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COWLES FOUNDATION DISCUSSION PAPER NO. 26

Note: Cowles Foundation Discussion Papers are prelim-
~ inary materials circulated privately to stimulate

private discussion and critical comment. Refer-
ences in publications to Discussion Papers {other
than mere acknowledgment by a writer that he has
access to such unpublished material) should be
cleared with the author to protect the tentative
character of these papers.

Water Storage Policy in & Sigplified
Hydroelectric System #

Tjalling C. Koopmans* -
March 15, 1957

SUMMARY: This papers deals with an electricity generating system that
combines one hydroelectric reservoir and generating plant with unlimited
thermal generating capacity operating at increasing incremental cost.

It constructs a water storsge policy that minimizes. the operating cost

of thermal generation: over the planning period vwhile meeting a prescribed
demend for power given as & function of time. Associated with this policy
are valuations ("efficiency prices") imputed to the power generated and the
vater used and ("efficiency rents") to the use of reservoir and turbine
capacities. 'These valuations, which vary over timeé; can be used in coor-
dinating the operation of different generating systems, in electricity
rate making, and in designing new systems or modifying existing ones.

It is hoped that the methods developed can he extended beyond present
simplifying assumptions: = that future power demand and water inflow to the
reservoir are known with certainty, and that the effect of variation in
the head of water can be ignored.

*  This study was initiated under a comtract between the Office of Naval
Research and Columbia University and continued by the Cowles Foundation
for Research in Economies.

¥% T am indebted to Dr. John D.C. Little and to Professor Grant Robley for
valuable information about hydroelectric systems.
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1. Introduction.

1.1 Purpose of the Study. In a recent article, John D.C. Little [1955]
has presented a procedqurs for computing an optimal water storage policy
for an electricity generating system: consisting of cone hydroelectric unit
(reservoir and generating station') and one or more supplementary thermal
stations. The latter statioﬁs are characterized by an iﬁcremcntal cost that
increases with the rate of.thermal generatiqn. The main objective of Little's
study 1s to develop and tnytn%%computational procedure that recognizes un-
gertainty about future water inflow into the reservoir, and to assess the
average saving obtainable by a policy of mininizing the mathematical expectation
of cost in one particular instance - an approximate model of the Grand Coulee
Plant on the Columbia River.

’ While the ﬁresént study borrows most of its assumptions'ﬁrqm:a Little's
work, its intemt. . is somewhat different. Our first purpose is to study the
characteristies of an optimal storag¢ policy and to study its dependence on
the future paths of water inflow and power demand. Our second purpose is to
associate with an optimal storage policy imputed values or-"efficiency priceé,“
of the power géneratgd and of the water used or in storage, and imputed “efficiéncy-
rents" for the use of the hydroelectric gpneratiﬁg plant and of the reservoiryy
These prices (aﬁd rents) are functions of fime;.and are useful in coordinating
the obefation of hydroeiectric'ani thermal plants, and of differert hydroelectric
planté én the same or on different rivers or rivers systems. They can also serve

as & basis: for rate'making according to ineremental cost, If the conditions of
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water inflow and of demend for pqwer'assumei in deriving the valuation functions
are likely to be repeated seascnally over an extended period of time, these
valuations can also help in making decisions gbout the :sizes. of reservoirs,
about generating capacities, and ab&ﬁt wate;shed improvements to influence
runoff. |

The mathematical analysis needed t0=attain these objectives is helped
forward dec1sive1y by treating time as a continuous variable, even though its
_ . unliess completely graphical
computational implementationnyould be likely to fall back on a discrete time
concept. On the other hand, we shall mﬂke this first exploration of our problem
on thé basiss: of an assumption of complete certainty aboﬁt future water inflow
and power demand.~ Little's finding that the explicit recognition of uncertainty
in the G;and_goulée situatioh would save sbout one percent of supplementary
generation cost shows that in some climates policies based on suitsble assumptions

about water inflow and power demand treated as completely certain . are not too

far off the mark.* However, our main purpose is the development of concepts

* Actually, the assumptions made with respect to water inflow in this: case
are based on the worst year on record rather than some average, reflecting a’
nigh weight given tc the avoldance of interruption of power supply in dry years.

and tools of ana;ysis, rather than immediate gpplicability. . It is believed
. that our results have value also aﬁ a starting point for the systematic analysis
of cases involving ﬁncertainty.

The technological facts will therefore be simplified and approximated also

in other respects. If In spite of this we aim for mathematical precision in
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réanonina, the motivation is similar to that which makes a computer add

geveral spurious zero decimalg to inaccurate data when embarking on a

lengthy computation. Strict conslstency of conclusions with premises

will help in intuitively assessing the importance of discrepancieé between

premiées and reality.

1.2 The Model. The following list of variables and notations suggests

the main features of the model.

Class of
Yariables

Time

Given
sonstants

Given
technological
functions

Given functions
of time

Policy
functions

time

planﬁing period

reservoir capacity

turbine capacity

initial, and minimum
final, store of water

cost of thermal
generation at rate s -

conversion function
(power ocutput 1f v=l
and store of water = W)

rate of inflow of water
into the reservoir

demand for power

rate of discharge of
water through turbines

spillage of water

lNotation*

no’nt

¥(s)
A(W)
¢(t)

t(t)
v(t)

u(t)

engion**



Class of .
Yariables Variable Notation¥* Dimension**
Derived net increase in the w(t) 35/t
functions store of water
maximum rate of n{t) or y(t) £5/t
turbine discharge- :
rate of supplementary s(t) e/t
thermal generation ‘
Prices and price of power p(t) g/e
rents : 3
price of water q(t) /2
rent of reservoir Q(t) g/t
rent of turbines R(t) B/t

* Greek symbols denote given quentities, latin symbols (other than t)
denote policy variables and varisbles dependent thereon. Capital letters
refer to stocks, small letters (other than t , 7 and u ) refer to flows.:

* In this celumn, t = time, 4= length, 35 = volume, $ = money and e =
electric energy. '

The determination of water storage ﬁolicy is assumed to be made for a
finite period shead, 0 gt ST, to be ce.lled. the w, and

starts from a given initial store of water *

i

* The store of water is defined to exclude "dead storage," that is, water
at levels below the lowest turbine gates.

At time t the store of water then is

A
ot
A
L

(1.2) w(t) = W(0) + j('f w(t')as' , 0
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;here the instantaneous net rate of increase w(t) in the store of water

depends on-the policy functions through the inventory identity
(1.3) w(t) = £(t) - u(t) - w(t) »

Mhis identity says that the net excess of inflow ¢(t) over outflow through
turbines v(t) or spillways u(t) becomes & net increase to the store of

water.*

* Evaporation and leakage, if recognized at all, must be regarded
as a deduction from inflow in defining E(t) . The dependence of
these water losses on the store of water must then be ignored.

We shall restrict the end-of-planning-period store of water by a

preseribed lower bound

(1.4) wit) 2 a, where 0 < a.ga.

The special case whéfé”the final store of water is of no concern is then
obtained by setting no =0 .

A characteristic feature of the problem is the simultaneous presence
of restrictions on stores. and on flows. The given size of the reservoir

places the store of-water between two bounds

(1.5) ogw(t)ge, ogtgr,

if we ignore minor fluctuations in reservolr capacity due to wind, flow or
temperature. On the other hand, turbine capacity places similer bounds on the

rate of discharge,

1A

(1.6) ogv(t) <o, , o<tgT,
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if we ignore possible harmful downstream effects of low rates of discharge

implicitly recognized by Little,* and if ve disregard the possibility of

* £.c, Table I on p. 192, and correspondence.

using thermal power to pump water back into the reservoir.

The power output from & given rate of discharge- v through the
turbines will be treated as proportional ﬁo v , although this is only
approximately.true. The factor of proportionality A in turn depends
primarily‘on the "head" of water, that is, on the différence h in surface
level between the water in the reservoir and the "t;ilwater" back of thg dam.
The precise form of this dependence is determiﬁed by‘turbine design, and in
s&me plants the conversion factor X decreases for heads larger than a |
designed most favorable ievel. We shall however assume constant turbine
efficiency, which makes A proporticnal to h . The head h in turn depends
prima;iiy~dn'the.store W of water, if we ignore the possible effect of total
rate of outflow u(t) ; v(t) on tailwater level. While the precise form of this
dependence is deﬁermﬁned by-the shape of the reservoir, h 1is necessarily an

increasing function of W . We shall therefore write
(x.7) v . A(W)

for the power output of a discharge v , and choose the units of water flow

and of electric power in such a way that A(W) satisfies

(1.8) 0<AM0) SMW) <AW ) EMR) =1 for ogW<VW g@a.
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We shall refer to A(W) as the conversion function.

In scme cases the.range of reservoir surface levels is small compared
with the @rop in elevation from turbines gates to the tailwater-pool. In
this caée a good approximation is obtained by ignoring all';ariation in the

conversion factor,
(1.9) MW) =1 for OSWLa,

and a considerable simplification of the analysis results. The
presert paper :is entirely concerned with thls special case.

Since the problem to be studied is in the flrst instance one of oPeration.
rather than design7 we take into_accouﬁt only operating cost, but not long run
commi tments such'aé service on capital invested in reservoir and generating
stations, or lebor and maintenance cost independent of fluctuations in power
output On this basis, the operating cost of hydroelectric generétion can be
neglected as compared with that of thermal generation, in which fuel 1nput is
the dominant cperating cost.

In arranging for the necessary thermal generation, one will naturally first
utilize the most efficient units of available capacity, and drew on additional
units or stations iﬁ order of increésing operating cost, possibly including
transmission losses. It is therefore justified - and extremely helpful to the
analysls - to assume that the incremental operating cost of thermal generation,
starting at a poaitive level y at the rate 8=0 ’ can never decrease but
cen increase when going to higher and higher rates of generation. We shall
express these cdnditions in'terms of the total cost fﬁnction v{s) rathexr

‘than fhe incremental cost, to avoid the unrealistic essumption of differentiability
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of w(s) for all values of & . We thus specify that v(s) 1is increasing
with s (1.10a), bas a positive slope & s=0 (1.10b), and is convex (l;IOc),
~ that is, the curve representing ¥{s) remains below any of .its chords.

(1.102) 0 =¥(0} < ¥(s) <¥(s') for 0gs<s ,

(1.10) -4 (1.10b) ﬁ(s) 27 .8 for 0gs, vhere y >0,

. ' * * * % *
{1.10c) p¥(s) + p ¥(s J2w(us +us) for 0<p=l—u <1
These requirements are satisfied in the realistic case where (s} follows
a broken line (see Flgure 1) with successive segments 1ncreasing in slope.
It so happens that the presence of linear segments in ¥(s) introduces considersble

in determinacy in the optimal storage policy. We shall therefore in most of this

(5)
Do g
\i,(s) \f,{,s)
- S
S —>
Figure 1. Convex and Figure 2. Strictly
piece~wise linear cost convex cost function
function of thermal of thermal generation.
generation.
baper use an assqmption of strict convexity,
' * * * ® * *
(1.10¢ ) ny(s) + 1 y(s ) >¥(us #u's ) for O<up=lp <1 and s ¢#s ,

which introduces some degree of upward curvature throughout the curve (see Figure
a finite number of

2 ) without precludingAupward kinks. Conditions (1 10a), (1.10b) and (1.10c )
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will together be referred to as (1.10').
N
The total operating cost of thermal generation over the planning period

*

can now be written as

(1.11) ¢ = {,T v { s(t)} dt,

vhere the rete of such generation,

(1.12) | s(t) = £(t) - v(t) . x{w(t) }

1s that part of the given demand for power {(t) not met by hyﬂroéfgatric
generstion. Our problem is to minimizé the qpaﬁtity C by'proper choice
of the policy functions wu(t) , v(t)., subject to the restraints stated
above, and subject to the ﬁoﬁﬁegatiﬁity'ofjthe variab;és s(t) , u(t) ,
v(t) measuring the levels of the irreversible processes of ﬁﬁermal |
generation, splllage and discharge, respectively.

In order to have a meaningful problem, we specify further that water

inflow and powaf demand over the planning period are nonnegative* bounded

*  This implies an assumption that evaporation and leakage does not exceed
gross water inflow. While this assumption is not indispensable, its removal
would somewhatl complicate the analysis.

functions of time,

(2.13) OSE(t)st, Og L(t)SL, OgtgT.
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.If the prescribed minimum end-of-period store 0 1, exceeds the ipitial

gtore 90 we must also require the stronger condition

(1.14) [fe(w)atxa -a

for the prescribed minimum store QT to be attainable.
1.3 Remarks on mathematic tools and gn. The problem of
this paper belongs to the category of inventory Or production smoothing

problems on which fundamental work has been done in the past few years.*
The price imputation to be developed in Section 3 is made

%  See in particular Arrow, Harris and Marschak [1951], Dvoretzky,
Kiefer and Wolfowitz [1952], Modigliani and Hobn [1955] and Morin

[1955].

‘_possible by special traits of the present i)roblem. As long as the
‘conversion function is treated as a constent, the restraints on the

policy functions indicated above define a convex sel,** and the

*%  That is, 1if (u(t),v(t)l and (u*(t),v*_it))'&re two feasible
policies, then (pu(t) + u*u™(t), pv(t) + p*v (t)) 1ise a feasible
policy whenever O <py = 1~ y* <1 . Here a feasible policy is one
that satisfies the restraints specified.

minimand is a convex functional of the policy functions.*** Hence

*%% That is, if C(u,v) denotes the minimend, and (u,v) a.nd* *) :
vz

(u*,v*) ore feasible policy functions, then ¢(u,v) +u* Clu
C(pu+pu, v + w>v'} whenever 0 <pu = 1 ~p¥<l .
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in this case we have a problem of nonlinear but ccnvei programming,
the main complicatiou being that the policies to be determined are
functions of a continuous time varieble rather than vectors with
cniy a finite number of compcnents. While the latter case has been

rather fully explored,* the more difficult former case is still the

*  See, for instance, Kuhn and Tucker [1951], and Tucker [1g57].

subject of continuing mathematical research.¥* In the present study

#*  See Ky Fan [1956) ‘and unpubllahed studies by Hurvicz Bk 1 and
by Bratton [1555 j. _

ve shall use the fesulté of this research only hegristically;' We shall
-firct obtain the unique optimal policy by direct construction., Instead
of proving its optimality difectly {(vhich is entirely possible), wé
shall then specify the efficiency price functions, and give a direct ;
.procf of that one of the two so-called "saddle-ﬁoint ineqnalitieg" of
convex programming which is rélé&ant to our present purpose. Thig
1nequa11ty will yield us a proof of the nptimality of ‘the Constructed
.'policy as well a8 an 1nterpretation of the efficiency prices themselves
which clarifies their uses already .indicated.
Khowledge-of convex programing thepry isltherefore not presupposed

in our proofs, but underlies the choice of propositions to be proved.
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The more technical parts of the proofs are set off in starred sections,
and can be passed over by readers interested mainly in results.

The obvious restriction 0 < t,t' ,... £ 7 .on the time symbols
t;t' ;eee  Will henceforth be omitted except where needed for clarity.
Likewiselthe identity connecting rates of flow and cumulative functions

yill be assumed throughout without restatement., With one exception,

all cumuletive functions will start at t = O at the value zero,
| t e — AL
(1.15) u(t) = [ u(t)at’ ,..., =i (t) = Lo g(t Jat ... .

The exception is formed by the various store-of-water functions

w(t) , W _(t) , a(t) , w(t,s) , W(t) , all of which start at @, es shomn

in (1.1), (1.2). We use the symbol = for equality be definition. The integra-
tion used is Riemann or in some cases Riemann-Stieltjes integration. The

following notation defings a function of v important in comnection with

the turbine restraints,

0 if v<O0
(1.16) 0| v]ol= v if 0ZVvge

¢ if p<v.

1.3*% We shall make certain regularity assumptions concefning the given
functions £(t) , t(t), which,while not essential for the propositions proved,
8implify the proofs and appear to be unobjectionable from the point of wview

of applications. We shall call an interval tl <t < t., uniform with regard

2
to & function f(t) if f£(t) is either increasing, or constant, or decreasing

throughout that intervel. We shall call a function f£(t) regularon 0<t< 7
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if it is continuous to the right for all such t, continuous to the

left for all but a finite number of values of t, &and if the interval

of definition can be partitioned into a finite number of intervals

uniform with regerd to f(t) . In what follows, we shall aessume that ¢(t) ,

¢(t) and £(t) - ¢(t) ore regular on. 0¢ t'g .1: . It £(t) 1is dihéontinuous;;td

the left at t =t , we write f(t -0) = um f£(t) .
© >t

| t <t
We shall denote the set of elements x with the property P by

{% | ?}'. Closed and half open intervals are denoted by
(1.17) [tl;t2] = { t]tstg 1;2} , [tl,ta) = {t | t, gt < ta} .

Since we shall use no open intervals, the notation (tl,te) remains
available for the vector (ordered pair) with elements tl,t2 » On the
other hand, {%1’t2}' denotes the set consisting of two elements,

t, and t without regard to order. TuT' and TAT' denote the union

1 2!
and the intersection, respectively, of the sets T and 7' s and TeT
and T':)T express equivalently that T is contained in . Finally, t e T .
denotes that t is an element of T .,

‘2. Construction of an optimal
storage policy.

2.1 pAutomatic overflow policy. In this seciion 2 we shall‘conspruct

an optimal water storage policy under the assumption (1.9) that the power
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equivalent of one unit of water discharge is independent of the water level in

the reservoir. The problem to be solved then is that of minimizing

(2.2) cv) = 7 ¥ (£(6) - v(e) das

subject to the restraints enumeratedt wh%ch we shall now group under two
- 2-2

headings, those of turbine feasibi;itx?Aand those of reserveoir feasibility (2.3),

* (2.2b) arises from the nonnegativity of the eliminated variable s(t) .

(2.2) Fe.aa) ogv(t) <o

_(2.2b) v(t) § t{t)>

-Z2.5a) u(t) + v(t) + w(t) = g(t)

(2.30)  u(t) 20
(2.3) R
(2.3¢) ogwW(t)ga

| _£2‘3c1) - wo) =0, - w(7) 29, -

A policy 3atfs§ying both groups of constréints is simply called feasible.
The fact that we do not recognize flood control or navigation as

objectives suggests that, for a given feasible discharge policy v(t) ,

one can nevef go wrong if one postpones all spilling of water until

the reservoir is incapable of holding the furtﬁer net additions arising

‘froﬁ that discharge éolicy. To explore the idea of such an automatic

erflow policy, we consider a guide fupction

(2.4) W (t) 2o+ =(t) - v(2)
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which represenis what would be the store of water at time +t wunder the

discharge policy w(t) if reservoir capacity were unbounded from above

and below, and if no spillage were ever permitted.

Figure 3. Illustrgtion of an automatic overflow
policy

As illustrated by Figure 3, under an automatic overflow policy
the store of water W(t) follows the guide function Wv(t) from
t = 0 up to the point beyond which the latter exceeds Q0 , Thereafter
the regervoir remains full as long as W (t) continues to increase,
but as soon as W (t) reaches a temporary maximum overflow stops and
thereafter W(t) Preserves a constant difference with wv(t)‘ for as
long as this is feasible, and 80 on. We shall show in section 2.1¥
thaﬁ, if the given discharge policy v(t) is feasible in combination
with some spillage policy u(t) s 1t islfeasible also in combination
with the automatic overflow policy w (t) determined by it. Since
u(t) does not directly enter the minimand, it follows that we can
in 511 later discussion of the present case assume that spillage only

takes the form of automatic overflow.
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2.,1* The automatic overflow policy may be defined through its

cunulative function

(2.5) U (t) = max {o , max W (') - sz} )
0Ogt <t

and the resulting store of water is derived from the guide function by

W (t) if max ¥ ('Y<,

(2.6) W(E) = W (8) - U (%) =4 0<t st

9+ w&(t) - max wv(t') otherwise,
’ 0<t <t

Now let w(t) be a discharge policy feasible in combinstion with some
spillage policy u(t) , automatic or not. We translate the reservoir
restraints (2.3) in terms of u(t) and the guide function wv(t) derived

from v(t) , where it is understood that WV(O) =@ throughout.

(2.70) - U(0) =0, U(t) is nondecreasing;

(2.7) | (2.7¢) o<W () -Ut) ga,

.__(e.m) wv(«r) - U(T1) za_ .

From (2.7) we have in turn, for t gt

[ (2.80) W (t)2U(t) 20,

(2.8) ¢ (2.8¢) W (t) 2 U(t) 2 U(t') W (t') - e,

L(e.sd) v (7)) 2 U(7) + 2,2 u(t') + a2 wv(t') -a+a_,
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which, in terms of wv(t) only, requires

-
(2.9¢) W _(t) 2max 10, max Wx(t') - 9} ’
(2.9) < ’ {ra—§t st

(2.94) Wv('r) 2max W (t) -0 +4q

T.
o<t< ! '

HA
PIA

But whenever (2.9} is met, the asutomatic overflow policy Uv(t)

~ together with v(t) meets the reservoir restraint (2.7), because (2.5)
implies (2.7b), (2.5) and {2.9¢c) imply the first ‘inequaiity in (2.7e),

(2 6) implies the second, and (2.5) and (2.94) imply (2.7d). Our coﬁtention
is thereby established. In addition we haxe found (2 9) to be the expression
of the reservoir restraints in terms of the discharge policy v(t) alone.

2.2 Demarcation of periods of abundance and of sgarcity of water.
It is obvious that, i1f it were reservoir-feasible to make the discharge

throughout the planning period equal to its turbine-feasible upper bound -

(t;rbine_capacity or power demand whichever smaller) this would be optimal,
It is therefore a logical next step to study the guide functiéh associated
with this particular M_ﬁggh_awm If for brevity we write the

turbine restraint (2.2) in the form
(2.10) v(t) g 2(t) Emin {CP ’ C(t)}

and denocte the cumulative function of the meximal discharge n(t) by H(t) s

this guide function is defined by

(2.11) W () Za + E () - 5(t) £ a(t) , say.
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Obviously, the feasibility of the maximal discharge poiicy is not
affected by any rises in the guide curve @(t) , indicating a temporary
excess of water inflow over the maximal diéchafge. Inspection of Figﬁre 2
suggests, however, and our analysis in section 2.1% confirms (see (2.9c)),
that any dip in Q{t) extending by more than 2 below any previously
assuned value, would‘signal infeasibility of the maximal discharge policy
in the’intervening part of the period. The swings of the guide curve n(t)
therefore hold the clue to the character of the solution in each part of the
plangfgéimeo bring this out- more fully, we shall now construct a subdivision
of the planning period ifto alternating perlods of secarcity end of abundance
(or at least gufficiepcy) of water, with the following charactérisﬁics.
Within a typical period of at?unaance, the guide function rises by at least
Q from s minimm at the peginning of that period to a maﬁimum at its end,

while any downward swings within the period camnot exceed @ in range.

L

e m % m E - m = e — e -

g. — 1 o a; -5t .éc
[
Figure 4. GQuide curves in periods of water abundance (A)
and scarcity (B)



_19_

To be precise, if b <t £ a, 1is the period of abundance,

=71

—(dE..lEa) a(b, ) +agala,),

i-1

(2.12) ¢ (2.12p) “(bi-:l.) < a(t) g Q(ai) for by, <t <‘a.i s

(2.12¢) a(t) - a(t') <9 for b

]
g St<t <.

Within a typical period of scarcity, &y St<h 5

function falls by mofe than & from s unligque maximumm at the beginning

say, the guide

to a unique minimm at the end, and within the period never rises by

as much as @ ,

72.139.) fll(ai) -Q> Q(bi) ’

(2'15). 4 (2.131:) n(ai) > n(t) > n(bi) for a; <t <b, ,
L(e.l:ic) Q(F') - a(i:-).< 1] for a, <t< t' < LA

These statements, illustrated in Figure 4, need modification for termina

periods, that is, for the first’and last period demarcated, or for the entire

planning period if 1t should_hgve only one character, scarcity or abundénce.
-1 Letru call a point t = such that 0 < t, <7 a (Locsal) m:l-x_ir&iz&r_

of 9(t) 1if there exist mumbers y >0 and 5 , € >0 such that

a(t)<a(t)) for t -7 -8<t<t -7

o E .
174

ot
(174

Y

(2.1%) 2a(t) = n(to) for t -ygtgt 7

(t) < n(to) for 'to <t<t +¢€
—_ i .
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énd 8 minimiza: if for some such humbers

—
n(;) > n(to) for t -8gt<t

(2.15) q0(t) = alt ) for t <t< o+ 7 ogtgT.

n(t)>9(to) for t +y<tgt +7+e¢

This means thét‘a flat maximum is represent;&iby the right end point of
the interval on which the local extremum is attaihed, a flat minimum by the
left end point. “

Bgéause of the regularity conditions agsumed in section 1.3* for
tE(t) and ¢(t) , there exiéps only a finite number, ﬁ" -1 say, of
extremizers, which we denote in increasing order by ti s 1=1,... n" -1 .
To these we add to £0 and ?n“ 1 a3 nomiﬁal "extfemizers," even though
the definitions (2.1h4), (2.15) are not applied to these points. With each ¢,

except tn“ = T we sssgclate a half-gpen interval

f\
{w|o§w<n} for i =0,

(2.16) | I = {w | Q(ti) ~AgW< n(ti)} if t, 18 a maximizer,

{w i n(ti) <W _ n(ti) + n} if t, is a minimizer,
1 p .

88 {llustrated by horizontal bands in FPigure 5. Write t, = 0= t(o)

and gelete all extremizers t; ..., t, _, between t_ and the First
1
1
ti = t( ) for which a(ti) falls outside Il « Next delete sll extremizers
1
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t, +1,.04,t, =1 until the first t, = t(a) for yhich Q(t,)

il i2 i, i

falls outside Ii « Carrying this process through the entire sequence
1

t
completes the first round of deletions. Restore ton =T E_t(n )

if it
1 .
vwas deleted, and name t(n ) by the following rule, which supplements the

gefinitions (2.1h4), (2.15) nominally for the case that to = T

b

1
' "minimizer" if Q(1) < Q(t(n “l)) + QT
T 1_‘(n'--J‘.) is a minimizer, g(n ) . v is & .
‘ "maximizer" if ﬂ(t(n -l)) +8_< a(t) ,
17) STV
(@ ) "minimizer" if (<) < !1(1;(_n ',”) -0+ QT
n -1 -

1
it t is a maximizer, t(n)n'r is a

“maximizer" if n(t(n 'l)) -9+ < a(x).

In the second round, we delete from any run (uninterrupted su‘bsequence)
of meximizers conta.ined in the sequence t(‘j) all but the last maximizer
of the run, and likewise from any run of minimizers all but the last. The

first element t(o) = 0 1ig retained.

|
!
|
l
!

\
e g e p e —

o >t

N Xt —0 EEVIINS GNP WEREESES S
6= 4 ‘ £, L X 4=t
Figure 5. Subdivision of the planning period.
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Figure 5 illustrates the construction. Extremizers deleted in the
first and second found are marked on the time axis by 4 dash and a
cross, respectively, while those ultimately retained are marked by a

circle. The latter form an alternating sequence
(2-18) (bo) » al,bl,aa PR bi_l, ai’bi yreay &n,(bn)

of maximizers a; and minimizers bi, provided we supplement the
definitions (2.14), (2.15) also for t_ =0, in such & way &5 to.
preserve the alternating patternt If the sequence has at least three

elements, and if the second element is & maximizer, we call it &y and

write bo = 0 for the first. If the second is afﬁinimizer, it is called

bl and we write éltz 0 . If the next to last element is a maximizer,

call it a and write b = T31if it is & minimizer, call it b _, and

=0, b, =1 if

write &, =T. If only two elements occur, we write a 1

1

a(r) < g, and b =0, 8 =7 if Q(T) 28 .

1
The sequence (2.18) gives the ‘desired demarcation of periods of abundance

(by . <t < ai) and of scarcity (a <t <b, ) In order to avoid separate

i-1 =
formulations for terminal periods, we shall use the ipper and lower
defined in (2.19).

‘bounding functions* nt and @ for W(t),A Then for any period b, i S t<a,

*  We ignore that the term "bounding function" is inaccurate for . ﬂ - in the.
point t = 1 . '
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for t+ =0 0<t< 1 t=17
valtfe_s of Qt ‘Qo 4] Q'r
(2.19) g, a, 0 o

of abundance the following inequalities are implied in the construction

of the sequence (2.18)

.—(2.203.‘) a(b, ) -e(e))ga .. -0,
i-1 i bi-l 8,

@) (2.200) (b, ;) - a(t) g o(b, ,) -9, end 0(t) - a(e;) £8, - gai for b, <t <ay,

E ! - . '
(2.20c) a(t) ~a(t ) g 8, -9 for b, <t<t <a .

The implications (2.20a and b) are streightfoyward. (2.20¢) is also implied
because, if it were violated for some (t ,t') , we could define a meximizer

1 1 Tt ! t
a.i<‘t'. and & minimizer bi with ai<bi<ai, by

t
a'y with b, . <
(2.21)  a(a’y) - Ea.i = omax (a(t") -2, 00) - 8, =  mis (" )-Ren
. 1] ! : ' "
bi_lgtg_t a gt'ss

(where the possible discontinuities of Et and Et do not prevent the extrema

from being attained). But these extremizers would have satisfied
1 -— - 1
- - 1 - ' - ' - -
(8a ;) Ay ) - @) -8, ) 2 (8(a'y) - 0y, ) (at’) - g.1)

'(é.ae) | > (a(t) - Et) - (n(t') - gt.) >0,



et

ol (2.2%b) n(ai} - n(t) >'§'za -9, and 0t) - ﬂ(bi) >a, - gbi for a, <t<b

(e.23¢) 8(t) - a(t) >0, -0
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and hence could not have been deleted in either of the two rounds of dqletions.

Similarly, for any pericd 8y <t <b, of scarcity,

i

[(2.230)  9(s,) -~a(v,) >0, -9

i i

t i?

1

T
4t for 8y <t<t < bi .

The fact that in this case all inequalities are of the strict type results
from the treatment of flat extrema and from the e#clusion of the right end
point from each interval Ii .‘ |

The stafements (2.12$, (2.13) for nonterminal periods are obtained from

(2.20)and (2.23), respectively, by substituting

(2.24) 20,8 =@ =0 .
| gbi-l ey ,gbi_

2.3 Discharge policy in periods of sbundance of water. We have now
completed the subdivision of the planning period into slternating periods

b, St a, of sbundance and pericds a, <t < b, of scarcity of water.

i-X = i
In the light of the detailed analysis of section 2.2%, a nonterminal period

of sbundance can now be defined as g period for which (2.12) holds such that its

beginning b _, cCannot be advanced, its end a
or (2.1§c%. : 1
(2.12b)/ A nonterminal period of scarcity is one for which (2.13) holds while
. or (2.13c).
a, camot be advanced or bi delayed without violating (2.13b}/ Similar

definitions for terminal periods can be based on (2.20) snd (2.2%).

cannot be delayed without viclating
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Since our minimand (2.1) is an integral of cost over the entire

planning period, it can be wfitten as a sum
& by
(2.25)  c(v) 2L [ " w(g(t) - v(s))at + L [ © w(L(t) - v(t))as
iMi-1 i1 .

of the costs incurred in each particular period. We can therefore lock
on our problem as composed-pf a number of cost minimization problems,
one for each period, linked only by the fact that the store of water at
the end of one period, W(ai) or W(bi) ; equels the store of water at
the beginning of the next periocd.

The particulsr subdivision we have chosen is such that these links
present no difficulty. Periods of sbundance not ending in T necessarily
end up with a full reservoir W(ai) = Q , regardless of the store of vater
W(bi-l) at the beginning of such a period, and regardless of the discharge
policy within the period (but proﬁided, a3 we assume throughout, an automatic
overflow policy is followed). The reasoning oﬁly needs to be sketched. 1In
the first place, for a giveﬁ.iﬁitial store W(bi) , the store at any later
time in the period is at least as high under anylturbine*feasible discharge
policy as it is under the maximal discharge policy. Now consider the relations
between the store of water W(t) under a maximal discharge policy and the
swings of the guide function &(t) , as-indiéated by Figure 3. - w(t) mo#es
parallel to 0{t) {which now takes the place of w;?t)) except wheré prevented
from doing so by the upper reservoir bound (8) , If under this rule W(t)

never crosses the lower reservoir bound (0) , the maximal discharge . policy
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is thereby found feasible. Now, as suggested by Figure Lk, the first inequality

in (2.12b) ensures that W(t) does not cross the lower reservoir bound befbre
reaching the upper bound, and (2.12c) ensures that W(t) does not cross the
lower bound after reaching the upper bound. Furthermore, {2.12a) ensures

that, regardless of the nonnegative beginning-of-period store of water W(bi_l) s

w(t) will reach the upper bound at the end t =&, of the period of sbundance

i
" or earlier. Finally, the second inequality in (2.12b) guarantees that if the
upper bound is reached earlier, it will be sttained also &t t =a, . This
reasoning can be verified either graphically, or by explicit mathematical
analysis similar to that of Section 2.1%. Its extension to terminal periods on
the basis of (2.20) is straightforward: A period of ebundance with b, =0
but ay < t also ends with a full reservoir, and a period of abundance with
ai = T ends with a store of water W(1) not less than the prescribed lower 
bound 91 .

To sum up, the initial store w(bi___l) of a period of abundance (if not given
as W(0) = 90) does not limit the choice of a discharge policy, and the finﬁl

store W(ai) (or, if a, =1, its conformity_with the specified lower bound)

i
is independent of the discharge policy. In all these cases the maximal di&chérge'
policy is feasible. Since any discharge rate below the turbine-feasible maximum
would involve a higher cost of supplementary generation, it follows that the maximal
discharge policy is uniquely optimal in each period of abundance. That is, that

the policy

(2.26) v(t) = $(t) = q(t) , b, .<t<a, ,
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minimizes the cost integral in (2.25) for the period in question within the

given restraints, regardless of the policies applied in other periods.

2.4 Discharge policy in periods of scarcity of water. The problem for

each period of scarcity of water a s t < b, , which in this section we shall

i
gimply write as a é t <b, is now that of minimizing the cost integral

(2.27) Cqp (V) 2 f’ ¥ {t(t) - v(t)} at ,

subject to turbine (2.2) and reservoir (2.3) restraints for a<t<b ,

with the initial and final stores of water restrained by

a, =0
(2.28) W(a) =} if a
Q >0,
and
0 < T
(2.29) : - <W(b) g0 if b -
. QT = T .

In this section 2.4 we shall through heuristic discussion explore the nature

of the solution. In section 2.4% we shall establish its existence and its
salient characteristics. It will save reasoning effort if we postpone tl:ae
proof of its optimality until Section . 3.k after we have imputed prices to the

resources occurring in our problem.
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Periods of scarcity are characterized by the circumstance -
see (2.13a) - that & maximal discharge policy throughout such a perilod
would imply a negative (b < 7) or otherwise too low (b = 1) 8tore of
water at the end of the pericd. The problem therefore is one;of apportioning
the use of the available water to the various parts of the period in such
a way that the now unavoidable supplementary thermal generation is performed
at minimum cost. This suggests in the first place that it willl be uneconomical
to end a period of scarcity with more than the required minim%@?%%c%ﬁégagﬁr&e
have already seen any excess over that minimum is of no value in the remaining

part of the planning period. We therefore prescribe instead of (2.29),

(2.30)

The total amount of thermal generation for the period of scarcity is thereby

(in our units) set equal to the water deficit

(2.31) “8(b) - 8(a) = [Z(b) - =) () ~ W(L)] - [2(a) - 3 (a) - W(a)]

of the period, where W(a) and W(b} are prescribed by (2.28) ana (2.30}.
The increasing character of incremental cost further suggests that if a

constant rate

(2.32) 8(t) =8 = (8(b) - §(a)) / (b - &) for a<t<b
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is feasible throughout the peried, this is uniquely optimal -- a statement
contained as a special case in the results of Section . 3.k below. This
simple solution may be precluded by turbine restraints, by reservoir restraints,
or by both. The problem then becomes one of equalizing the rate of thermal
generation as much as the restraints permit.

- Considering first the turbine restraints, we shall say that a discharge

policy v(t) is derived from & target rate or farget function g(t) of
thermal generation if (see ( Ilé) for notation:)

(2.33) v(t) = [0 | £(t) - 8(¢) | ol .

This means, as illustrated in Figure 6, that the actual rate  §(t) - v(t)
of thermal generation is equal to the target rate whenever that is turbine-
feasible, and otherwise is as close to the target rate as the turbine

restrictions penmit.

Wit NM
?/ MJ \

P \’!\\"’"mﬁ e

3

.|

N ’
e WW.,_X_ v L

° —t \‘\

{et)-S1F)

wt)
Figure 6. Discharge policy,derived from a target
~ rate 8(%) of supplementary thermal
generation.,



-30_

Again, our results in Section 3,4 imply that, if there is a target
rate & such that the discharge policy ¥(t) derived from that constant
rate 8(t) =% is reservoir-feasible and ené.s up the period with the required
store of #ater, then that discharge policy is uniquely optimal. This in turn
shifts the problem to one of equalizing the target rate as much as' reservoir
restraints permit.

That the reservoir restrain};s can preclude a constant target raté can be |
seen from a simple example in which we assume that the twrbine rest’;l'aixits by |
themselves permit a constant actuai rate of thermal generation. Figu:.ce!‘ T shows
e;. possible guide function O(t)- (s0lid line) in a period of scarcity a <t <b

(with 0<a<b< 1), referred to the scale at the left. This function satisfies
T Qut) W
—Q(aJ . Bl

2(&)- Q

{44y

Figure 7. A guide function that precludes a
constant target rate of thermal
generation.
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the conditions (2.13) for a nonterminal period of scarcity (2.34). 1In
contrast, the corresponding store of water function (dotteq 11;13; scale ay

right)
(2.34) wit) = 9 + a(t) - a(a) + o, (t -a),

derived from a constant rate of thermal generation

(2.35) a, = (2(a) - () -92) / (v - &)
chosen so as to make W(b) =0 =W(a) - 0 , is seen 1o violate the upper
lower reservoir restraints in several pl&ces:
A graphical procedure illustrated by Figure 8 now suggests itself. W
- W€ draw

in Figuré B8A a family df guide functions W(t 5) » 81l starting at the f‘u‘l

reservoir level Q . The curve for W(t 8) represents what would be thg

8tore
of waterat any time t if a constant target rate s of thermal gener&ti
on

were followed throughout within turbine restraints s 8nd if no reservoix. rest t
eS rain s
existed, Increasing 8 raises the curve W(t s) by an amount increag tng with

- time.
Starting with the curve labeled s =0 , we £ind it violating & rg
‘ Servoir

bound for the first time for t >t , aund the viclated regtraint is ( ,
_ . o ‘egessarily)
the lower bound. This suggests increasing & until such a value s :
A | 1 7 is reached
that a further increas¢ in s would viclate the upper bound, at time a
1+ even
before the lower bound is viglated. The seguent of the curve W(t,s) ek
. r whic
a<t<a, is now moved down to Figure 8B as the solution W(t) for ¢
2v38 _ hat time
interval, Since the continuation of that curve would still leave the lower bound
. er boun
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Construction of the optimal storage
policy in a period of scarcity.

Figure 8.
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violated at tl s

ve meet one, labeled s = 85 » of which the decline from its highest peak after

we search the diagram for curves with still higher s until

8. does not exceed Q . If thie decline runs from a, to b, the segment

a, <tg b2 of the curve W(t,s) is now reduced by a suiteble constant to form

another piece

(2.36) w(t) Ew(t,se) - w(aa,sa) +Q for a, <t b,

of the solution which jJust fits between the reservoir bounds. .In the intervening

interval a, <t < a_, the target rate is equated to an increasing function &(t)

1="="2
of time determined in such a way that the reservoir remains full (ﬁ(t) = Q)
throughout this interval. This function is traced out by the locus of maxima of
W(t,s) (dotted lime) if s increases from 8, (maximm reached at t = al)

to s, (maximum reached at t = aE). Beyond b,, the curve W(t,sa) - W(b2,32)

2 2
rises again to a value at b exceeding the value préscribed by (2.36), 0 in
this case. Therefore, £&(t) is gradually decreased so as to keep the reservoir

empty (W(t) = 0) from b, to b ‘where a curve labeled s = s_ with a-

37 3
horizontal double tangent (or dwble supporting line) is reached. This curve
is adjusted by a constant to serve as solution ﬁ(t)- between the two poinfs of
contact, b, and b. , whereafter the resérvéirlis again kept empty by further
decrease of 8§(t) until the value s, 15 reached at b . The course of 8(t)
is showg*in Figure &C.

This description follows the particular shape of the family of curves w(t,s)
represented in Figure 8, and should not be taken as a generallstatement of the ruies

for construction an optimel policy. In particular, Figure & contains no case of a
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return from an empty to a full reservoir within the period of scarcity. While
(2.13) assures us that the curve labeled s = O exhibits no rise by @, for
higher values qf 5 , as suggested by Figure T, such a rise is quite possible,
and may become incorporated in the optimal storage policy.

A complete statement of the conmstruction of the unigue optimal storage
policy G(t) in a period of scarcity is given in SBection 2.4%, In particular,
it will be shown that this policy can be deriﬁéd frdm a target function &(t)
of thermal génération vhich is constant wheneféf fhe‘reservoir is partly filled,
which can increase only when the reservoir is full, and can decrease only when it
is empty. The proof of the optimality of the policy so constructed is given in
Section . 3.h4.

2.4 fhe family of guide functions used in constructing the optimal storage

‘policy is defined by

(2.36)  W(t,s) To_+ [(&(t") - [0 | 4(t) s [@lat’ ,  og
a : . .

IN
n
HA
Tl
&

Bach of these functions satisfies,
(23m) | W(tis) = w(t,s) [so. ft' -t] for 0gsgt,
where o & max {é , ¢ » and each pair satigfies

(2.38a and b)

ng(t‘,s‘) - W(t,s') - W(t',s) + W(t,s) S (8" - t) (s' -8), if t < t and 0gsg<s %¢,
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which implies continuity of W('E >3) with regard to t and § .

Finally, from (2.10), (2.11), and (1.13),

W(_t,O) = Qm+ﬂﬁt ) "—Q(:‘LJ P

(2.39a and b)
Wit, D=dlor Set)- 6o,

where S =Z represents a policy of meeting all power demand by thermal

generation alone.

In order to include terminal periods in our formilations, we define

further

_rz_ ir t:-a.
WZ‘:,S)'—’; Wit s) ir o<t<d
Wi QJ.S')-—_Q_é it t=-4 -

This functlon is continucus in t and 5 except possibly for 'i'f-a. and 't'—'-g

‘(e.ho)

where discontinuities in t (but not in § ) may occur such that

¥ * +*
w*(f_a s)iWCa,-{—o_,S) W["OJSjgwmch
(2.41) ? 2
Asterisks can be ignored whenever Q _D_ a.nd Qg =D
We define and study two functionalSof W( t S_) of which the relation to

the reservoir restraints is obvious. These are the maximum rise (I for increase)

(2.42) T(S)" M [W({ s)—- ]/l[('t Sﬂ OéSéZ 5
attete d
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‘and the range (Dfor decrease, the case that interestSus)

A
[w"{ g Wet, SJ] bl Wf s)-ath Wit,s)
asted asted ast<d
att'sd
Figure ¢ illustrates the definitions in a case where Q 2 < D but .Q( =0,

(2.%3a and D) D(U“

||

Ly D

Flgure 9. The maximum riseAand the range of

Wit o)

Since the set of permitted values of (,t;t) defining D(s) includes

that defining ILS) , sand since the latter set includes points where %:-‘t

(2.44) o< [(s)< Ds
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In (2.42) the asterisks can be omitted because of (2.41), and if they are
omitted I (5)  is necessarily an attained maximm. From this, (2.39a) and

(2.23) it follows that

(2.45) I{oj< D < D{'o)

In order to show that I(}J is continuous and nondecreasing for 0 < § éz,
n t
we write (t_(s), 'tCSJ) for some pair of points fl‘-')'t_) where the maximum

in (2.42) (asterisks omitted) is attained, and define

(2.46) I(JJS'J E-W({m, s")— W( Tes,s') .
Then we have from (2.42)

(2.47a and b) I(S'): I(S',EJ - I (s,5')

i
and from this and (2.38), if 5 <3 ,

TN

I(SJS‘)-I(SJS):% I(s',S’J-I(S,ﬁ)é I(&',S'J—I(S'JS)
<ltes)-tunycs-s)< ($-a) (5'-5) >

o

I (2.48)

which together with (2.47a) proves the contention.
With regard to DfS) , Wwe shall define a specific pair of polnts
) ;
&Dt J:é(g)J é(, 9 » ©Bay, where the least upper bound in (2.43) is attained

(if anywhere), by specifying
~X : * !
(2.49a) W (4 '_,' s) £ W(a(s) -o,-s))Wi{it) 5) AL“- adt<als)<tsg g}

2.4) | |
g P : b | ¥ [ < !
@) W s) > Wik sie Wit s) v astclsist'e 8,
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where the additions of -0 and +0 to the time arguments are without effect

exéept in the extreme cases W‘;g-o}S) :W{-EJS_J | and W*(c..{oJS_) =

Wia,s) , vhere they remove the asterisks. Obviously there cannot be more than
one such pair (q,(s ), @(SJ) . It follows from (2.43b) and the continuity

of W (t,s) that there exists one such pair, and
(2.50) D(Sj: W[a(sj-o,s)-ﬁ Z’V(gm-robs)
Finally, from (2.49), (2.4%0) and (2.23), we have

(2.51a and b) a(el=a, Bro)= 4

In order to show that a{§ J is nondecreasing for c< S€ Z , we derive

from (2.49a) and (2.40) that

——

f.
b.sz) Wnt(a(S’)vo,s_\—fW(o.(.r)-o)J <0 £ W{a(:') 0,8') - W(am o 51)

Now if we had o.LS'KilfJ snd 0€5<S'g , (2.38a) with al(s’)
inserted for 't , als) for 't' , would imply that the inequality between
the first and last member of (2.52) could also be reversed, hence that both
eq_uality signs in (2 52) would apply. But then we would have W (als!),s )"_
W(a(s) o, S) s a.nd a(s)<acs) would contradict the definition (2.49a)
of o (S')
It follows further from (2.52) that a(s) is continuous to the right for

0z S< Z, . To see this, let J by a point where a($,-d)<a(S +0) , end
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and let 0t 5 <S5, <8'%0 . Then, by inserting Tz als)
! '
and "'5=0LLSf) in (2.38b), we now find that the last member of (2.52) exceeds

the first by at most (g -a)($'-5) . It follows that

(2.53) W¥(¢¢‘a‘“°% Se )= W'F(acuoj 0,5, ) »

and hence by (2.49a) that a.(S,)=al(S,+0) . The case in which $,=0

is'simila.rly discussed by replacing §,-o by IS_ . One proves in the

same way that E(J) is n{fncreasing_ and continuous to the left for 0% S< 4§ |
Since, in view of (2.39b) and (1.13), .W[l’:‘,Z). is nondécreasing we have

from {2.49)
(2.54) allyea or 6, bily=a o 4 .

This leads to the following two cases.

Case I; a(Z):aJ é(g‘)‘---g . This can occur only if

E:(““- = (o) <M{D‘Do.o D( %

which, since the left hand member is nonnegative, can occur only if 4=o0 5 ,g =T ,

(2.55)

that is, if the entire planning period 1s one period of scarcity. In that case

(1.14) assures us that
(2:56) D(Z)-nﬂ-{W(ﬂ,ZJ-.Q‘g)% .Q.)

using (2.50), (2.40)and (2.39b). Hence, because of (2.45) and the continuity of

D {%) there exists a mumber ¢ such that



(2.57a end b) O EEW{JID(SJ—-Qj <,__@ s Desy=J)

we now define as the optimal storage policy

A .
(2.58) A!',v‘({‘)-i‘ Wcta g ) for aé + % ‘g

A
This policy achieves the prescribed end-of-period store of water W( €)= Q ¢
because of (2.57b), (2.50) and (2.40). W(_f_} stays between put never reaches
the reservoir bounds O and _0_ because of (2.49). The target rate of thermal

ns
generation is the comstent € throughout the planning period.

Case II; a(%) 24 (2,) . We now define
(2.59) G:_M{S' oéSéZ osls Q(S)%éc&%
Then a< &= Z , and from a comp'a.'ri‘sbn of (2.42) and (2.43)

(2.60) D(g5=_I(S) B-N €<= s_e_Z"

because the point (t J‘tj):: (OU) y § (SJ) in which D[sj 18 attained now lies

in the set defining I(_U .

On the other hand, »

(2.61) D(S) = J(’,«,..é [W?‘Eti) - W‘f“‘)} fw b€ 5€CS
ast'st4 £

For 05S< €  this follows from the fact that then  a( y<€sy vy (2.59),

vhereas for S§=& it follows from (2.53) if ve teke T '- a(6-0) and

t=€(c+0) , wnichby (2.59) implies 1'€f . For o< s5<6 .
-~
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therefore, D(SJ can be defined in terms of -:W.({'J $) in the same way in
wﬁich I(SJ is defined by (2.42) in terms of W*Zf 5).

Since the inequalities (2.38) on which our reasoning has been based are
reversed if W (f s ) is replaced by -W Lt S) s it follows that D(S_)

is continuous and nonincreasing for o _&_ (I . We thus have
2.62) lto)e L)< Tee)=Disy s Dy = Doy e 04526,

Di)

D¢

i
) i
l ! ; gm 1

Figure 10. Illustration of I{s) and D(s)
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Figure 10A illustrates the properties of D(S_) and I (s) that
we have found, with possible related graphs of 4(3} and é (s) shown in Figure 10B.
We now proceed to the construction of the optimal sﬁorage policy by
specifying a target rate of thermal generation 5(f) which is a function of
time , in

t
(2.63) WH’)EQ@ *J ({ (+') - [O | Z,H’U-—EU") | ?D] )obf"

o

gu:_) will in turn be defined for & & \‘j{ A by
(2.68) SiH)= c?,% Is]teTen),

where T( S) is a set function which associstes with each point 5 of the
interval 6 € 5% % a subset TCS) of the intervel a4 < < €

in such a way that¥

A
* The construction of Wét) for the already completed Case I can be
subsumed under this construction by specifying that T'¢sj is empty for

6<S5<E and that T'(sj=[a, € ) for gssg-__z,
[ + ' 7 - -
(2-65& and -b) ‘T—‘fa) [ M-t?’ 5 '_{ﬁibl = ["-&'; 6 ) =
(2.65) < Z_)
- t y <s<s's
(2.650) Tesy CTesy v{ o .
Because of (2.65c), TE 'T_'Ls,) . implies tg 1% 3} for
7

§.£5¢€ 4 . Hence for each [~ the set in (2.64) is an interval



(2.68)

(2,69)%

...)4_5-

which contains its right end point & because of (2.65b), and of which the

left end point, defined to be 9’('&) , 1is nonnegestive because of (2.65a), so

(2.66)

of-:,f'[f)gz 3fz~r &%.‘li<~'£-

Comparison of (2.45) and (2.62) leads us to distinguish two subcases.

D¢s)

Subcase II.l;

continuous and

(2-673 and b) ote W,{S l D(SJ = 2{ < S,

Desy = JL

We now define T(S) by

{2.68a)

(2.68b)

O

Ty = [a, a(s;)U[écs; ¢)
Tsy= Lo, €)  foe

w7

In this case, since

I

A
D[o) > Q » there is a number & such that

0 Di&=SL .

S

se ¢

<

A
S

This definition accords with (2.66) because of (2.51) and the monotonicity

properties of A5} and -gCSJ . It implies through (2.64) that, for 0% S(QJ 5

[ (a)' Sth=s  foe ats-0) Etcals),

(b)
(c)
(a)

(e)

vhere &% € vecause of (2.59) and (2.67a).

Sit)

~ Lf als-0) < als),

§ ats)<alsy fprast s>, $latsr) =5,
»’f 6[S]<‘6(5—0J
4 zf.s,w(sq o A 1<,

B’N xzealf- o)‘f(g(e-oj

Prbesy) =

el Sit)=

ie continuous to the right for ast< L.

S
J

toAs

[

£

)

It is seen from (2.69) that

$1t)=s  fo bisi gt is-o),

2

is



- 4l -

Fa
We shall study the implications of (2.69) with regard to W (t) s

defined by (2.63). We begin with the case assumed in (2.69b), where we now

write s=5, for a point where QA($) 1is continuous and inérea.sing

to the right, and §l= S; Tor the smallest value of §' such
) .

that alsY=als,) . Ten  Se =S, . We note that if in

particular alS.)=a , (2.49a), (2.37) and the assumed continuity of a.(s)
for S=8, imply that ﬂc"—:.‘D_ .

Writing for brevity a, = alS,) we will study

_ll; .
v Wien, 0= Wit W= [ (4= [ol - s | 4] 4!

in the neighbvorhoods of 'if'— &, and $=8, or €=% L i From

(2.49a) we have that, for some g)o ,

]

(2)
(2.71K (®) W(a“ fJ:gJ< . 3"9-/ s £s S Se ad a°<'{: < 4 5

@) Wlant,s) 2 o [ L<SE 5,49 ad t=als), plere als)>a,

——

Weaot,s) >o ot S'es<S, o Tears), vl afsf<a,,

vhere §"=0 | if _D&-_D_ and . S)= heim {J’ |atsy >a,,jf otherwise.
Because of the regularity assumptions there exist positive functions
E.H‘.'J and ?_'(_f‘) of 'l:f such that {(l‘:JJ é({:} and {ff}- L(t) are
continuous and monotonic for  Flg!(+! JEte t ! and for
Jc'g-t ._é_-&'+ 3 LJc') . Now, if £, 2 (a,) ,



..)4_5..

(2.72a) either o< Z(ao)—so écf’ ,

(2.720) or o= Z(d.,)—fa and Z (¢ increases on %3 t< a,t¢,

2

!
because otherwise one could find positive numbers 5 (g and &f‘( 54, such
that, for any t in 4,<t Sa,+s! 5 W-[aa ,t, 8 is independent of
f
§  for S, LS E 54 , in which case (2.71b) and (2.7lc) cannot

both be true. We begin with assuming (2.72d) and
(2.73) 1if Z(%J-So = #’ then ZL{') is constant or decreases on a,o-d-_ t %abn‘ .

In that case [ o ‘ ZH') -$ ' CPJ = ZH‘.) =S and hence from (2.69)

Wiao,ts) ¢, .
(2.74) MR RE R H')-gt{"j-f-g A a, €4 5__1‘;
e :
i “
for all fjs such that a°<‘f‘éa,4i and J,‘E-_S.<._JO+S ,
where 0o <3 g, and 052§ . This is compatible with

(2.71v) and (2.71c) only if
(2.75) a‘f(%)-Z(aD)#-So‘io , and {H‘J-Zﬁ'} decreases on 4, % t €a,+ $o -

The same conclusion is obtained in each of the other two cases, {2.72b) and the
obvious alternative to (2.73), by examining an extra term arising in (2.73) when
ZL\‘; }-5<o or > c’(» , respectively.

Similarly, if OL(S) is also continuous in SJ , we can show from a
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4. !
study of (2.71la) and (2.71b) in left neighborhoods of =G,

! - ol
that, if £ (a,) = &,

2

(2.76) {(CLO-D)—Z(%-D) f—So':o and {[fj—llt‘j decreases on CLO—E; f-.{:( a_ .,

In particular, if 5::5

o s SUE-gH
in a neighborhood of 't =

is continuous and decreasing

~a, =a(f,] , and conversely.
It follows from this analysis that if a.(s) is continuous on an
interval s'e s< " and if

a'zals') < Q(.("—o_)‘ia” then by
(2.69), (2.75) and (2.76),

i

(21) SiH=E(H- L) €S )£ V(") for

alst<tica
and, by (2.63) and (2.72),
A A
(2.78) W)-Wea) . ad<tea

By similar reasoning one finds that, if %[SJ is continuous

on an interval
! W, o~
' < Sg ¢

4" d(so) < by = L'

and if s then

!79“‘““) S 286 =8e)-Title §1t')  ama Wﬂwé’foréu"qz«é’

We can now indicate the nature of the optima.l storage policy WH’ _) in the
simplest case in which both a(f) and ﬂ(.s J

are continuous for 0 & $ < G ,
<=—4 We have from {2.78), (2.63), (2.69b,e,d), (2.36) snd (2.79b), respectively,



(2,80} ‘

{2.81)

-1+7-

— A ;
(2.80a) WU’J = ﬂ =—Q- for a% t _ﬁ_z provided a< Z 5
: ~
(2.80b) Wcu wcmw W, Z) ot Xtz €,
L_(2-80(3) W Cﬂ = _QL =0 for "’ < {' < g provided Z

.here W(a)—ﬂ" if G=q ;- in which case _Q <_r is possible.
(2.80b) indeed gives W(L} 0 if ,§<L a.ndW(.[;} __Q_g if é é s

‘because of (2.67b), (2.50) and (2.53). Moreover, (2.80b) satisfies the reservoir

restraints because of (2.49), (2.53) and (2.69e).
In the cage in which &.($) has discontinuities for 0% 5< & , let

Sy = M{s | a(s-0)< ats) {r . Then, by (2.69a) (2.63) and (2.36),
A A . N
Wit Weatseor) + Wit s)- Wiatseol, s} or allroy et cals,):

A

Here W(a,(s oJ) _Q if alS,~ojza , and M/(a(.(,,—ojj =_Q ' otherwise.
In either case MAUHJ = -O_ from (2. 53) since Q(.fa_]<% because ‘§o<g
Moreover, (2.8l) satisfies the upper reaerlvoir restraint because of (2.49a) and
(2.53), and the lower reservoir restraint because Iff JE I( §)< D(G‘J D
snd hence W'H N = [ Wiy, s N Wit s, ]z fl—.f)_-— «

CIf aff,-e}2a . and hence ‘l/l/'[a,{! ~o))= _D_ W{a(.rd) it follows
from W{fja il that é(f] [a | &ety-s, ] ¢ ] is either
identically equal to zero, or else first negative and ultimately positive, for

alS,~o)]< + < at 52} . It then follows from the regularity assumptions
that there are at most a finite number of discontinuities of 4{;_] for 0€5< E .
The optimum policy is therefore given by (2.80) modified by (2.81) for each
discontinuity §, of afs) with o< §, < 3 , and by similar inter-

A
polationsfor any discontinuities J§, of {is } with o‘é §, <6
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Subcase II.2; D(ﬂ = I(C_) > ﬂ . In this case,
the continuity of I(S) and l(o.) < Jl imply that there is a number &,
such that

and, by (2.42) with asterisks omitted, there exists & sequence of N 2 |
pairs of poin‘bs(t 4, such that 4 € 't <‘£ ('t ('t < rer o < '{ s g
e a.nd,,for L‘-‘~! i )

(a) Wi, 8 )+ JL=W(4,,5,),

[2.83)
(%) W{ft%))W{tP%) W(t.§)e Wit, & )>M
(eet'<t,2tet <t"e 4,

and, for L=1] -.. el

2.84)%

" where (2.84d) also holds for (=0 with +o sa i* A< ;-f , and for

(=%  with ‘QM!-.:-{ 1f f“<4

* We can have f or ‘é« g only in the extreme cases that

ﬂ&-::.o or _Qg n




'11-9'

Here (2.83a) and the second and third inequality in (2.83b) follow from

(2.82b). The first and last inequalities in (2.83b) serve to define ’t

and tl: uniquely. If (2.84a,b,c) were violated, two successive pairs C-L > by )
and ( Lis ¢-H )could be replaced by a single pair.: Ct 'L:.+ ,) or (2 826)
would be contradicted, and if (2. 8!«1) were violated, an additional pair ( t Tf )

would exist with f < '(: < f < t ‘o)
. b -
be contradicted. Since by (2.37) a.nd {2.838) t{ -t. %.O_ /w > o,

s or (2.82b) would again

is finite,
We now maintain the definition (2.68a) of T( Y for 6€ 5K €, and

modify (2.68b) in pgrt to e
(2.85) Tcg,-)é-_[ﬁ-,atg, ))Lj‘ Ltga%{)u[gtgl%é)
. i=

Ir _t! <a(l6,) we have from (2.49a) that ‘t‘ = a %’} ) ’
and the inclusion of ['!L_ - ‘f \ ) in (2.85) has no effect. Similarly, if
I oS -~ T
't’h S gisl) , fh= g[ S, ) and the inclusion of [_é“J 'I'LM )
has no effect. In any case, the previous solution (2.80) modified by (2.81)

remains valid for a < ‘(j q,(@ ) and for 6(6‘)'{;'{;‘; £ , vhere

atﬁ',k@(s,) because e, < ¢ . On any interval [él:\’ tL) with#*

* tg”vfcn ) cannot occur for L. | because t, <_‘L_117_ , and
cannot occur for ..L=/  because it could imply al(€,)=a , D =0
vwhich would again imply % =a(€,) >a , a contradiction. 2

a (s, ) <'_,tc< ‘fl.<g(€;J that occurs in (2.85) we have S (t) =&

hence

ey WiH=W it ) s W, 50-Wit, &) o 1t sl
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which by (2.§5) meets the reservoir restraints if and only if
» .
(2.87) W(tﬁ) =6 Banih {L‘.‘w W(&L,J:D

The set [a., 6 ) _T'(E‘, j  on which §(t) has not yet been

defined is a unlon of intervals [ t {2 t (o) ) . On each such interval,
W (t, ;, ) satisfies prec“isely the same conditions as _QL'I'J:-. M{; oJ satisfies
on  [a,d ) . This can be verified by comparing (2.23) with (2.84)
and with the first and last ineﬁpalities in (2.85b). The same analysis can therefore-
be repeated for each such interval with new functionals [%/LL ];{JJ defiﬁed for
g, ¢ < Z analogously to (2.42) and (2.43). If on such an interval Subcase
11.1 applies, the analogue of (2.80) qualified by (2.81) defines the optimal
pelicy on that interval. If Subcase II.2 applies, a further subdivigion occurs
for S§S= E‘:‘. > E ,  which incorporates at. least one subinterval of length not less
than _Q. /3 into rT(ig‘t ) . Hence Subecase II.2 can occur only a finite -
number of times in all intervals to be examined. Since case I cannot occur on
any interval but the entire planning period, the construction of t%f optimal
storage policy has now been completed, and the resulting policy }V*if) has

the properties enumerated at the end of Section 2.k,
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3. Price imputations for power, water, and
reservoir and turbine capacities.

3

3.1 Purposes of efficiency prices. Once an optimal storage policy has

"been specified, it is possible to asscciate with it imputed valuations of

the resources that occur in the system, also nown as M"shadow,™ "accounting,"
tintrinsic" or "efficiency" prices. These efficiency prices have an incre-
mental or "marginal® interpretation. We want the price of power at any time
to represent the incremental cost of one extra unit of electriéalenergy to be
produced in a short period containing that time. ILikewise, the price of
water is to express the highest possible saving in the operating cost Qf
thermal generation if it is known in advance that one extra unit of water
will be added to the reservoir at a certain time. Because of the non-
linearity of the cost function 7&ij » this interpretation is approximately
valid only if the added units are small. Likewise, the efficiency prices of
reservoir and turbine capacity are to represent the derivatives of the mini-
mum ff}tﬁj of operating cost for the planning period with respect to
each capacity, Sjl or }ﬁ » whenever such a derivative exists.,

There is, of course, no necessary connection between the efficiengy
price of power and the power rates charged to customers. The first and
foremost use of these prices is in the distribution of power loads over
interconnected generating systems of which the managements pursue a policy
of minimizing aggregate cost of the power supplied by all systems. It has
been correctly argued by economic theorists that determination of power

rates {and of all other prices) according to marginal cost would make it
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: possible for users of electric energy to make allocative decisions that
mnimize aggregate cost of production of whatever is produced -- or, &ven
more broadly, that enable consumers to distribute their expenditures oﬁer
various commodities in such a way as to minimize the aggregate social

cost of the satisfactions received.# Since neither the practical

#* For an excellent summary of the literature on this issue, see Nancy
Ruggles [19h9]. For a statement of
the general theory see Koopmans [1957] and for
an example of an application to another industry see Vickrey [1955].

difficulties of, nor scme theoretical objections to, marginal cost pricing
have been fully explored, it is contended here only that if marginal cost
pricing of electric power rates is desired, the present study con-
tributes to.the analytical tools for determining such prices.

The efficiency price of water has an obvious application when addi-
tional investments in the watershed can increase the flow of water by an
approximately known function of time. Comparison of the efficiency prices
of reservoir and turbine capacities with the incremental costs of con—
structing these capacities will help in designing such capacities to fit
anticipated seasonally recurrent conditions of watershed runoff and power

demand.,

3.2 Definitions of the efficiency prices. The data underlying these

definitions are the cost function'?bC{) of thermal generation, and the
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A
characteristics of the optimal storage policy W[ f J s which for this
purpose is best represented by the target rate (¢ ZL} of thermal genera-

tion from which it is derived. Because of the convexity® (1.10c) of

* See, for instance, W. Fenchel, "Convex cones, sets and functions,®
- Princeton. University, Togistics Research Project, 1953.

&V(J’) , there exists for every $20 a number 7/’@) such that
(3.1) \,I/(J’j:‘; >u(¢;+ }0'(:)-(:'-:) f.ﬁ- oll S'Zo .

In any point S where ya[.f ) is differentiable, the number ?V’('U }s

uniquely determined by (3.1) and equals the first derivative of 71/(.5‘ ).

If (4(s) has different right and left derivatives y«' ($+6) and
w'li-0) , we have VJ’U-O]( 51»’(14-0) , and we retain

freedom to give to yal(-fj any value such that
/
(3.2) wlts-0) 8 ¢lts) & @ lire),

with the understanding that Y ‘to-0) = o . No matter how this

freedom is used, we havex

#* Fenchel, _1_. C., p. 71

: / / o< s< S’
(3.3) L) < (s/) ‘f
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We now define as the efficiency price of power

IoLtJ = \]U'(?u:)) . v Reno fté_]'—:—Z&J—‘l‘;‘LfJ .

(3.4)

A
Here 5(f) is the actual rather than the target rate of thermal generation,
occurring at time t in the optimal policy. We allow the indeterminacy (3.2)
to persist for such times t at which gLf) indicates a kink in WP(SJ y

where we specify |

: [, a | oo -
(3.5) pe)= g (Sti-olg pit) < ¢ (Sthro) = pct).

ﬁ(fj is the extra cost of one additional unit of power, P ij the
saving from generating one unit less. -
In contrast, the price of water q(fj is similarly derived from the

target rate S(f) of thermal generation as defined by'(2,64),

=l
(3.6) qeIzy (SE)

where in case of indeterminacy

(jd—J = L]J’( ?Lf)—o).é_?d') < \]1/,( Cit)+0) ?—-qu’)

(3.7)

Since availability of more water means a need for less thermal generation,
q(fd now is the value of an added unit of water, 3 tt) the cost of
diverting-one unit.

Since by ( 2:33)

vy lo-fes[o (eeie e ]
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our choice of units of power and of water equatestheir prices, P(ﬁ) -=—3C1 te)
unless turbine restraints are operative. If the upper turbine bound is
reached, S(E) 2 ?U«'_) and hence by (3.3) }3({') 2 Clﬂf) .

If the lower bound i$ reached, §(t) < §(¢) and  po (tt) =49 LE) .
Hence if we write

)

k) o ) 2o

, wt) = pit) gl =t =) = ‘
(3.9) P 1 ¢ tf yt)<o |,

we can loock upon ’?,+(,{' ) s the excess (when positive) of the price of power
over that of the water used to generate the power, as a scarcity rent.(per
unit of tima on turbine capacity, which is positive only when that capacity

is in full use, and otherwise zero.% In case of indeterminacy of either

#  The negative component < (t) of ()
may be used in deciding whether or not to provide capacity for pumping
water back into the reservoir.

}JH‘J or 3[‘!‘) or both, we set
(3.10) Lit) = ;:&)-gca £t € plt)-9q =T () .

Since higher turbine capacity permits the use of more water to reduce the
rate of thermal generation, 1 {t} is the rental for increases in capacity,

T (f) that for decreases.



Finally, the :Lntegra.l .
(3.11) Ra(uﬂou s (Q /ZLUM ¢ Re [’c({)aw R
° 0

defines the efficiency price of turbine capac:Lty for the planning period.

' The efficiency price Qof reservoir capacity is related tothe price
of water q(f) differently from (3.11) because the reservoir is a means
of shifting the 1se of water in time, whereas the turbines convert water
into power. By (3.3) and (3.6) qU'J s Or in case of indeterminacy
either one of its bounds 1 ({’) or 'f {t) , shares with 'Svt‘é_) the
property of being constam:‘ over time except when the reservoir is full,
when cld') can increase, or when it is empty, when i(f‘) can decrease,
This reflects the fact that a situation where a shift in the use of
water if feasible would produce‘ a saving can arise in connection with an
optimal storage policy only if that shift is in fact not feasible. The
only circumstance that can prevent a forward shift is a full reservoir at
some intermediate point in time, the only obstacle to a backward shift an
intervening empty reservoir.

This suggests that the rental on reservoir capacity is related to

the increase in ‘j“’L ') while the reservoir is full. We therefore write
1 ¥
(3.12) cibf_! 501 tt) — CZ k)

T
where GILU and cz LIL,) are nondecreasing functions such that q (H
absorbs all increases, 9 ({‘) all decreases of ﬂd’} — which are known %o
occur on disjoint intervals. Now 9 (4: +o0) - ofr(f:-o) is defined as’

/
the rental on reservoir capacity during any interval (or instant if et )
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in which the reservoir is full, and
Q = aﬁ[p o) - q'r(o-!-o)

(3.13)

as the efficiency price of reservoir capacity for the entire planning period.*

* In case of indeterminacy, the lower bound Q applicable to Increases

in capacity is obtained by replacing the defini;g function CI(_é J in

(3.12) by a function q’FLt ) which equals 4 (¥) on all intervals

on which the store of water falls from Q (5; Qe } to 0 (or .D.t ),

OI (¥) on all intervals during which the store of water rises from O

(or _O_D } to ,O_ (or @] r Js and a permissible but constant value

on all intervals during which the store of water departs from either Q or O
without reaching the other of these values. The upper bound (-:) applicable to
decreases in capacity is similarly defined with the roles of ?‘ ()} and 7 (t)

reversed.

3.3 Profit maximization in a fictitious market. We shall now derive an
ing\quali,ty which will yield us a proof of the optimality of the storage policy
W[f’) constructed in Seétion 2, as well as important properties of the
efficiency prices. We consider an alternative hydroelectric system, in which
the net inflc_)w of water X (‘U may be different from gd‘ J as a result of
improvements to tﬁé wé.tershed , or of different rates of diversion of water to
co;npeting purpcses such aa; irrigation. Likewise ,' the power demand z(_fj may
differ from L{j’) but as before Xx(f] and z(f) are nonnegative. We

consider further an alternative policy, restrained through

(3.14a and b) 2(t) =stE)+ wit), X -utb) = wt) =rit)
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where the nonnegative functions ${f) , (£} , u(t), represent policies with
regard to thermal generation, turbine discharge, and spillage, each of which

may differ from the corresponding functions ?L{:_] ’ ’ﬁ\u’) ’ t:tt(‘{j in the
policy constructed in Section 2. The initial store of water W( [ _} , and the
final store WCI) it implies through (3.14b), are required only to be non-
negative. No upper cepacity restraints are imposed, for the moment, on V(f -} ‘

W(-L-) , but the latter function is required to be nonnegative for o£t< T
as well as the former. PFinally, the cost function Y[J) of thermal generation
remains the same as befor€. For brevity, the alternative policy is denoted

( xt#), act), sth), uitl, W(oﬁ) .

We now consider a fictitious situation where the manager of the hydro-
electric system chooses his policy in the following manner. He must buy or rent
all resources he uses at the efficiency prices defined in the preceding Section 3.2.
He nmust Apa.y the total cost of such thermal generation as he requires. He sells
the power generated at its efficiency price, and will receive an allowance for
'the value of the water in storage at the end o_f the planning period. He then
chooses & policy that maximizes his profit. To be precise, the "profit" is

defined as

—

L

(3.15) [l= ﬁztﬂp(ﬂ xtf)ricél b)) - \P(S(fJ)Jobb'
__rc Wit )dqlit) —Wt’c_jcz(o)'f*wu)ci(c? -0},

The negative terms not yet itemlzed are payments for water received (an :Lnitia.l
stock W( °J and a flov x(t) throughout the perlod) and rent payments

for use of turbine and reservoir capacity proportional to the amount of use,

vtfj or W({')
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We can simplify (3.15) through the identity

T r
(3.16) W(I)cl(r-oJ—W{oJfI(o) —.-_f Mﬂdff&) +fWL{JCZ‘+JM R

which by (3.14%b), (3.12) and (3.9) leads to

T
(amawy H=TL T+ T1,, W,r-_f[_rw,wf)-wuw]obh
T
T7 J
(c and d) TT = *f ¥t cf)m&]q(ﬂ]oﬂt ”3‘*— -JW(HA,? ().

Now let us compare any policy _X_- open t0 our manager with the policy /_r ( f{z“)
{(fj , Sttf, @it , _Qo) constructed in Sectionm - 2 to fit the date {a‘) ,

Zg{-_] ’ Q, ) D] ,Dr , ?S underlying the restraints of that construction.

Since {}ch-o whenever 7 (£)S o0, ul(t/=o0 whenever Ta‘j >0 , and
Wit)=0 vnenever T(.f) decreases, and since (] , U(t) , wit) ,
clct'_! s W{H and 0(7 (t) are all nonnega.‘bive we have

(3.18) ﬂﬁﬂl-_—.o) TE‘: ﬂg-

A
if ﬂf corresponds to the policy of Section 2. Finally, from (3.1), (3.4)

and (3.18),

A T o
(3.19) Wé {/f = ]7’ ::f [?('&)P('ﬁ')—*‘(f(fj)jﬂz T_‘-

It follows that our manager cannot do better than he does by adopting the policy
s

X of Section 2. The price system that we have associated with that policy
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"sustains" it, in that in calculations based on that price system the policy in
question is as profitable as any. It is to be noted that the alternative policies
include policies that involve different water and power flows, and that violate
the upper turbine and reservoir restraints and the initial and final store-of-water
specifications. The price system therefore gives indirect expression to these -
restraints by making thelir violation unprofitable.

The maximum attainable "profit" is positive whenever St} >0 on some
interval, and is found to accrue entirely from the fact that whenever gdj > A
the marginal cost l’a (t) = \]U,( § t) at which power is so0ld exceeds the
average cost \{/( f({'))/ §({') of its generation, a8 is seen by insertin,

£= :‘:(,{‘J , S'=5 in (3.1).

5.4 Proof of optimslity of the policy comstruction in Section 2.

We now specify that the alternative policy X be a policy Xo E(%[U, zd'_) 3

L1E) , w(t) , Qo ) that satisfies all the restraints of Section 2, without
A

necessarily being the "optimal"” policy 7{ . Denoting all quantities relating
to the policy _X; by & subscript o0 , we have from (3.15) and (3.19),
T

0= WJLZ [(votfj—ﬁdj)t*(fj.;‘?p(foh‘Jj-.thfm) oAt

T A . N~
3.20) -j(WL{J..M{U)o%TMJ " ( Wiy - Mm)%r-o)'
o]
However, “?d’}:f’ i o , and W (t]l £ CF througheut,

[aN
-l/U'({-} = Q if Cft'ﬁ‘) increases and M/;(f)‘i __()_ throughout, and
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A
' W(.f):Q_ﬂ_ if cl(t-D) >0 and ‘W; () 2 Q‘t . It follows that
L A

T
(3.21) Co Eff(salﬂ)a(i' 2 \i,(é‘m)a()t'-:: C 5
o A Fo) _

which proves that the policy ){ constructed in Section 2 is indeed an
optimal one. Moreover, equality in (3.19) would, in view of (3.1), require
A
S,LE) = S(t) for 0%t T , if we specify that both §,(f)
~ .
and S(t) are continuous to the right. Hence the policy _X._ is the unique

optimal policy involving automatic overflow.

5.5 A further property of the efficiency prices. We shall indicate

without full proof one further important property of the efficAiency prices,
which appears when we study how the minimum attainable cost C depends on the
data of the system studied. Using the brief notation E = ({Lf)J Z tt),
;Qo i D_, ‘Qr* qJ ) for these data, we find by inserting the policy
~

X in (3.15) and using (3.9) and (3.13) that
A T ANy
| = HCE);[[QHF&J—@W%J] AL -—C,(x_‘_;)
—c;,l? -J28 —D,c[tonﬁrol(t-ﬂ'

[l BT
Consider a neighboring system with data Lo =y + /(, +~s , vwhere

(3.22)

—i/ / " n
- 3( % (¢ }’ ‘e ) 1s & set of "incremental" data restricted only the requirement

that, for some pt=g,>o , and hence for all 6$UE M, , the data

()
be consistent in the sense that all components of .~ F be nonnegative and that

(pd ! (- ()
ﬂo E: D— and .Q_D < D
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- gD -

We now subtract (3.22) from the corresponding inequality for the neighboring
A
—t (] —
system, solve for C(I._'_j,(k) ‘“C (.;.) , divide both members by ~ and take
[ |
the limit for W — to + Then if the data .,  imply determinate

efficiency prices PL'U s ?H‘J for 0%'{:(‘5 ;s We obtain

d (=) — [Z’LEJ)‘:HJ—-iiﬂﬂqH‘JJM
Mo ke 7 _CP'R—Q'Q—ﬂiqcoHQFTU—oJ-

r—{ }«v)
Furthermore, if the data are campatible also for some M o‘ < o, then

(3.23) also gives the left derivative of the cost minimum at p=o0 . Finally,

if PH:J and cit,{' B are not determinate, one can make permitted* choices

* See the footnote on p. below for the precise meaning of 'pbermitted.”

so that (3.23) indicates the right derivative of ‘the cost minimum, and other
permitted choices so that (3.23) represent.s._the left derivative. It follows
that if the data can be modified at giverﬂz,incfemental costs which are different
from the corresponding efficienc;,.r‘prices (i.f unique) or fall outside their
permitted ranges (if not unique), another syst;m. can be realized of which the
minimum cost (algebraically) fallsbilggat of the given system by more than

the cost of the modification. 1In this wvay, the efficiency prices bear on design

problems of hydroeléctric systems as well as on'operation problems.
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t
The proof of (3.23) depends on continuity of the efficiency prices !LL'kbe R 7 M({:J
at -the point f+=0 , or upper semicontinuity if indeterminacies exist at that

point.* In particular, one needs to show that, with suitable permitted' choices

* Besides the indeterminacies already indicated in (3.5), (3.7) and (3.10),
on further type of indeterminacy needs to be recognized in this proof, which
can arise when an interval ['(: ( s t., ] on which the upper turbine restraint
is operative (’I?Lf-‘) = G{D for fl sttt ) contains a point T >'t,
at which the reservoir is full. Whereas (3.6) holds f{(t) constant until such
a point t is reached, thus giving a2 lower bound to the price of water on

[t l ,t ) an alternative definition allows th J to increase as soon and
as much as is compatible with v (t)= for 1,4t <t and maintains the
nondecreasing character of (1(,1’:) for f <t s -L- , thus providing an upper
bound to the range of the price of water. A similar difficulty cannot arise when
the lower turbine restraint is operative ( Titl=o ) , because Z,féj 2 o

prevents the reservoir from becoming empty in this case.

of the prices, [T—[CH{H) H(L JIJ//J. — o if /¢-.4, 4+ 6 . This is

indeed suggested by the last equality in (3.19), where in the case of determinacy
PLH:. W ( Sit)) . Hence (P'W ﬂ (,____J ) depends on

.I“_—'? t}"-} Ll A [,,«.J Ay X
— an@ - only through S ()= §¢ 'f) , é&nd is of second order in this
« B
e .
quantity, as one would expect since W Y ',J is the value of a minimum
attained for S(t)= s (). . -The burden of the .proof 1s then to show that

[gtrﬁ{) - f(ﬂ] /’4, has a bounded limit for o "-‘; t £T .
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