Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

7-1-1958

Capacity Expansion and Probabilistic Growth

Alan S. Manne

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Manne, Alan S., "Capacity Expansion and Probabilistic Growth" (1958). Cowles Foundation Discussion
Papers. 272.

https://elischolar.library.yale.edu/cowles-discussion-paper-series/272

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/272?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F272&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION DISCUSSION PAPER NO. 5k

Note: Cowles Foundation Discussion Papers are prelim-
inary materials circulated privately to stimlate
private discussion and critical comment. Refer-
ences in publications to Discussion Papers (other
than mere acknowledgment by a writer that he has
access to such unpublished material) should be
cleared with the author to protect the tentative
character to these papers.

*
Capacity Expansion and Probabilistic Growth

by

Alan 8. Manne

July 17, 1958

* Research undertaken by the Cowles Commission for Research
in Economics under Contract Nonr-358(01), NR olb7-066 with the
Office of Naval Research.




Capacity Expansion and Probabilistic Growth

*
by Alan S. Manne

1. TIntroduction

This study stems from an optimizing model originally suggested by
Hollis Chenery for predicting investment behavior. [5] Like Chenery's
paper, this one is concerned with the interplay between economies of
scale and an anticipated persistent growth in demand for capacity. The
generalizations discussed here are of two types: (a) the use of pro-
babilities in place of a constant rate of growth in demand; and (b) &
study of the economies and the penalties involved in accumilating back-
logs of unsatisfied demand. The possiblility of accumulating such back-
logs raises considerable doubt with respect to Chenery's "excegs capacity
hypothesis".

Surprisingly, generalization (b) leads to considerably greater
difficulties in analysis than {a). The use of probabilities to describe
the growth process does little - 1f anything - to complicate matters.

The probabilistic version of Chenery's model turns out to be closely
related to the classical problem of gembler's ruin, and an extremely
powerful tool can be borrowed from that area - the probability generating
function for the duration of the game. Thanks to this generating function,
the zero-backlog probabillistic model becomes no more difficult to study than
the corresponding deterministic one. A direct implication is that & pro-

babilistic growth course makes it desirable to install plant capacity of

The author is deeply indebted for suggestions made by Martin Beckmann,
Gerard Debreu, and Richard Rosett of the Cowles Foundation, by Ashley
Wright of Standard 0il Co. (New Jersey), and by Robert Donovan, Donsld
MacArthur, and Gifford Symonds - all of Esso Standard 0il Co.
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a somewhat larger size than would be coptimal if demand were growing at a
steady rate equal to the expected value of the probabilistic increments.
Uncertainty, in this sense, has a stimulating effect upon the magnitude
of individuall investments.

Going beyond Chenery's model to include the possibility of backlogs,
it turns out that there is a curious ambiguity in the effects of an
increase in the variance of demand. Once the possibility of backlogs is
admitted, an increase in variance can even lead to a decrease in the

optimal size of individual installatioms.

2. The deterministic model - no backlogs in demand

In order to provide a reference point for discussion of the more
difficult cases, Chenery's deterministic model itself will first be re-
viewed. Following this discussion will come the modifications involving
(a) probabilistic growth‘and (b) the possibility of accumulating backlogs
in demand. Chenery's model grew cut of his studies of the natural gas
transmission industry - & sector characterized ﬁy rapid growth and by
substantial economies of séale in pipeline construction and operation.
Much the same situation seems to prevail in the case of oil pipelines
(8], the telephone industry [T}, highway construction, electric power
generation, petroleum refining, and chemicals processing [6]. Figure 1
charts the course of demand and of capacity over time under the following
simplifying assumptions: (1) that demand grows linearly over time; and
(2) that whenever demand catches up with the existing capacity, X units

*
of new capacity are installed. (The demand at to is denoted by DO.)

Chenery and Cookenboo [ 8] both point out that the concept of installed
capacity is a sllippery one - even when dealing with such a honogeneocus
facility as & gas or an oil pipeline. Once a line of given diameter has
been laid, new pumping equipment can be added - enough to raige the ultimate
installed capabilities to a level of perhaps two or three times the initial
amount. From the viewpoint of our model, it seems best to regard the decision
variable X as a measure of the ultimate rather than the immediate amount of
pumping capacity installed. In defense of this shortcut, it should be noted
that on an optimum-diameter line, all pumping station equipment - according to
Cookenboo's figures - generally comprises no more than 10% of the total initial
piveline costs. 8 . op. 65. 82, 106.1
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Unlike Chenery, we shall assume that the planning horizon is an infinite
one, and is not truncated after an arbitrary finite number'of years.
Excess capacity, when plotted on Figure 2, then displaeys a sawtooth
pattern typical of the closely related Wilson-type inventory model.
(1, pp. 252-255] If, for convenience, our physical unit of capacity
and of demand is set equal to one year's growth in demand, this saw-
tooth cycle repeats iltself every x years.

The installation costs that result from a single capacity increment
of size x are assumed to be given by a cost function of an exponential
sort:*

(2.1) x - x* (k >0; 0<a<1)

If, for example, « = 1/2 , this cost function says that a pipeline
capable of handling 16 years' worth of growth in demand is only twice
as expensive as one that can accommodate four years' worth, The existence
of such substantial economies of scale implies the desirability of building
new.capacity considerably in advance of demand. But how much in advance?
Here the discounting of future costs becomes crucial.

Without discounting, it would be perfectly sensible to spend a dollar
now in order to save a dollar's worth of costs either next year or ten
years from now, or 100 years hence. Under such circumstances, there is

no limit to the size of line which it pays to build. With discounting,

*
This cost function corresponds to Chenery's equation (3), p. 6 [5].

A square-root law (a = 1/2) would be implied by the geometrical relation-
ship between the cross-section area and the circumference of a c¢ircular
body such as a pipe; & two-thirds law by the relationship between the
volume and the surface area of a sphere.



on the other hand, this paradox can be sidestepped. Discounting reflects
the very real fact that in any business enterprise there are always
competing opportunities for the use of limited investment funds - alter-
natives with yields that are ordinarily far in excess of those anticipated
on gilt-edge securities. It is fundamentally on account of this scarcity
that we must consider the present value of a dollar due in 1t years!
time as lower than that of one due at an earlier date.* In principle,
of course, any monotone decreasing, non-negative formula could be employed
as a present-vélue function. Here, however, we shall follow tradition in
adopting the expression at for the present value of a dollar due &
years in the future. (0 < g < 1.) Hereafter, the fraction B will be
known as the “"discount factor".

As a time origin for suﬁsequent caleculations, it will be convenient
to take any such point as to or to + x or to + 2x on Figure 2 -~ a
point at which the previously existing excess capacity has Jjust been
wiped out. Such an event will be known hereafter as a "point of regene-
ration". WNote that when we have reached to + x , the future looks

%%
identical with the way it appeared x units of time previously. Then if

Gifford Symonds has suggested an additional reason for the discounting
of future costs « the expectation of continuing progress in pipeline
technology. If the general price level remains constant, it is ressonable
to suppose that in, say, 10 years' time the cost of building a line with a
capacity of x units will be significantly cheaper than the cost of such a
line today. The provisc about constancy of the general price level is
important. If one. is a believer in the inevitability of creeping inflation,
one's discount factor should be higher than otherwise, and one should be quite
anxioug to incur debts that are fixed in money terms.

A quote from Bertrand Russell seems rather pertinent here:

....0ur wishes can affect the future but not the past,

the future is to some extent subject to our power, while
the past is unalterably fixed. But every future will

some day be past: if we see the past truly now, it must,
when it was still future, have been just what we now see

it to be, and what is now future must be Jjust what we shall
see it to be when it has become past. [ 11, p. 27) '



we say that C(x) is a function of % that represents the sum of all
discounted future costs looking forward from a point of regeneration,

we may write down the following recursive expression:

(2.2) o(x) = k-x* + 8% ¢(x)

The first term on the right-hand side indicates the installation
costs incurred directly at the beginning of the current cycle. (See
equation (2.1).) The second term measures the sum of all installation
costs incurred in subsequent cycles, and discounts these from the next
point of regeneration back to the present one - a difference of X

years. From (2.2), it follows directly that:

C(x) _ x>

(2.3)
k l - B

Differentiating log C(x) with respect to x , and setting the

result equal to zero:

dlog C(x) a . (log B) B* o
dx T ox 1 - Bx -
or (2.4) “a = _:QE___ (- log 8)
B -1

vhere X denotes the optimal size of installation.



The reader can verify for himself that (2.4) is not only & necessary
condition, but also a sufficient one to ensure the determination of &
unique minimum-~cost solution., With this equation, the optimal capacity
increment X may be determined for any combination of the two parameters
o and B - a cross-plot being provided in Figure 3. From this figure,
if one were interested in the economies-of-scale effect, he would observe,
say, that when o« = 2/3 and B = .85 , the optimal value £ is approxi-
mately 5 years' worth of demand. With the discount factor B unchanged,
but with the economies-of-scale factor at a level of 1/2, R rises to
almost 8§ years.

This deterministic model is one that lends itself readily to sensi-
tivity-testing. To find out how the optimal level £ 1is affected by
changes in P , it is enough to transpose terms in equation (2.4) and
equate the differentials. This operation yields:

ax
2. =
(2.5) dpg -plogp

»

The derivative £ is clearly positive for positive values of £

B8

and fractional values of B . The higher the discount factor (i.e., the
lower the implicit cost of capital), the greater will become the optimal

size of each installation.

3. The probabilistic model -~ no backlogs

With this background, We are in a position to ‘discuss the case of
probabilistic growth - still ruling out the possibility of deliberate
backlogs in demand. Just as in the deterministic model, the mean annual
rate of growth is taken to be the unit of physical measurement. The

total expected growth over y years therefore remains p units., In
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this case, however, we view the actual growth taking place in p

years not as a single-valued outcome, but rather as a random variable -

the outcome of n independent Bernouilli trials. At each of these

triels, the probability of a unit increase in demand is said to be p ,

and the probability of a unit decrease, g . Thus if one were considering
a one-year period with just two points at which total demand could change,
g and n would be respectively one and two. To keep the expected amount

of growth during this time equal to p , it is necessary to set
P = % . [i + %J: EV . The total growth will be a binomially distributed
n

random variable that can take on any one of three values ranging from

*
minus two to plus two units:

total one-year change

in demand -2 0 +2
respective probabilities 1/16 6/16 9/16
expected change in demand = n{p-q) = p = 1 unit
variance of change in demand = var = 4 npg = n - %? = 2 units

The basic scheme, then, is one in which time is broken down into
artificial sub-periods - each % years in length. Within each such
time interval, demand either increases or else decreases by one unit.

The respective probability for each of these outcomes is % [} + %]
n

and % [ - %] . Through this device, we are enabled to represent
n

any stochastic growth process in which the individual y -year incre-

ments follow the binomial law of distribution. Furthermore, the two

* There is no real necessity for working with the mean annual rate of

growth as the unit of change at each Bernouilli trial. If an investi-
gator wished to make his model appear less ™lumpy", he could just as
well have chosen the mean monthly rate or the mean daily rate as his
unit of change.
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parameters u and n may be adjusted sp as to provide for any desired
ratio between the variance and the mean growth.

Suppose now that some gpecific values have been assigned to w and
n, From these, we determine directly the duration . of the individual
sub-periods (u/n years) and the probability, p of a unit increment in
demand during any one period. Let ux,t represent the probgbility with
which t such units of time will elapse before the point at which demand
first exceeds the initial level by x units. In gambler's ruin terminology,
this is the probability with which t "trials" are needed in order for a
gambler to go broke - a gambler whose initial capital is x and who is
playing against an adversary with infinite wealth. At each stage of such
a game, the ganmbler would lose one unit of capital with a probability of
p, and gain one unit with a probability of q = 1-p. [ 10 , pp. 311-21.])

The following relationship may therefore be written:

(3:1) wp iy TPV g YAV

(x21; 0t < =)

Next we make use of a dummy variable s. (0 < 8 < 1.) Multiplying

both sides of (3.1) by st+l and summing over all t :
-] 1] o0
t+1 t t
(3.2) L s u =ps L s u, ., +Q L S u
£=0 X, 041 £=0 x=1,% £=0 x+1,%
(x>21)

The generating function Ux(s) of the probability sequemce u_, 1is
< Yy,

defined by:
- t
. y(s)= 2 s u
(G:3) U le) = B8t
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For x21, u o =0 - As a result, the left-hand side of (3.2)
, .
eguals Uk(s), and the entire equation may be rewritten in terms of the

generating functions:

(3.4) U (s) =ps U __,(s) +as U_,(s)

x+1

(x > 1)

Now (3.4) is a second~order linear difference equation. Its char-

acteristic equation has two roots;

V. o= L Wll -k pggE

1 2 gs

(3.5)

A = L= 1/1 - b n032
2

2 gs
The general solution is consequently of the form:
X X
(3.6) UX(S) = A(s) Mo+ B(s)la

where A(s) and B(s) are constants whose values depend upon s and also
upon the boundary conditions for Ux(s}. Now these boundary conditions
are twofold: first, that Ux(s) not exceed unity, and second, that
Uo(s) = 1., Since A
can be ensured only by setting the constant A(s) equal to zero. And to

>1land 0< )\, <1, the upper bound upon Ux(s)

have Ub(s) = 1 , the constant B(s) must be unity. With these simpli-

fications, the generating function (3.6) becomes:

(3.7) Uls) =25

Note that xe is a function of p and s alone, and that it is independent

of the quantity x.
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The weary reader will be relieved to learn that we are at last
ready to make an interpretetion of the dummy varisble g and of the
generating function Ux(s) in terms of our capacity expansion model,

The mysterious dummy variable s is to be regarded as nothing but the
discount factor for a time period p/n years in length. (s = § p/g‘)
Then if we allow ux,t to represent the probability with which t such
units of time will elapse between two successive points of regeneration =

points between which the fotal demand grows by an amount x - the pro-

babilistic analogue of (2.2) may be written:

(3.8)  c(x) = kx” + Z . v, 4, C(x)

Just as in the earlier deterministic case, the first term on the
right-haend side equals the present cost of installing
a facility of capacity x. The second term indicates the probability
with which the next point of regeneration will cccur in t units of time,
discounts the corresponding cost back to the present, and sums up over
all t. As in the earlier case, the function ((x) gives the expected
present value of all costs incurred over the indefinite future - as
measured from a point of regeneration. From (%.8) and from the definition

(3.3):
c{x) - ..;xa
ko 1-1(s)

And by (3.7), ‘this becomes:

(3.9) ox) .
k 15

3wl
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According to (3.9}, then, the probabilistic model is not one bit
more difficult to analyze than the deterministic one. All that has to
be done is to regard the quantity xg as the adjusted annual discount
factor, and to insert this in place of B in equation (2.4) or else
in Figure 3. From this also, it is easy to show that the greater the
variance of the growth in demand, the greater will be: (1) the minimal

level of discounted costs C(x) and (2) the greater will be the optimal

size of the capacity increments, %.

Progf

Hold u constant, and increase the value of n . (n 2 u.)
With w constant, the expected amount of growth over |y years remains
. . However, as the integer n inereases, so does the wvariance. The
relationship between n and the variance is one-to-cne and monotone

increasing. This may be verified from the fact that:

2

var{u, n) = 4 npqg = n - %

2
var (u, n+l) - var{(u, n) = 1 + 2 —_ >0

n{n+1)

Next, we have to show that for constant u , Mo is a monctone

increasing function of n - i.e., a monotone decreasing function of the

ratio p/n . No attempt will be made to prove this rigorously. Instead,
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*
the reader is referred to Figure 4 - a plot of ). versus the ratio %.

2
Finally, we observe that if the variance and h, are both monotone
increasing functions of the positive integer n , then they are monotone
increasing functions of one another. 1In other words, the greater the
variance, the greater the value of xe . Referring back to (3}9), this
proves directly assertion (1) ~ the greater the variance, the grester will
be the minimal level of discounted costs.

In order to proﬁe assertion (2), we simply return to the sensitivity
analysis at the end of the preceding section. According to (2.5), the
optimal size of installation increases with the discount factor g . In
our probabilistic model, we have already shown that Le ‘may be viewed
as nothing but an "adjusted" discount factor. Hence assertion (2): the

greater the variance, the greater will be LE and also the optimal

~
value, X . This completes the proof.

*
When % =1 , we have the case of complete certainty - i.e., zero

variance. Both the numerator end the denominator of the expression for
Ao vanish when % =1, It is easy, however, to show that as % approaches

1l , the expression for )\, approaches the value of B

2 (1 - u/m)

Differentiating the numerator of this expression with respect %o the
ratio u/n, we obtain ~82 * when u/n =1 . Differentiating the denominator,
we obtain -3 . The ratic of these two derivatives is B , the limiting
value of i, - a result that completely accords with our intuition for the

case of zero variance.
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To illustrate these results, Table 1 provides a few calculations for
several alternative values of the ratio u/n . In each of the calculations
presented in this table, the expected growth of demand over a u-year
period is, of course, identical - namely u units. (With i constant,
an increase in n corresponds to & decrease in the ratio u/n.) Note
then that as n increases, so dces the variance of demand, tﬁe optimal size
of installation, and the minimum value of expected discounted costs.

Other things equal, our model indicates that the riskler the growth
in demand, the larger ought to be the amount invested in each installation.
To some, this result will seem to fly in the face of common sense. How-
ever, tc those familiar with models of inventory stockage under conditions
of probabilistic demand {e.g., 1, pp. 256-259] , this should come as
no paradox. In both the capacity model and the inventory case, the greater
the risk of running out of capacity or out of inventory in a specified
period of time, the greater the amount which it psys to invest in order

to avert this contingency.
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Table 1. Variance of demand and optimal installed capacities

(4 = constant, @ = .50, and B = .85)

n/n .2 A4 .6 8 1.0
p=1/2 (1 + u/n) .6 .7 .8 9 1.0
q=1/2 (1 - ¢/n) A .3 .2 1 0
variance = ci'2 = 4 npq L.8000n 2.1000u 1.066Tu  .4500u 0
5 = B”/ n L9681 9371 .9069 .8780 .8500
adjusted annual discount factor =

2} 1/2
My = 1- l—} - 4 qul / 8820  .8673  .859%  .8542 .8500
2 gs
optimal installed capacity = X [10.0 8.8 8.3 8.0 7.7
minimum expected discounted
_c(®) _ &
costs = A& = X W, ho2 4,153 4.026 3.947 3.887

X
k l-le
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k. The deterministic model - backlogs considered

It is now time to examine the zero backlog assumption in a more
eritical way, and to explore the implications that result from dis-
carding it. The zero backlog assumption seemed especially appropriate
for the industry described by Chenery - natural gas transmission. In
the case of this industry, it was reasonable to suppose that
since the demand for the delivered product comes largely from individual
homeowners, such individuals - if unable to obtain natural gas fuel at
the time their home is initially constructed - would thereafter constitute
a rather dubious sales progpect. For an individual homeowner, the
initial ocutlay required for conversion from liquid fuels to natural gas
could easily outweigh any benefits that he might conceivably derive
from the switch.

Thig irreversibility phenomenon means that if a natural gas
transmission line is operating at full capacity and if that capacity
is kept unchanged, then demand for the delivered product will also remain
constant. Chenery was probably quite right to have assumed that the
gas industry's customers cannot be backlogged. Any atiempt to do so
would only result in their switching allegiance to an alternative fuel.

Even when customers cannot readily shift over to a competing pro-
duct -~ as in the case of telephones, water, and electric power for
residential purposes = it may still be sensible for the business enter-
prise to plan its investment outlays under +he assumption of zero back-
logs in demand. Certainly from the public reletions standpoint, a
utility company would be well advised to keep its capacity ahead of

residential demand - even though its customers cannot easily rig their
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own telephone lines, dig their own wells, or generate their own power.
In all these cases, the assumption of zero backlogs seems like quite a
reascnable starting point. From this assumption,togeth%r with the
economies of scale phenomenon, Chenery derives his "permanent" excess
capacity hypothesis: ". . . excess capacity will occur even with perfect
forecasting; this may be called 'optimum' overcapacity." [5, p. 2/}.
Despite the impressive list of sectors just. = noted, it would be
a mistake to suppose that the assumption of zero backlog possibilities
1s a universally valid one. The economist who is accustomed to work with a down-
ward. sloping price-demand curve will certainly find it just as reasonable
to believe that backlogs are admissible, and that they are accompanied
by some kind of penalty cost to the firm. The zero backlog model then
turns out to be a sgpecial casé'- the case in which backlog costs are
infinite. Everything hinges upon the penalty cost assumption.
To a petroleum transporter, for example, these penalties are far
less than infinite. If he is unable to ghip crude or refined products
via a pipeline, there is in almost all cases a transportation alternative
available «~ tankship, barge, railroad tank-car, or tank truck. The penalty
for failing to have enough pipeline capacity is simply the difference
between the short-run marginal operating cost of the pipeline and the
marginal cost of using the alternative mode of transport. No irreversi-
bility effects seem significant here. As soon as new pipeline capacity
becomes avallable, the oil transporter will not hesitate to switch over
from the high-cost mode that is temporarily in use. The change-over costs

would be negligible.
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This kind of reasoning is surely not confined to petroieum pipe-~
lines alone. A steel producer might find that the penalty for being
short of capacity in one section of the country would amount to nothing
more than an increase in the amount of freight absorption needed to
supply the region from a more distant point. Alternatively, the shortage
penalty might consist of the profits foregone in being unable to bid
on such maréinal business as a large construction project or in the
export market. In none of the examples just cited would it be reasonable
to assume that the steel company loses permanent customers. The penalty
for being short of capabity is of a temporary nature, and is confined to
the period of full-capacity operations.

In graphical terms, the analogy with Figures 1 and 2 is shown on
Figures 5 and 6. Just as iﬁ the earlier model, we assume that demand
grows linearly at the rate of one physical unit per year. Again, x units
will denote the size of each new installation and the points to s
to+x » to+2x s + « » 8till mark the points of regeneration: the points
at which excess capacity has just been wiped out. The entire difference
between this and the earlier case is that we allow excess capacity to
become negative here - in other words, permit backlogs of demand. Once
such backlogs become admissible, there is no longer any a priori reason
to believe in the necessity of Chenery's excess capacity hypothesis. With
sufficiently low penalty costs, it is even conceivable that excess capacity
will, on the average, be negative.

Figures 5 and 6 have been drawn on the assumption that whenever the

backlog in demand grows to y units (that is, whenever excess capacity
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equals minus y }, a new facility is built - one of size x . We now
have two decision variables: x , the size of each installation, and
Yy , the "trigger" level for backlogs in demand.* Penalty costs will be
assumed strictly proportional to the dummy variable 2z , hereafter employed
to denote the size of the backlog.

Loocking forward into the future from a point of regeneration, total
discounted costs are a function of both x and y . If we denote these
discounted costs by C(x,y), the expression that corresponds to (2.2)

is as..follows:

y
(3.1)  clx,y) = zl (cz)B” + (kx™)p” + 8% c(x,y)
z=

where c represents the penalty costs per unit of backlog.

It is easy to see that wﬁen demand is growing steadily at the rate
of one unit per year, a backlog of size 2z occurs exactly 2z years
after a point of regeneration. The first term on the right-hand side
of (L.1) therefore measures the discounted sum of all penalty costs
incurred during the course of a single construction cycle. The second
term measures the installation costs, and discounts them y years back
to the beginning of the cycle. Finally, the last term indicates the
present value of all costs incurred in subsequent cycles, and discounts
this value over a period of x years. From (4.1), we readily obtain:
¥

Clxy) = =5 |¢ 2 28% + xx’pY
i-B

Any reader will note the striking similarity between this and the
Ss theory of optimal inventory policy. One important difference tends
to be concealed in the deterministic form of the two models. A replenish-
ment lag is characteristic of the inventory studies, [i, 27. In the
interests of simplicity, however, the corresponding feature - a construction
lag - is ignored in the present paper.
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Dividing through by k in order to eliminate one parameter, and
christening the ratio ¢/k with the name 7 , we finally have the cost
expression to be minimized:

y
(v.2)  Clxy) - L v T 28% + %Y
k l_gx z=1

Expression (4.2) involves three parameters: « , the economies-
of-scale factor; B , the discount factor; and y , the penalty factor.
Minimization of (4.2) with respect to both x and y could conceivably
have been accomplished by calculus methods as in the earlier one-variable
case, but this approach seemed rather clumsy.* Instead, refuge was taken
in numerical methods. An electronic,computer** evaluated C{x,y) for a
largegnumber of combinations of x and y , and reported the miﬁimum for
each specified set of values of a, B, and ¥ . The results of three such
calculations are shown in Table 2. As in the case of Table 1, the
parameters o and B were set at .50 and at .85, respectively. One

word of caution about the construction of this table: +the decision

variables x and y were restricted to integer values.

* If we are willing to make the approximation that log B = B-1, and
then set the two partial derivatives of C(x,y) equal to zero, we obtain
two simultaneous nonlinear equations for the optimal values £ and 2 :

o7 - [(-208 ) B° C(&,§)] ¢ a & (4.30)
ana § = {LB) & (h.3Db)
7 B

From (k.3b) it is clear that the optimal y vanishes only vhen 7y ,
the unit penalty cost, becomes infinite.

**  fhe machine was the I.B.M. 650 located in the Yale University Computing

Center., For help in programming and in running the machine, I am indebted
both to M. Davis, Director of the Center, and to D. Closek.
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Table 2. Shortage penalty costs, optimal backlog
levels, and installed capacities.
(e = .50 and B = .85)

shortage penalty

optimal installed
capacity = ¥ 8 10 13

optimal backlog
level = § 0 2 6

minimum discounted
c(%,§

costs = 2 3.888 3.416 2.765

(see (4.2).)
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Table 2 and similar calculations strongly suggest one conjecture -
a2 conjecture which I have not, however, attempted to demonstrate rigorously -
that a decrease in the penalty cost factor ¥ will always lead to an
increase in the optimal levels, % and i . This conjecture is supported
by the general appearance of equations (4.3a) and (4.3D).

Both to an economist and to an operations researcher, it is likely
that the shape of the cost function C(x,y) is of even greater interest
than the optimal wvalues 2 and & themseives. Figure 7 contains a plot
for the set of parameters corregponding to the third column of Table 2
(o = .50, B = .85, and ¥y = .10). The optimal point, as indicated by
both that table and this figure, leads to a cost of 2.765. The figure
alsgo gives an indication of how insensitive these costs are to & fairly
vide set of values assigned to the decision variables x and Y.

An x-value as high as 19.0 and a y-value as high as 8.8 will only
increase costs to a level of 2.850 - a matter of about 3%. From the view=
point of the operations researcher and the business forecaster, this
insensitivity is fortunate indeed. Even a substantial error in fore-
casting will not lead to an egregiously bad choice for the installsation
size or for the "trigger" level of the backlog.

What is fortunate from the viewpoint of the businessman may be
disastrous, however, from the viewpoint of an economist trying to fore-
cast investment cholices on the basis of an optimizing model. Even if
the economist happens to hit upon the same values for o , B , and ¥
that are in the mind of the businessman, the latter will suffer no great
venalty for deviating from the optimal path predicted by the economist

for his behavior.



Figure 7. Discounted cost function, C(x,y)
a = .50
- Backlog level, y B = .85
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i

c(x,y) = 2.850
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Min C(x,y) = 2.765
©

2 |- C{x,y) = 2.800

Installation size, x

L 1 ) 1 -, . t L L L i i

b Iy, 6 8 10 12 14 16 18 20 22
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5. The probabilistic model - backlogs congidered

The final stage of this investigation will consist of fitting
together the two kinds of generalizations of Chenery's model: (a) pro-
babilistic growth, and (b) backlogs in demand. Just as in the zefo
Yacklog case, we now assume that the mean annual rate of growth is the
physical unit of measurement; that the actual growth taking place in
4 years 1s not a single-valued outcome, but rather a random variable =
the outcome of n independent Bernmouilli trials; and that at each of
these trials, the probability of a unit increment in demand is p and
the probability of a unit decrease, q . The individual time units for
our probebilistic model are u/n years in length, and the discount factor
for each sﬁch period will be denoted by s, (s = Bg/n).

As before, we shall let nu

X,t

t time units have elapsed at the time when total demand first exceeds

represent the probability with which

the initial level of x wunits. Similarly, u will denote the pro-

Yt
bability with which t time units are needed before the first occasion
on vhich demand has increased beyond the initial level by y units. We

already know the generating functions for these two probability distri-

butions:
® t x
(5.1) Ux(s) = tio s, g = LA
® ¢
(5.2) Uy(s) = £ su =)

£=0 v, 2

(Refer back to (3.3), (3.5), and (3.7).)
Now in order to deal with the backlog gquestion, we shall have to

introduce one additional piece of notation: u, t(y-z). This symbol
3
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will dencte the probability with which the backlog equals 2z at
1 time units after a point of regenération. Why does the decision
variable y enter into the definition of this probability? Because
the process of building up & backlog will come to an end as soon as
demand has increased by Yy wunits - that is to say, by an amount large
enough to trigger off the construction of a new facility.

In random walk language, u, t(y-z) is the probability with which
a particle, starting y wunits above the origin, will on the t: thvstep be z units
beneath its initisl position, without having previously
touched the absorbing barrier at the origin. Feller has already provided
us with the genersting function for this probability distributicn

{10, problem 16, p. 336]:

[--} t 2 A-2 y 2
(5.5} Uy(s; y-2} = L s uy,t(y—z) = vo Xg xz M

(y >z > 0)

where Ay and A, &re as determined earlier by (5.5) and where the

parameter VO is given by:

(5.8) v, = [1-4 pas®) /2

The cost equation for our new model may be written down by direct

analogy with the deterministic one (4.1):

y-1
(5.5) C{xyy) = Z

cz)U (s;y-z}) + (ey)r, + (kx + ) X, ¥
(c2)U,( )+ (ey)ad + (k" + A% c(x,y)
Z=1 y 2 2 2 ‘



Total expected discounted costs, C{x,y), will - as in the preceding
cases ~ be measured from a point of regeneration, a point at which excess
capacity equals zero. Now the first term on the right-hand side of (5.5)
measures the expected discounted sum of all backlog penalties incurred |
after this point of regeneration and prior to the point at which the back-
log reaches the critical level, y . (See Figure 6. Also equation (5.3).)
The penally cost summation extends over asll possible backlog levels
other than y itself: =z = 1,2, . ., y-1. Note that it is quite easy
for the backlog to become negative at any time after a point of regeneratiocn.
Our cost expression simply says that whenever this happens (that is, when-
ever demsnd drops off enough to create some excees capacity), no additional
cutlays are incurred beyond those that were previously committed.

The second term on the right-hand side is also connected with penalty
costs - those that occur just once each cycle at the point when the back-
log reaches the triggering level, y . The appropriate generating function
in this case is as given by (5.2). In random walk language, this is the
generating function of first—paséage times through a point y units below
the initial position.

The third term on the right-hand side of (5.5) is the one having
to do with construction costs during a single cyclé. Just as with the
second term, these costs are all incurred at the time of reaching the
level Y , and so the appropriate generating function is again (5.2).

Finally, the fourth term (that measuring the discounted sum of.all
costs incurred in subsequent cycles) refers to a cost that is dated as

of the beginning of the following cycle. This cycle will begin whenever
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the total demend first increases by x units over the current level -
i.e., whenever the x wunits of new capacity are, for the first time,
fully utilized. In the fourth term therefore the appropriate generating
function is (5.1).

For purposes of numerical analysis, the cost function (5.5) may

be rewritten:

S W\ Y ey, ey
(5.6) Sx¥) -1 _ Jyv = -y V[ 2) £ ozl o]+ xTa
k 13X © z=1 ot M z=1

2

where Y again measures the ratio c¢/k, as in the deterministic cal-
culations of the preceding section.

The numericel analysis of (5.6) is only slightly more compleXx
than that of (h.a).* There are still just two decision variables, x
and y , and three economic parameters a, P and 7 . The only additional
feature is that in the present case we must also take account of the:gene-

rating function parameters xl, lz, and Vo . As can be seen from thg

row headings of Table 3, thggéﬁiﬁéﬁgﬁéﬁtioned parameters all depend upon
the ratio u/n . (The symbol p represents the expected outcome of the
n independent Bernouillil trials.) Just as in Table 1, we now examine
the effects of increasing the variance while holding the expected incre-
ment in demand, p , congtant. Also held constant in Table 3 are the
parameters a, B, and ¥ . Both « and P are set at the same levels
as were used for the earlier calculations.

Table 3 would be of little interest if it merely confirmed for the
variable backlog case what we already knew about the zero backlog model:

that an increase in variance is inevitably accompanied by an increase

in X +the optimal installation size.

* 1n fact, the same I.B.M. 650 program written to solve (5.6) also
handled (4.2).



- 31 =

Table 3. Variance of demand, optimal backlog levels,
and installed capacities

(n = constent, @ = .50, B = .85, and 7 = .10)

u/n .2 A 6 8 1.0
p = 1/2 (1 + u/n) .6 T 8 .9 1.0
q =1/2 (1 - u/n) A 3 2 1 0

variance = o0& = b npq

L.8000p 2.1000p 1.0667n 45000 O

6 = ﬁu/n 9681 L9371 .9069 .8780 .8500
(5.4) V= [1-!; pq82] -1/2 3.1556  1.9520 1.4531 1.1765  1.0000

' 2 1/2 |
(3.5) A o= 1+ [1"“ quz ;‘/ 1.7003 2.6895 4.6533 10.5353 o

: 2 gs

2] 1/2

(3.5) n, = 1 - [ Pq’"] / .8820  .8673  .B59%  .85hk2  .8500

‘ 2 qgs
optimal installed capacity = ¥ 11 11 12 13 13
optimal backlog level = ¥ 2 3 L 5 6
minimum expected discounted

costs = 0—5‘%@- 5.855  3.426 3.181  2.9TL  2.765

(see (5.6).)
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Table 3 provides an immediate counter-example to this conjecture.

For u/n = 1, the variance is zero and the optimal installation size is

one that equals 13 times the expected annual increment in demand.

the variance increases to 4.8000p, X drops down to 11.

When

An increase in

variance - at least over a limited range - actually leads to a decrease

in the optimal size of each individual facility.

No attempt will be made to establish in an ex post manner the

intuitive plausibility of these new resulis.

All that needs to be

pointed out is the rather trite moral that theorems about a one-variable

problem do not necessarily carry over to .a: two-dimensional analogue.

6. Summary and generalizations

For the benefit of the reader who hes persevered through the

sensitivity analyses that went with each of the four models analyzed

here, it seems only merciful to recapitﬁiate the chief results schematically:

Backlog assumption

Zero non-zero
Demand growth
assumption deterministic |probabilistic |deterministic |probabilistic
Cost equation (2.3). (3.9) (%.2) (5.6}
ax ?
EE >0 . >0 ? ?
See (2.5), (3.5), and Fig. &4
i ‘
A X
) not | >0 not >
4o applicable applicable < Y




- 33 .

In each of the four cases, the regenergtion point technigue -
when coupled wlith the appropriate generating functions - made it & rather
simple matter to relate total costs to the decision variables in a
closed analytical form. There was no need to invoke the functional
equation concept with which Bellman's work on dynamic programming has
made us so familiar [4]. This ie not in the least to underrate the
importance of the functional equation approach ~ only to point out that
other tools may also be quite useful in dynamic optimization.

Among the problems that seem closely related to the one discussed
here would be not only cases of inventory stockage [1,2), but also models
of equipment replacement [3, 12], and of forestry economics.* Each of
these is characterized by a cye¢lical spurt of build-up activity (either
ordering some inventory, or installing a new piece of eguipment, or
cutting down and reseeding a piece of forest land) - a spurt which is
followed by a fairly long gestation period (rundown of inventory,
accumulation of operating inferiority, or the growth of new trees) until
the beginning of the next cycle. There is good reason to believe that
generating functions could prove useful in the analysis of all such
stationary cyclical activities as these.

As intriguing as the research prospects in allied areas might be,
the fact remains that we are far from having exhausted the sudbject of

capacity expansion in this paper. It is easy to think of certain

*  The forestry problem was suggested to me in an unpublished paper by
R. F. Keniston of Oregon State College. A similar case was, of course,
investigated a good many years ago by Knut Wicksell [13, pp. 172-184].
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generalizations that would be quite straightforward: It would be a
fairly simple matter, for example, to replace the construction cost
function (2.1) with & different one - just as long as the new function
also exhibited economies of scale. (Without economies of scale, the
whole rationale breaks down for the bunching together of investment
activity.) Another fairly simple generalization would consist of re-
placing the proportional backlog penalty cost with an arbitrary non-
linear function of the backlog size, z . ‘The generating function (5.3)
would still be valid. The only difficulties wouwld arise in the numerical
optimization with respect to x and y . It might no longer remain true
that a local optimum was & global one..

Even if one wighed to alter the probability structure underlying
the demand growth pattern, there are certain aelterations with which
no great difficulty would be experienced. One might wish to assume, for
example, that at each Bernouilli trial demand either increases by one
unit with & probability of p , or else stays constant with a probability
of g . (This assumption excludes the possibility of any decline in
demand.) We then obtain a first-order difference equation for the gene-
rating function of first-passage times, and find it even easier to study
than the case discussed here.

Another fairly styalghtforward generalization would be to the case
of continubuslrather than discrete time. One would then want to analyze
a growth process in which, during a time interval of length dt , the pro-
bability of a one-unit demand increase was p dt , and the probability of

a one-unit decrease was ¢ dt. (p + g < 1) This kind of process would
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call for the use of Laplace transforms in place of generating functions,
but would otherwise be quite similar to the problem discussed here.

Now to enumerate several of the more intractable generalizationsg:
Suppose that we wished to deal with a case in which, at each Bernouilli
trial, demand either increased by 2 units with a probability of P s Or
else decreased by 1 unit with a probability of q » We would then be in
the same difficulties as those which Dvoretsky, Kiefer, and Wolfowitz
raised in connection with the Ss inventory policy. [9, pp. 189-196.]

No matter what value we assign to the "trigger" level of excess demand,
there is no assurance at all that the random-walk process will pass
through this point on each cycle. Unless demand is constrained to move
from one point to an immediately adjacent one, we cannot be sure that
the construction process willkbe triggered off at the same backlog level
during each successive cycle. Our problem would then become the much
more difficult one of calculating the optimal installation size as a
function of the backlog level.

One final kind of generslization that is appealing from the view-
point of economic'realism, but which leads to snalytical difficulties
is the following: Suppose that we wish to replace an arithmetic growth
process with a geometric one. Instead of assuming that the unit incre-
ment remains constant over the indefinite future, we would want to say
that this increment is an increasing function of time., Again we would
run into trouble. Even if we then defined the trigger value and installation
size as functions of time, we would still run into the Dvoretzky, Xiefer,

Wolfowitz objection. No matter what trigger value Tunction were chosen,
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there would still be no assurance that the random-walk process

would pass through a trigger point on each successive cycle. The

optimal installation size would, under these circumstances, have to

be defined ag a function of both the backlog size and also of the

calendar date. A linear probabilistic growth pattern seems like a

far easier thing to analyze than the geometric case.

10.
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13,
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