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COWLES FCUNDATION DISCUSSION PAPER; NO. i+

Assignment Problems and the Location of Economic Activities**

by
Tjalling C. Koopmens end Martin Beclmsnn

"...one of the last get of Tuesdays, . you know".
Alice was puzzled. "In our country”, she remarked,
"there's only one day at a time", The Red Queen said,
"That's & poor thin way of - doing things.  Now here,
we mostly have deys and nights two or three at & time,
and sometimes in the winter we take as many as five
nights together ~-- for warmth, you know."

. Lewis Carroll,
Through the Looking Glass.

SUMMARY

Two problems in the sllocation of indivisible resources are discussed,
which can be interpreted as problems of -assigning plants to locatiocns. The
first problem, in which cost of transportation between plants is ignored,is
found to be a linear programming problem, with which is essociated a system
of rents that sustains sn optimal sssignment. The recognition of cost of
inter-plant transportation in the second problem introduces complications
which call for more leborious and largely unexplored camputations and which
also appear to defeat the price system as a means of sustaining an coptimal
asslgnment.,

#*This paper supersedes Cowles Cermission Discussion Paper, Econ. 2053.

#¥Thig paper has resulted in part from research under ¢ontract bétwean the
Cowles Commission for Research in Economics and the RAND Corporation, Ve
are indebted to various colleasgues, and in particular to I. N. Herstein of
the University of Pennsylvania; Leo T8rnquist of the University of Helsinki,
and Theodore S. Motzkin of the University of California at Los Angeles, for
valuable discussions of the quadratic assigmment problem.



Assigmment Problems and the Location of Economlc Activities

1. Tae allocation of irdivisible resources.

There ere several Important areas of economic analysis in which pro-
gress depends on the develorment of methods for solving or snalyzing pro-
blems in the efficient allocation of indivisible resources. In the first
place, there are "direct” practiczl decision problems of this type, such
es the combining of suitable nurbers of machine tools of variocus kinds
within a plant, or the choice of number and sites of dams in river velley
development. Furthermore, indivisibilities in the more highly specialized
human or material factors of production are ai the root of the phenomenon
of increasing returns to the scale of production, whether it arises within
the plant or firm, or in relaticn to a cluster of firms through so-called
"external economies'. Thus, strong "indirect” interest in a better under- .
gtanding of the effects of indivisibilities derives from the fact that if
in an industry increasing returns to scale are still present at g scale of
production comparahle to total dsmand in the relevant market. this precludes
perfect competition and thus presumably reduces the effectiveness of the
price system in efflciently allccating resources. Finally, and mora
specifically agsin, the theory of location of economic activities has no
chance of explaining such interesting realifties as large and small cities
without recognizing indivisibilities in the processes of production, and

of mere existence.

In the light of the practical and theoretical importance of indivisi-
bilities, it may seem surprising that we possess so little in the way of
successful formal analysis of prcduction problems involving indivisible
resources. However, the mathematical difficulties that arise in attempts
to construct a general theory of allocation of irndivisible resources have
8o far seemed quite formidable. Perhaps the Tegt chance of progress lies
in isolating for detalled study a few rather limited hut well defined pro-

plexity. The present paper is cffcred with such a motivation.

_2—
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2. The linear assignment problem.

A relatively simple problem in the allocation of indivisible re-
gsources is that of mateching two sets of an equal number n of objects,
Wy making up pasirs of objects consisting of one ohject from each set. Ob-
Jects belonging to the same set are similar in kind but not identical. For
each of the n2 possible pairs a score or value is given. The problem is
to find a matching (or assignment to each other) of objects for which the
sum of the scores of pairs matched is as high as possible.

There are a varlety of practical decision problems of which this is
an idealization. The problem of asgsignment of persons to Jjobs or job
categories on the basis of performance scores in psychological tests was
discussed originally by Thorndike [1950] in these terms. Another rather
elementary interpretation, brought to our attention by I. N. Herstein, is
that of assigning cabinets to desks Iin a room in such a way that the sum
of the walking distances between matched desks and cebinets is minimized.

Because of an underlying interest in locatlon theory, we shall here
discuss the problem in terms of assigning industrial plents to locations.
Each plant, still on the drawing board, is supposed to have a given ex-
pected profit in each location. different locations having different
suitebilities for the production processes to be carried out. Transpor-
tation costs of primary inputs or final outputs to or from the location
in question may also enter into the profitability comparisons. However,
for the moment we rule out any consideration of transportation of inter-
mediste commodities hetween plants to be assigned, or any other circum-
stances that could meke the profitability of any plant at any locstion
depend on the manner in which the remaining plants and locations are
matched. The problem then is to find an assignment that mokes the sum of
the profits obtainable from all plant-location combinations selected as
large as possible. Needless to say, the problem is fully defined by its
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mathematical formulation, given telow, independently of the locational
interpretation that interests us in particular.

The profitabilities of the n2 pairs can be set out in the forn of
a square matrix, the typical element 84 representing the profit expected
from the operation of plant k in location 1. A possidle profitability

metrix of the order n = 4, that is, referring to 4 plants and locations,

would he
locgtions
1 2 b
Plents _* 2 ER.
1 (25 (2] 5 19 -
(2.1) 2 ¥ 3 10j 12 day i,
3 jeer b 2 12 B
Lo 7 -2 {10}

The framed entries represent a maximal assignment, with a total profit
of 52 units, as can readily be checked by the reader. Ncote that the
most profitable pair, plant 1 in location 1, does not occur in a maximal
assignment. Prescribing it would diminish the maximum profitability
attainable by suitable assignment of the other three plants to 46 units.

The unknown assigmment with which our problem is concerned can 1t-
gelf be represented by a so-called permutation matrix. This is & matrix

P = [Pki] of which each row and each column contains a single
element 1, while all other elements are O. The particular permutation
matrix that represents the sclution indicated in (2.1) to that problem is
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locations
1 2 3 b
1 Io 1 0 0
2 0o o 1 o0 ] _ 2
(2.2) 3 Ill ©o 0o o [ﬁkij T
oo o o 1 )

Eech row shows the location assigned to the corresponding plant by the
place of the unit element. The profit from that essighment can be
written as a double sum '

(2.3) n = k,%:l &y By = 2+20+0+10 = 52,

in which the positions of the unit elements in 5 indicate which
elements of A are included in the addition. We note in pessing that
the permutation cbtained from ; by interchange of the locations of
Plants 2 and 4 also presents a solution to the problem. We also note

that the double sum formula L. a4 Py cen of course serve to indi-
ki

cate the total profit from the selection of any other permutation P .
(From here on we shall use the terms "permutation" snd "permutation
matrix” as interchangeable.)

The mathematical formulation of our problem then is to find &
permutation matrix P = [%ki] of the same order n as the given
matrix A, such that (omitting summation limits k, 1 = 1,....,n)

2.4 z Sz 3
(2.4) 1 By Py 1 %1 P

for all permutation matrices P = [Pki] of that order. The problem

is, of course, symmetric as between plants and locations: these two

words are interchangeable in all interpretations to be given.
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It has been observed by von Neumann (1953} that, if we modify the
matrix A of given profitebilities by adding any (positive or negative)
constant to any row (or column), both memhers of (2.4) are increased hy
that same constant, because exactly one element out of that row (or
column) is selected by any permutation for incorporation in the summation.
Hence any solution P of the original problem remains a solution of the
modified problem. This expresses the obvious fact that, if the conditions
of the problem do not permit us to withhold any of the plants from assign-
ment, only the differences in the profitability of each plant between
locatione matter, not the absolute arounts of profit. For some purposes,
it will be convenient to use this freedom to modify the original problem
80 as to make the profits from all combinations positive.

(205) a.ki 0, for k, 1 = 1,.-.,11.

Our problem can be looked upon as & pure problem in indivisible re-
sources. We have ruled out any pcossibility of subsequent choice of con-
tinuous variables such as output levels or factor combinations. Hence
the only choice studied is to select one out of the n! permutations.
This being a finite (though possibly large) number, the brute force
method of listlng all permutations, evaluating the maximand for each
eand selecting s permutation with highest value of the maximand is "in
principle”available. This consideration led a mathematician approached
by Thorndike {1950] to declare the problem trivisl. However, there re-
mains considerable mathematical challenge in the problem of finding
short cuts that will extend the range of values of the "“problem size"

n for vhich we can hope to solve actual problems by computation on
available computing equipment from limited budgets. There is also a
challenge to the economist in the question whether a price eystem is
poesible which will suetain an optimal assignment if locaticnal decisions
are made independently by n entreprencurs, in response to prices, and
on the basis of their own knowledge of profitabilities of given produc-
tion processee in altermative locations.
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In both of these mspeets, our problem has heen decisely helped
forward hy von Neumann {1953], who observed that a mathematical theorem
due to Birkhoff [1946] 1s the clue to an important simplification of
the linear assignment problem. von Neumann used this clue to construct
e zero-sum two-person game which 1s equivalent to the linear assignment
problem, and which we shall briefly describe in section 5 below. How-
ever, we shall in the next section study more closely an eguivalent

linesr programming problem derived from the gsame clue.

3. An equivalent linear programming problem.

This problem is obtained by blandly ignoring the Indivieibilities
of plants, and admitting the assignment of fractional plants to locations

in our model, even though this is supposed to be meaningless from a
realistic point of view. The profit obtained from a fraction Xy 4 of
plant k at location 1 is "postulated" to be By Mg that 1s,

that same fraection Xy of what the profit from the entire plant k
would be at location 1. The earlier assumption that there is no inter-
action between the profitabilities of plants at different locations is
now extended to an "assumption" of no interaction between fractions of
plants whether at the same or at different locations. Accordingly, the
maximand in this fictitious problem is again of the form

: Z
(3.2) &t e

»

However, the unknowns X4 8re no longer restricted to the values 0 or

1. They are subject only to the "milder” restrictions;/

1/ One of the restrictions (3.2.1), (3.2.2) is redundant and can be
derived from the others by simple additions and subtractions hased on

the identity 53 5 7
vl =




((3.2.1) Z xki = l, k = l,..., n;
(3.2) £ (3.2.2) b %o = 1 1=1,..., n;
(3.2.3) Xy 2 O K, 1=1,..., 0.

The first of these expresses that precizely one plant of each kind is
to be assigned. The second expresses that precisely one location of
each kind is available, and that a location is fully taken up when the
sunl of the fractions of all plants assigned to it equals one. The last
restriction precludes the assignment of negative amounis of plant.

]

R 2 ( Small|

Congider the set R of points in the Euclidean space with n P“iﬂ*q

. rint
coordinates ¥, k,i = 1,...,n, that satisfies the restriciions (3.2). |
It is the peometrical image of the set of all possible assigmments, Iin %

integral units or by fractions, of n plants to n loecations. 1I%t is
formed by the intersection of 2n-1 hyperplanes (of ne-l dimensions each)
with n2 halfspaces. Since the resulting set is bounded (each X4 is
necessarily wedged between 0 and 1 as alvainable lower and upper bounds ),
the set R 1is a convex polyhedron. Birihoff’s theorem identifies all
its vertices. It establishes that thesc are preciegely the n! permu-
tation matricesg/ [pki]' Thus for n = 2, the set R is a line segnent
with endpoints in

1 0 o I
and . Porn =3, it is a four-dimensional

0 1 1 0

polyhedron with vertices in the six polnts

g/ For a proof see Aprendix A. For mathemeticel discussion and refer-
ences relating to the linesr essigoment problem, see Motmkin[IiSh..].




1 0 0ot o oo 1 olfo 1 of o o3 o ¢ o
010,001,1005,001,100,0105,
o o 1flo 1 ofjo o 1}f1 0 ofjo 1 o |1 0o o

respectively.

It is intuitively cobviovs, and not hard to proveéf, that a linear
function defined on a convex polyhedreon will reach its maximm in o
vertex. If this maximum is not reached in any other vertex, then 1% is
not reached in eany other point of the polyhedron either. I 1t is reachel
in more than one vertex, then it is 2leo reached in all points of o "foce™
of the polyhedron, that is, a polyhedron contalned in the boun&ar%ggf the
original polyhedron, and hoving es i1ts veriices all those vertices of
the original polynedron where the function reeches its meximum. The two

cages are 1llustrated in Figure L.
[end of small print} l

These simple facts of peomeiry clarify the relations between tae
linear assignment problem, anl the lineer progremming problem {3.1),
(3.2) that we have substituted for it. Any solution of the former is
necessarily a solution of the latter. If the former problem hes cnly
one solution (one opiimal assignment), then this is also ihe uvunigus
solution of the latter. If the form2r has more than ore solution, thexn
the latter has as its solution all points of a polyhedron vhich is epanncd
by the solutions of the former es vertices. Thus, Ty permittirg Ifracticnsl
assignments, we have not lost from the set of solutions any of the

)

integral,(i.e., non-Tracticnal) assigrments that solve our problem.

3/ See, for instance, Koopmans [1951], p. 88, footnote 17.

ig/ Provided the glven linear fumectlon ie not a constant.
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Even zo, the reazder will insist on knowing what is the advantage
of the enlargerent cof our problem ohtained by admitting frostional
assignments. CT the two imporiant advantagers, the Tirst was nointed
out by von Neumann., A great simplification in the computation of solu-
tlons 1is obtaired, which birings a large class of problems of raezpectable

magnitude within the power of availsble compuitation equipment.

The straightlorward, brute force method requircs the evaluatlion of
the function in [2.%) in each of n! permitations. For n = 10, tae
number n! i3 abou’ 3.6 million. On the other Lard, tha linear pro-
gramming problem (3.1}, (3.2) contains ne unknowns (293 4f n = 1C)
subject to 2n - 1 rostrainte {19 1f n = 10). Moreover, &5 wes co-
gerved by Votaw and Cxden [1952]), this linesr programming problem is an
especielly simple represcntative of 1hz category of transportation pro-
bleme [Koopmens end Eeiter, 1951}, i%teelf a category with special Teature

that permit solution by a eiraightforwerd algorithm {Dantzig, 1951).

The transporvation problem is the provlen of shipping a homocenaous
comodity, availcble in given amounts e et geographicel points

Ek’ k=1,...,m, rescectively, to mee’t stated reguirements £, a% pcints
Fi’ i=1,...,n. Tf d“i:>0‘ reprecents the cost of transtorting one unit

., and if trensportation cost on each route

1
a

of the cormmodity from EY to F

is proportional to axrount shipped, then the transportation rrchlem cen

be writien as the minimizing of

m n
kel el
(3.3) 2 L a, . %y.4s vhers d.; >0,
k=1 f=l - - -
subject to the restriciicns

n

{— 2 < e o z -
L ¥po =o€ Vhere e, w0, b= l,... 1,

i 'Lﬂl - .

j n <

' ' N - - -

(5.1‘,) d': b Ty T I, where T = O, 4 = Lieee, i,
3 - = : 3 ; : E
¥ =
i ) s .

1 Lo 0 k,i=1,..., n,
! 23
i
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These restrictions can be setisfied only if L e =2 f, .
k=l * fel ©

the
The special case of /linear (fractional) assignment problem is now

obtained by making the number of sources equal to the number of receliv-
ing points {m = n), the amounts associated with all sources and receiv-
ing points equ&lg/ (ek = fi =1; X,i=1,...,n), and settingz/

By T Oy

The second advantege that can be derived from the consideration of
fictitious fractionsl assignments 1s the subject of the next section.

4. A price system associated with a solution of the linear
assignment probilem.

Tt is well known that with each solution of a linear programming
problem (and more generally with each efficient point in a linear
activity snalysis probleméj) one can associate a price system for the
commnaditics involved, which hes the property of preserving the optimal
(or efficient) point under decentralized profit-maximizing decision-
raking, The underlying mathematical fact can be put in the form ol the

Minkowski-Perlkas lemma for linear inequalities [see Gale, Kuhn and

Tucker, 1951]. which in tuvrn can be derived from a separation theorem

b/ Ir the lancuage of this interpretation, Birkhoff's theorem becomes
very plausible. It says that, if the availabllities at all sources and
the recuiremonts of sll recelving points are equal, one can always find
8 chemnest rouding thet utilizes precisely one source for each receiving
Toine.

5/ If we also wlsh to satisfy (2.5), we must set By = A "dki’ vhere
A iz o sufficiently large nurber.

6/ Sse Keoemans [19511.
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for convex sets [see, for instance, von Neumann and Morgenatern, 1547,
sec. 16.3]. In the case of the transportation model (and hence also of
the linear assignment problem), a simple constructive proof of the pro-
perties of such a price system can also be given [Koopmens end Reiter,
1951].  Here we shall merely state the proposition in question as ﬁpplied
to the linear assignment problem, and derive it from the Minkowski-Farkas
lemma- in,Appendix B. :

Let an optimal assignment be given, and let plants end locations be
renumbered in auch & way:that in that optimsl ageignment each plant is
matched with the location bearing the same number. Then, so says our
theorem, there exista ‘a system of rentals % k= 1,...,n, on all plants

and Tys i=1,....,n, on all locations such that

(h!lnl) = + I I k = l,auo-,n’ ‘
(lhl.2) aki = qk + rig k, is= 1-.-,!!.

Conversely, if such a system of rentals exists, then the matching of
plants to locations bearing the same number is an optimel assigmment.

(The latter, converse, statement does not depend on the Minkowski-
Farkes lemma. It follows directly from the fact thet, for eny permuta-
tion matrix p,,, if (4.1) holds.

z < I {q +r,) =

e P T YT By

=Lgq (Ep, ) +Lr, = L Lr, »L(q ) = )
qu(ipk:l"'iri HPy) sLg vl %t T E‘kk

which is the value of the maximand for the "k-to-k" assignment assumed
optimal},

The first condition (%.1.1) states that the profit from edch plant-
location pair in an optimal assigrment cen be split into two parts, one
a rental imputed to the plant, the other a remtal imputed to the location.
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The second condition (%.1.2) then states that the rental imputed to
a plant is the highest amount that could be "earned" by this plant in
any location, if its chare is computed by subtracting from the profit
it con mae in that location the rental Imputed to that location.
Symmetrically, the rental imputed to a location is the highest income
that could be secured for this location by attracting any plant to it
end subtraclting the rental imputed to that plant from the profit so ob-
talned. Assuming rents %o b2 knowm and regerded as given, the effect
of rents with the prcperties stated would be that no plant owner or
landlord would be better off with any location or tenant plant other
than that wvith which he 1s provided under the optimal assigmment in
question. In this sense, that assignment may be said to be sustained
by & market mechanicm operating through profit-meximlzing response to

a system of rentals.

The price conditions (L4.l) that permit this interpretation as an
optimum~-sustaining market mechanism cre stated in complete symmetry as
between plarts and locations. However, rosponse to rents on only one
side of the market is sufficient for the price system to operate.
Suppose for instance that pliants arz not availsble for rent, but are
owmed by eutrepreneurs who decide on their location. Then, only loca-
tion rents nead to be quoted. Coaditions equivalent to (4.1) in terms
of location rents alene are easily found to be

(’-4-.2) a-]:i = al{k 'é rj. - l:?kg k,i = l,--..,n. .

These are derived from (4.1) by elimiration of the q.- Conversely, if

locstion rents are found that satisfy (L4 2), then these sames rents

Ty
supplemented by plant rants delined through Qe = By T L will satisfy

{4.1). It follows that profit-maximizing plent owners responding to

location rents r, satisfying (. 2) will have no reason %o depert from the

hid
"k~to-k" mszigrient, and that this is an optimal assignment, No plant

rents need cuter Into tholr comporisons.
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(!"'5) Q§_‘Qk-l I'I=ri+h, k,i,* 1,-4.’.--,!1,

and the new rentals will satisfy the conditions (4.1) if the old ones
did. Moreover, within limite imposed by the consideration that no
non-optimal pair should be allowed to become profitdble after payment
of rents, similar transfers can often be made between the two rentals
within each individual paeir in an optimel asgigrment.

(hel) g =g by rE =1y + 0 gy So M+ Ty g, Kio= 1,00,

without viclating the conditions. Thua, allocative considerations alone
do not fully determine the price system in the present case. ‘Sﬁch

ranges of indeterminacy can be expected in problems where indivisible
resources have ohly a finite number of slternative uses. In the present
model, the indeterminacies are increased by the faet that the number of
plants and locations is evenly matched, so that no competition from un-
used resources brings ofie or more prices down to Zero. At the same time,
the indeterminacies noted leave the present model adapteble for embedding
in variocus more genersl models that recoghize alternative uses for plants
in a given location, or alternativé methods for manufacturing the plants
themselves from more basic scarce resources, ete.

By slightly sharper reasoning, it can be shown that if all profit-
abilities 8y are positive, then a system of non-negative rents

@ ¥; can alvays be found that meets the price comditions (4.1). To
obtaln this conclusion, one permits the withholding of fractions of
plants and of locations from sssignment. The restrictions (3.2) then
take the more inclusive form

(11-‘5-1) % :‘ki 5 1, k = 1,-..,!1,

(4.5) € (h.s5.2) & & E s Lt = 1.0,
> .

(’-Iu505) xki = 0, k,i = 1,...,1‘1.
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Now since every plant in every locaticn brings some profit, an optimal
assignment under these restrictions will in fact completely assign all
plants and locations. Heuce the enlarzing of the restraint set (4.5)
does not add any new solutions. Howover, the Minkcwskl-Farkas lemmsa
applied to the new restrictions (4.5) implies *hat a system of non~
negative rents satisfying the price conditions (4.1) csa be sssociated
with an optimal essigmment.

Before concluding the discussion of optirizing price systems, we
should peoint out that, where no marize’t mechenisgm exists or can be
created, a price system as descrilied can still be en Important aid in
computation of an optimal asgigmment. It further reduces the number of

1 These rents

can be looked upon as numbers which, by subtraction from the correspond-

unknowns from n2 quentities X,

oL to only 2n rents s T

ing rows end column, respectively, of the metrix {aki] of profitebilities,

produce an equivalent assignwent problen, characterized by a matrix

(4.6) T L Y

of which the solntion can be reald cff Irmedialtely by selection of a
maximsl element from each row and columa. To illustrate this ideas,
prices ascociated with the solution of the problem (2.1) there indicated

are

LU

(4.7) [q) = (i 3 5 1, [x1=05 10 -3 4,

[ ¥

and the matrix of the equivalent prodlenm is (with a solution marked)

("l"e ) { a’*ki ]

1
i
|
1
ot
o
" [e]

Algorithms based on thic princirle have heen discucsed by Tornquist

(1853} for both the linear end thr ruo’vniie accigmment prohlem.
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Finally, we register a few straightforward yet interesting implica~-
tiors of the inegualiies (%.2) for “he comnections between location
rent differences and the profitability differences between locations

encountered by the plemts. In the first place, we have

(%.9) By > B implies 1, >,

that is, if location 1 is more profitohle for plant k than the
location % to which it is optimelly assigned, then the rent of loca-
tion 1 execseds that of locaticn k. This obvicus statement is as yet
of little help unless the opiimel essigmment is known. However, it
implies a weaker statement that does not depend on what 1s the optimal
assigament:

> 8

(4.10) a vl

Tor all j implies ry > L

Ji
In words, if location 1 is more profitsble than location Xk for
every plant, the rent of location I rnusi exceed that of location k.

Secondly, agein from (L4.2),

(».11) < r implies &, < &

3 I Kk
that 1s, if location k rents higher thon location 1, the plant optimally
assigned to location k is more profitable there than at location 1.

In perticular, the plent assigeed to the location that rents highest

of all (if there is = single such location) is more profitable there

than at eny other locetion. A similar ctatement holds for the plant
assigned to the next highest renting location in comparison with all
locztions renting still lower. IU follews that, if plants ere ordered

by descending rents of their cpilmal lceations, the optimal essigmment

can be recorstructed by first loceting the flrst plant so as te meximize
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its profitahility, next locating the second plant soc as to maximize its
profitability emong the remaining locations, etc. One can therefore

also look upon the ordering of plants by descending rent of their optimal
locationa as the unknown of the assignment problem.

Finally, (4.2) permits us to place lower and upper bounds on the
range of location rents without requiring knowledge of the optimal
aseignment. In the first place, from (4.2)

< <
min max (a,, ~ &, ) = mex (8 , Y} £ max (r, —r)
P E R o St ™ Bpx te 177k

Secondly, again from (4.2) after interchanging 1 and k and
changing eigns,
<

mex (ry r,.) = max (a,, - &
e Tt e AR

Taking these relations together,

< < .
(k.12) mgn T?; (aji - ajk) = T?E (r1 - rk) = mix ?T; (aJi ajk) .

we see that the range of location rents is comprised between the smallest
and the largest of the profitability ranges encountered by individual
plants as between different locations.

Of course, all of the relations (4.9) - (4.12) can be translated
into corresponding relations between plant rent differences and profit-
ability differences as between alternative plents, encountered by the
locations.
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5. Von Neumsnn's equivalent geme.

The decisive step in the reduction of the linear assignment problem
to manageasble proportions for moderate values of n is the application
of Birkhoff's theorem. Beyond that geveral roads are open, of which we
have followed one leading to an equivaleht linear programming problem.
Von Neumann [1953] has chosen another road leading to an ingenious
zero-sum two-person game which is likewise equivalent to the assignment
problem. We shall briefly describe this game (and its solution)
beceause there is a connection between it and the price system discussed
above. This section can be passed over by readers unfamiliar with the

theory of gemes.

The rules of the game are as follows: Player I selects a field
(k,1) in & checkerboard of n rows and n columns and communicates
his selection to & referee. Player II guesses either the row k or
the column 1 in which this field is found, indicating also whether
he is guessing by row or by column. If the guees 1s correct, player II
receives a payoff

1

(5.1) :

from player I (it 1s presupposed that [2.5] has been satisfied). If the
guess 1s wrong, there is no payment.

The solution of the gome is as follows: Player I chooses a strategy
of selecting only fields corresponding to an optimsl 2ssigrment in the
linear assignment problem defined by the matrix 8h s s end selecting any
given field occurring in that assignment with a probabllity proportional

1

to = If more than one oplimal assignment exists, he may choose any
ki
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probability mixture of the etrategies of this type associated with
bptimal essigmients. The value of the geme to player II equals the
reciprocal

(5.2) 2 :

z ., b
K1 Bt Py

of the naximal value of the sum of scores stt®inad in an optimal
assignment ﬁki . Player II chooges a strategy of selecting rov k

and column 1 with probsebilities proportionel to any set of non-negative
prices gq , r; associsted, by (k.1), with any one or more optimal

aasignmsnts.g/

6. The quadratic essignment problem.

For an understanding of the complexities of locational decisions,
both in reality and from an optimizing point of view, the assumption
that the benefit from an economic activity at some location does not de-
pend on the uses of other locations is cquite inadequate. The literature
contains many references to "direct™ interactioms, such as the benefits
of improvements extending to adjacent lots, or the detrimental effects
of noise, vibration, and air or water pollution stemming from surround-
ing activitieagf. Of these direct interactions nothing more will be
said here except the obvious remark that they often tend to favor the
conglomeration of similar activities in the same neighborhood. They
have drawn sttention in the literature meinly as exsmples of discrepan-~
cies between social cost (or benefit) ard private cost which cause
fallure of the price system as a mediator of efficient allocative de-
cisions.

8/ Tuis statement, not contalned in Von Neumann's article, was
communicated to one of the authors by Vou Neumann. 1Its verification is
left to the reader. -

9/ See, for instance, A. Pigou [1920] Chapter IX of Part II (kth ed.),
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Our main point in this discussion is that one does not even need
to look for these phencmena of "direct" physical interaction between
production and/or consumption processeeg to find reasons for such fallure
of the price system. The mere fact that scarce resources need to be
utilized for the tramsportation of intermediate commodities between
plants appears to be sufficient to deprive the price system of its
ability to induce or preserve efficient decentraslized sllocative decisions,
In order to press this point, we shall now introduce the quedratic
assigmment problem.

We again consider n plents and n locations, and a matrix &y

of which the element 8,4 DOV represents a "semi-net" revenue from the

operation of plant k at location i, thet i1s, gross revenue less cost
of primary inputs, but before subtracting cost of transportation of
intermediate products between piants. Having adopted this definition,
we maintain the assumption that "semi-net" revenue 8,4 18 independent

of the assigoment of other plantas to other locations.
In order to express interplant transportation cost, let g set of
non-negative numbers by, k$+J), k,J=1,...,n, represent required

commodity flows (in weight units) from plant k to plant I, and a set
of positive numbers ciJ’ i + J, 1,i=1%,...,n, represent the cost of

transportation for the unit flow from location 1 to location J. The
fiow coefficients bk; are assumed independent of the locations assigned,

and the transportation cost coefficients ciJ are assumed indepeadent
of the plant agsignments gnd applicable to all amounts and compositions

of flows.

If each plant were assigned to the location bearing the same number,
total interplant transportation cost would be given by



provided we set

(6-2) b =0, C

kk =0, k.'—"l,el-,n-

kk
For any other assigoment, each b, y rust instead be multiplied, hefore
the swumation, with that ey connecting the locations %o which the
plants k and 1 are assigned, respectively. If the ssclgament in
question 1s defined by the permutetion matrix igki], it is readily
seen that this leads to the expression

(6.3) L Y% by Dy € Dy -
K, 1.3 ¥I ki TR5 L)

It follows that total net revenuz for the agglomeration of plants 1s

represented by

(6.4) L . = L % .y D. C,, Dyio-
K1 8t P 01 1,9 wl Fri %13 ¥

The quedratic assignment prchlen is the problem of paxrlmining this

expression by sultable choice of a psrmutation mabrix [pk4}= It is

called qpadraticzgfrbecause-the meximond conteins g term of second
degree in the unknown perxutsation.

10/ ‘There is some arbitrariness in this deslgnation. A glvea di
problem can often be converted to different mathematicel forms depe:
on the cholce of the space in which the given discrete altemnatives are
embedded iy order to make methods depzading on combinully aoplicable.
Thus, 4inm ‘Section 8, we shell enconnter an ecquivalent Tormuletion of the
"quadratic® sssigmment problem waich iz "lisesr” Tub for cne extra
non-linear restriction on the valuss of Wno unknowss.

5o
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To our knowledge, the only sizsble example that hes heen compuied
through so fer relates to a special cace of the cuadratic cssipument
problem, known as the traveling salesmen prcblem, This case is chiained

by setting 8y = 0 and taking

r-_o 1 0 . . 0
0 0 1 . . 0
(6 l5) bkl = . L] * M >
o 0 0 . ' 1
1l 0 0 . . ¢
R —

vhich is itself a permutation matrix. The one and only "intermediste
cormodity"” now is a traveling salesman who is required %o csll once

at each locetion and return to his point of deperture. Th2 essigamsnt
problem is the problem of so choosing the order of points of cell thaok
the total cost of tramsportaticn of the salesmen For thz tour is
minimized. Dantzig, Fulkerson and Johuson [1954] computed the minirum
cost tour through forty-nine cities in ithe United States, cne iz each
state and Washington, D. C. They egrated cost with road distance, and
proved the validity of thelr solution. The methods nsed wers ed hoc
methods that were rewarding in the problem et hand, but do not recessari-

ly cerry over to other cases of the quadretic essigrasnt prchlem.

In view of the computationael complexity of the rusdretic essipnrment
problem, the question of the possibility of a price system prescrving
an optimal assignment is very pertinent. The unavailshllity of a
practicable computation method 1is less of an obstacle o good use of
resources if market processes can be relie? upon to susiailn, angd
possibly even to lead to, an optimum assigmment. Unforturatelr, our
tentative and heuristic exploration Into this problem, to bz renorted

on in the next section, elso meets with a negative outcoua.
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T. Can optimal interdependent locational decisions b= sustained by a

orice syztem?

By analogy with the functicning of a price system In the linear
assignment problem.and in the transportation problem, it is of interest
to examine whether am optimal ssgignmsnt in the quadratic assigmment
problem could be sustalincd by a systen of rents on locations and/or
plants, and of prices on each intermediazte commodity thalt depend on

the location at which the commodity ic quoted,

By a line of reasoning that may slso have scme interest in iteelf,
one can disprove this possibillity for what might appear at first sight
to be the most neturel vey of definirg tihs operation of such a price
systen. is reasonlng again utilizes the device of fictitious Prec-

tional plants sharing locations.

We assume that the "semi-ret" rcveaue from a gilven fractional plant
k in a given locatiorn i1, as well ss the input end output flows of
intermediate goods to and from that plant, are proportioral to the
gize Xeq of the fraction. To simplilfy matters further, we nssume
that the commodity (or cormodity bundle) which flows from plant k
to plent ] is specific to this pair of plants. It, or any of its
component commodities, cannot be drawm from any type of plant other
than (fractions of) plant k, and cannot De used by any type of plant
other than Y. We shall therefors speak of this commodity bundle as
g single comredity. It is fully distin

ingulsiaeble by the combination
of indices (k,X}, ia thet crder,

Within the stipulaticn given, we allow end Indesd require most
economic routing of each distinet ccumedity (k,1) between fractional
plents. Ia particular, if in keeping with (6.2) we regard transpor-
tation between fractionsl plents in the same location as costless,
this will Tavor the agsignment to the same locsfion of combinations
of fractionsl plants thet sunply sach other with intermelisie

commodities.
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Let us denocte by xk1 13 the flow from loestien i to location - J
2

of the cozmodity which is suppiled by plant k to plant 1. To avoid
irrelevant in detcorminacy, we shall say that xkl 4= 0. Then our
)

problem has become that of maximizing

(7.1) 151 By Xy 'ki:x 1?5 ‘15 Muf,1d

by suitable choice of the Xy and xki 14 subject to the restrictions
)

e

(7.2.1) x4 bk; + § Mg, 91 = Xy bkl + § %eq,14° k,[,4 =21,...,n,

(1.2.2) T Xy = L k=1,...,n,

(7.2) < 1

(71.23) L x,. =1, 1=1,...,n0.
k -l

(7.2-‘*) xki 2 0, xki,ij g 0, )Lk;,ii = 0, k,x;i,,j = 1,.--,!11

]

The restrictions (7.2.1) specify that the total inflow of the inter=
mediaste commodity (k,I) to the location i added to its production at
that location equals the total outflow from plus its consurption at that
same locetion. The other restrictioms are the seme es before, except
that (7.2.4) also specifies the non-negative character of intermediate
commodity flows.

It is perhaps worth polnting out that the linear problem defined
by (7.1) end (7.2) becomes equivalent to the guadratic sssigrment pro-
blem by adding the simple non-linear restriction

(705) &i = 0 or 1, k,i = l’o.,nu

However, if we do not add such a restriction, then the problem is truly
linear, and has all the general properties of linesr programming pro*

blems. Above we have uvsed the proparty that with a solution Qf'a'liqhhr
progremming problem is associated a system of prices which meets cefééfﬁ
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conditions that permit the solution to be sustained by decentralized
profit-maximization. However, we have slso noted a converse property:
if with a point (a set of numbers Xy xkl,id) satisfying the re-

strictioﬁg (7.2) one can associate s price system that meets the conditions
{still ﬁp ﬁe enumerated), then this point is a solution to the problem;l/.~
In particular, we shall make use of this property in its equivalent
negative f&ym: if a point satisfying the restrictions is not a solution

to the probleém, then there exists no set of prices that meets the con-
.dipionsrih‘quest;oﬂ in association with this peint.

Now we can readily epecify one particular case in which the nature
of the solution(s) of the linear problem (7.1), (7.2) we have substituted
for the quadratic assigmment problem can be seen directly. This case 1is
ohﬁained by specifying thet the "semi-net" revenue from a given plant is
1n¢ependent of ite location,

(‘?'h) “ki = .‘kl i = 1,...,n.

Under this agsumption, the firsi term {n the total profit (7.1) vecomes,
by (7-??2) ;

@5 L oaong m Iy Iony) =L e,

& constant independent of the assignment selected, The maximization of
total profit thus becomes equivalent to the minimigation of total trens-
portation cost, '

ey 13,31 EJ ‘13 *ul,ig

under the restrictions (7.2) on the assignment of fractional plants.

An obvious gsolution to this problem is to distribute each plant in
eqpal fractiont over all 1ocations,

i

1 The proof of this property in the pregent case follows the same
line of reasoning as that given in the paragraph after (k. ).
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I3 i

(7.7) i T n? xk,z,ij = 0, i ’:-J: k:i,i,J =1,...,0.

In this case there 1s no need for transportation, hence no cost thereof.

If every fiow coefficient bkl with k %+ I is positive, this is
the only solution, If scme bkl are zero, additional solutions arise,
but es long as at least one of the bk1 is positive, no integral assign-

ment of plents ta locatiors can be a solution, beceuse the positive co-
efficient bkl would be multiplied by one of the transportation cost

coefficients ¢y qs i4J, all of which are positive. In particular, any

solution of the quadratic essigmment problems defined by (6.4) and (7.4),
being by definition an integral assigunrent, is not a solution of the
lineer problem (7.6), (7.2), hegce does not have associated with it &
pricéuaystem meeting the conditiong which we shall now write down.

The conditions im question follow from the form of the mimimand
and of the restrictions (7.2). With each of the restrictions (7.2.1-3)
we associate a pricé for that commodity of which the counservation is
expressed by this restriction. We shall use ukl,i for the price of

the commedity (k,Z) at location 1, G for the rental of the unit of
plant k, and ry for the rentsl of the unit of location i. We shall

again number plants so that assigning each plant as a whole to the
location bearing the same number 1s an optimal iluntegral assignment.
The price conditions which as we have shown can not be satisiled then ere

(T8 o = Sg,p ™ Vit w41,
(7f8-2) c1J 2 ukl,d = ukx,i ¥ 1 % J ’
(7-8.3)  (ag=) 8y = @ + 1y + 21: byt e,k " § Pre Yk
<
(7.8.4) (e =) ey = q +r; + § Py Wt T ?.E Pre Wk,1 ¢

k)lli}d = 1,...,n.
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Condition (7.8.1) says that, on the one route (i=k, j=f) on which
trensportation of the commodity (k,1) is called for in the optimal
(integral) assigmment in question; the price difference between the point
1 of requirement and the point X of availability equals the transporta-
tion cost. Similarly, (7.8.3) says that for each plant k, the semi-net
revenue it can make anywhere just suffices to pay rents on that plant

and on the location to which it is optimally assigned, after allowing

for the proceeds of the sale of its intermediate outputs and the cost

of purchase of 1ts intermedlate inputs, eveluated again at the prices
quoted for the location to which the plant in question is { optimally)
assigned. Condition (7.8.2) says that price quotations on each commodity
in all locations are subject to the restrictions that no price difference
between WU locations shall exceed the trsmsportation cost. Finslly,
condition (7.8.4) says that no plant can meke a positive profit in any
location.

Let us recall again that we have shown that these conditions can
not be satisfied in sn optimal integral assignment, or for that matter
in apy integral gssigmment. The consequences of this negative conclusion
pesm to us to be far-reaching. It means that no price system on plants,
on locations and on commodities in all locatlons, that is regarded as
given by plant owners, say, will sustain any gssigoment. There will
always be an incemtive for someone to seek a location other than the
one he holds. In the case ¢f plants on the drawing board, compatible
choices cannot be induced or sustained by such a price system. In the
case of actual establichments alreasdy located, the cost of moving is the
only element of stability. Without this brake on movement, there would
be a continual game of musical chairs. Whatever the assignment, prices
of intermediate commodities and rents on locations cannot be s¢ pro-
portioned as to give no plant an incentive to seek a location other
than the one it holds.

It might be objected that we have ourselves created this ﬁitficulty
by asking for a price system thsat discoureges not only vhat 1§‘ihgffi¢i§nt,
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but elso vhat is anyhow impossible. We have assked for a price system
that would discourage plent owner k from desiring to change to a
location now held by plant owner [, without inquiring whether the latter
hes a similar inducerment to make this possible by another move of his own.

Before locking further into this objection, it should he recalled
that, in the linear assignment problem, the price system does not invite
incompatible choices. In case only one optimal assignment exists,
prices car be found such that alternative choices gre inferior for all
plant owmers concerned. If more than one optimal assignment exists,
there is always a set of compatible cholces such that each plant owner's
choice is not inferior, for him, to any alternative. This expresses
the fact that efficiency prices in linear actilvity enalysis in general,
and in linear programming in particular, not only discourage inefficient
use of resources, dut also remove the incentive for anyone to claim
more of a scarce rescurce than is availsble, given the amounts already
allocated to others. EHEence,if we should have made our problem more
difficult by requiring prices %o administer scarcities Im ~Aditicm 40 dis-
coursging irefficiencies, this must be due to the non-linear character
of the present problem.

That this 1s at least pert of our difficulty, becomes clear by
lddkiﬁg at the very simplest problem of interplant transportation cost
minimization for just n = 2 plents and locations. If the initial
assignment is "k-to-k" and if positive shipments bk;' k ¢#1, go in both
directicns between the two plants, (7.8.1) becomes

(7.9) 12 = Yp,5 " Y1p,1 ? €21 = Y23,1 " V21,0
The relevant terme in the profit of plant 1 are, at location 1,

(7.10) Yip1 T ¥y T Ty



and, at location 2,

(7.11) Yp,2 T Vo1, T T2
The profit at locatlon 1 exceeds that at 2 by

- 3 - +r

FUNp TR P TR T 0 "% T Y,

(7.12) YMo,1 " Yi2,2 T Ye1,1
This expresces the simple fect Lthat, if a move of plant 1 to location 2
is evaluated at prices corresponding to the initial "k-to-k" assignment
taken as given, its effect on the prefit of plant 1 is the same as if
plant 1 were 'dcubling up” with plant 2 in location 2. The entire
interplant tramsportation cost is then saved. It is, of course, possible
+o offset this for plant 1 by 2 large rent differential - ry + Ty But

this only ctrengthens the »rofit incentive
(7.23) oy T by T T, +ory

for plant 2 to move to loccation 1. Since the sum of the two incentives
(7.12) and (7.13) is -2 (b23 +by,), it is impossible, if transportation

costs bkl are positive, to find renis Ty that prevent both plant owners

from desiring to rmove. This is so irrespective of whether the initial

assigmment is optimal. or not.

It might be thought, in the light of this example, that all one
rhould require of a price systen is that, for any non-optimal permutstion
out of an optinmal asgipament, it would make enough plant owners refuse
the proposed move *0 cause the permutation to he blocked.lg/ However,
it is hard 4o geo how such a reguircmant ccould leed to a determination
of rents at 211. Uwillirngucess of g plant owner to participate in an

otherwise siirective permutation ecounld bte testad by bidding a higher rent

12/ This would raguire abt lesst coe rofusal in each eycle of moves into
which the permi:babticn can be fzcompoged.
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to the owner of his location. If the ffiea that rente should reflect
the value of each location to its occupant cannot bé incorporated, then
the search for a price system scems to lose mich of its intereést.

If this heuristic reasoring is accepted, there remains cne other
possibility to be explored. Cne can lay the failure of & price system
ih the 2-plant csse, and perhaps slse in the “-plaht case consideved
befﬁ*e, to the fact that a meve of one plant is evaluated without con-
isidering the effec* cn everyoody's trensportetion costs of the subsequent
moves of other plante that are needed to make room for the first nove.
This neglect is inherent in the attempt to work with one given system
of commodity pri&es in the various locations. To avoid it, one may
glve ub the search for_commodity prices altogether, and look instead
for principles that bfing changes in total inter-plant tranérortation
cost to besr on individual plant budgets in such a way that, in réaponse
to & rent system to be determined in conjuaction with theée-prihciples,
e non-optimal permutation out of an optimal assignment will be reJedted
by every participant in the permutation. We have made some explorations
along these 1inea, in vhich we have received substantial help from
Professor Theodore Motzkin. While e nore detailed report of these
attempts would exceed the limite of this article, it may be mentioned
here that again vo rent system was found that even halfway meetg the re-
Quirement of informational decentralization.

We &re frankly perplexed by the difficulty of establishing meaning-
ful relaticns betwéen_lccaticn‘rents and transportation costs in & problem
B elementary, in(démparison with the sctual complexities of locational
markets, 68 the quadfetic locational assignment problem. For this reason,
we have delayed public-tion cf our results for several years, in the hope
that more concivdive rcsults might be cbtained. It now seems better to
present such large Ly nesative results as we hove obtained concerning
the possibilities of pricing in *the gquedratic assignment problem, because
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this problem seems to be close to the core of location thébry, because
of the importance of location theory in itself, and in the hope that en
examinstion of this exsample of apparent fallure of the price system
may ultimately lead to better insight in the possibilities end lirmita-
tions of price systems as means of deceatralizing the allocation of
indivisible rescurces.
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PENDIX A
AP IX [emall

Proof and Application of a Theorem due to Birkhoff print]

We formulate the theorem in question [Birkhoff, 1946] in the form
of a minimum statement needed for the present application, and asdapt
Von Neumann's proof accordingly:

Any matrix [x,,] of order n satisfying the restrictions

n n :
>
(A.1) 1:21 Xeq = 1, 121 %y =1, %4=0, ki=1,...,n

can be written as a weighted average, with non-negative weights,

nv

e

o!
r
Y Py 0 V. =0, z e 1,
r=1

(A2) x, = g
r

of the n! permutation matrices pii .

In order to prove this let us call %, 4 @o inner element of
111

[xkil if 0< xklil <1, and an outer element if either xklil =0 or

™, 1, =1 . It follows from (A.1) that the number of inner elements

in any row or column is elther O or at least 2. Let v be the number
of inner elements in the given matrix [xki]. If v =0 the assertion

of the theorem is true. If v > 0, let
xklil be an arbitrary inner

element, x, , another element in rov k, , ¥t.1. enother imner
1t2 22

element in column 12 ’ xkaij another inner element in row k2 , ete.
8ince the total number of elements is finite, this construction will at
scme point cause sn element to be repeated. Drop all elements in the
sequence preceding the first element to be repeated. The sequence then
has one of the two forms

(A.3) , veee, P> >m = i =1
kaim, X Tmel ka+lim+l’ xkpip, e T Tl




or

] ' ) ) teressas ‘ ’p>m’
K im-l-l xkin+lim+1' kawlim+2 xkpipirl
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ko= ks 1p+3. * i,

The second form can be reduced to the first by dropping the repeated
element X 4 off the end and repeating the preceding element

D P+l

as s 1 =41 , at the beginning. Teking (A.3) as the nota-
xkpip kaim m P

tion for the sequencs so found, consider the matrix [xki(p)] defined by

(A.4)

P

x 4 () =x , +e,
94 xkq q
qQ=m ,n+1, ... ,p-1,
. (e ) = €
Ulan | gl

xki(e) = x,, vhenever (k, 1) # (kq, 1q+l) for all

q'm, '-,p-l-

We note that xki(e) if substituted for x.,; im (A.1) satisfies

the first two conditions {A.l) for all € , because every addition of ¢
to a row or column sum is offset by a subtraction of ¢ . We note further
that the number v(€) of inner elements of [xki(e)] is at most that

of [xkil since any outer element xkbio of [xkil cannot occur in the

sequence (A.3) and hence the corresponding element xkbio(e) of {xki(e)]

is equal to xko1 and therefore also outer.
0

The set of values of € for which [xki(e)] satisfies also the

third condition (A.l) is easily seen to be the interval



-55-

(A.5) €ge<e, vhere ¢ = -min X oy
q

€ < » € =min ,
a qui

q Qg+l

the minime being taken over the values q=m, m + 1,..., p =1. BSince all

and involved are positive,
xkqiq xkq:l asl

(A.6) e<0<e .

Moreover, since at least ome x,,(e) venishes at ¢ = ¢ and at least

one at € =¢ )
(A.T) v(e) , v(€) < y(0) = v .

Finally, decause [xki(e)] is linear in ¢ ,

€ €

xq(€) -
€

(a.8) Xy = % q(0) = - x4 (€) +

c-¢ €

In (A.8) the given matrix [xkil is written as a weighted average,

vith positive weights, of two matrices, [x,,{(€)] and [xki(é )1, both of

which satisfy (A.l) and have & smaller number of inner elements than
{xkil has. As long as that is still a positive number, either of these

cah in turn be again written as a weighted average of two other matrices
satisfying (A.1l) and having a still emaller number of inner elements.
Since a weighted average of weighted averages is itself a weighted
average, any given matrix [xki] can ultimately be written es a weighted

average of matrices satisfying (A.l) with no inner elements, that is, of
permutation matrices, The theorem 1s thereby proved.

In order to apply it to the maximization of the linear function (3.1)
let

(A.9) £, = L P
r Ty k1 Pis

be the value of the maximand for the assignment represented by the permuta-
tion [pzi]. Then, from (A.2), omitting surmation limits, the meximand
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e

(a10) 131' St Xig ‘15'1(&“ § Ve Pﬁi)' Z ("’r 12:‘1 et p;i)' E v, £,

r

Without loes of generality, we can renumber the périutations in such &
way that

(A1) £, =f,=...=xf >f forall r>s, where 521 .

This means that the firet 8 permutations are optimel, and the remaining
ones non-optimal. The maximand (A.10) then beccmes

n! < n!
(A.12) Ewr £, -(i wr) £+ L ow £ 3 (Z wr) £ =1t

Trul res+l r=l

where we have used that V.. z 0, and vhere the equality sign applies only
if V. = 0 forall r > s. This shows that all weighted averages of

optimal permutations, and only such, maximize the given linear function
(3.1) subject to the restrictions (A.l).



-55-
AFPENDIX B

Statement and Application of the Minkowski-Farkass Lemma {emall
print]

The lemme referred to in Section 4 is as follows.

In order that

N <

(Bol) 2 b u = o
nn

n=1l
for all w, n= 1,...,5,
satiefying

y <
(B.2) L & u =0, m=1,....M.

n=1l

it is necessary and gufficient that

Ml
(B.3) b, = El VAT n=1..,N,
Me=

for gsome v s[:vé] such that v 2 0, n=1,....M

For proofs and further discussion, see Farkas [1901}, and references in
Gale, Kuhn, and Tucker [1951].

The Price Theorem of Linear Programming [Koopmans, 1951, p. 82,
Theorem 5.4.1] says the following:

Necessary and sufficient that
(B.4) Lo x SLb %
n n

for all x = l:xn] that satisfy

nv

<
(305) E amnxnacn, m=l,----M; xn 0, n=l,-..,N;



p
-}
)

(B.5) with m =M+ 1,...M end with n =25+ 1,...,N are met, How-
ever, since all left-hond rusevs In (B.9) acd (B.10) are linear and
homogeneous in the v, the r2oacirencat v, <:Jraan he cmitted from this

statement. We can thereforz vsno the Mintowelki-Ferkas Lemms (necessity
clsuse), with the matrix [e .1 Zn (2.2) end (B.3) replaced by

frihal

a “sa .- o et n e a
1), N LN ' b

- -— — — . — — oum

aﬁ]- .- J-E.? EI'-i, ‘_".-‘f.*.l tee aITJN

1
[
o
]
(o]

to show the exlstence of roen-negotive numbers vV, B = 1,..., M and LA

n=1...,§ , such that

(B.11) by = o) Vm fan ~ Fp 0T R =100,

M
b =L v_e&_ For n=Nl,...,N.
n oo n o mn
The necesslty clause of the price thcoren of linesr programming now follows
by specifying %n =V, for m = l,...,ﬁ and &m =0 form =M + 1,...M.

In application to the linear assignment problem, the elements of the
score matrix [ak1] in (2.1) m=ke vp the vector [bn} of (B.4) whereas

the elements of the matrix [amn] in (3.5) are ones and zeros so selected

that (B.5) corresponds tc *he restrlctions (L.4), For the reasons indicat-
ed in connecticn with (L.1), only the fivst of the two cases dlstinguished

mn

in (B.7) can now occur, i1f all scores o, are noslihlive. We therefore cen
2 -1 i
Lisrn
read the price conditions for he cniinallity of an ascigament from (B.6)
alone, In which we equivelently revorce the crder of the case distinctions
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is the existence of numbers A, m'=1,..., M, such that

o
v

(B. 6) I'. AP b, sce~-ding a8 X y 0,

(3.7) { } according as E:amﬁ R, < e,

Proof: Bufficiency. Suppose there exists a set of L satisfying

(B.5) and (B.6) for some X . Then, by a sequence of steps derived
from the relations indicated at each step,

(8.6) (8.7) (B.5, B.T) (8.5, B.6)
— — > > .
E‘ bX, 'n)f'nxm"mnxn = E AnCon zm?n * B = E’ L

for ell x that satisfy (B.5).

Necessity: Ilet X =[x] satisfy (B.h) for all x =[x, ] that

satisfy (3.5). Without loss of generality we can specify that

X, =0 for n=1,...§, X, >0 for naB +1,...,N,
(B.8)

x . a4qa '-
na'mn nscm for m=1,...,M, L amnxn<cn for

mgﬁ*-l,.l.M.

By inserting x = x +u in (B.4) and (B.5) our premise is gseen to imply
that

(B.9) L b au

for all w, <‘( , n=1l,...,8, such that

(B.10) Zamn un§0 for m=l,...,ﬁ, unio for n='l,..-.,ﬁ,
n

.
providedl (/ is a positive number small enough to ensure that the conditions
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for a moré natural interpretatidn. te 8, >0 for all k,i, an
assignment ;tki is optimal if and only if there exists a set of non-

negative rents Q 2 T such that

- > - =
xki{: }0 according as QY + ry {> }0 .
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lines of
congtant value of

thé maximand

polyhedron 1:
unique point of
maximum

Figure 1
Maximum of & Linear Function on s Polyhedron.

polyhedron 2:

the points of
maximum constitute
e face
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