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Information has some interesting properties whose implications for

economic theory are worth ekploring. Like other "commodities" it can

be stored, can be made available in other locations, and can become an

input into production -~ the production of decisions. Its use is limited

by its availability. It can heve a marginal*

* In activity analysis the right and left hand derivatives may be
different and "marginal productivity" must be understood in this broader
sense,

productivity and hence a value.-- Unlike other commodities, it is not
exhausted by use and ndt'removed by transportation. In particular the
cost of its dissemination may be independent of the number of destination:
it is sent to. Since most problems of interesi center around its transportation
i.e., the processes of communication, it is natural to turn to the facts of
commodity transportafion for guidance by analogy. The question arises, to
what extent the theory of transportation in networks can gerve to illuminate
problems of communications in organizations, that is, of the efficient flow
of information between many users,

One notices at once that the fundamental equation of continuity for
commodity flows

outflow = inflow - net asbsorption
is inapplicable. What can take its place? Is it possible to formulate
communications problems in terms of linear models? Can the theorem on
efficlency prices be applied and give insight into the structure of the

soclution?
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1. Information; Concept, Cost, Qt;lifx

In these preliminary considerations, the emphasis is on the relation
of cost to amount of information. However, by symmetry they apply equally
well to the utiljty of information.

1.1 Information will be defined in terms of subsets g ¢ O

where §{ is the universal set.

A partition & of @, written (e} =9
will define (subject to later refinement) the kind of information one is

Interested in.
In a partition ¢ let information & be realized with frequency =« (0).
Let ?, (&) be the cost of information &) under the partition & . Then

the expected cost of information for a partition ¢ equals

Zx (o) %, (@)
& €}k

Assumption 1.1 If for every element o of a partition ¢ there exists an

element 9 of a partition n such that ¢ ¢ AT then, for every o

P W) 2 o ()

In other words cost (and utility) of information increases with the fineness
of the partition.

1.2 For greater concretness assume now that there is a well defined
concept of "size" of the information sets valid for all partitions of a
certain class E, such that both cost and utility of information depend

only on the size of information sets so defined. Mathematically this means
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that we have postulated the existance of & measure o ()

such that Py W) = ﬁE [a{w)] (cost)

v (@) = Y [a(e)] (utility)

for all ¢ ¢ E.
Tt turns cut to be more convenient to use instead the negative logarithm

of O as the argument.

q)g (U) = ¢E [¢-_1og o (w)} )]Ig = 'qrE [" log & (U) ].

This assumption implies 1.1 but is not implied by it. Without
great loss of generality we shall assume a(f) = 1.
Exemple 1

Suppose that the cost of information is the same for all sets & of

a8 given partition ¢ . Then if ng is the number of sets w in ¢

alw) wr';l_ 5 a(u):;]‘- a(f) = t-ll-

g g €

(@) = ¢ (- log —i? = 0y (log n,)

d Ln(wo, () =9, W)=0, (1 )
an uengﬂ w) 9, (0) =9, ¢E °g n,

Now log n is proportional to the number of steps required to identify
one out of n possibilities if at each step k alternatives can be distinguished,

the number of steps required being
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If therefore cost of information is a linear function of the nurber of

steps, the expected value of cost equal

a log n§ +b

where a and b are constants.
e o

Suppose that the cost of information is a linear function of the
number of steps required for its identification, that % alternatives
can be distinguished at each step, and that the information sets & and
their probabilities = (&) ar: given. What is the partition which
minimizes the expected cost?

It i1s intuitive that at each step the alternatives distinguished
should be as nearly as possible of equal probability. Then an information
set of probability (l/k)n requires n steps. An information set of
probability x reguliius therefore approximuim‘yf;\- f0é11—_su4pb. “his
result is in accordance with optimal coding as Uémd;lyfﬁd in information

theory.* Now the cost of information was assumed to be a linear function

* Shannon, C.E. and W.Weaver: The Mathematical Theory of Communication,

University of Illinois rress, Urbana, 1949, pp. 18-32,

of «log . We gee that in terms of our model an optimal partition is

characterized by the fact that o(®) equels* (approximately) x (w), the

* Equality, and not just proportionality, results from the normalization
a(9) = 1.

probability of the occurence of w.
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1.3 Returning to the case of a general information measure o(w)
let us consider the implications of disaggregating information into
severel independent and independently observed variables. In terms of
the cm :epts introduced, this means that
Assumption 1.3a @ is a (finite dimensional) vector space and the sets ¢/

are product sets

(Js‘)l xuex ..-um e XUH

Ai%uhrﬂcrhliﬁb The costs of information are additive for different components.

M

w) =L omn (@
q’f.m( ) m_q’E. ( n’
Combining these assumption with 1.2 we have that

¢ [~ log aw)] = ﬁ bg o [ 108 @, (@4)]

vhere the ¢E n 8re monotonically non-decreasing functions.
b ]
From now on we shall consider only partitions for which the set
of variables (the co-ordinate system) E 1is fixed. We shall say that

we regard the kind of information considered as fixed. The terms

-log am(aJm)

for which we userthe shorter notation X will be said to express the
precision of the partition within the framework E of the kind of
information. We shall suppress the index E in many expressions that
follow,

Both cost and utility of information are now functions of the vector

precision for the various variables. We shall write

1 - bof,

M:Q

£
™
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f(x) = X ¢E n X, @) n (0) =2 L (Xm) (cost)
wm 7 n

gx) = I vy o [x; @) x (@) (utility)
@ n ?

Example 3: Assume that the cost of information on the different variables

is linear and independent of m

¢E,m (xm) = a X + b
= - a log o (Gﬂn) +b
then ¢E (-loga) =-al lo;: +b
m
==-alogjl . +bV

1l

¢E (- log}?&aﬂ

from which we conclude  that

(1.3.1) 10%) ;ﬂ'am (W) and
(1.3.2) ¢E (~loga) =-aloga +b

In words, the total cost of information is also linear, and the measure

a 1is the product measure (w) :‘ﬁ-ﬁm (Lﬂn).

1.4 In terms of the model 1.3 the optimal use of information by a
8ine?~ “2cision-maker may be considerzd after the fashion of determining
optimal factor inputs into production. For, in the context of organization
theory, informaticn is viewed instrumentally as the raw material from
which decisions are produced and not as an end ir itself. With the usual

assumption that the decision-maker seeks to maximize the expected payoff
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subject to the limitations of capacity, we have a well defined (decision)
production function, expressing the maximal expected payoff as a function

of the precision with which the different varisbles are known.

Mex [ g (x) - i £ (x,)]

It ¢(i) and the fm(xm) are differentiable we obtain the marginal

cond’cions

5 l=| dar —> l
(1.4.1) ax- < -Efm— according as x4 0,
10 Fn J

stating that £he marginal cost of precision for each variable must equal its
marginal productivity and that a variable must remain unobserved when its
marginal cost of precision always exceeds its marginal productivity.
Not much is changed in this simple model when we admit, that the
decision makers' time is limited end the decision production function (the marker's
payoff) depends on both the precision with which the variables are known and
on the time w available to the decision maker, g(x;w). The latter excludes
of course the time s(x) consumed in information handling. If ¢ is his total

working capacity, then

wsec -3 (x)

and the decision maker seeks to maximize

glx; ¢ - s(x)] -2 £ (x)
m

The Equations (1) are then replzced by the -onditions

-
(1.4.2) —-éi;m- L<J r!" according as x_ [>} o,

which take intc consideration the value of time,
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2. ca el O
The more interesting aspects of information are brought out when we
consider the generation and transmission of information in an organization
consisting of several decision-makers or offices, as we shall say.
From now on we identify "cost" of information with "time consumed"

and disregard money cost, which do not add anything important.

Basic Notation:
m variables constituting information
t age of information
i offices

ij channels

Our basic variables are two flows: observation ximé
and transmission xijmt of information; and one stock: availability
of information uimt . Their levels are measured in terms of precision

as elaborated in the preceding section. With the help of these variables

we can admit the following activities:

activity level
o]
obgervation Xim
ificati ¢
amplification Xym
t issi X ¢
ransmission 14m
t
reception xJim
t t
omission W xijm

We consider a stationary state in which information of varying age is current.
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In a stationary state all activities of one period are repeated in the

next. Storage of information¥* is therefore not called for,

* other than the rules of the organization which are considered ageless.

slnce vherever information is avallable now, more recent informetion
will be known one periocd hence.
Up to date information 1is available only where it is observed
o] o]

(2.1a) U= X

We agsume that the transmission of information requires one unit of time,
Information aged one period or more may therefore be received in

messages from other offices. By nature of precision, and since we measure
information X in terms of precision,the information contained in all
messages on varisble m received at an office equals the maximum information
in any such message. CObservation (research) may add further information

of that type and age. The total information available at an office thus

equals

(2.1b) uw

im = X +M3x X t > 0.

The availability of information limits the amount that can be transmitted

t t-1
u

(2.2) X4 5m < wo

Observation may be restricted *-- the availability of sources

.t

2. o<,
(2.3) . SO
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A final constraint refers to the amount of work that can be performed
on information in each office. Following information theory we assume
that time consumed in handling information (observation, reception, dis-
emination) is proportional to quantity of information (precision) X as
defined in section 1.

The time available in an office after all handling of information
will be denocted by W

the total working time available by ¢, . [Thus

i,
if all personnel in an office is of equal skill, c

i

1 is the algebraic
product of working time (per person) and the number of personnel]. With

the appropriate proportionality factors we have then a ~ondition

t t t t
(2.4) L a, X; +7 b, x +2 d x +w, <¢;
mt im “im mt m ~Jim Jmt ijm Tijm i [’

The restriction expressed by (2.4) hinges on the fact that all variables
must be non-negative. -- If all offices are equally efficient and accessible
the coefficients reduce to

. t £
d =
= bm CLI]‘l

a =1 b 1 jm

im im

The decision production function will be assumed in the form

non-decreasing with respect to all its variables. For simpliclty we assume

g; to be algo differentiable and denote

: t
%; -4 % g
R — im - iw
t ow,
Bui i
m

We ghall assume furthermore that the law of diminishing returns holds, 1.e.

that the functions g, are concave,



- 12 -

The object is to maximize the sum of payoffs over all offices within
the capacity limitations of the organizations as expressed by the constraints
(1) ... (4).

3. Enter ange t ars

This is a streightforward programming problem, linear in the constraints
with one exception: the maximum operation in equation (2.1) is not linear or
convex. In writing out the efficiency conditionas we must assume it to be
known by which of the Wairiables the maximum is realized. Consequently the
efficiency conditlions are merely necessary, not sufficient; in particular
they leave undecided which of the J's are the best maximizers in (2.1).

Let the Lagrange Multipliers associated with the equations be denoted,

reapectively,
(1) Lim
(2) B4
(3) 7§m
(&) uy

It is understood that the P, 7y and p are non-negative, and equal

to zero when in the corresponding constraints the < gsign applies.*

* Actually the A and up are also non-negative, since the solution of
the problem 18 not changed by relexing the equations (1) and (%)
to inequalities of the < type.

We also use the notation r

A I PR T mex x®
Jm Ty X3im 5 kim
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The efficiency conditions [H.W. Kuhn and A.W. Tucker, Norlinear Programming,
Second Berkeley Symposium 1951, pp. 481-492, in particualr thecrem 3 p. 486.]

are now &8 follows:

. ['>‘L , -
t = < t+l = t
(3.1) u O according as g, =+ 1 4m l_< Mm
=
% J (2 t " = t
(3.2) Xim ‘ i 0 according as Mo T & i - Yim
>
t = L t G |
! 5 B N VR T
(3.3) X4 sm b 0 according as ® im M im Lljm by
=
= t
T m M ) 0Pigm
: J_>W ,
(3.4) LA T ; 0 according as & 3 My
4, Discussion in Economic Terms

These conditions become intelligible with the following economic

interpretations of the Lagrange multipliers.

t
him is the value of information of type m and age t at office 1

BiJm is the value of a message sent from i to ]

t
Yim is the value of & source of information at office 1

“i ig the value of time in office 1.

(3.1) states: information m should be available at office i to
the point where its value equals 1ts marginal utility in the decisions made

at that office plus the value of messages m sent to other offices.
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No information m should be aveilable at office i when its marginal
productivity in decisions and messages does not attain the level of its
value. Value, it will be noticed, is here constructed from tie cost

side rather than derived from the utility side. But whenever information
is actually present, the two amount to the same thing. This is another
way of stating the equation part of (%.1).

(3.2) says: information m should be generated at i with
the degree of detall for which the value of the information becomes equal
to the time cost of producing it plus the cost imputed to using the source,

(3.3) expresses that a message m aged t should be sent from
i to J 1if, and in such detail that, the value of the message equals its
value at its destination minus the cost of transmission. In particular no
message will be sent unless E;Jm = 1, i.e., unless this is the message
received at j with the greatest detail for m and t. Hence at most one
message about m and t will be received at every office j.

(3.4) demands that the office staff should have as much time for
decisions apart from time spent on information so as to make the value of
time equal to its marginal utility in decision making.

If we disregard the unegual availability of sources as one cause, the
main reason for communication would seem to rest in the economy of using
in several other places information generated in one office. For the cost
of communication is typically much less than that of observation. Of course
the cost of transmission must not exceed the usefulness of the information at
its destination. Condition (3.3) implies that

t t

Bigm Mym 2 Bigm Hict Pygm ¥y
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Any surplus of the left hanu side over the right is imputed to the mecssage,
giving it a value aiJm. This message value in turn contributes {according

to equation (3.1)) to the value of information ) ath the sending office

im
i. In other words some of the cost c¢f observation of information at 1 could
be bome by the recipients 3 of communications from 1. Notice that the
My must maintain certain proportion to the A's (and by implication to
each other) in order to permit communication to be economical at all (equation >.3).
This implies a certain degree of equalization in the burdens of obtaining and
forvarding information among the offices, In summary, the efficiency conditions
{(3.1)...5.4) supplied by "convex" activity analysis achieve an evaluation
of the vari~ types of information at the different offices, where they occur
possibly in varying degrees of precision, and of the communications between
them. They do not suffice, however, for an unambiguous answer to the question
of where each type of information should be cbserved and to whom it should be
communicated. They merely rule cu ¢ertain combinations of observation and
communication as involving ineffici.nt duplication or unequal utilization
of time in the various offices,
Apparently the sclution of the communications problem as formulated here rests
on combinatorial considerations of an essentially deeper nature than the marginal
analysis attempted here,

| The efficiency conditions are sufficient only in the case when each office
can receive information of a given type from at most one other office. This
happens vhen:

1) there are no circuitous connections in the communications net-

work (the network is a graph of the tree family) and information of a given type
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can originate in at most one office (while additions may be made everywhere).
2) Each office is the terminal of at most one unilateral channel --
while being the origin of possible several such channels, circulty not excluded.
In each case the problem reduces to the simple one of Tinding the optimal

strength of flow, possible zero, along a system of pre-established paths.

5. ¥Val ount ation Related.

We have not dealt with an activity that plays a central part in the
mathematical theory of information, namely coding. A model in which all
messages are coded in the most efficient manner djfiers from the preceding
one by the addition of a coding cost (value of coding time) to the costs of
transmission. Detail of information may now be equated with amount of infor-
mation, as defined .. information thiory: the minimum number of bits required
to express the information in terms of an optimal code, assuming the absence
of noise.

To obtain a picture of the relstionship between value and amcunt of
information in that case, let us consider a radically simple situation, that
of one source disseminating information to all decision makers simultanecusly.

The payoffs in different offices may then be compounded into a function

G¢ = G¢ (ul,ug,...uM,w)
where Uy is the amount of information m Qisseminated and w the total
working time. We assume that information is available to the source at zero
(or a fixed) cost, and that the cost of transmission is proportional to the
amount of information sent, or what is the same, to the length of time that

the channels are used. Let d be the unit cost of transmission, b the time
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roquired to roceive and decod: @ unit amount of information -0 o nuaber
of offices. Then the cenditions o optimality are
( t)‘ + :L ) a E - = 1‘1 b ' “'a"b'"" ‘I'- d
du 3
m W

In other words the marginal productivity of information is equalized.for all
types of information. Total value and amount of informetion are thus
proportional for all variables. It will be observed that the relation between
value and amount of information is none other than that between value and

laboer input in a one factor economy.
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