measures — i.e. we use the formulae of Theorem 1
but replace (¥ by (1° — (¢l where (1 = n~ ' Y1) Bi(Gs) and ¢ = n 'Y, Bi(0).
In many cases, including an intercept will result in an improvement of the bias, see

(??) below.

By Lemma 1, we can further approximate B;(g) by Dig(Z;), (the first element of
Dir;), which is a linear combination of the ¢'th order partial derivatives of g weighted
by functionals of the kernel. Consider the special case where u; are homoskedas-
tic and the local linear procedure is used in estimating G. In this case, Dig(Z;) =

a3 (k)g"(Z;)/4, and, when ¢ =1 and Y = [0, 1],

[0"(2)g5(2)f(Z)dZ

do.0,)

E[T*] = /nh*ai(k) s Var[T*] = 1+ n'htay(k,), (10)

where k,(t) = kxk(t) —2k(t) is the "twiced’ kernel in which kxk(t) = [ k(t —s)k(s)ds
is the convolution of k with itself, while the kernel constants ai(k) = [t2k(t)dt
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and as(k) = [k*(t)dt are both positive. These constants can be calculated quite
readily for most frequently used kernels &, see Linton (1991): for the quadratic kernel
k(t) =21 —t)I(|t] < 1), a; = 0.2 and ay = 0.835. Now suppose that the signal to
noise ratios 0"”(Z)/oc and ¢5(Z)/o, are constant and equal to 6; and 6, respectively,
which is consistent with regression functions of the form g(Z) = §;Z%/2 and X being
scalar. We computed the M SFE at a range of bandwidths for sample size n = 100 using
both (??), with B;(g; h) and V(h) = S, ;4 nhp?; which we call "exact”, and the
asymptotic approximation (?7?). Figures 1-4 display the M S E plotted against In(h) —
see Marron and Wand (1992) for a discussion of why the log-scale is more appropriate
— for four different configurations of §; and d5. There is a difference between the two
approximations for large bandwidths; however, both indicate modest small sample
effects for bandwidths near the optimum, although if bandwidth is chosen poorly the

cost can be excessive.
x %+ Figs 1 — 4 here * x x

A value of §; = 20 seems quite extreme to us, and would certainly be very pronounced
in the data. We therefore feel that at least for scalar Z, the small sample properties

of B should be acceptable unless an extreme bandwidth is chosen.
4.2. Second Order Approximation for S and W

We now consider the properties of the standard error estimate and test statistic
in the special case where the errors are homoskedastic. Standard error estimates can
be very poorly behaved in finite samples even in situations where local smoothing is
not employed, as Chesher and Jewitt (1987) have quantified. We proceed as for T
to make a stochastic expansion for S; but in this case, since we only establish order
in probability properties of the remainder, we only collect terms that are larger than

Op(n~'). This results in
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§ = VAGEI-o2) | VRS, Mo | [yR@Eof)? [T VR(Sy, X )

202 20?2 - 8ody/n 8[cT S c2vn (11)
T S t—»-Nd[vr(c2—o2
+[ \/_( k] (;:]21’]\)/_][\/_( € E)] + OP(’n,_l)7
Now let S* be the truncated statistic obtained after using the further approximations:
-1 -1 -1
V(S = Sph) = =Sl Xpx; ) 4 ZuXeZalotn 4 Op(nt)
Jn(2 — o?) = Xy — Qﬁ(ﬁ\;g)TXN + x/ﬁ(ﬁfﬁ)T\%m/ﬁ(ﬁfﬁ) +O0p(nY),

where Xy = \/n(Sz— 02) with & =0, — 3T, = & + #\/ﬁ(ﬁ - B3,
The following theorem provides some information about the small sample prop-

erties of our semiparametric standard errors:

THEOREM 2. Assume the same conditions as in Theorem 1, except that A2’
replaces A2. Then,

CGO TZ 1<‘77772
20 2 QCTE,mlc

B[S"] = v/nh*[ % 2]+ o(n ),

where ¢ = n~! S [Bi(0))? and (M =n"ty Bi(G2)Bi(Go)T. If, in addition, u;

are symmetrically distributed about zero, then

Var[S*] = s*[1+n"'h~ P{ZZnthw n=2H),

i=1 j7#i
where s* = 14+ (Kae+Kap+ ) /4, with kae and Ky, being the standardised fourth cumulants

of € and n; = c"¥, In;.

Interestingly, the asymptotic bias of & is of the same order of magnitude as that of
3, i.e. of order n=®+1/2) while its direction could be upward or downward according

to the relative magnitudes of Cge and (.
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Andrews (1989b), Robinson (1989), Stoker (1989) and Delgado and Stengos (1994)
establish the limiting behavior of various semiparametric testing procedures. Their
small sample properties have been investigated by monte carlo experimentation. How-
ever, no general conclusion can be drawn from this analysis: Delgado and Stengos
(1994) find a tendency towards under-rejection under the null, while Robinson (1989)
finds both under and over-rejection for different configurations. In both cases, the
power appeared to vary considerably with the model parameters as well as with band-
width.

We provide analytical results that bear on the small sample behavior of the stu-
dentised statistic described in section 2, under the null hypothesis that 3 is the true
value. The studentised statistic can be written as W = T{1 + n~/25}71 and, ex-

panding out the denominator and replacing 17" by 1™, we get
W=T"— n*1/2aflcT§;anNS* +O0p(n H =W*+0p(n ).

Then, since Cov[Xy,n /2 Xy S*] = o(n~%), we have

THEOREM 3. Assume the same conditions as in Theorem 1, except that A2’
replaces A2. Then, E[W*| = E[T*] + o(n*) and Var[W*] = Var[T*] + o(n~2").

If the third cumulants of u; are zero, then, provided the moments exist, the skew-
ness of both 7% and W* (as well as higher cumulants) are o(n=?*). In this case, the
size of the hypothesis test based on W will, to second order, be largely affected by
bandwidth through the location affect (the bias of B) Departures from nominal size
could take either direction, and one may find over or under-rejections with this pro-
cedure. In situations where the location effect is small (i.e. when 6(e) is close to

linear), the scale effect should dominate and the test should over-reject.
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4.3. Corrected Standard Errors

The formulae of Theorem 1 can be used to correct the standard errors for the
small sample effect of bandwidth. In the special case of homoskedastic errors, the

asymptotic variance of v/nc (8 — ) is

go =0 [L+n""h™ "> " nh"p}}] + o(n™?).

J#i

In this case, we recommend using the modified quantity

gl+n""h=" > nhpl}/2]

J#i

as standard errors for 5. From Theorem 2, \/n(6 — 0) = X + Op(n™*), where X =
Op(1), and therefore G — G, —n~Y/2X = Op(n™2) and 6* — G, —n"/2X = op(n~2).
In this sense, the modified standard error provides better confidence intervals. The
correction amounts to doing a degrees of freedom adjustment, similar in spirit to
those discussed in Andrews (1991a).

The asymptotic bias of B can also be estimated from the formula given in Theorem
1. This information can be used to adjust confidence statements about B and to size
adjust the test statistic, through Edgeworth type approximations as in Rothenberg
(1984c) — see Cavanagh (1989) and Linton (1992). However, measuring the location
effect requires estimation of the higher derivatives of the regression functions. In
practice, it may be desirable to pursue a strategy that minimises the effect of bias on
inference. If G were sufficiently under smoothed, i.e. hn™ — 0, the asymptotic bias of
ﬁ may be treated as negligible. In this case, 6* should provide well centred confidence
intervals. This strategy is employed in many applications of nonparametric methods
— see for example Bierens and Pott-Buter (1990) and Banks, Blundell and Lewbel
(1992).
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5. SECOND ORDER OPTIMALITY AND BANDWIDTH CHOICE

In this section, we develop an optimality theory for estimators of § using our
second order moment approximations. We also suggest a feasible method for attaining
the optimal performance.

Let ¥(q, P) denote the class of semiparametric least squares estimators of 3 based
on the local polynomial regression scheme of order ¢ with a bandwidth sequence of
the form h(n) = yn~7", for any v > 0. The optimal estimator within ¥ employs

™

ho = von™", where

Yo = (PV /4qB%)Y/ 4at) (12)

in which case, to a second order approximation,

MSE(h) ~n™! {1 + ] (4q/P) 4/ Gt P) | (4q/_p)P/(4q+P)]B2P/(4q+P)V4q/(4q+P)} ‘
(13)
This is a lower bound for all estimators within W.
We examine (??) and (?7) in the special case described in Section 5, and for
simplicity take 6 = 8 = 6. In Figs 5 and 6 below we graph hy and (??) as functions

of ¢ for several sample sizes:
* % x F'igs 5 — 6 here * * x

Even for very large ¢, the optimal MSFE is not much above its asymptotic value.
This suggests there may be considerable worth in getting in a neighbourhood of the

optimal bandwidth when 6 is large.
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The optimal bandwidth is not feasible, since v, depends on the unknown quan-
tities G and Y. There are numerous techniques for automatic bandwidth choice in
the nonparametric literature — see Hardle (1990) and Jones, Marron, and Sheather
(1992) for reviews in the context of nonparametric regression and density estimation
respectively. Many applied studies use a form of cross-validation, in which h is chosen
to minimise a suitable criterion function such as a (leave-one-out) least squares crite-
rion (Stock (1991) and Engle et al (1986)) or a pseudo-likelihood (Robinson (1991a).
In nonparametric regression and density estimation this method gives the optimal
bandwidth when judged by an asymptotic (integrated) MSE error criterion — see
Hall (1983).

For semiparametric problems, few such optimality results exist — Robinson (1991a)
shows only that using a cross-validated bandwidth does not affect the first order lim-
iting distribution. In our case, the optimal bandwidths for estimating # and for
estimating G are of different orders of magnitude; therefore, the bandwidth selected
by cross-validation will be the wrong order of magnitude. We consider an alternative
method — the plug-in. This consists of two stages: firstly, vy is estimated consis-
tently by 4y say, and then 4yn~ ™ defines the window used to estimate 3 in a final
stage. This method was employed by Hérdle, Hart, Marron, and Tsybakov (1992) for
\/n consistent semiparametric estimators of average derivatives.

We now demonstrate that such a procedure can attain the second order bound
(??). Let 7y be any n? consistent estimator of 7y, where u <¢ < 1/2. For technical
reasons — see Bickel (1982) for a similar application of this device — we shall employ
a discretised and Winsorized version 7, that is defined as the closest point to 7y in

the grid

{@'nf“’ c0<yy <in P <Ay <oo, i z'nteger} ,



20

where 77, and 4y are selected in advance. Provided 4o € [v1,70], J0 is also n?
consistent. We use hg = ~Yon~ T to define our final estimator of j, B(ﬁo)

Firstly, note that
T(ho) = T*(ho) + Rr(ho),

where T*(hg) and Ry (h) are the truncated and remainder statistics defined in (?7)

and (??) evaluated at the bandwidth hg. By the mean value theorem,

T* (o) = T (ho) + (o — o) (),

where ﬁ* lies between ﬁo and hg. The following theorem establishes that both (ﬁo —
ho) % " (h) and Ry (he) are small in distribution.

THEOREM 4. Let ¢ < . Assume A1, A2’, and A3-A5 hold, with J, L>Ms, where

M, = Max{m“iéffd’), SMJ;‘;(I/;;@’ 4u+j(i ¢)7 32u§16(s@ ¢)} with 2 = ¢ — p — [,U _ M*]

and p* = (4q — 3P)/2(4q + P), and that o € [yr,Yv]. Suppose also that for some
A >0,

A6. Pr[n?|Fo — vo| > Al = o(n™2).

Then, the distributions of T(ho) and T*(ho) differ by o(n 2").

Therefore, the plug-in estimator is asymptotically equivalent to order n=2* in distri-
bution to the second order optimal estimator.
We now discuss how vy is to be estimated. Clearly, ¥ can be replaced by f]; the

question is how to estimate:

B g,ho Zwlj ho (Z ZZ hOPzg (14)

JF JF



21

Note that V(hy) ~ V(h) for any bandwidth sequence h satisfying A4. Therefore,
V(hg) can be estimated by V(h). We discuss two alternative methods of estimating
Bi(g; ho). Firstly, take B;(gn+; h*), where gn- is a preliminary estimate of g based
on a bandwidth A*. This method is convenient to use, and performed well in the

simulations reported below. The second method uses the asymptotic approximation

Bi(g; ho) = Dig(Z;) and replaces Dig(Z;) by an estimate lsg\g(Zi). The ¢'th partial
derivatives of g can be estimated by a local polynomial regression estimator of order
q* > ¢ with bandwidth h*, but also by the series method of Andrews (1991a).

We now prove that this latter method can satisfy (A6). Let ¢ be the vector con-
taining ¢ ge and the unique elements of ¥. Then vy = v(1)g), where (o) is continuously

differentiable at 1)y. By the mean value theorem
o — 70 =7 (¥5)" (Yo — o),

where 7/ is the first derivative vector of «, while 9 is intermediate between QZO and .
Properties of average derivative estimators similar to Eq"\@ =n 1y, @(Zi)Dzég(Zi)
are considered in Andrews (1991a), Hérdle and Stoker (1989), and Powell, Stock and
Stoker (1989). When G is sufficiently smooth, Eg\e (and hence 7y ) should be consistent,
and even /n consistent under moment and smoothness conditions and appropriate

restrictions on ¢* and h*. If Sup, E[|n? (1 — ) [F] < 0o, where F(¢ — ¢) > 2y, then

PI’HH(/S(@]J\O . 17/}0)’ > )\] < E[|n¥ (30—40)|F] — 0(71_2'“)

A ple—9)F

by Markov’s inequality. That the required moments exist can be verified for local
polynomial estimators of average derivatives under smoothness and moment condi-

tions. To handle /(1) a truncation argument is used.
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COROLLARY: Assume that A1-A5 hold, with J and L> Mz = 4u/[(¢ — ¢)], and
in addition G € Gg. PFurther suppose that nh** @~ — 0 and nh*"+9 — oco. Then

A6 is satisfied.

Whatever method is employed to estimate 7y, an additional smoothing parameter
has to be selected, and in this sense the plug-in method is not fully automatic. How-
ever, evidence presented in Park and Marron (1990) and Sheather and Jones (1991)
suggests that the final estimate may not be so sensitive to the choice of the secondary
smoothing parameter, and one can employ some arbitrary rule for estimation of the
bandwidth constants with little cost. The so-called rule of thumb approach, see Sil-
verman (1986) and Andrews (1991b), offers an alternative plug-in implementation
that does not require an explicit preliminary bandwidth to be chosen. In this ap-
proach one specifies, for the purposes of bandwidth choice only, a parametric model
for G(e) such as making it a polynomial function of Z. Parametric procedures are
then used to get a preliminary fit G* and derivatives thereof which are then plugged
into the optimal bandwidth formula. This method achieves the more modest objec-
tive of being second order optimal for the particular model chosen for G, although

the correct order of magnitude for h is guaranteed for all G.

6. SIMULATIONS

This section contains the results of a simulation experiment designed to evaluate
our bandwidth selection procedure.

We generated 20, 000 samples of size n = 100 from:

Y1 = 1 + Y2i + 0561Z22 + €y, Y21 = exp(ln(62 + 1)ZZ) + MNi,

111(62 + 1)
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where (¢;,7;) were iid Gaussian with unit covariance matrix, while Z; = i/n,i =
1,2,..,n. Note that n=* 3%, 0"(Z;)g5(Z;) = 6165. We examined the following param-
eter values: I (6; = —20,6, = 4), II (6, = —50, 69 = 10), III (6; = —100, 62 = 20), and
IV (61 = —150, 8, = 30). All regression functions were estimated by local linear re-
gression with quadratic kernel. Equally spaced designs are not encountered frequently
in econometric applications. However, our primary purpose here is to evaluate the
quality of our asymptotic approximations and for this reason we adopt the most con-
venient sampling scheme that allows us to vary what we think are the key parameters
of our formulae.

We first evaluated the performance of B for each of models I-IV at a grid of 20
different bandwidths. Figures 7 — 10 show the simulation M SE (scaled by 100) for
models I-IV.

FRxFigures 7-10 here™**

These results confirm the validity of our second order approximations; witness Fig-
ure 11 which superimposes the simulation MSFE and second order approximation

(calculated from (?7?)) for model IV.
***Figure 11 here™**

The approximations are remarkably close to the actual performance of the estimator
for bandwidths in the intermediate range close to the optimum.

Finally, we evaluated our plug-in procedure. The initial bandwidth h* = 0.25 was
used to estimate the bias and variance constants by

BilGne; 1*) = W2 |51 wis (0)Gne (Z5) = Gue (Z0)] 5 V(1) =L nh* pis(h*).
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We did not Winsorize nor discretize the resulting ho. Figure 12 shows the density of

In(hg) for models I-TV.
***Figure 12 here™**

Finally, the performance of the resulting estimator B (ﬁo) is given below:

TABLE 1. PERFORMANCE OF j(ho)

Moments Quantiles
Model T s 1% 25% 50% 75% 99%
I 0.9971 0.1045 0.7511 0.9269 0.9966 1.0663 1.2451
IT 0.9973 0.1058 0.7498 0.9270 0.9968 1.0683 1.2472
11 0.9971 0.1074 0.7462 0.9248 0.9976 1.0689 1.2521
v 0.9969 0.1087 0.7415 0.9239 0.9975 1.0690 1.2542

where T and s denote simulation mean and standard deviation respectively.

7. CONCLUSIONS

Our work suggests several qualitative predictions about the higher order properties
of the various semiparametric statistics we considered. When using such procedures
the practitioner has considerable latitude in choosing the number of nuisance param-
eters to estimate. While this choice is not reflected in the first order theory, it can

have considerable impact on the actual performance of estimators and test statistics.
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In particular, we found a variance inflation proportional to n='h= which for small
bandwidths can be of comparable magnitude to the asymptotic variance. The bias of
the estimator is more difficult to measure since it depends on the unknown regression
functions, nevertheless the direction of the bias may be inferred from information
about their concavity.

Accounting for these higher order properties is essential if reliable inference is to
be carried out; we suggested ways of accomplishing this. In particular, the degrees
of freedom adjustment considered in section 6 is relatively easy to implement and at
least reflects the bandwidth in a way which guards against its inappropriate use.

We also constructed an estimator of § that was second order optimal. Although
our standard of optimality compares estimators only within a much more restricted
class than the first order optimality theory of Bickel et al (1993) and Newey (1990a), it
does provide a benchmark against which to compare alternative first order equivalent
procedures. In practice, our procedure seems to work quite well even for samples as
small as 100, provided there is not too much nonlinearity.

Our approximations are based on computing the first two moments of the trun-
cated Taylor series approximation to the standardised statistics. These calculations
can be carried out for a much wider class of semiparametric models possessing smooth-
ness properties. Some preliminary work dealing with such a general situation is pre-

sented in Linton (1992).
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APPENDIX

In the first section we give some preliminary lemmas that describe the properties
of the local polynomial estimator and various averages derived from it, while in section
B we give proofs of the theorems.

In the sequel, let |a| = (a’a)’/? be the Euclidean norm of the P-vector a, and let

Al =Apn(A) = Maz, %42 be the matrix norm of any real symmetric matrix A,
a

'a

where A\.x denotes largest eigenvalue. We make use of the following argument. Let a

and b be vectors and let A and B be matrices. Then |a’ABb| < (a’A%a)'/?(V/ B?b)'/?
a’ Aa <

a’a

by the Cauchy-Schwarz inequality, while for positive definite A, o’ Aa = d'a
a'a||A|| . Therefore,

|’ ABb| < |al[b| || A]l || B]| - (15)
Finally, we will use x1, X2, .. to denote positive finite constants.

A. PRELIMINARY LEMMAS
Al. Properties of Local Polynomial Weights

We now derive various properties of the weighting sequence {w;;}.._, defined in

ij=1
(6) with h = O(n™").

LEMMA 2: 3wy =1 Y wy = 1+ o(1).

LEMMA 3: Let p;; = n,*l/Q[Zk#?k# WiiWwg; — 2w;;] and let p; = n- 1?2 Dokt wi,.
Then ¥ % n~'wi, S5 p&, and n='2 Y0 py are O(n='h=F), while Y, p% =
7] i#]
O(n=2h=2F).
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PROOF: By the triangle inequality, we have

D22 <8 A X w7t RS wh,

ij i kit okt i
and by Cauchy-Schwarz
[ 2 S0 wgw? <[V w0 wi).
kA, ki kA ki kA ki

By assumptions Al and Ab5:

Cl #{j: wy # 0} = O(nh?)

C2 |w;| < xin 'h P,

where #A denotes the cardinality of a set A, and C1 holds uniformly in i. Therefore,
S kjkei Why < xen”'h™" uniformly in ¢, and the first two results follow. Also, by
interchanging summations, n~ Y2 Y7 | p;; =n"1 Y (X0 wi;), which is O(n *h~F)

by the same arguments as above. Similarly for 3%, p?.

LEMMA 4: zz (%412 = O(n~th-(F+2),
PROOF. Applymg the triangle inequality and Cauchy-Schwarz, it suffices to es-
tablish the order of magnitude of 3 - [61”” 2. Let K; be the diagonal matrix with
i#]

typical element

Z;— Z; Z \Zn— 2

-1 ip
h_hzk T

where k,(t) = %k(t). Then, because each k,(t) is bounded and of bounded support,

there exists a y3 such that

Z; — Z;
Max ]—k;( )| < xsh ™t

2,7<n h
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% is the j’th element of the first row of

Therefore, since =;:

—(X]KX) N (XTKGX) (XK X)X KG + (X KGXG) XK

there exists x4 such that ]%i] < x4n~ R~ Furthermore, #{ (4, 7) : %ﬁ #0} =
O(n?h%), by the bounded support of k. Therefore, n *h~CVH1XTK,X,H 1,
n PV AXTKKGXH Y and nth-FDH1XTK2X; H ! are O(1), uniformly

in 7, and the result follows.

A2. Properties of Standardised Averages of Local Polynomial Estimators

The truncated statistics 7%, S*, and W* depend on the weighted U-statistics Xp,

Xu, and Xy, where:

Xy = V/nSe = n 20— (Byi + Vi)llei — (Boi + Ve
Xp = Vn(Spm—Zp) = n PYE, {[772 — (Byi + Vi)l — (Byi + Vi)™ — inn}
Xy = Vn(S=-7%) = n V25" {le; — (B + Va)]? — 72},

— -l 22 i & 5 T2 : -1ywn 2 P -2 —
where S~ = n"" 3" &, with &§ = ¥, — 8'7;, while n™" > ;&7 — 0%, and B,, =

(BQ'ia cey BD+1,Z‘)T, ‘/771 = (‘/22, cey VD+17i)T7 Wlth fOI’ d = 1, 2, cey D —|— 1:

Vai = Y i WiglYay — 9a(Z5)) 5 Bai = Xy wigl9a(Zs) — 9a(Zi)],
By; = By; — ﬁTBm' = Z#i wij[Q(Zj) - Q(Zi)] s V= Vi — ﬂTV;yi = Zj;éz' W;ji€5.

Note that for example By; = h%B; (g91). By expanding out the brackets and collecting

terms we obtain
Xy=Xy+bv+Ly+Qn, Xp=Xp+bp+Lp+Qp, Xy =Xy +by+ Ly +Qv,

where the Op(1) leading terms are:
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XVV —=n 12 Z(Ef - 53) 3 XVN =n /2 Zmei ; XVD =n 1 Z(mmT - inn)a

i=1 i=1 i=1
while the biases terms are:
by =n~1/2 >iz1 BriBoi
bp =n"2Y ByBE+n 2y B[V VE] = bpy + bpe
by =n~ V28 By + 07 VP YR BIVE] = by + by,

The linear and quadratic statistics are

Ly =n"1/?2 ?:1(‘/;”' — ;) Boi + n~1/2 1 Bni(‘/ei —€) + 2 i€ = 2?21 Ly;
Lp=n"20 (Ve —m) Bl +n 230 By(Vo — )" + 30 pu(nin] — ) = X5—1 L,
Ly =202 7 | (Vi — €)Byi + X1y pul€l —72) = Ly + Ly
QN =23 pijenj ; Qo =23 pigmin; 5 Qv =2 X pijeics,

i#] i#] J#i

where p; =n~V2 Y, wi; and piy = 02 ks Wi — 2wy, § F# i

The properties of X, Xp, and Xy can be determined from the lemmas below.

LEMMA 5: As n— oo,

Q

\/ﬁhQ‘l{n_l Zzﬂzl DIZ@D%GQ(ZZ)}
bpi Vih*{n=t S DIGYDIGE (Z:)}
byi &~ h*{n" T [DI(Z)])

b

Q

PROOF. Lemma 1 can be applied directly.

LEMMA 6: bpo, byo =25 nfl/Qw?ja(Zj) = O(n~Y2h~F), where o? is either the
i£]

scalar o2 or the matrix %,,. Follows from C1 and C2.



31

LEMMA 7: Lpy, Lps, Lv1, Lni, Lya = op(h?), but Lps, Lns, Lye = OP(n_lh_P)-

PROOF. Consider Ly; = n~Y2 3", (V,; — 1:) Bgi. By interchanging summations,
we obtain Ly; = n~ Y2 37" &mn;, where & = [>°;.4i wjiBg; — By;). Therefore,

n

n~! Z &% (Z:)

i=1

n

< xsn! 253

=1

Var[Lm]|| =

Furthermore, by the triangle inequality and Cauchy-Schwarz,
& < 2[(Z; wii — 1) Ba]* + 2{]‘]{% (Boj — Boi)*} 05 w3] = o(h*?).

uniformly in 4, because 3,; w3, = O(n~'h=") by C1 and C2 and ¥,; wj; —1 = o(1)
by Lemma 2.

For Ly we have

Var[Lus]|| =

Z P?i”?(zi)znn(zi)
i=1

< xel >_piil = O(n~*h7*"),
i—1
by the boundedness of 02(Z;)%,,(Z;) and Lemma 3.

LEMMA 8: Qp, Qn, Qv = Op(n~Y2h=/2). Furthermore,

Var[Qn] = EZ:#;P?]-U?(ZJEW(ZJ') R iaz(Zi)Znn(Zi)Zj;éipsz

VarlQv] = Z;AZP?J-U?(ZJU?(ZJ') ~ Y0 Z) i P
i#£]

PROOF. The order of magnitude follows from Lemma 3, because ¥(Z;) is uni-

formly bounded. The approximation is valid because ¥ € G;.

LEMMA 9: Assume that A1-Ab5 hold, where J,L> 2M for some integer M. Then
Sup, E[| Xn|M] < oo and Sup,E[|| Xp||™] < .

PROOF. First, using a standard inequality
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E[|XnM] < x7(E[ XM + [ba M + E[|Ly ] + E[Qu] ™).

By standard results for independent random variables, 2M uniformly bounded mo-
ments are sufficient to guarantee that Sup,E[ln"Y/2 " me;|M] < oo. Similarly
Sup, E[|Ly|™] < 0o, while Sup,|bn|* < oo because of the boundedness of the ¢’th
derivatives of G.
We now establish that Sup, E[|Qn|*] < oo, where
Qn EZZ pij€in;+ ZZ Pij€iNj-
i>i i>]
Without loss of generality restrict attention to -3 pyen;. Let Wi =32, pijein; for
each i, then 33 pyein; = 35, Wy, where {W;} f01r<njls a martingale difference sequence
with respect tz(j jthe sigma field generated by {u; 1,..,u;}. By the standard martingale
techniques of Hall and Heyde (1980),
BIS W) < xe(S 3 o
i j>i
provided Sup; E[|e;|™] < oo and Sup;E|[|n;|*] < oo, see Mikosch (1991), Lemma 1.3.
Therefore, applying Lemma 3, the result is established.
The same arguments apply to Xp.

LEMMA 10: Assume that A1-A5 hold, where J,L> 2M for some integer M. Then

M

0X
)ZAN ] < 00,

Oh

oy 0Xp
oh

L1. Sup, E[|jn*" M] < 0o ; L2. Sup,E[||n

where p* = (4q — 3P)/2(4q + P).

PROOF OF L1. By A3, 2% = O(,/nh?1), where h = O(n ™), so that n(* "™ 2 (h) =

O(1). We consider 2231 (h) = n~Y/2 57" | %Kiy, where



33

852 8wj2- 889 8B9,
=X B i1 _
8h (jiz[ 6h 9] wﬂ ] )
Since Z#Z[awl] = O(n~'h="*?)) and 222 = O(h97'), we have Var[2&(h)] =

O(h?1=2). Therefore, since the required moments exist, E[|n(*~™21(p)|M] = O(1).

Similarly for aLN 2. Writing = 8QN =y > 68’)}17 €15, we have
i

=m0 () 1) < 3o {37 37wy
#j

where 68’)}17 = %[n_lﬂ(zk# wiwy; —2w;;)], provided Sup; E||;|"] < oo and Sup; E[|n;|M] <
kot

co. By Lemma 4, this is bounded. Therefore, E[|n(*~™22x (h)|M] = O(1). By the
triangle inequality, Sup, E[|n* ™ 2Xx M) < 50 as required.

Similar arguments apply to L2, although in this case % = O(n=1/2p=(P+1)),

which accounts for the different value of the norming constant p*.



34

B. PROOF OF THEOREMS

PROOF OF THEOREM 1
(1.1) To establish this we use the following result of Sargan and Mikhail (1971):
for all x and ¢,

| Pr[T" < 2] = Pr[T™ < 2]| < Pr[|Ry| > (] + Pr[[T" — =] < (], (16)

see Rothenberg (1984a). Provided 7™ has a bounded density, the last term is O(()
as ( — 0. We therefore choose ¢ = O([n* logn|™*) and show that for some positive
constant xig,
Xwony/n, o,
Pr[|Ry| > o logn] =o(n™*).
Let A= {|Ry| > 2%} and B = {||Syl| > x11} - We have

n2k logn

Pr[A] < Pr[AN B] + Pr[B], (17)
where
E[|| Xpl?
Pr(B%) < Pr(|Xol| > xi2v) < ras = 2 2L
by Markov’s inequality. Therefore, provided Sup, E[| Xp||*] < oo, Pr[B%] = o(n=2").
By (A.??): when [|Sasll > xu1, [Rr| < x14/Xn| | Xp|?. Therefore AN B C 4,
where A = {|Xy|[|Xp|* > 3201 and

n2k logn

- p 3p
Pr[AN B] < Pr[A] < X16[1Ogn]pEHXN’ | Xpl™]

n(3—2mp
for any p. Provided the relevant moments are uniformly bounded and (% —24)p > 24,

the result follows.
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Since J,L > M, the relevant moments exist, by the following argument. By

Holder’s inequality
E[|Xx | X)) < {E[Xn I E Xol "]},

while Sup, E[|| Xp||*] < oo and Sup, E[|Xy|*] < oo, provided 8p moments exist, by
Lemma 9.

(1.2) By (A.??) and Holder’s inequality,
E|T*]” < xarE[| Xn* | Xpl|"] < xar{ EIXn T} {E[| Xp |12,

while Sup, E[|| Xp||°] < oo and Sup, E[|Xy|%] < oo by Lemma 9, since .J, L > 12.

(1.3) Since Xp = Op(1), we can drop the last term on the right of (??). Fur-
r=—1 =1
thermore, some of the cross terms in C—E*’ﬂ%wﬂ can be dropped because X, =

Xp +bps + Op(n™") and Xy = Xy + Op(n=*). Therefore,

o =1 Sre-1y
T = 0‘1CTE,ml {XN +by +Qn+ Lyt + Lyo+ [Lys — bho¥yy XN] — Xp¥y XN} + op(n™*)

Vn Vn
=T* 4+ op(n~2),
(18)
From Lemma 7, Ly, Lys = op(h?), while both are uncorrelated with X, N, since
Eleminl] = 0 = E[en;], by A2. Therefore, since h = O(n~%@+F)) neither Ly; nor
Lyo contribute to the second moments of T* to O(n~%#). From Lemmas 6 and 7,

bps = O(n Y~ F) and Lys = Op(n~*h~F). However, although Lys and 65,5, Xy
— RS
are both individually correlated with X, the linear combination Ly3 — %’—gﬂ is
YTy~ 1% —
not. Furthermore, the covariance between %’%ﬂ and Xy is O(n™'). Therefore,

E[T*| = ailcTi;nle +o(n ") ; Var[T*] = Var[Xy] + Var[ailcTi;leN] +o(n=),
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where by is approximated in Lemma 5, while Var[Qy] = O(n~th=") is given in

Lemma 8.

PROOF OF THEOREM 2

By using that Xy = Xy + Op(n "), Xp = Xp + bps + Op(n "), Xy = Xy +
bys+ Op(n™), and /n(3 — 3) = 2777713(/1\7 + Op(n™"), we can drop many cross terms,
and find

IS {Xp+bp2} o {Xp+bpa}Sinc
QCTZ;,%C\/E

Xvtbva)?2 TS0 {Xp+bp2}Shd  LSiH{Xp+bpe)Sild Xy +bva] +o (anu)
8cdy/n 8[cTS 2\ /m 402/n PRI )

1 YTy— y _ _
S* _ [XV_WXNEW']XN] . CTEn,quDEnnlc
o 202 QCTE;,%C

+
(19)

Furthermore, terms involving n='/2b%,, n=Y2b%.,, or n='/2bpyby4 are op(n~2"), since
/nh? — oo- The covariances between X, X and: nfl/Q)A(/f,E;?}j(/N, nfl/QcTE;;j(/DE;T}XDE;;c,
nfl/Q[cTE;T}j(/DE;T}C]Q, nfl/QcTE;;j(/DE;;cyv, and n~Y/2X2  are o(n~2*). Finally, we
substitute by = /nm,02 and bpy = \/nm, %, into (A.??), where m, =33 n_lwfj =
JF
O(n~'h=") by Lemma 3, and obtain several cancellations. In conclusion, we have to

calculate the second moments of

oo o Xv ISR XSpe {CszlXDEm;c Xv }

9.2 Ty'—1 Ty —1 - 2
207 2¢TX e e 40°?

We first calculate the mean of S**. This is

Ty—1p y—1 Ty—1 ~1
bV _ C 27777 bDEm7 C1 n o(nfu) _ bVl _ C 27777 bDlEm C n o(nfu)
202 2cT%, e 202 2%, Le ’

. Ty lppon 1 ..
since &z — £ Zmp2Zn¢ — () Therefore, the bias is as stated.
207 2cT% e )

We now calculate the variance. Firstly, we rearrange S** so that

£ Ty —1 -1, Ty —1%. -1
_ Xy — m Xy _c ZWXDZWC T,,C ZWXDZWC

2 Ty -1
207 2ct% e

S**
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Further simplification results because: Cov|[Lys — Wn)A(/V,)A(/V] = 0 and Cov[Lpy —
WnYD,XVD] = 0 while if the third moment array of u; is zero, C’ov[LVl,XVV] =0=
Cov[Lps, X, pl. Therefore, the variance of S** is

Var[)A(/V] + Var[Qvy] N Var[cTE;T}E(/DE;,}C] + Var[cTE;leDE;nlc]

4o 4[cTE 1] ’

and the result follows by Lemma 8.

PROOF OF THEOREM 3

o Ty —15% -1
_ Xy ¢ Yo XDYpn € _
From (A.77), S = 307 J—”—"—QCTE;#C + Op(n~#). Therefore,

W* :T** _

_71 — — o — o
CTEW Xy | Xy B CTEm]lXDEm}c ‘o (n_Q”)
ovn 202 2%, e r '

. _120v | X Ty=1x 01 bl T . B
The covariance of n=1/2 Xy {;%VQ — st with Xy is O(n™!), so that the sec-
€ nn

ond moments of W* agree with those of T** to the required order.

PROOF OF THEOREM 4

We have to show that

4.1 Pr[|Ry(ho)| > X/ — (20

n2k logn

4.2 Prf|hetengdlE ()] > 5] = o(n™).

n2k logn

We first establish 4.1. Let N, = [y0 — An"?,70 + An"?],and let Cy, ..,Cq be sets
of diameter O(n~%) that cover N, . Each C; contains only a finite number of points

d; < d for some d < oo, while Q = O(n¥=?). Let A = {‘RT(E())] > _Xlsnlcn} and

n2k logn
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B = {F € N,,} . Then Pr[B| = o(n™*") by assumption. Letting B; = {7 € C;} , we
have Pr[AN B] < Y%, Pr[A N B;], while
- 5 _ X1ony/n
AN B] C A] = {]\40511' ’XN’ HXDH > 7n2ﬂlogn} .
Since C; is a finite set, we can apply the Bonferroni inequality to obtain that for some
X20,

3
E[Xn|” | Xp[™]
n(_72“)

Pr[A N B] < x20n "~ [log n)? = o(n™),

provided (3 —4u)p > 4+ 2(¢p — ¢). Applying (A.?7), 4.1 follows.
We now establish 4.2. This probability is bounded by

,oT"

X22n(<pfﬂ)

(p=¢) Py[|p = h — 20
Xoun 7= Pa{ln = T ()| > MHE ] 4 o(n ™),
for some hy, such that hyn™ = =, € Cx. Employing
o X H@—X&H Xnl H@—XQH ||XD|| | X
an | < x| g ’

and Markov’s inequality, we have to establish

4.2.1 Sup, E[|[n 8|/ < oo, (¢ — p)pi > 2+ ¢ — ¢

5 * N X
*| XNl < oo, (p—p+3— [ —u)py>2u+o—¢

4.2.2 Suan[Hn(“* 6{;2

BX

4.2.3 Sup, E|[n¢ ] < o0, (p—p+1—[u"—pl)p§ > 2p+p—¢,

all quantities evaluated at a bandwidth hj. By Cauchy-Schwarz,

Hnw*—w)a_xa p

BV Xy 23]
5 BV X p [ ) VA X 3]

] < E1/2 Hn(u —) B_Xa

Hn(# —ﬂ)

" 1xpI1s

< Bt
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Therefore, provided M; moments exist, the result follows by application of Lemma

10.
PROOF OF COROLLARY

The local polynomial estimators @(Zi) and D@Q(Zi) are both linear in y with
weights {wlqj} , and can be decomposed as

DI0(Z;) = DI0(Z:) + Bl + Vi ; DIG(Z) = DIGs(Z:) + Bl + V!

i) nis

where Vi = Y, whng = Op(n=/2h*~(P+9/2) and B, = O(h*(7'~?) from Lemma 1.

Furthermore,

P~ = n S, {BLBY + DIO(Z)BY + DiGa(Z,) Bl
+ nT S, {DEO(Z:)ViE + DEGH(Z:) Vi)

+ n7 o, {BVE+ BLVE

N

—1 9174
n Zi:l‘/@i‘/m"

The first row is deterministic and O(h*@ ~9). The second is Op(n~*/2) by interchang-
ing summations. The third is Op(n~/2h*@"~9) while the last is Op(n~th*~(F+2/2),

For /n consistency of ¢ it is necessary that nh*@" =2 — 0 and nh**+9 — co.

We apply the proof technique of Theorem 1. Let B = {|7'(¢§)| < x25} , then

{‘EZF - Cge\ < X26} U {Hi - EH <X} CB

for some y96, by the continuity of ~(. Using a version of Lemma 9 for e — CZ]Q, we

obtain Pr[B¢] = o(n™%). We apply (A.??), and the result follows.
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