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_Erggrggming of Economic Lot S;zeg

Summary
| This paper studies the planning problem faced by a machine shop
required to produce many different items so as- to meet a rigid

deliver& schedule, remain within capacity limitations, and at the same
time minimize thg use of premivm=-cost overtime labor. It differs from
alternative spproaches to fﬁis well-known problem by allowing for setup
éost indivisibilities.

Aé‘an approxiﬁation, the following linear programming model is
suggested: Let an activity ﬁe defined as & sequence of the inputs
required to satisfy the delivery requirements for a single itém over time.
The capacity linput coefficients for each such activity may then be c§nstructed 80
as to aliow fof all sétup costs incurred when the activity is operated at
the level of unity or at zero. It is then shown thet in any solution to
this problem, all activity levels will turn out to be either unity or zero,
except for those related to a group of items which in number, must be équa.l
to ér less than the original number of cepacity constr&iﬁté. This result
means that the linear pfogramming solution should provide a good approximation
whenever the number of items being nanufactured is large in comparison with

the mumber of capacity constraints.



1. Background

It is common knowledge that the presence of "setup costs" in a
manufacturing process raises questions of indivisibilities [4], and
that such indivisibilities conltitute a formidable dbstracle to any
qttempt to phrase economic lot size problems in terms of linear pro-
éramming. In economist's language, this amounts to saying that the
presencérof economies of scale contredicts the assumptions of marginel
analysis, along with such economic theories as linear programming, which
are so deeply rooted in marginalism.

This paper reports upon the successful use of linear progremming in

a special instance involving setup costs and econcmic lot sized.*

* If the total costs of producing x units of a particular item in a

single lot are given by: ad + bx
>0 [/ =1
where x implies &
= 0 = 0

then the constant a i1s said.to represent the "setup cost" for that item
and the constant b the "incremental unit cost." Evidently setup costs
are minimized by concentrating an entire production requirement into a
single lot, rather than by splitiing up that requirement mmong several lots.

Unlike & number of the more recent proposals [e.g., 1], the particular
model 1s a non-gtochastic one, and in this sense is -of less general
applicability. The distinctive features of the approach outlined here

is that capacity limitations - and hence interdependence between individual

items - are treated as an explicit part of the economic lot size decision.



-0 -

Since the background of the individual problem makes it possible to justify
a number of simplifications in the mathematical model, it seems worthwhile
to summarize the leading features of that Background:

The plent in question sells most of its output to the armed services
of the United States. The "end itens" of this plant‘are in turn an input
for other manufacturing activities, and the timing of deliveries takes on
even greater importance here than jin the routine prodﬁction of consumers' goods.
Indqu, in his competitive bid for any particular product, the manufacturer
stipulatgs not ‘only the price at which he will undertake to produce the item,
but also the dates at which individual units will be delivered to the Goverrment.
Because the actual timing of deliveries affects the manﬁiaeturer'a reputation --
hence his ability to obtain future contract awards =-- one sssumption that underlies
all production plaﬁning is that the manufacturer will adhere to the promised
de;ivery dates. | |

Since the piant does not produce large épgntities of any 1ndividual-end
item, the productive procéss is of the batchityﬁg rather then continuous. As
is typical of many metal-working establishments, the first step is to produce
individual parts in the plﬁnt‘é own machine shpp and to procure certain parts
from dthgr manufacturers., Oﬁce all the parts for a particular finished unit
are on hand, thése are assembled, tested, and the item is turned over to the
Govermnment. Note that if the Goverﬁment contract calls for delivery of 25%
of the finished units over each of four successive months, only 25% of the

total requirement for.each individual part needs to be available at the time
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actual assembly is initiated.* This means that one of the significant choices

* :Intpractice, "buffer stock” considerations may indicate that more than
25% of the total for each part ought to be available before final assembly
is initiated.

to be made is that of splifting production lots for individual parts so as to
meet the initiﬁi delivery requirements, buf still defer a portion of the machining
work until the latter part of the delivery cycle. ILot-splitting does, of course,
bring about an increase in setup costs, and so an optimum lot size decision
entails an econgmic balance between the advantages of reducing setup costs, and
the advantages of smoothing out the production program over time.

Although there is same overlap between planning for the machine shop
and for the final assembly and testing operatidns, this paper is primarily
concerned with the machine shop itself, and only to a secondary extent with the
problems created by this overlap. Actual planning of the machine shop's activities
takes place at two dlstinct echelons of the plant's management, and correspondingly
at two different.levels.of abstraction. Short-range scheduling is concerned
solely with such details as which parts are to be manufasctured, and which individuals
and machines are to be used. Long-range scheduling (up to eighéeen months ahead)
is concernea with the general problem of whethef the machine shop's existing
resources will be able to meet fhe company's future delivery commitments, and if
not, whatlpolicies should be adopted to supplement the existing resources: over-

time work, recruiting and training of additional personnel, and outside procurement
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of certain parts.* This paper is concerned almost entirely with the long-range

* Decisions on the purchase of new equipment constitute an additional degree
of freedom, but since the payout period for such equipment normally extends over
several yesrs, the company's policies on equipment purchase msy be regarded

ags fixed -- at least as far as an eighteen month production schedule is concerned.

problem, as distinet from the day-to-day operation.

Within the company, the traditional procedure for long-range production
prlanning has emphasized calculations made upon the assumption that each of the
parts was to be run off without splitting any of the lots -- desﬁite the fact
that lot-splitting is far from a rare ocecurrence. Once the simplifjing assump=
tinn is made, it is then largely a matter of arithmetic to take‘the end 1tem
delivery schedules, pool this information with the "operation'sheet“ machining
time estimates, and arrive at the man-hour reqnirements for machining during eacn
of the months in which parts are to be produced for a particular end item. Given
these estimaﬁes of reqnirements, in turn it in.possible to subtract off tﬁe straight-
time man-hours available from the existing work force, and come up with a figure
. for the defieit or geurplus of manpower over requirements. In case of an impending
deficit, it is up to the long-range planning group to recommend whether to nrder
overtime work, to attempt ocutside procurement for certain of the parts that would
normally have been made in the company's own plant or to alter the initially
stipulated schedule of parts deliveries to the final assembly operation. 1In
practice, of course, a tight scheduling problem will force the planning group to
depart from the assumption of no split lots, and thereby to depart from minimizing

setnp costs.
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In the linear programming celculations - Just as with current methods
of scheduling - two simplifying features of this particular mgnufactﬁring
operation are exploited. Neilther is essential to the use of linear.programming,
but bdﬁh are highly convenient for expository purposes: (1) Limitations
on the availability of specific machines have been disregarded. .It w;ll
ordinarily be true that if a particular production plan stays within the limitations
of the manpower avaiiable with a particular time periocd, the plaﬁ will also.
be within the capabilities of the plant's machine tool equipment. (2) Inventory-
holding costs have been neglected. fhysical storage costs are quite low, and |
the contractuasl arrangement of Goverment "progress payments" makes the interest

cost element a minor one.

2. es, ammin fo ation

The linear programmihg model of the machine shop's operations is intended
to provide nume¥ical answers to the following general problem: Given a large
number of individual parts to he machined, and given delivery requirements for
each of these parts over & series of time periods determine how many of each
of the parts should be machined in each time period taking account of the
fact that there are limits upon the amount of straight-time and of overtime
productive capacity availﬁble during the individual periods, and also that lot-
splitting increases the total amount of setup time reqnired.

In determdning an output schedule, the objective is assumed to be the
minimization of overtime labor requirement. This criterion for choice among

alternative prodﬁction plans implies: (a) that. the straight-time services
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from the projected work force represent a fixed commitment on the company's
part, and that nothing can be saved by failing to use up these services; {b)
that the total labor requirements fall within the man-hours available from
straight-time plus overtime work so that the question of outside procurement

does not arise;* and (c) that the only remaining variable costs are those that

* From the viewpoint of model formulation, the question of outside procure-
ment is an inessential complication. Ordering from an outside supplier differs
from internal production only in that it costs money and imposes no dramn

upon the internal availability of labor.

From this same viewpoint, the question of reeruiting and training new
personnel is also an inessential complication. An-activity of this sort
could be incorporated directly within the model - provided that the training
cost per man was Known.

increase with the total mumber of overtime man-hours.

Underlying this linear programming formulation is the definition of an
activity es a sequence of inputs over time that satisfies the delivery require-
ments for a particular part. (Individual parts are distinguished from one
another by the subscript 1, and the alternative sequences for the i ih part
by the subscript ij.) Since, in general, there will be more than one sequence
that is feasible frem the viewpoint of delivery requirements for the 1 ﬁg part,
the lieea; progremming variables xiJ refer to the frection of the total re=
qnirement'for'the i th part that is supplied by the Jj th seqnence.ef_inputs for

that part. Although no physical meaning can be attached to a fractional value
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of Xy * (e.g., a solution specifying that half the requirements for a given

* For the special but nonetheless interesting case in which delivery re-
quirements recur at a.steady rate over the indefinite future, there is a mean-
ingful interpretation that can be attached to. fractional values of xiJ - i.e.,
that the actual lot size be intermediate between the quantities specified in the
initial definition of the xij 1ternatives. With this interpretation, the
non-linear inventory problem with storage and capacity restrictions described

by Rifas in the Churchman, Ackoff, and Arnoff volume_[a,ch.lo] can be transformed

into a straightforward exercise in linear programming.

part are to be met by a one-lot sequence of .output and half by a split-lot
sequence ), there is no guarsntee that such ﬁfqur frqctions will be sbsent
from & linear programming solution. All that can be guaranteed is that if
there are T time periods distinguished within the model, there will be st
most ? parts for which the xij “fractions turn out to be intermmdiate between
zero and one. (A proof of this assertion is given in section 5.)

Unknowns, coefficients, and constants for the programming model are defined

in the following way:

(a) unknowns

xij = fraction of the total requirement for the i th
part to bhe supplied by the j th alternative
sequence of'inputs,' (L=1,...,1;1= l;...,J.)

zt = number of hours of overtime lsbor required durlng
tjme perj.Od t(tgl,I..,T)

8, = "glack" variable for straight-time labor during
time period % . (all &)

v, = "slack" variable for overtime labor during time
period t. (a1l t)
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(b) coefficients

Bijt = labor input required during period t in order
to carry out the j th alternative production
sequence for part i. (a1l 1,i, and 1)
(c) constants

St = maximum aveilability of straight-time labor man-hours
during the t th time pericd. (811 %)

V. = maximum availability of overtime labor man-hours
during the ¥ th time period. (all t)

With these definitions, the linear programming model becomes:

(2.1) Minimize 2, 2,

t
subject to:
(2.2) % X = 1 (L=1,...,I)
(2.3) E? 81Jt ij - gt + St = St (E = l,oo-,T)
(2.4%) Ly * v =V, | (t =1,...,7)
(2'5) X L) ’gt ’ S't. b vt 2 0 (all i > 31 2 &)

Expression (2.1) indicates the minimsnd - the sum Qf overtime labor
requirements - and conditions (2.2) - (2.5) list the constraints that must

be satisfied by the unknowns g4 2 2 s s, , 8nd v . Equations (2.2)

t
say that the total requirement for the i th part must be met by & combination
of one or more sequences of production for that part. (2.3) ensures that within

each time period the total number of man-hours required to satisfy the individual
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output progrems will not exceed the amount availabie of straight-time laber
plus the overtime to be ordered for that period. Equations (2.4) place upper
bounds upon the use of overtime labor. And finally, conditions {2.5) impose
the usual nonnegativity requirements upon all unknowns.

To define moré precisely what is meant by the xij

cdefficients, it is easiest to refer to a three-period numerical example. (Tsio)

varisbles and the 5i%t

the specific part under discussion be part 1, (1 = 1), and let the deliveries
scheduled, the setup time, and the incremental labor requirements for that

part be:

i
]

10 man-hours = setup time for part l.

o'
i}

.9 man-hours / part = incremental labor required per
unit of output of part 1.

R = 30 units

H

delivery requirements for part 1 at end.

1 of pericd 1
R, =30 units = " " " 2
- = "’ " n
Rl3 = 40 units 3

With these numerical values, there are exactly four alternative sequences
for lebor input and parts output that need to be considered explicitly within

a linear programming model.* These four are distinguished from one ancther by

* If the programming model distinguishes between T time pericds, there will
be at most ET-l distinct combination of periods within which some production
could occur -- hence at most 2T-l "activities" for each parts category i .
Furthermore, if the first perlod's delivery requirements gre greate} than zero
T-1
(Ril 2

> 0}, this upper bound becomes . Even for T = 6, 2T—l = 352, an

easily manageable number of activities. Although strict logic compels the enumera-

tion of all such lot-splitting possibilities, in practice it should not be difficult

to reduce the number substantially by common-gense inspection.
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the index _i .

1 index 1 2 3 k
number of separate 1 2 2 3
lots

delivery reguirement RER. +R_+R_=}| R_= R, +R = =
to be produced in 1 12 15 e 11 12 Rll
period 1. 100 units 30 units 60 units 30 units
delivery requirement R,,+R, = =
to be produced 'in 9] 12 13 4] R12
period 2. T0 units 30 units
delivery requirement 313 = le =
to be produced in 0 -0 :
reriod 3. 4O units 40 units

It can be seen that each of the four output sequences just listed corresponds
to one of the four possible combinations of pericds in which a production setup

occurs. (ET_l

= 4) Once a particular combination is specified, the j th

plan is uniquely détermined by the rule that each delivery requirement is to be
satisfied out of production during the negarest preceding pericd in which setup
costs for that part are being incurred. It is not at all self-evident thatl the
only production sequences deserving consideration are those indicated by this
rule. At a later point, however, we shall provg‘that this is indeed the ;asé,
and that no reduction in overall costs can be achieved by substiﬁuting other
output sequences in place of these, (see Appendix.) Hence, for the three-period

model, the four oﬁtput plans are said to "dominate" all others. Corresponding

to these alternatives, the pericd-by-period inputs of laebor required to satisfy
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the delivery requirements for part 1 - that is, the aljt coefficients are:

J index . 1 2 3 in
xiJ unknown xll xle xl3 xl4

= = = ..5- x:
Bljl’ period 1 a, + 100 bl 8, + 30 bl a8, + 60 bl l,+ a0 bl
input coefficients 100 man-hours | 37 man-hours | 64 man-heurs!| 37 man-hours
5132, period 2 a, + 70 hl = al + 30 h1 =
input coefficients 0 7% man-hours Q 37 man-hours

=] & \ =

BlJB’ periog 3 8 + ho bl st + 40 hl
input coefficients 0 0 4 man-hours | 46 man-hours

3., Aggrepation of individual jtems

It has already been emphasized that in order for the model described by
{2.1)~(2.5) to be a useful one, the number of:individual parts 1 must be quite
large in relation to £he number of time periods, T . (In the particular
machine shop, this qualification creates few difficulties. The number of parts
required for any one finished item would seldom amount to less than 100 distinct
pleces.) But gince the mumber of equations in the system equals (2T + I), this
also means that any conventional simplex caomputations of (2.1}-(2.5) would involv.
substantial costs. In general, there are two ways around a difficulty of this

kind: One might be to construct a computing routine expressly designed to exploit
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the special structure of this linear programming matrix.* The other would be to

* If he examines the detached coefficients matrix associated with equations
(2.2)=(2.4), the reader will observe that every basis of rank (2T + I) that
can be formed from this matrix may be partitioned in the following way:

where A ig an identity matrix of rank (T + I), and D is a square matrix
of rank T . The matrices B and C are rectangular - the former with

(T + I) rows and T columns, the later with T rows and (T + I) columns.
The numerical difficulties connected with sclving a system of such equations
are much closer to the order of magnitude of T, rather than of (2T + I).

agegregate the original model in some suitable way, cobtain an optimal linear
programming solution to the aggregitive model, and then translate this solution
back into a detailed production plan for each part. This second course is the
one that will be followed here.

The aggregation principle that seems most natural for this problem is to
say that two parts belong to the same production category if they have a similar
ratio of setup labor to total single-lot labor time, and if they also have a

similar pattern of delivery requirements. In other words:

let Rit = delivery requirements for part 1 at end of
period &
&, = setup time for part i
bi = incremental labor required per unit of output

of part 1
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Then two parts (i = 1 and 2, respectively) are said to be in the same
production category k 1f and only if there are two factors of proportionality

o and ) such that:

= A
(3.1) %E (a2  t)
. 1t
and
% %
W2) - = =
(3.2) a'l+bl%nlt 32+b2§R2t‘ a

If conditions (3.1) and (3.2) hold, then the labor input coefficients for
the two parts will be related to one another by a single factor of proportionality
- & factor equal to the ratic of the two setup cost ceoefficients:
& +b z:R

B &
23t . 2 &
(3.3) & a, + b, LR, (al1 i,t)

Bt 1 1 t
In other vords, if conditions (3.1} and (3.2) apply, and if the J th setup
sequence 1s an optimal one for part 1, it will also be an optimal one for part 2.
Hence there is no reason to distinguish between the two parte within a linear
programming model. All that needs to be done is to adopt one of them (e.g., part 1)
as a standard unit of messurement, and then to express the aggregate requirement

for thet class of parts in equation (2.2) as:

i 32 + b2 %'Rat
{3.4) aggregate requirement = 1+ ~= =14+ —— 3% .
1 R R B
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By following this principle of aggregation it wlll ordinarily be
possible to make g sﬁbstantial rEduction in the number of eqﬁations listed
in (2.2), and so reduce the burden of computations without lessening the
inherent sccuracy of the linear programming model.

In prectice, the aggregation conditions (3.1) and {3.2) do not seem
unduly stringent;. Conditibns (3.1) say, e.g., that if at the end of period
t, 25% of the tdtal requirement for part 1 1s to become aveilshle for finasl
assenbly, then 25% of the total for part 2 must alsoc become available at
that time. When both parts are required for the same end item, the timing
of delivery reguirements will usually be identical, and so
there should be no difficulty in constructing & small number of groﬁps such
that each part within & given class will satisfy conditions (3.1). Once this
kind of preliminary grouping has been effeéted,‘it should be easy‘to define
production categories Xk that also satisf& conditions (5.@) - at least
to whatever degree of epproximation is warranted by the goodness of the original
estimates of ai, bi, and Rit . Tab;e_l 1llustrates this point for the
case of one typical end item éctually produced by our manufacturer - an end
item requiring 110 distinect parts, each with the same pattern of d?livery re-
quirements. Hefe the quality of the raw déta Qgs auch that the six-catego:y
claséification scheme shown for these parts in Thble 1l appeared entirely
satisfactory for purposes of long-range prodﬁction plaming.

In folldWing through the aggregation procedure just described, it seems
cohvenient to define the unit of measurement - i.e., the "standard” part in

each production category k - as one for which the”total of setup time plus
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. puoning time equals one hour. The requirement for all perts in

ingle'lot
g v pay then be expresgeq in terms of this standard 8% follows:
T
cated’
Q. = 8&8regate number of ugtandard" hours’
(5.5) WOrth of parts in category k
= ¥ (a ‘
i ( AN % Rit)
Table 1.
A system of aggregation for 110 distinct parts,
as clagsified by setup lebor ratio &;

Class intervg] Number of Maximum 'Il.‘otal
progucti™y  for the setyp aistinet aumber of "standard”
0 : n " hours

cate® labor ratio parts within standard
o, = category k hours required
i required for all
a for any parts in
i single category
a; + by % R, ~ part in = Q.
category
(all i € k)
;:0 §__'éxi'< .10 9 parts 1,046 man-hours 4,064 man-hours
l s lo " . 20 33 n 567 " "", Tlrl" "
2 020 " .30 52 1 ‘ 176 " 2,097 "
5 -50 o 40 21 IR 90 n 65’4— "
I : 1t _ rl "
40 50 11 n 66 286
5 . 50 L l .00 " 51‘. " ) 98 1:'
6 total 110 " 11,975
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To summarize: Given the labor input coefficients ai and bi and glso
the delivery requirements Rit for each of many distance parts §, a smll
number of production categories will ordinarily suffice for the purpose of an
aggregative linear programming model. Furthermore, once an optimal solution
"has been calculated,_there should be no difficulty in translating the aggregatiwe
results back into a detailed plan for the production of each distinct.ﬁart.

What makes such a tranalation possible? €.g., what if the linear pro-
gramming solution called for 1,000 hours' worth of parts in a given category
to be produced in & single lot, and 1,000 hours" worth by & split-lot plan?

It is perfectly true that no sense could be made of a detailed plan that

called for producing half of every distinct part wlth a single-lot program and

" half with split lots. But it would make perfectly good sense to translate

the aggregative solution into a detailed plan that celled for producing one.
distinct group of parts according to the eingle-lot Plan and another ‘group accord-
ing to the split-lot plan -- provided that the total "standard" time for parts

in each of these two groups ceme to 1,090 hcu:s“epiece. ‘The whole trick consists
of obaerving.that when the number of distinct parts 1n large, and that when

one is dealing with groupe of such parts, the alternative production programs

are not mutually exclusive, and that under these conditions, one can always

sPell out a meaningful detailed plan for any convex combination of the stated
alternatives.

Whenever the number of distinct parts in & production category exceeds more

then a handful, there should he no serious difficulty in translating the aggre-
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gative solution back into a detailed program for the output of each part.*

%  If the reader insists upon seme precision in the definition of a 'handful,”
and if he is wi}ling to recognize that the 8,) bi’ and Rit parameters are
each a bit fuzzy, I would venture the guess that no real translation difficulities
will occur if the number of dietinct parts within a'given category k  exceeds

in, and if the maximun time required for any éingle part in a giveﬁ category is
less than 20% of the total. On this score, see Teble 1. -

.

The formulation of the model ensures that not only will the total parts requirement
pe satisfied in terms of "standard” units, but also that the production of each
of these parts can be time-phased in such a way as to satisfy the imitially

stipulated delivery requirements.

k. A pumericel example

This illustrative example will refer to a case involving three time periods
and five production categprieé. In following through the calculations, the first
step is to obtain numerical values for the setup time ratios ak and the percentage
delivery requirements Rkt §. % Rkt within each of the five production categories
k . These parameters, along with the constants Qk’ St’ and Vt, are all listed
in Tdblg 2. With this infoimation available; it is then a straightforward matter
to Eonétruct the Bth labor input coefficients, and then the matrix of detached

coefficients (Tablé 3) for the linear progremming model indicated abstractly by
econditions (2.1)-(2.5).%

*  Except for the position of the decimal point, the Bl + that appear in Table
3 are identical with those calculated on p. (12) ebove. All other Bk .4 vere
obtained by a similar Process.
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The only change introduced by the aggregation procedure is the replacement

of the index 1 by the index k ranging in value ffom 1 to X . That is, instead

of X varisbles which represent the fractioﬁ.of the requirement for the i th

part supplied by the j th alternative sequence, we now have. ka variables which

represent the total number of "standard" hours' worth of parts in category k

that are to be produced by the j th sequence. Along with this change, it is, of

course, necessary to replace the constants of unity in equation§ (2.2) with the

Qk, the total numﬁer of "standard" hours' worth of parts required in category k .
Altogether this system involves 25.unknowns énd 11 equations. Of the unknowns,

16 are of the .xkj type, and there are three edch of the zt,st, and v, type.*

*  The reader may wonder why only two alternative programs (3 =1 and 2) are
listed for parts categories 4 and 5. In strict logic, even though no delivery
requirements for these parts exist during period 1, one should still consider the
possibility of producing them during that period as well as during 2 and 3. But
period 1 production of these items would only be profitable if, in an optimal
solution, the "shadow price" associated with labér in period 1, turned out to be
lower than that associated with lsbor in period-2. Since the g priori considerations
vere against this outcome, all sctivities corresponding to positive amounts of
period 1 output were omitted from the linear programming tableau shown in Teble 3.

As things worked out, the optimal solution substantipted these conjectures, and so
nothing was lost by discarding the possibility of peried 1 output for parts categories
4 and 5. :

Since the mairix shoﬁn in Table 3 1nd1c;tes hbp;zero coefficients only, the first
row of that métrix {numbered O) contains juat-fhree entries -- the cost coe-
fficients associated with the three overtime labor varisbles ‘t in the minimand,
expressilon (2.1). Following the minimand, the next five rows correspond to

équations (2.2), the requirements for. output in_each of the five parts categories.
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Then come the three rows numbered 6,7, and 8 -=- one fér each time period --
constraining the input of labor to fall within the number of man-hours available.
Rows 6,7 and 8 correspond therefore to equation group (2.3). And finally, the
last three rows (numbers 9,10, and 11) coineide with equations (2.4} -~ the upper
bound conditions upon the use of overtime work in any one time period.

Using the simplex method of calculation, and taking sdvantage of the special
structure of thé matrix shown in Table 3, it prdved to be an easy matter to ‘
calculate an optimal solution to this model,.and to determine that the optimum
was unique. The épfimal solution, along with the corresponding "shadow prices"
or "dual variablesﬂ" is shown in Table 4. According to this solution, it pays
t0 use a one-lot production plan for the output of every part in categories 3 end
5. (Since these two categories are the ones for which the setup cost parameter
@ 1is largest, this outcome is an entirely reasonable one.) All parts in
category 2 are to be produaced in two lots -- 60% of the output in period 1, the
remainder in period 5, and none at sll in period 2. And in the case of both .
categories 1l and h, it pays to combine two lot-splitting plens. That is, 1,915
"gtandard" bours' worth of parts in the fi:st category are <o be produced by
splitting productiqn between time peribas 1 an& 3, and the remaining parts in
that category by sﬁlitting production among all three time periods. Similarly,
1,479 hours' worth of parts iﬁ category 4 are to be turned out in a sinéle lot
during period 2, and the remaining output of 3,321 is to be obtained by splitting

production between periods 2 and 3.



Parameters and constants for the numerical example
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Table 2

Parts category k

1 2 3 4 5
o .1 o2 .3 .2 5
Rkl < % Pkt ] o3 <3 0 0
LI % Ret 3 .3 .3 N N
R = E Rt N o " .6 .6
Q 3, 500 4,100 2,900 4,800 3,200
Time S Ay
period, t v v
1 6,000 1,500
2 6,000 1,500
3 6,000 1,500
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0)
by
2}
3

._......

5)

T
8)
9)
10)

1)

Tabla 5.
Matrix of detached coafticients. A tweerloal axsmpla of the linear programaing

model (.1) <~ (2.5}

e T L ¥, Constants
Equations ..\xt Y %y Xy i ! -M]ﬂu/.h .J“J LR

Cost coefficients - (o
Output of parta, cstegory 1 1.00 1.00 l.00 1.00 5,500 {1
" 2 1.00 1.00 1.00 1.00 Tu,000 (2

" x 13.00 100 l00 1.00 2,50 (3

" " " 100 1.00 o800 (s

" 5 1.00 1.00 3,20 (5

Lakor uaé_f period 1 | Loc 5T 6l 57 | 1.o0 44 .68 A §L.00 51 .12 .51 300 1.00 6,000 (&
" " a -3 -37 .76 R -9 251400 32 11.00 58 -1.00 1.00 6,000 (7

b] R A" -52 =32 -58 58 .68 -T2 ~1.00 1.00 6,000 (B

Overtise, period 1 I 1,00 H..co 1,0 {9
" 2 1.00 .00 1,50 {0
" " 5 1.00 1.00 1,50 (1
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Table 4

values of dual variables and of non-zero primal variables in the
optimal sclution

a) Non-zero primal veriables
' ' Vaivas o
Parts category Initial parsmeters ‘variables, in "suandard" hours
i and constants
@y Q One-lot Two-lot three~lot
' plans rlans plans
1l .1 3,500 hours - x13= X))=
1,915 1,585
2 a2 1",100 - x25= il
" 4,100
3 .3 2,%0 . x51= - =
L 4,800 29
2 ) xul= xu’2= -
1,479 3,321
5 o5 3, 200 x5l= -
3,200
man-hours
Time period t zt 8, Ve
(overtime) (slack) (slack)
1 1,500 - -
2 992 - 508
3 = : - 1,500

Minimand = X6 = 2,492




Output requirement
equations 2.2)

u, = 1.202

p = 1.299

o
;]

N
L

1.000

il

= 1.000

=
i

Labor availebility
equations (2.3)

ue = ~1.370

U,T = -1.000

ug 5t a706

u =z - 1570

9
ul0= 0
) 0

=
1°

715707

- 93 -

Table 4 (cont'd)

b) ﬁ ;gg, verigbles, change in minimand per unit change in value of the
constant associated with the particular equation.

overtime hours / "standerd" hour's worth of partsjzategoryl

overtime hours / hour's worth of straight-time labor in
time period

1" n

Overtime limitation
equations (2,4)

overtime hours / hour's worth of overtime labor in time
period

"
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The dual variables for each equation (ul,ua,...,ull) measure
the potential change in the minimand (overtime labor cost) per unit
changé in the constant associated with that equation. An extra hour's
vorth of straight-time lsbor svailsble in period 2, for example, would
make it possible to reduce the total amount of overtimé by exaétl& one
hour. Hence u7 = -1 . But an extra hour availsble in period 1 could
be employed so0 ds.tp avoid a substantial amount of lot-splitting, and

for this reason Uug = ~1.370.% Such values are immediately suggestive

* Although it will not necesgsarily always be true ug S.u7 < “8 § 0,
this ranking will hold whenever: (a) inventory costs are negliQiﬁie,*End
(v) the output sequences are defined so that production of each item is

permitted in any-of the time periods prior to delivery.

of "break-even" points for the worth of additional labor in the machine"
shop beyond the amounts already assumed available. Similarly the dual
variables ul,...,u5 - those associated with the output rgquirementf
equations (1)-(5) - are indicative of the incremental worth of an&‘external
supply of paris in each of these five categories.
One theorem about the properties of the first five dusal variéblES'
will be asserted withodt proof: If all parts within two categories satisfy
condition (3.1) but not (3.2), and if the first category's setup time parameter
is lower than that of the second, then the "implicit cost” of meeting an additional

hour's worth of output requirements in the first category will be no higher than
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that of an hour's worth in the second category. Hence 0 < Uy < u2 <u

>
Also 0 < u, <u_ .

2

If one were concerned purely with the formal aspects of this economic
lot size problem, the discussion of the numerical exsmple could end at this
point. Given the optimizing ériterion and the constreints listed in (2.1) --
(2.5), an optimal solution has been produced for the aggregative scheduliﬁg
problem, and in principle it has been shown how this could be translated back
into a detailed time-phased plan for the output of each distinct part. But
if one's interest is with the actual managerial problem that is represented
by this model, something more needs to be said. In our idealization of the
machine shop's activities, all interactions have been neglected ﬁetween the
machine shop and the final #sﬂembly area. In particuler, we have ignored the
possibility that by splitting parts production within the machine shop, we may
disrupt the smooth flow of final assembly work 6n any one series of end items.
To the extent that this intermittent pattern of final assembly costs more than
a continous flow of work, the "sub-optimization" calculated for the machine
shop is & misleading one. This does not mean that the linear pProgramming
analysis is useless -- only that the results of this analysis have to be
integrated with what is slso known about the_éinal assembly operation.

Here, for exsmple, one of the men actuall& regponsible for production.
Planning suggested that it might be possible to transfer skilled final assembly
machinists.from their usual jobs, and to bring them temporarily into the machine

shop to help meet the initial period's peak demand there. Since this proposal
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would make it possible to avoid all lot-splitting, it contains several attractive

features -=- not only the obvious reduction in setup costs,* but also the very

* If manpower were available early enough to make spingle-~lot production
possible for all parts, the actual time of 20,492 man-hours (Zst + Z,et) could
be reduced to the "standard” time of 18,500 hours ‘(Ql + o:z2 + cz5 + Q+ +Q5) .
The excess labor requirement for split-lot production amounts therefore to 1,992
man-hours.

real benefits to be derived in the final assembly area by having 100% of every
part available at the time that finsl assembly is initiamted for any one series

of end items, Against boph of these prospective benefits, it is, of course, also
necessary to evaluate the immediate cost of disrupting final assembly activities
by such a temporary transfer. The linear programming anaslysis of the machine
shop cannot by I1tself indicate that such transfers would be in the best interests
of the plant as a whole, but it can al least indicate the order of magnitude of
the direct labor savings inh@rent in single-lot production of all parts. Surely
this caleulation is nbt the only thing relevant to the question of whether workers
ought to be transferred temporarily, but it does represent one of the pieces of

information needed in order to arrive at a sound decision.

5. A theorem on the gccurrence of fractions]l yalues for the xij varisbles

At ‘an earlier point, it was convenient to assert without proof that the
applicaebility of the linear programming proposal did not depend upon the possibility

of aggregating distinct parts into the output categeries defined by (3.1) and (3.2),
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but only upon the existence of a large number of distinet parts 1 - each
6f them with a smgll labor input requirement by comparison with the tétal
availability of‘iabor. The precise form of this assertion is ag follows:
Comsider the model described by (2.1)-(2.5). Then if there are I parts

;nd T time periods, in every.basiclfeasihie solution there will be at least

(I - T) parts for which exactly one x variable is operated at a positive

1J
level. Thus, except for at most T parts, ﬁhe linear programming solution
wiil immediately indicate a.getailed feaéiblé time-phased plén for the output
of each item in the machine shop.- For each of these T paits, there is indeed
the possibility that ﬁhe linear programming solution wili require half the lot
to be produced according to a one-lot plan and half according to a split-lot
plan. The physical absurdity of such a solution is §bvious, but if T is
sufficiently small in relation to I, the few parts that will be affected
should cause no difficulty from the viewpqint gf long-range planning. Another
way to state.this feéult is to say that wﬁen-the number of parts to be scheduled..
far exceeds the number of individuai time periods (a reasonable enough assumption
when one end item alone may contain 110 distinet components), the very multiplicity
of parts acts in such a way as to smooth out thé "lumpiness" associated with setup
costs. | - |

The preceding theorem may be restated as follows:

(5.1) 1If, in a basic feasible linear programming solution to the model
indicated by (2.1) -~ (2.5), there are m ' parts - for which exactly

one xij variable appears at a positive intensity in that solution, then m> I - T .
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Proof Ilet n represent tpe number of the varlebles zt and vy operated at
positive levels in the particular basic feasible solution. (In order for equations
(2.4) to be satisfied, n>T .} The expression (I - m) represents the number
of parts for which two or more xij variables are operated at a positive intensity
in the particular solution. Now since there are altogether (2T + I) restraint
equations listed in this model, at most (2T + I) wvariables will appear at ﬁositive
level in the solution. I.e.:

(5.2) 2F' + I > n +m + 2(I-m)
and since. n>T

(5.3) T+ I2m+ 2(Im)

v . (B5) m 2,Ij4 T, which was to be provéd. 

6. Summary

This paper may be recapitulated aé folloﬁé: Starting vith a productioﬁ
scheduling problem that 1nv01:.ves indivisibilities in the form of setup costs, a
linear progremming model has been constructed that is not identical with the
original problem, but which provides an excellent approximation when the number
of distinct parts is large in comparison with the number of time periods, T .
In this approximation to the original problem, the variaebles do not refer to the
gize of each production lot within each ﬁ;ﬁe period, but rather to the fraction
of the total reguirement for any given.part that is satisfied by a particuiar
sequence of production for that part. Thellinéér programming formulation ensures
that, except for at most T individual parts, these fractions will all turn out
to be either zero or one. With this exception, therefore any "basic feasible"

solution will sutomatically avoid the possibility of meeting one portion of the
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requirement for a given part by a cne-lot program of output and another portion
of the requirements with a split-lot program. Although this physically aﬁsurd
option is built into the model, a theorem ensures that the option will be ex-
ercised only rarely.

How serious a distortion of reality is implied by a linear programming
solution that calls for the productipn of a few parts in this physically
absurd manner? From a purely abstract standpoint, such a solution is completely
infeasible, and i1t is easy to construct numerical examples for which the linear
programming solution could not be "patched up" without a large increace in the
total system costs. Despite this perfectly valid formal objection, it may
seriously he doubted thét this difficulty really detracts from the usefulness
of the model. The detailed optimal solution to such a model is hardly intended
as a literal forecast of production activities up to eighteen months in the future,
but only as a guide to making a number of immedi#te decisions that will affect
the future - overtime, recruiting and training of new personnel, and outside
procurement of certain parté. For the purpose of choosing among these broad
alternatives - although not for the detaileg shprt—run scheduling problem - the
few apparent infeasibilities should be of minor significance. |

This same line of reasoning should do mLch to dispel another kind of objpction
that may be raised against the model presented here. The usefulness of this
proposal depends upon the magnitude of the number of distinct time periods, T .
éince the number of altérnate production activiiies to be enumerated fdr 8 single

part category is of the order of ET, the capacity of current computing equipment
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would not be taxed by a model with T < 8, but would clearly be SVamped for

T > 15.% Certainly there is no guarantee that it will always be satisfactory

* Even for large values of T, it would still be possible to enype,
“small number of the more :Lnteresting alternative production programs rq
- part. A solution based upon such an incomplete enumeration would 8til
feasible one, and should be near-optimal - even though no a priori
can be made as to its optimality.

ate just a

r any one
1l be &
guarantees

to plan production over an 18-month period in time units as large ag one

to three months. Indeed a determined critic would bhe within his rights

in pqinting out that it might be neceséa.ry to plan & single year's operation
ahead in terms of 365 individual time units - each one day in length, The
answer to such a critic can only come from a study of the emPirical,Problem
to which the model is to be applied. Assuming that the pdrpose of the model
is to aid in answering certain broad questions dealing with overtime, outside
procurement, etc., it should not be a serious limitation upon the Problem

formulator for him to keep the value of T well within the limits of ﬁresent-

day computing feasibility.

7. Significance of the results
The productlon scheduling example discussed in this paper is by pg peans
an isolated instance in which, starting with a problem that ep¢ ailed.
indivisibilities in terms of one set of variables, it was neverthelegg possi‘ble
to redefine the variables so as to transform the original problem intg g new one
that could be studied from the computational viewpolnt of linear progremmi ng.

This same approach has already been illustrated in the newsprint triy, problem [5],
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in the coat-and-pants problem [3], in Salveson's machine loading problem

[6, pp. 234-245], and doubtless in others. There appears to be an entire
class of optimization problems that 1nvolve indivisibilities in terms of one
set of varlables, but which can nevertheless be translated into the linear
programming format. Some precise characterization of this class of problems
gseems to be needed, but 1s lacking at present.

Although the economist's primary interest 1s not in numericel analysis,
put rather in the possibility of market analogue solutions to welfare maximization
problems, the indivisibility of setup costs places him in an awkward position.
As long as he regards the individual "activity” as one of determing the lot
gsize for a given part in a particular time peréod, there need be no set of
intra-firm shadow prices that is compatible witﬁ a cost-minimizing equilibrium,
and hence no possibility of & market analogue solution. The curious aspect
of the production problem dutlined here is that it is possible to redefine
activities and commodities so as to end up yith a2 linear programming system --
i.e., one for which, in principle, a market analégue solution is possiblef
From the viewpoiﬁt of the theory of marke£ decentralization, the chief feature
of this alterﬁative version is that the individual activiﬁies represent s greaster
degree of vertical integration than is assumed in the inititial statement of
the problém. Paradoxically enough, successful decentralization requires that
the manager of each activity have a longer "span of control"” than the size of
the individual lot in a particular time period. It is necessary for each such
manager to he familier with the entire program of labor inputs that is implied

by his particular seguence of output for the individual part.
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Appeniii...

kil L

Dominsnce" propertieg of the set of alternative
production programs for a given item,

The machine shop is engaged in producing a number of items with a
resource iriput that is homogenecus except for date. If an item is pro-
duced in the t th time period (t = 1,2,...T), resource inputs are
required from the total available in fhat period, but from no other.
The amount of rescurces used in the t th period by preducing Xy units -

of a particular item is given by:

(1) 56t+bxt

where X (:’0) implies B (= l)
a0 L

The non-negative constant a i1s said to represent the "setup cost"

for that item and the non-negative comstant b the "incremental-unit

cost.” Since 8, = 0,1, there are altogether 2T column vectors of

the f’éllowing form:

(2) 531
AJ = 5.12
oot

5
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Now suppose that the firm is to deliver Rt units of the jtem in

the t th periocd. Corresponding to each of the 2T vectors 4A,, the

i J
time phased production vector xj may be written, where:
X, = X
J Jz2
xjt
ij

and where the output levels x are determined according to either_(h), (5),

Je .
or (6). These conditions are equivalent to the rule that each delivery requirement

be satisfied out of preduction during the nearest preceding period in which setup

costs are being incurred:

(4) if aJt = 0, then X5 = 0

1, then x, =R

() 1 o =R

gt = 8,j,t+1 =

(6) if Bjt =1, and T is the largest value of <t such
T
that 53,t+¢ =0, then xj =TE; Ry, r

The setup plan A, and the corresponding output plan X, are said to be

J J
"feasible" from the viewpoint.of delivery requirements if the components of Xj

also satisfy:



t t
(Ta) 1;2]_ xj"l‘ 21§J_ R'T.' (..t. = 1—,2,'o-,T"l)
and
T T
(o) L x = 2, R

T=1 JT =1 T

For each of the "feasible" AJ and ){'j vectors, the resource input

column vector BJ may be defined as follows:

(8) B, =84, +D0 Xj

3 3 (3 = 1,.04,J)

The T x J matrix B is composed of the-vectors 53:
(9) B = (al:ﬁa!"hvﬁ'j)"':ﬁJ)

Now let the "implicit value" or 'shadow price" of any resources used in the

t th time period be represented by u . (ut <0 ; v 2 ut-l) . The column

vector formed from these components is termed U :

(10)

o F

s £ osus

o

Suppose that a setup plan Ar and a production plan Xr satisfy conditions
(11) - (13):

>0 .
(11) X ¢ (g 0) if and only if Srt

oS
=
S



t %
(128) L Xpe 2 z R (t =1,2,...,T-1)
=1 =1 .
; z
(1zv) X x__ = R
: =1 rT T=1 ¥
and (13) X, 20 (sl t)

Denote by Br the vector of resource inputs that is required in order

to ¢arry out this production plan:
(1) B, =84, +b X

‘Dominance" theorem; If the vector U < 0, there 1s no pair of vectors

A and X, satisfying conditions (11) - (13) for which it is slso true that:

(15) Up, <UB. <O (all B, € B)

b

In words, this theorem says that if the production program Xr is feasible
from the viewpoint of delivery requirements, then there will always be at least

one program X, within the previously enumeré.ted set that has an implicit

-
cost at least as low as that for program Xr +« This is the sense in which

the set of resource input vectors B 15 said to "dominate" all others.

Proof:¥

* I am indebted to H. Houthakker for a general outline of this proof, and to

M. Beckmann and S. Winter for thet constructive eriticisms.
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In order to prove this theorem, we first observe that if the vectors A,
and X satisfy (11} - (13), there will be exactly one veétor B, € B such that
a, =48 . (The symbol X, will denote the particular output vector associated
with By ) The T- component "error" vector 1 (1)will'be defined by:

(16) 7 (1) = X. - X,

If e (1) 4s the t th component of n (1), and if Xr"Pe.l‘mi.‘tg‘a“‘(

feasible schedule of deliveries, then clearly

t .
(172) La, ()20 (t = 1,2, +40,T-1)
=1
and
T
(170) Za, (1) =0
=1 .
Lemms,
] . ] . )
If U' B, <U B <O, there exists a pair of vectors X, and Ar+l’ and

b
also a palr of vectors X_, and A (with 7B3+1 € B) such that

_ 1 +1
(18) Ar+1 = As+1
(29) n (2).= i " %n
t ‘
(202) Ln,. (@20 (t = 1,2,+.0,7-1)
=1
T
(20p) Zn, (2)=0
T=1
(21) u Br U F3r+].

and (22), 5 (2), with a total of T components, has at leagt one more zZero

component than n (1).
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By repeated applications of this lemma, it follows that if the error vector

1 (1) has n non-zero components, then 17 (n+l) = 0, and Xr+n = Xy ,p» ¥ith

Boun € B - But by combining this result-with (15) and (21):

(23) U’ <U B =U B

] 1
<U Br U Prygp S »ev S r+n

(all g, € B)

J

540

J

At this point, we observe that Bs+n € B, and so condition (23) cannot
be satisfied. Therefore if the lemms is true, then the "dominance" theorem

is also true.
Proof of lemms:

Let t* represent the last time period for which N (1) £0 . By (17a)
and {17b):
. . oy
(24) n, W=- L 1 _()<o.
T=1
Also let +t** represent the last period for which L (1) >0 . {Note

that t* > t** ,) In forming the new vector X from the preceding one
r+l 3

calculate the +individual components according to the following rules:

value of xr+l,t

t it (u* -w™) >0, then | 1r (u,* - u*) <0, then

*x * *x *
(25) Xt T X g *Ny (1) 20

rt
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Corresponding to the new vector X

4y thETE will be exactly one vector

ﬁs+l € B such that Ar+1 = Aé+l’ and the T- component "error" vector 1 (2)

will be defined Dby:

xr+l Xs+l

(26) n (2)

Regardless of the sign of (ut** - ﬁt*), it can be verified that

u' B, < u' By SO - Also, in either case the error vector 1 (2) resulting

from the comstruction outlined in (25) has at least one more zero component
than n {1) . The new vectors LTI WY

and’ 1 (2). satisf& conditions
(18) - (22), and so the lemma is proved. |
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