Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

12-1-1992

An Alternative Theory of Firm and Industry Dynamics

Richard Ericson

Ariel Pakes

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Ericson, Richard and Pakes, Ariel, "An Alternative Theory of Firm and Industry Dynamics" (1992). Cowles
Foundation Discussion Papers. 1284.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1284

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/1284?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F1284&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Connecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 1041

Note: Cowles Foundation Discussion Papers are preliminary materials
circulated to stimulate discussion and critical comment.
Requests for single copies of a Paper will be filled by the
Cowles Foundation within the limits of the supply. References
in publications to Discussion Papers (other than mere
acknowledgment by a writer that he has access to such
unpublished material) should be cleared with the author to
protect the tentative character of these papers.

AN ALTERNATIVE THEORY OF FIRM AND INDUSTRY DYNAMICS
Richard Ericson and Ariel Pakes

December 1992



AN ALTERNATIVE THEORY OF
FIRM & INDUSTRY DYNAMICS
Richard Ericson and Ariel Pakes!

December 1992

First version: September 1989

ABSTRACT

This paper provides a model of firm and industry dynamics that allows for entry,
exit and firm—specific uncertainty generating variability in the fortunes of firms. It focuses
on the impact of uncertainty arising from investment in research and exploration—type
processes. It analyses the behavior of individual firms exploring profit opportunities in an
evolving marketplace and derives optimal policies, including exit, in this environment.
Then it adds an entry process and aggregates the optimal behavior of all firms, including
potential entrants, into a rational expectations, Markov perfect industry equilibrium, and
proves ergodicity of the equilibrium process. Numerical examples are used to illustrate the
more detailed characteristics of the stochastic process generating industry structures that
result from this equilibrium.

JEL Classifications: L11, C73, D40, D92.
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1. INTRODUCTION

A salient feature of firm level data is the great variability in the fate of firms over
time. Notable manifestations of this variability include the significant amount of
simultaneous entry and exit, of simultaneous firm level job creation and destruction, and of
variability in growth rates, found in the analysis of firm and establishment level panel data
sets. These indications of differences in outcome paths among firms persist even after one
controls for the entry date, location, and "industry" of the firm, and therefore for time,
location, and industry specific differences in economic environments. Moreover they tend
to be associated with a remarkable degree of heterogeneity among firms in the same
industry in both the levels and the movements over time in the variables that we typically
want to analyze (shares in industry output, investment, productivity, etc.)2. We provide a
model of industry behavior which, because it incorporates idiosyncratic, or firm specific,
sources of uncertainty, can generate the variability in the fortunes of firms observed in this
data.

Although the data alone provide sufficient reason for developing a model capable of
describing behavior in a world with idiosyncratic uncertainty, there is a policy, as well as a
descriptive, need for such models. In a world where firms differ, policy and environmental
changes are likely to have different impacts, and lead to different responses, in different
firms. Since these responses are frequently nonlinear functions of the changing variable
(entry and exit reflecting an extreme nonlinearity), any analysis of their effects, even if
only an analysis of their aggregate impacts (say on industry supply or on productivity),

requires both the underlying distribution of firms by the source of response heterogeneity,

2Partly due to increased data availability, there has been a resurgence in the analysis of firm
level panels over the last decade. For more detail on the empirical results that emanated
from these studies, and the basis for our brief summary of some of their results, see Evans
g984, 1987), Dunne, Roberts, and Samuelson (1988), Pakes and Ericson (1989), Davis and

altwinger (1991), and the literature cited in those articles. These articles also contain
references to the extensive empirical literature on the nature, extent, and implications of
the variation in output paths among firms.



and the (equilibrium) response of that distribution to the underlying policy or
environmental change.? Of course, policy issues are often more directly related to the
heterogeneity in the distribution of responses per se, as in, for example, the analysis of the
effects of a policy or an environmental change on job turnover, on market structure, or on
default probabilities. In these situations the whole focus is on characteristics of the
distribution of the response heterogeneity, and hence the need for a structural model that
allows for idiosyncratic uncertainty becomes even more obvious.

There is, of course, more than one source of idiosyncratic uncertainty that firms
react to, and different sources are likely to be more relevant to analyzing behavior in some
industries than in others. Though our model can accommodate other sources of
uncertainty as well, we focus attention in this paper on the impact of the uncertainties
generated by the random outcomes of research and exploration—like processes, and are thus
primarily interested in providing a framework for analyzing behavior in industries where
those processes are important. We need not, however, be too specific about the nature of
competition in the spot market for current output, so the model ought to be applicable for
a range of industries in which the outcomes of research and exploratory type processes are
important.

The industry model is based upon a stochastic model of the growth of an enterprise
through the active exploration of its economic environment. The active component is
modeled as an investment process that is directed at the accumulation of a capital stock
which improves the current profits that the enterprise is able to earn. The outcomes of the

investment process are, however, far from certain. It may generate a sequence of events

3See Geweke (1985), and Pakes and McGuire (1992) for related discussions and numerical
examples. The importance of explicitly accounting for heterogeneity in reponse patterns
when analyzing the aggregate impacts of changes comes out clearly in the recent empirical
work that uses disaggregate data to study such changes. See, for example, Thomas’ (1990)
study of the impact of FDA regulations on the rate of innovation in the pharmaceutical
industry, or Olley and Pakes’ (1992) study of the impact of deregulation on aggregate
productivity growth in the telecommunications equipment industry.



that leads to phenomenal riches, or it may produce little of economic value. More
precisely, it may produce less than the efforts of competitors (both inside and outside the
industry), yielding a deterioration in the profitability of the enterprise and, quite possibly,
leading to a situation in which it is optimal to abandon the whole undertaking. This
endogenizes exit behavior, and provides a natural way of accounting for selection in the
process of determining the evolution of the industry. The model is closed by showing the
existence of a Markov perfect Nash equilibrium in the investment, entry, and exit decisions
of each firm. Firms maximize their present discounted value given expectations about the
evolution of their competition, and at equilibrium those expectations are fully consistent
with the process generated by the optimal decisions of all firms within or entering the
industry. Thus we show the existence of a rational expectations equilibrium with
heterogeneous agents subject to idiosyncratic shocks.

There are several predecessors to our model in the literature. The earliest is the
class of traditional investment models, including those dealing with investment in R&D
and innovative activities (see, for example, Brock, 1972; Lucas, 1978; Abel and Blanchard,
1983). These models are similar to ours in that investment is the activity leading to
growth. However, they typically postulate a deterministic relationship between investment
efforts on the one hand, and the accumulation of capital on the other. They therefore do
not attempt to deal with diversity in outcome paths conditional on the variables which
determine the incentives to invest (a phenomena which is natural in a model, such as ours,
with stochastic accumulation). More similar in spirit in this respect to our model are
models of investment and stopping in research and exploration processes (see the review in
Kamien and Schwartz, 1982; Roberts and Weitzman, 1981; Grossman and Shapiro, 1986).
These, however, are models of the behavior of single firms, and hence do not attempt to
analyze the impact of the interactions among competitors on both the descriptive and the
policy questions of interest.

Models more similar to ours in the latter respect are the game—theoretic models of



investment in R&D in patent races (see Dasgupta and Stiglitz, 1980; Reinganum, 1982; and
the literature cited in those acticles). The game—theoretic models, however, do not
consider ongoing ventures; the competition terminates with a single prize.4 Thus there is
no notion of an evolving market for the output of the industry, or of continual change in
industry structure. The ongoing nature of the interactions generated by outcomes of
investment processes is stressed in the evolutionary model of Nelson and Winter (1982), a
model similar in spirit to the one to be presented here. Indeed, the major difference
between the Nelson—Winter model and ours is that ours is an optimizing model; i.e. in our
model investment, entry, and exit decisions are made to maximize the entrepreneurs
perceptions of the firm’s expected discounted value of future net cash flows.

There are at least two other classes of models of industry dynamics that aliow for
heterogeneity among firms and idiosyncratic uncertainty, but both focus on a different
source of idiosyncratic uncertainty than the one we concentrate on. Moreover there are
variants of each that are truly closed in the sense that not only is the optimal behavior of
individual firms determined, but an equilibrium is defined for the industry and shown to
exist. In both cases the equilibrium allows for entry and exit, at least until a limiting
stationary state is reached.

The earliest of the two consists of what might be called ‘passive learning’ models
(Lippmann and Rummelt, 1982; Jovanovic, 1982). These models capture the idiosyncratic
uncertainty in each undertaking by endowing it with an initially unknown, time—invariant
parameter which determines the distribution of its profits thereafter. The (endogenous)
dynamics of firm behavior are generated by a Bayesian learning process. That is, past
profit realizations contain information which enables increasingly accurate predictions
about future profitability. This generates an evolutionary selection process, with

simultaneous entry and exit, and some very strong predictions regarding the nature of the

4A recent exception is P.K. Dutta, S. Lach, A. Rustichini (1991).



stochastic process generating sales among survivors. Pakes and Ericson (1989) compare the
properties of this passive learning model to those of the model of active exploration
presented here, and consider some simple ways of distinguishing when one or the other
might be relevant.s

More recent developments include a class of dynamic models that emphasize the
sunk cost nature of initial investments whose relative profitabilities change over time in
response to the outcomes of some exogenous process. In this class of models, Dixit (1989a,
1989b) focuses on exchange rate variability, while Lambson (1989, 1992) focuses on
variability in relative factor prices. In these models the realizations of the process
generating the uncertainty are common to all firms, though their effects may differ.
Though we could extend our model to incorporate (at least limited forms) of the
uncertainties associated with either unknown initial conditions, or with a time—specific
individual invariant process (as might the other authors be able to extend their models to
incorporate the effects of stochastic accumulation), we pay little attention to the
implications of those types of uncertainties in this paper; implications on which the other
papers specifically focus.8

The next section begins with an overview of the behavioral assumptions in our
model. We then formulate the decision problem faced by both incumbent firms and by
potential entrants to the industry, and define an industry equilibrium. The equilibrium we

work with is Markov Perfect Nash (in the sense of Maskin and Tirole, 1988a,1988b) in

5These models were a natural dynamic extension of the static models of industry
equilibrium with heterogeneity among agents; see Lucas (1978), Khilstrom and Laffont
(1978?, and the summary in Brock and Evans (1985). Hopenhayn (1992) provides a hybrid
model in which perfectly competitive firms are subject to exogenous productivity shocks,
but do not engage in Bayesian learning as they know the distribution of those shocks.

¢Dixit (1989b) considers only neutral efficiency differences among firms, i.e. if firms are
differentially productive, then their relative productivities do not change at different
realizations of the forcing process. In Lambson’s (1989) model, firms choose technologies
on the basis of current factor prices, and those choices may well turn out to be inefficient in
the future. Then relative efficiencies are a function of the realization of the time—invariant
process. For a discussion of the importance of initial, and of recurring, sunk costs and their
relationship to the evolution of industry structure in several industries, see Sutton (1991).



investment strategies. It thus naturally allows for state variables that both differentiate
among firms and are serially correlated; both are features of a model which are often
considered to be necessary if the model is to be used to structure subsequent data analysis.

In section III we derive our general results characterizing the optimal investment,
exit and entry decisions of firms either actively or potentially in the market, and showing
the existence of a rational expectations, Markov perfect dynamic market equilibrium for
the industry. We further characterize that equilibrium as an ergodic stochastic process,
and discuss the general implications of that result for interpreting the observed dynamics of
industry equilibria.

The model] is general enough to encompass a number of detailed models of
competition, and the answers to many questions of interest depend on the details of the
functional forms which determine the nature of the relationships within it. As a result we
have, elsewhere, developed a computational algorithm which computes and characterizes
the equilibria associated with the different functional forms that can be fed into our model
(see Pakes and McGuire, 1992). Section IV uses this algorithm to compute the equilibria
from a Cournot—Nash, homogeneous product, version of our model in which firms are
differentiated with respect to their efficiency of production; efficiencies which evolve with
the outcomes of a research and exploration process and with the outcomes of an aggregate
process which shifts the costs of factors of production to the industry. It then provides a
brief comparison of these results to the results from the differentiated product version of
our model used as the example in Pakes and McGuire (1992); a version in which firm’s are
differentiated by the quality of the product they produce, a quality which evolves with the
outcomes of both a research and exploration process and with the value of products
produced outside of the industry which vie for consumers’ expenditures. The paper
concludes, in Section V, with a discussion of potential extensions, focusing primarily
(though not entirely) on steps that would allow us to make more intensive use of the model

in interpreting data. Finally, the proofs of our results are gathered in a technical appendix.



II. AN INDUSTRY MODEL.

A. Overview.

The active force in our model is an entrepreneur or firm exploring a speculative
idea, a perceived profit opportunity in some industry.? To learn the true value of this idea
or opportunity, an entrepreneur must invest to enter the industry and then in developing
and, possibly, in exploiting that idea or opportunity. Investment to enter the industry is a
sunk cost, perhaps partially recoverable if there is some scrap value realizable on exit. The
quantity of investment, together with parameters describing the evolution of the market
and the competition, determine the probability distribution of outcomes from the
exploratory activities of an active firm in each period.

Favorable outcomes from its own investment activity tend to move the firm towards
"better" states; states in which its idea can be embodied in a good or service which is likely
to be marketed more profitably. Favorable outcomes of direct competitors, or advances in
alternatives to the industry’s products, tend to move the firm toward less profitable states.
Indeed, a firm whose investment activity generated a string of relatively unsuccessful
outcomes may well find itself in a situation in which its idea is not perceived to be worth
developing further, so that the enterprise is best liquidated and its salvageable resources
committed to an alternate use. The model, therefore, generates exit as a natural outcome
of an evolutionary process.

The opportunity and technology provided by this industry are open to all, 50 that
the only distinction among firms is their achieved state of "success" {index of efficiency],
we 2 CZ, in exploiting this opportunity.® The state, w, of each firm within the industry

is measured relative to an outside alternative. The outside alternative reflects the strength

TWe do not explore the nature of the firm in this model, but take it to be a unitary
maximizing agent.

87 is the ordered set of all integers; Z, is the set of non—negative integers.

+



of competition outside the industry and it changes over time as a result of autonomous
factors which shift the demand and/or the cost parameters of all irms producing in the
industry (detailed examples are given below). Therefore higher w indicates that the firm
is in a stronger (more profitable) position relative to both other firms in, and competition
from outside, the industry. There is a set of states, nc ), at which new firms may enter
the industry after making a sufficient investment. We denote the industry structure at any
point of time by s = {su}wel € I®; sothat s provides the number of firms at each
possible # state. The couple, (w,s), will determine the state of the firm. That is, we will
assume that (v,s) determines the entire distribution of the firm’s current and future
profits, and hence the firm’s viability as an enterprise.

This state changes as a result of the outcomes of the firm’s own investment @d
development efforts, the outcomes of the efforts of other firms operating in the same
market, and with changes in the overall market environment, i.e. in demand, input costs,
and science and technology, in which it is embedded. The firm’s own level of investment,
denoted by x, € [R+, is chosen to maximize the expected present discounted value of
profits as a function of all information available at t. We assume this information to
include the history of all past states and of the firm’s own past investment decisions, i.e.
{(“’t”st’)’xt’}t’<t; the current state, (w ,st); and the probability laws governing the
evolution of that state over time including the law governing the impact of the firm’s own
investment on that evolutionary pattern. Of course, those probabilities are determined, in
part, by the investment decisions of all firms in or entering the industry. We assume that
the firm never observes the investments of its competitors, even though the observable
outcomes of those investments will determine the state of the firm’s environment and hence
its profits in the future. Thus we have in mind a model for a "diffuse" industry; an
industry in which firms are not directly aware of the investment strategies of their actual
and potential competitors, but are affected by the successful outcomes of those strategies.

Note that since the investments of a firm’s competitors are not observed, firms cannot



make decisions based on them.

Precisely how the state (w,s) affects the present and likely future payoffs to the
firm depends on the nature of competition and thus the associated type of market
equilibrium achieved in each period. That will determine the "strength" of the competition
faced, and hence which states are "better" for the firm. For our theoretical results we do
not need to be too precise about the nature of the equilibrium in the spot market for
current output. We will require that it generate a complete preorder, ¥, over s, which
unambiguously defines the strength of the competition. That is, we assume that, no
matter what the firm’s w, current profits are (weakly) decreasing in s in the sense of ».
Also, conditional on any s, current profits are (weakly) increasing in (the natural linear
order of) w. Hence many models of the interaction among firms (including price taking
"competitive" models) abide by our assumptions.

To illustrate, we have developed and numerically analyzed two examples. The first
is a differentiated product model where spot market equilibrium is Nash in prices (for a
discussion of such models see Caplin and Nalebuff, 1991, and the literature cited there).
There v indexes the difference in the distribution of consumer utilities obtained from
consuming the firm’s product and the utility obtained by spending all of the consumer’s
income on alternatives outside the industry (see Pakes and McGuire, 1992). The second
example is a homogeneous product model in which equilibrium is Nash in quantities and
firms differ in their production efficiencies. Here « indexes the difference between the
firm’s index of production efficiency and an index of factor cost. The second example is
presented, and briefly compared to the first, in Section IV of this paper.

The dynamics of the model are generated by the stochastic outcomes of the firms’
own investments and the outcome of an exogenous process reflecting improvements made
by competition outside the industry. Outcomes of this exogenous stochastic process
generate a correlated non—positive stochastic shift in all the firms’ w’s, reflecting increases

in the quality of goods outside the industry that vie for the consumer’s dollar (and/or
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increases in labor costs). It is, therefore, a source of continuous dynamic competitive
pressure that forces all firms in the industry to struggle to maintain profits and survive.
Note that this exogenous process can induce a positive correlation in the profits of different
firms in the same industry, a phenomenon we often observe in data (Without the
exogenous process, any outcome which leads to an increase in profits for one firm would
necessarily reduce the profits of its rivals). Also, it is assumed that the outcomes of the
exogenous process generating increases in the knowledge stock outside the industry are
embodied in the new generations of potential entrants to this industry; otherwise entry
would eventually die out, and with it the industry. That is, the new generation of entrants
brings with it knowledge which was not available to previous generations.

Entry takes place at some o? € 0%, a set of states that in varying degrees reflects
relevant developments/advances outside the industry. A new entrant incurs a sunk cost of
entry, xe, and then takes a full period to set up the specific fixed capital with which it
enters. The precise state of entry depends on the "quality" or "efficiency" of the entering
firm, i.e. on how "good" its idea or innovation is relative to the achieved standards of the
industry. This we assume to be unknowable ex—ante; an idea must be tried, and time,
money and effort invested, before competitiveness can be precisely known. Hence there is
only a common knowledge distribution, P(w?), over the potential entry states, €,
indicating the uncertainty of both entrants and incumbents as to the competitiveness of
potential entrants.?

Exit from the industry takes place when firms realize that the expected present
discounted value of remaining in the industry is less than the opportunity cost of
remaining, i.e. less than the resale/scrap value of the assets currently employed there. This

naturally occurs in "low" w—states; just how low depends on the strength of competition in
P

'We assume Q¢ is bounded above, implicitly restricting the amount of progress that can be
made in the area/niche of this industry while remaining outside the industry, and will show
that there is a lower bound such that such that rational entry would never occur below

that w.



the industry (i.e. on s). Indeed, without a continuing series of "successes" in investment,
the negative drift imposed by outside competition and new entrants will snevitably drive
incumbents to exit. Thus the industry is in a continual state of flux, in a sense that we
make precise below, with entry, exit, growth, decline, and reversals of fortune continually

oceurring.

B. The Assumptions.

The opportunity presented to each firm by the industry is defined by the following
set of model primitives, which are common knowledge to all actual and potential
participants.

{A(08), P |w-), 0,87 18), [m(s), P(e0), {83 23] b ), Bl 6)eqress
We first describe these objects, and then present the formal assumptions required for our
general model.

The state spaceis QxS C leﬂm, where S is a set of counting measures on Z. The
structure of the industry, that is s, the list which counts the number of firms in each state
w, is just such a measure. The function A(w,s) gives the payoff or profits of a firm from
its current production and sales activities. It is a reduced form, reflecting the equilibrium
of the industry spot market, and its detailed characteristics can vary from example to
example. p(w’|w,x) is the given firm’s probability transition function which depends on
the level of its investment activity, x € IR+. It gives the probability of shifting into state
w’, conditional on being in state w and investing amount x. g _(§'[s) provides the
firm’s beliefs about the transition probabilities for the other firms in, or entering, the
industry, given that the firm under consideration is in state w. Here § = s—e > Where e,
is a vector with one in the s—th place and zero elsewhere, so that § is a measure providing
the location of the firm’s competitors. Thus next period’s industry structure will be s/ =

=5+ e, where §’ includes any new entrants and w’ is the new state achieved by
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the firm in question.

The triple [m(s),P(w?), {xé}mil] characterizes the conditions of entry into the
industry. The number of entrants stimulated by any structure (state of competition), s,
is given by the function m(s). The initial investment required to begin the process of
entry is x o which may depend on the number of firms entering. Finally, the state, w?,
at which a new firm enters the industry is determined by the probability distribution P(-)
with support [supp(P)] ot

The parameter ¢ gives the Opportuﬁity cost of being in the industry; it is the
amount recoverable on exit. The function ¢(w) gives the unit cost of activity level x, so

that investment activity costs c(w)-x, and net revenues or profits are given by:
(1) R(w,s;x) = A(w,s) — c(w)-x.

Finally, § is the common discount factor of all the agents in the model.

We use the following assumptions for our general results.

AO) wefcl; seSc ﬂi, with » a complete preorder on S.

Al) Be(0,1); deR.

A2) VYu, ¢(w)€[cw), ¢>0.

A3) VseS, Lim A(ws)=A <o and MA(”’S) < (1-B)¢. A(-) is non—decreasing
in w forall s, and is non—increasing in s, ordered by ¥, for each w.
Finally, Vuw, Vs ¢ §n(w), A(w,s) < (1-8)$ + o(1/rn), where Sn(w) =

{s €S| s, 2n}
wv

A.4) VueQ,Vx20, p(-|wx) is formed from the convolution of two distributions with
finite connected support: (- |w,x) with supp(7) = {v’| w’' =w+7,
T =0,...,k|}; Po = {pﬂ}gkz’ with supp(po) C {w’ I w/=u)+‘r], n= -—kz,...,O}.

7(+ |wx) is stochastically increasing, continuous in x, g—:%(w] wx) <0,
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-g;—:-(w’ |w,x) > 0 and concave at each w’ € {w+1, ..., w+n}, and 7w’ |w,0)
_1if w=w
~ |0 otherwise’

A.5) m(s) firms enter in each period, m:S — H+. Each entrant pays x¢ > f¢,
nondecreasing in the number of entrants, m. The entry process is completed

at the beginning of the succeeding period, when each entrant becomes an

incumbent at some state w® € 0° ¢ Q with probability P(uw?) =

g pn-vre(wo—n). 0% isa compact connected set.
7=k,
A.6) There exists a regular Markov transition kernel, Qzﬂixﬂ: —[0,1], ie.

V BCS, V seS, ZQ(5’|5)=Prob{s €B|s,=s},
s'EB t+1 t

with range S(s) = {s’| Q(s’|s) > 0} # §, such that the functions q,(8"]s)
= )J” qw(§ ’ |s,77)p0(7;) are the consistent marginal transition probabilities
derived from it for § = s—e, The stochastic kernels Q and aQ, have the
Feller property, i.e. each maps the space of continuous functions on §,
C(S), into itself.

A.7) a. There exists a constant M < o, such that, for all s € S, m(s) < M.

b. The set of potential feasible industry structures, S ¢ ZT, is compact.

+

(A.3) gives the consequences of spot market competition. Whatever the structural
model that lies behind A(v,5), we require it to have the property that if we increase the
number of competitors with «’s at least as large as the firm’s own ¢ then, eventually, the
firm’s profits will fall to less than (1—8)$, the annuity value of the recoverable assets
obtained by the firm when it exits. Similarly we require that no matter the competition
inside the industry, there is sufficient competition from outside that a irm whose « drops
low enough will eventually find its profits to be less than (1-5)¢.

(A.4) implies that «’=w+7+%, where the realization of 7 is determined by the

outcome of the firm’s research expenditures and has a distribution given by #(-}v,x),
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while the realization of g is determined by the outcome of the process determining the
value of the outside alternative and has a distribution given by po. Consequently
p{v’'=z|v,x,n} = 7(z—p|wv,x) and p{v'=z|u,x} = En,r(z—r;’ Iu,x)pn,. Similarly the
distribution of both entering states (in A.5) and of the likely locations of ones competitors
(in A.6) are also obtained by first conditioning on #. Note that though a firm can stop
investing (choose x=0), if x=0 the firm’s v cannot improve, and will, in fact,
stochastically decay with negative realizations of y. The assumptions on the derivatives of
7(+) are only used to insure the uniqueness of the firms choice of level of investment.
Provided 7(-) is everywhere continuous and stochastically increasing in x, we could use
any other condition guaranteeing that uniqueness.

(A.5) describes the entry process, incorporating the impact of the negative drift on
firms engaged in the process of entry. It is essentially a free entry assumption that
captures our idea of relevant competition in an industry of the sort modeled here.!0 It also
indicates that the real sunk cost of entry is x¢ — 3¢ as any entrant could recover ¢ next
period by immediately exiting after becoming an incumbent. The last two assumptions are
auxiliary in the sense that they are used to restrict agents’ perceptions, and then are shown
to be natural consequences of an equilibrium given those perceptions. Indeed, in
equilibrium, Q(-|-) will be completely determined by p(-|-,-), i.e. x{-), po, and P(-),
and the optimal investment decisions of all firms active or entering the industry. So will
m(s) and, given any initial industry structure, the set of industry structures that could

possible be realized in any future period.

C. The Incumbent’s Decision.

We can now formulate an incumbent firm’s decision problem. The incumbent

10There are alot of possible entry assumptions that could be inserted here without affecting
the general nature of the theoretical results. We did not delve futher into this both
because the free entry assumption seemed the natural place to start, and because so little is
known about empirically relevant alternatives.
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makes decisions to maximize the expected present value of net cash flows. At any time t,
in any state (wt,st), it must decide to continue or to 2xit the industry, and if it continues

in operation, it must decide how much to invest. It thus solvestt

(2)W,(w,5,) Emu{ sup Et[ Y B R(ws x ), + (xr_l—x1)¢l(w,S)],¢},
XrXpir=t lr=t

where X, is the continuation decision [x ;=1 = continue; X, =0= exit], and x 2018
the amount to be invested, in period 7. Clearly, X,=0 implies that, forall o> 7, x o
=x_=0. For any given {xT,xT}, the distribution used to form the expectation in (2)
can be derived from the firm’s perception of the Markov transition kernel for its
competitors, {q (8'|s)}, and the controlled Markov process governing the evolution of
the firm’s own state, {p(w’|wx)}.12

In any state, the incumbent firm compares the expected present discounted value of
remaining in the industry, assuming optimal future decisions, to the opportunity cost of
remaining, ¢. If the latter is larger, it exits, foregoing R(w,s;0) and all potential future
earnings in the industry. If not, it invests x > 0, receives R(w,s;x), and retains the
option of further activity in the industry starting in a new state (w’,s’) at the beginning
of the next period.

This formulation has an inherently stationary Markovian structure. That is, the
current state, (“"t’st)’ and the current decisions, X, and X;» are sufficient to completely
determine its dynamics, i.e. the evolution to the next state, (“’t+1’5t+1)‘ This implies
that the optimal investment strategy, if it exists, can be chosen from the class of stationary

Markov strategies, vastly simplifying its analysis.!3 Thus we are justified in writing x(w,s)

See Chapter 9 of Stokey, Lucas, and Prescott (1989) for more detail on setting up related
intertemporal optimization problems.

12This distribution can be explicitly written using the Chapman—Kolmogorov equation. See
Doob (1953), p. 88.

13This is a standard result of the literature on optimization in a Markovian environment.
See, for example, Dynkin and Yushkevich (1975), p. 148, or Stokey, Lucas, Prescott (1989),
Chapter 9.1.
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and x(w,s); that is, both the investment and shutdown decisions are stationary functions
of only the current state (w,s).

This together with boundedness implies that if a solution exists to the
entrepreneur’s problem it must satisfy the Bellman equation
(3) V(ws) = max[ ;EB{R(W,S;X)ﬁ-ﬁ-;’Z/Z}/V(w’ 87 )p(w’ |w,x,n")q (8 ls:n’)pﬂ,}, ¢]
as can readily be seen-by substitution. In any state the optimal policy thus involves first
choosing a level of investment that maximizes the expression in braces on the r.h.s. of (3).
This requires selecting an investment level equalizing current marginal costs with the
marginal change in the expected present value of the states that might be realized next
period. When the expected future value generated by optimal investment is less than or
equal to the opportunity cost of the entire enterprise, ¢, then the optimal decision is to
liquidate the enterprise. For the model to be well formulated we need to show that (2)

has a solution so that V(w,s), x(w,s), x(w,s) are well defined.

D. The Entrant’s Decision

An entrant faces a similar optimization problem, with the added uncertainty as to
where he will be, once in the industry. Entry decisions are taken at the beginning of each
period, and the process of entry takes a full period (A.5). Thus firms deciding to enter in
period t become incumbents at the beginning of period t+1. Attempted entry is always
successful upon payment of the sunk cost, X2 which depends on the number of firms, m,
entering at t. As anincumbent at some o9, thenew firm at t+1 invests (or exits) to

solve (3), i.e. to generate the maximal value, V(uﬁ,st+l), where s includes all

1+1
entrants from the preceding period.

Though always possible, entry into the industry is not always desirable. Any
potential entrant must evaluate the expected value of optimal behavior in the industry,

labeled Ve(s,m), relative to the cost of entry, x < both of which depend on the number



17

of new firms entering in that period. Note that this is an expectation over all the states
w® € N at which the firm might enter, and is the same ex—ante for all potential entrants.

Assumptions (A.5) and (A.6) imply that

(&) V¥(s,m) = a-zlz,gmzﬁV(w,s'+ewo+wm)-«e(wo—a')-?glre(u@—ﬂ’>-Q°(S’ l5.1)-pys

2 ¢,

m
where & = Z o and g ( |+) is the marginal of Q(-]-) for incumbents only.14
i=1 ]

The given firm enters at «? with probability P(w?). The other m—1 entrants come in
each at their own “’3 according to the same probability distribution, adding the vector of
entrants, &)m, to the old incumbents new structure s’.

If Ve(s,m) <xg for all m > 1, then no entry can optimally take place: the
expected value of being in the industry at some w® cannot justify the sunk cost of even
one entrant. We assume that the ex—ante identical firms enter sequentially until the
expected value of entry falls sufficiently to render further entry unprofitable. That occurs

when V&(s,m+1) — x8 1$0< VE&(s,m) —x®, sothat m is the number of new firms

+1
that rationally enter that period. Formally, the number of entrants into any industry

structure s is thus the (single—valued) function:

0 if Ve(s,m) < x¢ for all m>1
(5) m(s) = { o

: e e oo
min {m€l+| \Y (s,m)>xrg, \% (s,m+1)§x1;+1} other wise

This is the primary consequence of rational optimization on the part of potential entrants
into this industry; .given an existing structure s, m(s) new firms find the industry
potentially profitable. For the model to be well formulated we need to show that m(s) is
well defined and finite for all s € S asassumed in (A.7.a).

Lh g is given by a multinomial distribution from the |s| independent transitions with
probabilities p(- ‘y ), ignoring the entrants induced by the structure s. See the Remark
in Section III.
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E. The Equilibrium.

We study the dynamic equilibrium of the industry; spot market equilibrium is
subsumed in the reduced form profit function, A(w,s). The dynamic equilibrium arises
from the competitive interaction of independent firms both within and entering the
industry. All firms know the structure of the industry, s, their place in it, », and the
likely impact of their own investment on their future values of «. Firms also have
perceptions, embodied in qw(')’ about how the structure of the industry, and hence the
states of its competitors, will change. However, the actual process driving the change in
that structure is a consequence of the unobserved decisions of others both in and entering
the industry. The industry is said to be in dynamic equilibrium when the process
generating the change in industry structure is accurately reflected in the perceptions of
each of the firms entering or active in the industry. Thus the equilibrium is one of
"rational expectations."

In equilibrium incumbents act so as to maximize their value (3) of being in the
industry, conditional on the true distribution of future states generated by the optimal
behavior of all incumbents and potential entrants, exiting when that value is less than the
value of alternative uses of their resources, ¢. New competitors enter until the value of
entry (4), also calculated conditional on this true distribution, is less than the sunk cost of
entry. That optimal behavior is characterized in the next section where it is understood
that the distribution of future states that is used in making decisions is this rational
expectations equilibrium distribution.

Formally, we define an equilibrium for this industry as the 6—tuple,
(®) [(V(ws), x(@8), x(@s), Q1) mE} g+ 7).
with Z=0xS and Q= (0, ... K), K <o, such that
6.a) V(ws)el V(ws) satisfies (3):
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V(w,s) = max [R(w,s;x(w,s)) + ﬂ‘{Z/Z/IZ’V(w’,é’ﬁ»ew,):

a3l 00w Jux(w)r]p, ], ¢ ]
6.b) V(ws)e€ZL x(ws) and x(ws) solve (3) and satisfy:
{—c(u) + ﬂ-% Y V(w lw,s,n’)-px(w’Iw,s,n’)-pﬂ,}-x(u,s) =0,

{V(ws) -} [x(ws) —1] =0,

where V(w'[wsn’)z ) V(w,8"+e . )a (8"]8,7);
sl

6.c) V(s,s) € SxS, Q(s’|s) E Zpﬂ-Qﬂ(s’ls), with
K
el = N T (g gl (g gl m(s)
Ye ¥(s’ |s)?
(K+1)2

where Y = [yij] € IZ+ ) i is the number of firms shifting to 5! from
55 (s’ |s) = {YEE£K+1)2| Y.-e=s5’,e'Y = (m(s),s)}, m’f)(yjlsj) is the
multinomial probability of yj= (ij’ ,ij) firms out of 5; going to the
states i=0,...,K, conditional on %, and m%(lem(S)) is the same for the
m(s) new entrants;!

6.d) Vse€S, equation (5) determines the number of entrants, m(s): Vt, m, >
>0 if and only if x§ < Ve(st,l) [defined in (4)], where m, =
= m(s,) = min { mel | | xg < Ve(st,m), Ve(st,m+1) <xf.q };

6.e) Thereis an exogenously given initial state, s°€ S. o

Remark: Note that we are assuming in this definition that the number of states can be
bounded above and below; that is indeed proved in Proposition 1 below. The optimal

policy, {x(w,s),x(v,s)} and (A.4) together define Markov transition probabilities from

15Y is a matrix summarizing one way that the vector s’ might have been generated, and
t‘ly(s’ |s) is the set of all feasible such matrices. A row i of Y shows the numbers of

rms moving into state i, while a column of Y, y;, shows the allocation of firms in state
jamong next period’s states, i =0, ... ,K. The first column shows the allocation of new
entrants among the states within Qe ¢ [0,K] ¢ Z,.
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each active state ¢ to each feasible state j, conditional on each possible value of g as
r(j-n]&x(4s)) = pjz(r;,s). For every s, equilibrium defines a matrix of transition

probabilities for incumbents as P(s) = %’p ,P(n’,5) where P(n,s) = | pjl(r),s) ]j If=0'

n
These transition probabilities, together with the distribution of incumbents along the rows
of this matrix and the entry rule, determine Qﬂ(s’ i8) in (6.c). To actually compute
Q,’(s' |s) we note that the multinomial theorem implies that the 5; firms in state w=j
allocate themselves among the K+1 possible states, relabeled {0, ... K}, with
conditional probabilities, conditional on progress outside the industry (on #5) given by
15)= °f J.K[_ i

(7) 7 (y;18;) = {(Yo,j)"(h,j)!‘ T ony) RN

A similar expression gives the distribution of the m(s) entrants over the statesin 0° ¢

{9, ... , K}, with conditional probabilities pjo(n) given by 7re(w°—n). Thus Qn(s’ |s), as
defined in (6.c), is the probability that optimal investment strategies will generate a shift
in the structure from s to s’ conditional on the outside competition making a positive
advance of n (implying that all incumbents and entrants in this industry will drift
downward by as much as 7 if their investment efforts fail to yield a counteracting
advance). It follows that Q(s’|s) is the unconditional probability that st+1=s’ when

s,=s. Finally, q (8’ |s,n) is just the marginal distribution over the competing firms,

{

conditional on 5, or

(8) q (8 [sm) = Z,,Qn(g'+ew’ [s),

as can be seen by direct substitution. o

This is a "rational expectations" equilibrium, as all firms optimize with respect to a
given distribution of future states (industry structures), Q(-|s), and their optimal
decisions generate industry transitions with precisely the distribution that they used in

their optimizing calculation (6.c). That is, Q(-|s), the transition probability function
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determining the evolution of the industry structure, is derived by aggregating the

incumbent firms transition probabilities, p(w’|w,x(w,s)), where x(w,s) i the optimal

investment strategy, with the distribution of the m new entrants, :Il_llP(wg). The
dependence of current market returns, A(w,s), on structure 5 (A.3) insures that the spot
market for current output clears. Investment, exit (6.b), and entry (6.d) are all optimal
given the individual state and industry structure, and that state and structure evolve
according to the anticipated distribution, which in turn is generated by that optimizing
behavior.

The equilibrium defined above is also a Nash equilibrium in investment strategies
defined for all (w,s)—nodes in the game tree. By assumption, firms take the distribution
of outcomes of others’ decisions as fixed, thereby choosing their exit and investment
decisions independently of others in the industry. That is, firms make decisions on the
basis of the outcomes of their potential and actual competitors activities; they do not react
to, or perhaps even know, the extent of their competitors investments in those activities.
As the optimal strategies and transition probabilities are functions of the payoff relevant

states the equilibrium is a Markov Perfect Nash Equilibrium in the sense of Maskin and

Tirole (1988a and b). Agents optimize with respect to all payoff relevant state variables,
(w,8) € I, solving dynamic programming problems that are interdependent only through
those variables. Their investment strategies, x(w,s), remain optimal at every state,
regardless of how that state was reached, against the optimal decisions of all other agents.16
At the heart of this dynamic equilibrium is a (time homogeneous) Markov process,
(S, Q(+]-), %), on the space of industry structures (counting measures of firms in the
industry), S, defined by Q, a transition kernel determining the distribution of 511

conditional on all alternative possible values of 5 and by s° the initial state (see

Section III1.C below). A realization of this process is a unique sequence {st}t:0 where 5

16This is an immediate consequence of the dynamic programming formulation and the
consistency of all firms problems at equilibrium.
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=5 and 5, isa realization from the distribution Q(- lst—l)' Associated with each such
realization of this process are the sequences: {mt}, the optimal entry process derived from
(6.d); {w,}, the highest exit states defined by w, = max{ w| x(ws,)=0}; and {f},
=0

the number of firms that exit in period t, ft = 2 5t The notion of equilibrium

w=0 ™
guarantees that the distribution of these sequences is generated by the optimal investment
strategies of both incumbents and potential entrants and that the spot market for current
output always equilibrates.

All decisions within a period are understood to be taken simultaneously, based on
common knowledge of the industry structure , Sp» the number of entrants that this
structure will call forth, m, = m(st), the exit states that the structure generates,
{w|w<w,(s,)}, and the distribution of future states that will arise from that structure,
Q(-]s;). While m,

or invest x(u,st) > 0 generating their transition probabilities which at equilibrium will

new firms are entering, incumbents either rationally exit [x(w,s;)=0]

collectively, when combined with the distribution of new entrants, precisely coincide with
those given by the common knowledge distribution Q(s’ ]st). This yields the new industry
structure at the beginning of the next period in which again entry, exit, and investment
decisions will be made. We emphasize that in equilibrium all decisions are made optimally
by firms that are fully cognizant of the structure of the industry and the distribution of its
future evolution. To close the model we need to show that these decisions can be

consistently taken, i.e. that such a stochastic dynamic equilibrium exists.

III. RESULTS.
A. Characterizing Optimal Agent Behavior.
The primary agent in this model is an incumbent firm; the first result characterizes
its behavior. It begins by showing that an optimal solution exists to the decision problem

(2), giving well defined investment and exit decisions and a well defined value to the firm
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(3), and then characterizes the optimal policies.!? Entrants are distinguished only in the
initial period of their entry; thereafter they are incumbents. In our simple formulation the
only question that needs to be answered about their behavior is how many find it profitable
to sink x g in order to enter the industry. Our second result shows that it is finite in any
period and indeed will be zero if competition within the industry is sufficiently strong. In
combination the results of these propositions imply that the state space S is compact , as
assumed (A.7.b) for some of the results characterizing incumbent behavior. These results
also allow us to show the consistency of our assumptions about the industry structure
transition probabilities (A.6), setting the stage for a proof of existence of our rational

expectations equilibrium in the next subsection.

ProposITIOR 1: Consider the firm's decision problem (2). Under assumptions (A.0)
through (A.7):

a)  There exist: (i) a unique V(w,s), V:Hxﬂi — R, , monotonic increasing in w,

+1
uniformly bounded, and satisfying (3); (ii) an X < © and a unique optimal

investment policy (function), x(w,s), x:ﬂxﬂi —R,, with x(w,s) <%; and (iii) an

+7
optimal termination policy x{(w,s), x:ﬂxﬂi — {0,1}; solving (2) [or (3)] for
Y (w,s) € leZ_‘:.

b) There exist two finite boundaries in Izlli, w(s) and afs), such that x(ws) =0
if (ws)€C=C,U C,, where C,= {(ws)|w< ofs)} and C = {(ws)|w> As)},
and there exists a finite lower bound w(s) € 7 such that x(w,s) =0 if and only if
(ws) € {(ws)|w < w(s)} = L. Further, inf w(s) > —=, and sup, &(s) < w.

c) There exists a random variable, T:ZZxIIi —1, T(wo,50) = inf{t 2 0] (wp,5,) =
(wo,80) and (w ,st) € L}, associating each initial state, (wp,50), with the first time,

t, such that x, = x(w,,5,) = 0, where (w,,s,) is the state achieved in period t

17See, for example, D. Blackwell (1965) and E.V. Denardo (1967). The now standard
textbook discussion is in Stokey, Lucas, and Prescott (1989).
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under the optimal policy {x(w,s),x(w,s)}. T(wo,80) < w, a.5. and is stochastically
increasing in w. '

ProoF: See Appendix. o

An incumbent firm in state w facing an industry structure s has an expected
present discounted value of V(w,s). When V(w,s) = ¢ it will optimally exit the industry.
This is the case at all (w,s) with w¢ w(s). Hence we will never observe a firm with an
efficiency less than w = min{ w(s)| 5€5 }. When V(ws) > ¢, the firm pursues an
optimal investment policy, x(w,s) € [0,%], earning a current cash flow of R(w,s) = A(w,s) —
¢(w)x(w,s). Part b) of the proposition proves the existence of boundaries w(s), and axs),
such that x(w(s)—7,s) = x(&(s)+7,s) =0, forall 7> 1. Since w cannot increase in value
without some investment (A.4), and the distribution of increments to « has finite
support, an immediate consequence of this optimal behavior is that we will never find a
firm at w—states higher than @ = max{zI;(s)+k1| seS}. It follows that, together, (A.4),
(A.7), and Proposition 1 imply that the relevant set of states is the compact, connected
interval {w, ...,w} C Z. Hence the compactness of Q in our definition of equilibrium (6)
is satisfied and, by relabeling, we can set Q = {0,1, ... ,K}. The space of admissible
structures, then, is surely no greater than (K+1)—dimensional: S ¢ HI_}{_+1 C Ei.

The results in (a) to (c) provide a fairly detailed characterization of incumbent
behavior. Part (a) guarantees that incumbent behavior is well defined and shows that the
valuation of optimal behavior satisfies the natural monotonicity property in w; greater
success gives a higher value. Part (b) gives two types of "coasting" states, C, and C,
in which the firm neither invests in, nor exits from, the industry. Coasting in "successful
states, Cu, reflects the optimal response to-a situation in which the expected marginal
gain to further advance is outweighed by the marginal cost of further investment, ¢(w).

Recall that the return to investing is an increase in the probability of transiting to higher

v. The value of these increments is given by the "slope" of the value function. Since the
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value function is bounded that slope must eventually become less than the marginal cost of
(even zero) investment. There are also states in whick A(w,s) is low, x(w,s) goes to zero,
and yet the firm does not leave the industry. Indeed the firm can choose to stay in the
industry even in situations where it is optimal to shut down current production (possibly
incurring a fixed cost for mothballing its plant). In these cases fixed costs are incurred,
and exit values are foregone, because of the likelihood that an improved future condition
(st s st) will lead to a situation where it pays to produce and invest again.

There is, however, a limit to such lower coasting. When (w,s) € C, E(Aw|ws) <

<0 as x(ws) =0, and hence w drifts lower with probability Z P, (A-4). This wil
<0

reduce the value of the enterprise, V(w’,s’), unless there is a countervailing shift in s so
that s’ <s. Indeed, without a random "improvement" in s, parts (b) and (c) insure that
the firm will enter a true "liquidation state," (w,s) € L, where V(w,s) = ¢ indicates the
optimality of exit from the industry. That dptimal liquidation ultimately occurs in finite
time with probability one, despite the possibility of exogenous improvements, is the
principal content of part (c).

Proposition 1 characterizes behavior in an industry in which active exploration and
learning through investment is required for survival. We know that eventually all firms
will die, but the life cycle of the firm can include a variety of different types of activity,
including periods of active struggle and learning [xt > 0], with its successes [wt 1> w]
and failures [wt 41§ w,], periods of coasting on the successful outcomes of past efforts
wherein no exploratory investment takes place but profits are derived from previous
development, and, possibly, periods of coasting wherein a firm does not earn any profits
and its current prospects do not warrant further investment, but there is some probability
that the market will "improve" [s, 1% st],' and that probability is enough to deter the
firm from exit. Due to outside competition [po] and emtry [wm] the state is inexorably

moving in a direction unfavorable to the firm. Only through active investment [x > 0]
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can the firm hope to counteract this pressure. Yet, despite its best efforts, the firm must
eventually succumb and liquidate, even thoﬁgh phenomenal profits may have been earned
in the interval between birth and death. This situation is schematically illustrated, along
with several possible sample paths for a typical firm, in Figure 1.

Despite the finite life of firms, it might be possible for entry rates to generate an
industry that can grow without bound. That is, it might be possible for either a countable
set of firms to decide to enter at some s [V(w,s) > x2, V m21], or for there to be a steady
excess of entrants over exitors which would cause |s| to grow without bound, thus
violating (A.7) and much of Proposition 1. We note thatif V(.) were isotone to » on
S [i.e. Yw, 51> 52 = V(w,s1) < V(w,52)], then new entrants would increase s’ driving
V(-,s’), and hence V&(s,m), down, eventually choking off entry. Unfortunately, the
subtleties generated by the interactions among agents (particularly in entry deterrence),
imply that it is not in general true that V(-) isisotone in 5, so that one cannot use this
fact to stop entry (or induce exit) as the number of firms in the industry grows.

To bound the number of firms in the industry, we provide a direct proof of the fact

that V(w,s) can be made arbitrarily small by increasing the number of active firms in the

industry. This will imply that m(s) is finite for all s € HE'H and that there exists an
N < o such that
K
K+1 -
(9) Sz{seﬂ++ REE J s, <N}

w=0
i.e. S is compact. Hence (A.7) is justified and w.l.o.g. we can normalize the full state

space to B = {(ws) € Z/xﬂi'*'ll wecl,, seSc Zlff_'*'1 }, where Q= {0, ... K} and

+
s counts the finite number of firms in each such possible state. This is a key step in
showing the existence of a competitive equilibrium in this model.

To prove this we fix ¢ and an arbitrary structure s and consider a sequence of
industry structures that increases the number of firms at o, i.e. {sn(w)}nzl, where

sn(w) =s+1ne; The following proposition shows that no matter which v and s we
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fix, as n increases, the value to being in the industry at that « falls to the exit value.
Consequently enough entry will, in fact, choke off further entry, and there can never be

more than a finite number of firms at any .

ProposiTiox 2: Let 5 (w)=s +n-e . Under Assumptions (A.0)to (A.6), forall weQ,

and all s¢€ Hi: lim V(w,sn(w)) =¢, i.e. Vex0 3n, suchthat n2n_implies

n-wo
V(w,sn(w)) <¢+e
CoROLLARY 2.1: There exists an M < o such that, Ym > M, Ve(s,m) {xg, VseS.
CoROLLARY 2.2: There exists an N < o such that V&(1;s) < x§, ie. m(s) = 0, for all
S € én(l) with n > N.

Proor: See Appendix. o

This is a quite strong result. It shows first that the number of entrants is to any
structure is surely finite: (A.7.a) holds. Second, it shows that there can be no rational
entry if there are sufficiently many firms in the industry. That is, with a sufficiently large
number, N, of firms in the industry, regardless of their individual states of success,

Ve(- ,5) will be so small that no new firms will enter. Indeed, we show that for some finite
yet sufficiently large N, V(w,s) = ¢ [Lemma 1 in Appendix]. Thus exit must take place,
while none can enter. This insures a compact state space for the industry structure;
provided that the initial industry structure has no more than N firms, there will never be
more than N firms in the industry: (A.7.b) holds. Note also that the fact that S is

finite makes it possible to compute equilibria for our model (see Section IV below).

B. EXISTENCE OF EQUILIBRIUM.

We can now prove the existence of a rational expectations equilibrium for this

model of active exploration and learning through investment. This closes the model by
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showing that the assumptions on the industry structure and its evolution used to determine
optimal behavior are in fact conzistent with ‘that behavior. To do so, we show that given
Q(-]s), as defined in (6.c), the optimal decisions of incumbents solving (3) and entrants
(satisfying equation 4) generate transition probabilities which aggregate to form Q(-|s) as
defined in (6.c). This requires a fixed point argument that is presented in the proof (in the
Appendix) of Theorem 1. In essence, it involves showing that investment, entry and exit
decisions depend continuously on the distribution of future states which in turn depends
continuously on those decisions. The continuous compound function maps a compact,
convex space of probability distributions into itself, and hence has a fixed point: a
rationally anticipated Markov transition function Q(-|s) as defined in (6.c).

Before presenting a formal statement of our existence theorem, we note that
assumptions (A.6) and (A.7) need no longer be imposed; they are now a consequence of
the more basic assumptions, and our definitions of equilibrium transitions and entry
decisions (6.c—d). (A.7) was shown to hold in the corollaries to Proposition 2, while

(A.6) follows from the following proposition.

ProposiTioN 3: Under assumptions (A.0) — (A.5), assumption (A.6) holds with
Q(-|-) defined using (6.c) and (7), when qw(ﬁ’ls) is defined by equation (8).

Proor: See Appendix. 1]

Thus the last two assumptions in Proposition 1 were made merely to facilitate analysis of a
single firm in the industry: they are natural consequences of our equilibrium formulation.
We can now state the result that closes this model of active exploration and.

learning through investment.

TxeoRrEM 1: Under Assumptions (A.0) —(A.5) there exists an equilibrium (6),

satisfying conditions (6.a—e).
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PRroOF: See Appendix. ]

This theorem shows both existence of equilibrium and that the preceding results for
a firm in the industry are valid at equilibrium. Due to the autonomous structure of the
model the equilibrium is characterized by stationary valuation of states, stationary optimal
investment strategies, and stationary Markov transition probabilities. Yet the sequence of
states for any firm, and, indeed, the sequence of (almost surely finite) structures for the
entire industry, are truly random realizations from an underlying stochastic structure.
This structure is determined by the precise nature of the underlying parametric forms of

the model, and by our equilibrium conditions. We now turn to its analysis.

C. EQUILIBRIUM DYNAMICS.

This dynamic equilibrium is characterized by a remarkable degree of flux. Active
firms are truly heterogeneous, distinguished by their "state of success," w, and have truly
idiosyncratic outcomes to even identical investment decisions. Multiple rank reversals
(according to any criteria of interest, eg. sales, profitability) are possible during the life of
any collection of firms (cohort), as well as simultaneous entry and exit [w(s) < u® € ne).
All firms die almost surely in finite time, yet new firms continually enter to try their skill
and luck in the evolving industry. Thus the structure of the industry can change
dramatically over time, though we know that it must remain everywhere finite [Corollary
2.2). In view of this continual change, the question arises as to whether there is any useful
characterization of the "average" structure of the industry and its relation to the industry’s
long run evolution.

Among the things that we would like to know are whether the industry structure
settles down into some recurrent pattern and, if so, the characteristics of that pattern. For
example, does the industry survive forever, or might it fade away as fewer and fewer firms

enter while old firms exit one after another? If the industry does survive, is there a sense
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in which we can speak of a long—run average number of firms, or structure, for the
industry? What determinés these and other characteristics of the process defined by the
industry equilibrium, and how do they change in response to perturbations of various
environmental and policy parameters? This section proves a result which lies at the heart
of our ability to answer these questions: we prove the ergodicity of the stochastic process
defined by the industry equilibrium.1® Some direct implications of this ergodicity will be
noted outright, but many of the more interesting questions, questions about the nature of
the ergodic distribution for example, will depend on detailed characteristics of the actual
functional forms that go into our model. We begin to explore some of these in the
examples of Section IV. But they cannot be seriously addressed until a more detailed
study of appropriate functional forms has been made, a topic on which we are currently
working.

Before turning to a formal analysis, we would like to emphasize two points on its
relevance. First, one of the advantages of an explicit dynamic model such as ours is that it
allows us to study the distribution of the entire sequence of structures that the industry
passes through and not just some notion of a limit structure. Our focus here on long run
averages stems from the fact that, at least in the absence of a specific empirical example
with a particular value for 800 if one wants to investigate the effect of a policy or
environmental change on the (distribution of the possible) structures of the industry, a
natural place to start is to investigate the effects of these changes on the time—average of
the structures the industry will pass through. This leads us immediately to the question of
whether there is a time average, in particular one that is independent of initial conditions,
to which all sequences converge.

Second, for these limiting results to be appropriate, our behavioral assumptions

18Here we use ergodicity in the wide sense: a stochastic process is said to be ergodic if it
converges to a stationary ergodic process. See Halmos (1956) or Friedman (1970) for the
definition and discussion of ergodicity.
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might have to provide an adequate approximation to those prevalent in the industry over
very long time periods. One could, for example, imagine industries whose investment
patterns approximate our noncooperative Nash assumptions in, say, the early period of
their life cycle but then switch over to patterns that are better approximated by more
complex models of interfirm interaction involving, say, some form of collusion, after certain
structures or states are reached.

Formally, the evolution of the equilibrium structure of the industry, 5 is given by
(10) s, = (I{w>w(s,_ ;N5 1) + wm(st—l)
where I[{w>w(s, ;)}] is a diagonal matrix whose diagonal elements are either unity [if

w> w(s, ;)] or zero (otherwise), “m(s, ) is the realization of the counting measure
- t=1

giving the location of firms paying their entry fee in t—1, and ‘prime’ indicates a realization
from the distribution qo(- |-) [see (4)].1° Here equilibrium transition probabilities, entry,
and exit are defined in (6.b—d). Proposition 2 implies that the state space for this
stochastic process, S, is compact, and so has a finite number of elements. Let Q(s,s’) be
the stationary transition matrix of the equilibrium transition probability function Q(s’|s)
defined in (6.c). Then s = {St}tio is a Markov process with stationary transitions given

by the |S|x|S|—-matrix Q and with distribution [sample path probabilities]
n—1
P{sy =5, for t=0,.. ,n} = es°'t£DQ(§t’§t+1)

for a specific path § = (El,§2, ... ) when the process begins in state s0. Similarly P, is
the distribution of this Markov process when the initial state has probability Vg of being
in state, i.e. having structure, s. Therefore, the distribution of industry structures

evolving from an initial s after n periods can be written

(11) b(s?) (] = e@ [v- @ € 2%,

19q0(-% is given by a multinomial distribution from the |s| independent transitions with
probabilities p(-|-,-), ignoring the entrants induced by the structure s. See the Remark
in Section III.
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where QO is the n—th iterate (power) of @ and AS is the (|S|—1)—dimensional simplex.
That is, un(x/) is an |S|—vector whose elements Ho s give the probability that the
structure of the industry, with initial distribution v, isin state s after n periods.

This notation enables us to formulate our principal result on industry equilibrium
dynamics. It is that the evolution of the industry is ergodic; that is, the stochastic process
defined by the indust.ry equilibrium possesses a unique limiting distribution of states (of
industry structures). Thus, though the sequence of industry structures generated by the
equilibrium process remains truly stochastic, never settling down to any limiting structure,
the time average of these sequences will, regardless of the distribution we start with,

converge to a unique ergodic distribution with probability one.

THEOREM 2: Under Assumptions (A.0) through (A.5) at equilibrium (6):
a)  The stochastic process s = {s;},7 € (S®,8¢#) with initial state s0 is Markov
with stationary transitions Q(s,s’) and distribution P_,, where o isthe o—field

of all subsets of S.

50

b) The state space, S, contains a unique, positive recurrent communicating class
RcS.
c) There exists a unique, invariant probability measure, y* on S such that

pt=[mQ(ss)] ! forseR, and p? =0 for s€S\R,
where mQXs,s’) is the P —expectation of the time of first reaching state s’.

d) Vs€S, p(s)— p*
N

COROLLARY: Pﬂ,., is the distribution of a stationary, ergodic Markov process with
transition Q, i.e. u*Q = u*.

ProOF: See Appendix. o

Ergodicity of the equilibrium process generating industry structures has a number of
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implications. First, it implies that the industry structure evolves in a nondegenerate
though increasingly regular way over time, s.o that there never is a "limit" structure of the
industry. Indeed, all viable industry structures, that is all structures in the recurrent class
R c S, arerealized infinitely often. Thus, just as there is continual flux in the relative
position of firms in the industry, there is continual change in the industry structures that
those firms comprise. A given industry structure generates investment, exit, and entry
decisions as optimal responses to the valuation of the opportunity presented by the
industry. The idiosyncratic outcomes of these investment decisions, together with the
evolution of the state of competitors from outside the industry, determine the structure of
the industry at the beginning of the next period, a structure that is only probabilistically
related to the structure which generated it. Though all firms eventually die, entrants
replenish the population of active firms, and hence the industry of this model lives forever,
eventually going through all the epochs determined by its recurrent states and its
transition kernel.

Another consequence of ergodicity is that, after some time, a certain stochastic
regularity will appear in the evolution of the industry. If the initial structure is transient,
s ¢ S\R, then a finite (a.s.) time will be spent shifting to some recurrent structure, s € R.
Thereafter, the portion of time spent in any state s € R will approach the invariant

probability of that state, u;:

1
(12) lim 1. = p*
T-o Tz § §
Thus the structure of the industry, S¢s while shifting randomly in response to the
idiosyncratic outcomes of optimal decisions by firms, will spend more time near "natural"
states, with a "natural" number of incumbents, entrants and exits. What is "natural" will

depend on the values of the underlying parameters of the industry,

0= { A, o) .8, (), po, P, xg, 0,

and will be reflected in the mass of the invariant measure over the set of recurrent
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structures. Thus, over time, structures that are natural or normal for this industry will
reveal themselves as more likely by their more frequert occurrence: time averages will
approximate state averages, i.e. the ergodic distribution, u*.

A final consequence of ergodicity is that the influence of any initial situation
systematically fades, becoming irrelevant for the future evolution of the industry. As
Theorem 2.d indicates, the actual distribution over industry structures, By evolving from
any initial structure, s (or distribution over structures, v), converges to the unique
invariant distribution, g*, hence losing any information that it contained about the initial
condition of the industry. Indeed, a strong Markov property [Freedman (1983), Chapter
1.3] holds in this class of models; the future is independent of the past conditional on any
measurable (Markov time) event. Thus two possible histories for the industry with
different initial conditions (structures), once they intersect in any state, as they must with
probability one, have identical distributions over future sample paths conditional on that
intersection. Further, this property should be inherited by any firm or subset of firms
within the industry. This ergodic characteristic of the model differentiates it from other
stochastic dynamic equilibrium models currently in the literature (see, for eg., Jovanovic
1982) and allows us to build a simple nonparametric test for the empirical validity the
model presented here (see Pakes and Ericson, 1989).

Theorem 2’s general characterization of the stochastic process generating the
(equilibrium) dynamics of industry structures gives rise to several more detailed questions.
Some revolve around the typical configurations of firms generated by the model, and how
these configurations are likely to evolve over time (their likely sample paths). For
example, does the unique stationary ergodic distribution, to which the time—average of the
industry structures eventually converges (see 2.d), possess a large number of small firms or
a small number of large firms? At a more detailed level, are the industry structures of the
recurrent class "similar,"_so that one can think of the industry’s structure "settling down"

after some finite number of periods. Or does this recurrent class contain very diverse
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structures, so that no matter how long the time period elapsed since the "startup" of the
industry we will still observe the industry structure undergoing distinct evolutionary
patterns? To the extent that the recurrent class contains quite divergent industry
structures, do the sample paths through these structures typically cycle, and if so, with
what periodicity, or are there Poisson—type events that cause relatively quick and sharp
discontinuities in the industry structure? Which structures of the recurrent class generate

'large amounts of simultaneous entry and exit, and which generate periods of high
investment? Finally, and perhaps most importantly, how long will it generally take before
the industry’s structure enters the recurrent class, and through what type of sample paths
does an industry typically pass before its recurrent pattern becomes evident?

We have begun to explore such questions, and how their answers change in different
policy or environmental settings, in some numerical examples. Some answers appear highly
sensitive to precise functional forms (even t6 parameter values), while others seem more
robust to these detailed assumptions. We turn to one such example now, and compare it to

others that we have computed elsewhere.

IV. AN EXAMPLE.

As a more detailed example we consider a homogeneous product market having
producers with different, but constant, marginal costs. Marginal costs, say ¢ L e
determined by the multiple of a firm specific efficiency index and a common factor price
index. Thatisif s7 and sy are the logarithm of the factor price index and of the firm’s
efficiency index respectively, then # = sr—sn and ¢ ™= exp(—v). Firms’ R&D
investments are directed at improving their efficiency of production (increasing their sr).
Factor prices (sn) are a nondecreasing stochastic process generating a correlated negative
drift in the state of the firms in the industry. It is to overcome this drift as well as to
undercut competitors in the industry that firms invest.

The spot market equilibrium in this market is assumed to be Nash in quantities.
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Consequently market shares and profits (gross of fixed costs) are inversely related to
marginal cost, and will be increasing in w. More formally, letting q; be firm i’s output,
Q= Zqi, and { be the fixed cost of production, the profits of our classic Cournot
oligopolists are given by

n, =p(Q)g; — biq; — 1
where p(Q)=D-Q.

1t is straightforward to show that the unique Nash equilibrium for this problem

gives quantities and price as
*
q} = max {O,p*—ﬂi}, and p*= E"’T{—I—I{D + izlei]
where n* is the number of firms with g* > 0. Current profits can therefore be written as
Aws) = [p*(s) - 8)* -1,
where p*(s) = ﬁ'-}——f[D-\szw*sw'gw]’ and «* = min{ w| g, > 0}.

We note that this current l;roﬁt function is, in many senses, an extreme alternative
to the profit function used in the other example of our model which has been numerically
analyzed (see Pakes and McGuire, 1992). The latter example considers a differentiated
product industry in which all firms have the seme (constant) marginal costs but are
differentiated by the quality of the product they produce; a quality which increases with
successful research activity. In that example the spot market equilibrium was assumed to
be Nash in prices. We come back to a comparison of these two examples below.

To complete the specification we need to provide our assumptions on the costs and

effects of investment, as well as our entry rule. These are

f,= v ¢ with m{w'|wx) = m(w—w|x) = 1{7-9]|x),

1-6 that £=0
ﬂ(TIX) = E.X/( 1+3X) that ‘I’:l’ 0= . ¢ =c¢,
1/14ax) that 7=0 § that n=-1

Qe={u°-1,w°}, x{ = xe and x¢ =0 for m>1, and ¢® =04 7.
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Transitions in ¢ are determined by the difference between the increment in
efficiency of production generated by the outcomes of the firm’s own research activity (7),
and the increment in the factor price index (7). 7 can either increase by 1 or stay the
same. The probability of 7 increasing is an increasing function of investment, and the
cost of a unit of investment is independent of . % also either increases by one or stays
the same, but here the probabilities are given by an exogenous process. In each period
there is at most one entrant who pays a set up cost of x® and enters in the following year
at state o0 if the cost of production has not increased in the interim, and at -1 ifit did
(if g for the period was —1). Note that by assuming that the period of time at which we
actually observe new data points is larger than the decision period of the model, this
specification could allow for both many entrants, and for richer conditional distributions
for the changes in », per data period (while still maintaining the computational
advantages available when there are single step transitions).

It is easy to see that this specification (together with an appropriate choice for g
and ¢) satisfies all of (A.0) through (A.5), and hence that all of the above results hold.

Only (A.3) perhaps requires checking for

D + 2 sk-'re"k 2
A(w,s) = max l’ k>u* —1e ¥ —f A},
1s¥] + 1

)2, and A(w,s) is increasing in w and

where |[s*| = 2 s,. Clearly A = (D47
K3

decreasing in s with the natural vector preorder. In particular, A(w,s) | —f as 8
increases at any k > w, or as .« falls for any. 5.. Note that if A(w,s) = —f then marginal
cost is greater than price and the firm is not active in the spot market. The same firm can,
however, still be a participant in the industry. That is plants will be mothballed without
being dismantled if there is sufficient hope that the environment will improve to the extent

that it will pay to bring the plant back on linekin the future.
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As this example satisfies our basic assumptions, all of the results of Section III hold
and we have a well defined dynamic equilibrium that generates an ergodic Markov process
in industry structures. Of course the purpose of constraining ourselves to the
parameterization in our example is to generate more detailed results then those contained
in our general propositions. To obtain the more detailed results we substitute the
specification given above into the computational algorithm developed in Pakes and
McGuire (1992), an algorithm developed explicitly to calculate the equilibria generated by
the model developed in this paper, initialize the various parameters, and let that algorithm
calculate the policy functions for all (potential and active) firms. Pakes and McGuire
(1992) also provide a set of auxiliary programs which help interpret the results. One subset
of these programs generate descriptive statistics that describe the industry structures, and
the welfare implications, of the Markov Perfect Nash (MPN) equilibrium. A second subset
of these programs calculates the optimal policies for both a social planner and a multiplant
monopolist (or equivalently a perfectly colluding cartel) faced with the same cost and
demand primitives that generate the MPN equilibria, and then generate the descriptive
statistics and welfare measurements that emanate from the equilibria obtained from these
institutional environments. The colluder makes all decisions (investment, quantities
marketed, entry, and exit) to maximize the expected discounted value of the total profits
earned in the market. Similarly the planner maximizes consumer surplus (note that there
is a question of whether there is a feasible set of institutional arrangements which could
lead to an industry which follows either a colluder’s or a planner’s dictates).

Some of the results from these computations are listed in Table 1 (the footnote at
the bottom of the table provides the precise values of the model’s parameters that underlie
these calculations). Al descriptive statistics are obtained from simulation runs starting
with one firm at the entry state [i.e. s=e w°]’ and then using the computed policies to
simulate from that point. Panel A and B provide descriptive statistics from a 10,000

period simulation run. Panel C provides the distribution of expected discounted values



Table 1 : Simulated Quantities From a Homogeneous
Product Model*

A. & of Simulated Periods with

MPN Colluder Planner
1 firm active 27.9 92.4 98.3
2 firms active 70.8 7.6 1.7
3 firms active 1.2 0
4 firms active .1 0 o]
Entry and Exit 16.5 5.4 1.2
Entry or Exit 20.4 10.0 2.1
B. Average (standard deviation of)
Price 1.79(.35) | 2.22(.36) * %k
total investment 1.05(.41) .68(.29) .84(.41)
entry .19 .08 .02
number active 1.74(.48) | 1.08(.27) 1.02(.13)
C. Welfare Runs (average and, in parenthesis, standard deviation
of)
1. Discounted Consumer 27.4 6.6 *%
Benefits (6.4) (5.5)
2. Discounted Net Cash Flow 11.6 22.5 —————
(5.4) (8.5)
3. Discounted Entry-Exit Fees 2.5 1.0 —————
{(1.0) {(1.0)
4. Discounted Welfare 36.5 28.1 58.8
(11.9) (14.1)

*All runs are based on the specification described in the text with the
following parameter values D = 4, £ = ,2, x* = ,4, wOW= 4, O0= .2, c=1, §=
.7, a= 3, B = ,925, Panels A and B are cbtained from a run which starts with
one firm entering the industry, goes 10,000 periods, and then calculates the
appropriate descriptive statistics. Panel C is obtained by doing 100 runs,
each starting with one entrant and each lasting 100 periods. The appropriate
discounted values are taken from each run, and then their averages and
standard deviations across runs are computed.

**The welfare result for the planner can be read off the value function which
is computed exactly. The planner sets price equal to the marginal cost of the
minimum cost producer. This minimum marginal cost averaged .15 with a
standard deviation of .39.
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from 100 independent simulation runs of 100 periods each.

Panel A indicates that this is an industry which is most often a duopcly, though in
a significant fraction (about a quarter) of the periods only one firm is active. Note that
"monopoly" positions here are built up solely from successful past research; a firm which is
efficient enough will deter entry. Of course, as noted in our theoretical results, even the
most efficient of firms will eventually decay and be taken over by more successful
competitors. Consequently it is not the same two or three firms that are active in all of the
periods. Indeed this industry exhibits substantial entry and exit; there is entry in about
19% of the periods. Moreover entry and exit are positively correlated, a fact which is
consistent with the time series evidence in many (though not all) industries (see Dunne
Roberts and Samuelson, 1988), and which very clearly brings out the need for allowing for
idiosyncratic sources of uncertainty.

Figure 2 provides a section of the optimal investment policy surface. The vertical
axis gives the investment of a firm as a function of its own ¢ (v;) and the v ofa
competitor (“’2) when no other firms are active. From the figure it is clear that the firm
starts investing at v =3 or v =4 depending on the value of its competitors w.
Thereafter investment seems to be an initially increasing and then decreasing function of
the firm’s own «. It is worthwhile considering this investment pattern in somewhat more
detail.

In a separate paper (Ericson and Pressman, 1989) we note that the investment
function must be an initially increasing and then decreasing function of ¢ for a monopolist
with functional forms for the primitives similar to the one used here. The intuition behind
this result follows from the form of the value function. Recall that what investment does
in our model is to increase the probability of increments to «. Consequently investment
will inérease when increments to ¢ result in larger increments to the value function. Thus
an initially convex and then concave value function will generate an initially increasing and

then decreasing policy function. Indeed, the value function for all of our models is initially



Firm 1's_Optimal Investment Policy

Figure 2.



40

convex, and eventually concave. This is a result of the fact that it is bounded from below
and above (more intuitively, a product or a technique of production, must be developed
somewhat before it can be used profitably thus generating the initial convexity, and a good
enough product will eventually take over the whole market, thus generating the eventual
concavity). In the case of 2 monopolist with a simple enough profit function we can show,
in addition, that the value function has only one point of inflection. Once we allow for free
entry and consider sections of the value function that hold competitors «'s fixed, then, as
we explain presently, there need not be only one inflection point as we increase our own w.
However we do maintain the initial convexity and eventual concavity of the value function
and, as we now explain,this tends to have very distinctive implications for the sample
paths of firms.

In particular, it implies that new entrants begin with a relatively low level of
investment. As a result most entrants will never actually overcome the negative drift
imposed by advances of its competitors both inside and outside the industry, and die at
early ages. This generates high mortality rates in an initial "learning" period, and a large
fraction of entrants whose realized discounted value of returns from participating in the
industry are negative. On the other hand the few new entrants who do get a good sequence
of initial draws begin to increase their profits and invest more, thereby increasing the
probability that they develop even further. Of course the successful firms will eventually
pass over an inflection point of the value function, and decrease their investment, at which
point there expected increment in « will fall. However once their v falls back to near the
inflection point their investment will pick up again, so that an initially successful firm will
tend to be productive for a long period of time. This, in turn, implies that both the
lifetime and the realized value distributions from our model will tend to be very skewed.
Detail on the simulated distribution of firm values and life spans for the differentiated
products version of our model is given in Pakes and McGuire (1992). The distributions

obtained from the homogeneous product version of our model described here had the same
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general characteristics, characteristics which are not too different from the results on life
spans and value distributions reported in the empirical literature.2?

Figure 2 also shows how the subtleties generated by the interactions among agents
can destroy any simple generalizations on the form of the value function. Consider any one
of the sections in which v, is low (w2 < 5) and follow the investment pattern of the first
firm as its « increases. As before it is initially increasing until about & = 5, and then it
decreases, but at « = 8 we see a surge of investment, which heads back down after v = 9.
The reason for the increase in investment at « = 8 is to deter entry. It works out that a
potential entrant finds it profitable to enter if there is one firm in the industry at v =7,
but not if there is one firm in the industry at ¢ =9. This surge in investment destroys the
simple characterization of the investment function that we would get if there were no
potential competitors.

Coming back to the first panel of the table, it is clear that both the planner, and the
colluder, tend to generate equilibria with less firms then does the Markov Perfect Nash
solution. Indeed, given that the optimal poﬁcy for both the planner and the colluder is to
have only one firm actually produce output in any period, the firm with the lowest # o it
is somewhat surprising that either of these two institutional structures ever find it optimal
to have more than one firm active. They do because it is sometimes optimal for them to
run parallel R&D efforts (see Nelson, 1960), and then only use the most efficient
production technique developed. Still the logic behind the fact that both the colluder and
the planner have less entry and generate less investment (panel B) than does the MPN

solution is clear enough; entry and investment decisions in the MPN solution depend on

20The literature on lifespan distribution is extensive; see Dunne, Roberts, and Samelson
(1988), Pakes and Ericson (1989), and the literature cited in those articles. There is less
literature on value distributions, but there is a substantial literature on both the
distribution of sales, and persistance in the process generating the sales of different firms
(there is also a smaller literature on the distribution of profits, and persistence in the
process generating the profits of differnt firms). In addition to the literature cited above,
see Evans (1987), Hall (1987), and Mueller (1986), and the literature referred to therein.
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the expected incremental cash flow going to the entrant and to the investor, and some of
this cash flow is taken away from the incumbents. Both the colluder and the planner
internalize the losses to incumbents and hence invest less (Mankiw and Whinston, 1986).
In this respect the results here are similar to those in the differentiated products example,
however in that example the planner had distinctly more entry and investment than did
the colluder. This because the planner took into account the increase in consumer surplus
caused by the increase in the number of products marketed whereas the colluder did not
(see Pakes and McGuire, 1992). There is no reason to have this difference between the
planner and the colluder in the homogeneous product case. Indeed, for our particular
values of the parameters the colluder generates more entrants, but the planner invests more
after entry.

There were several other interesting aspects of the numerical results that were
similar to those obtained from the differentiated products case. First, note that though the
colluder generates an industry structure that looks much more like the planner than does
the industry structure from the MPN solution, the welfare generated by the MPN solution
is much higher (and hence closer to that generated by the planner). More generally we
have consistently been surprised by the extent to which institutional structures which
generate "similar market structures" (similar numbers of firms active, similar shares for
the largest firms, similar entry and exit, etc.), can have very different welfare implications,
and institutional arrangements which lead to very different market structures can generate
very similar welfare results. Also we have found surprisingly high standard deviations for
the welfare results from any given institutional structure. In this example, the average
difference in total welfare between the MPN and the Colluder’s solution is less than the
standard deviation of the welfare results from either of them. This should make us wary
about generalizing from case study attempts to compare different institutional
arrangements; this is true even of case studies that have a "laboratory perfect" comparison

to make (in the sense that the other primitives of the model are the same in the two
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institutional arrangements being compared).

The big difference between the welfare results in the homogeneous and differentiated
product cases is that in the differentiated product example the welfare from the MPN
solution was generally within 2 or 3 percent of the welfare that a planner could generate,
even when equilibrium typically involved only two firms active, leaving little room for
improvement over the "free market." In the homogeneous product case, at least one with
parameters that typically generate only one or two firms that are active, the difference
between the welfare generated by the planner and that generated by the MPN solution
seems to be much more substantial (on the order of 40%). At least for welfare
comparisons, it might just be important whether a differentiated or a homogeneous product

model best suits the industry being studied.

V. CONCLUDING REMARKS.

We noted in the Introduction that models of firm and industry behavior that
allowed for idiosyncratic, or firm specific, uncertainties and entry and exit were required in
order to account for many of the phenomena exhibited in firm level data sets. These
phenomena include: simultaneous entry and exit; strikingly different outcome paths from
similar initial conditions, investment strategies, and exogenous events; and industry
structures that never seem to remain stable. We also noted that the need for models which
can account for such phenomena is not merely descriptive, but indeed lies at the heart of
our ability to analyze many of the impacts of policy and environmental changes.

This paper has provided one possible model of firm and industry dynamics that,
because it allows for idiosyncratic uncertainties and entry and exit, can account for these
empirical phenomena. It focuses on the effects of the uncertainties generated by the
random outcomes of exploratory investments, although it can incorporate other sources of
uncertainty as well. Successful investment outcomes move the firm to states where its

output can be marketed more profitably. The actual profit that the firm is able to earn in
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any period depends not only on its own level of development, but also on the levels of
development of all other firms active in the industry, as well as on the state of outside
competition. We assume that firms are expected discounted value maximizers, so that
assumptions on the evolution of the environment outside the firm and on the stochastic
impact of investment determine the firm’s optimal investment decision in each state. We
then show that there is a dynamic rational expectations, Markov perfect, Nash equilibrium
in investment strategies. The firm dynamics generated by the equilibrium process can be
described by a stochastic process (Markov chain) on possible individual states of success,
and industry dynamics as an ergodic Markov process on the space of industry structures,
i.e. counting measures providing the number of active firms at each possible level of
development. The equilibrium generates almost surely a finite number of firms, and
simultaneous entry and exit as rational responses to the opportunity presented by the
industry.

The focus of this paper has been on the basic logic and implications of the model in
a framework that is general enough to accommodate primitives that could be thought
appropriate for a broad number of industries in which research and exploration processes
are important. Even at this level of generality, however, the model is rich enough to both
generate empirically testable implications (see Pakes and Ericson, 1989), and to suggest
nonparametric procedures for correcting for selection (induced by entry and exit) and
simultaneity (induced by endogenous input demands) problems when analyzing firm’s
responses to policy and environmental changes (see Oliey and Pakes, 1992). On the other
hand, many of the more detailed issues that one might want to analyze with the model
depend on the finer properties of the primitives of our model, and are currently buried in
the relationship between those primitives and the nature of the equilibrium process
generating industry dynamics (these primitives include the profit and cost of capital
functions, the entry and exit fees, the functions determining the impact of investment on

transition probabilities, and the discount rate).
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For both policy and descriptive purposes we will ultimately be interested in the
relationship between each primitive and the recurrent class of industry structures, the
ergodic distribution on that class, and the nature of the transition process into that class.
This would enable us to analyze how a change in either a policy variable (such as an R&D
tax credit, or a tariff) or in the external environment (such as a technical change that
increased the effectiveness of external competition, or a shift in the structure of demand),
affect the nature of the equilibrium process generating industry supply, productivity, shut
downs, default probabilities, job creation and destruction at the firm level, etc.

There are at least three (related) ways of proceeding to the more detailed analysis
required to unravel these relationships. In order of (what we believe to be) increasing
difficulty, they are: simulation based on assumed functional forms and particular
parameter values for all of the primitives (see section IV), comparative dynamics within
parametric classes, and simulation based on estimated functional forms. As noted in
various parts of the paper, we are pursuing all three of these in related research (with
varying degrees of success to date).

We believe that there is also a need for more detailed theoretical analysis of several
issues. Two come to mind as being particularly important. The first is integrating a more
explicit analysis of the other sources of idiosyncratic uncertainty discussed in the
introduction to the analysis. The second, and, for some industries, particularly "high—tech
industries", we think more important, is to incorporate a "spillover" process so that the
advances of a firm’s competitors can have a positive impact on a firm’s own ability to make

advances.
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APPENDIX

ProposiTioN 1: Consider the fium’s decision problem (2). Under assumptions (A.0)
through (A.7):

a) There exists: (i) a unique V(w,s), V:ﬂxli — R, monotonic increasing in w,
uniformly bounded, and satisfying (3); (ii) an % < o and a unique optimal
investment policy (function), x(w,s), xzﬂxﬂi — R, with x(ws) < X; and (iii)
an optimal termination policy x{ws), X'-H"”i — {0,1}; solving (2) [or (3)] for
V (ws) € I«I5.

b) There exist two finite boundaries in lxﬂi, w(s) and u(s), such that
x(ws) =0 if (ws) € C= C,uC, where C,= {(ws)|w < «(s)} and
C, = {(ws)|w > ©(s)}, and there exists a finite lower bound w(s) € I such
that x(ws) = 0 if and only if (ws) € {(ws)|w ¢ w(s)} = L. Further,
inf, w(s) > — and sup, ¥(s) < o

c) There exists a random variable, T:lx?li — 1, T(wo,80) = inf{t 2 0](wp,55) =
(wo,50) and (wt,st) € L}, associating each initial state, (wp,5,), with the first
time, t, such that Xy = x(wt,st) = 0, where (“’t’st) is the state achieved in
period t under the optimal policy {[x(w,s),x(w;5)]}. T(we,50) < o, a.5. and is

stochastically increasing in w.

ProoF: (a) The result is standard, so we merely outline the argument. Let I z IxI™
and u € lm(}J), the Banach space of uniformly bounded functions on X. Let ¢ =
(w,8) € X, and define an operator T, T: { — ¢, pointwise as follows:

(A1) Tu(o) = max {m%x [Aa —CX + ﬁ;lzxua,p(g’la,X)], ¢},

where p(o’|ox) = Z q (8’ |s,n")p(w’ Iw,x,n’)-pn’. A straightforward calculation

shows that the conditions of Theorem 5 of Blackwell (1965) are satisfied, so that T
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is a monotone contraction operator on lm(}l) with modulus f§ < 1. Hence, by the
Banach Fixed Point Theorem [D.R. Smart (1974)], there exists a unique function
V: £ — R, uniformly bounded, and satisfying V = TV (Bellman’s equation, (6)).
As V is uniformly bounded, let V = syp V(o). Then V(o) ¢ A s T Alsyp V(o] <
A + BV, V o€X implies (1-f)V ¢ A or V ¢ A/(1-f). Clearly V(o) 2 ¢, Vo.
An optimal policy exists by Theorem 6 of Blackwell (1965). Optimal investment
x¥, is uniformly bounded as <A —xX+ BV, Vo, implies that % < A + BV —
¢. Hence all that remains to be shown is the monotonicity of V{(ws) in w and the
uniqueness of x(w,s). The latter follows from the strict concavity of the r.h.s. of (3)
in x,
(A2)  R(usx) + ﬂ-{mg,;,V(w',s'+ew,)-qw(s'|s,n')-p(w'lw,x,n')-p,?,},
a consequence of Assumptions (A.4) and (A.5), and the monotonicity of V(-,s)
in w

To show monotonicity in w, let w; 2> wa. Then, by the contraction property of
the linear operator T, V(ws) = }l_iigvn(w,s) where V%(ws) = TVn—l(w’s) -
= T"A(w,s). Thus the proof follows by induction from (A.3). Assuming
monotonicity in w to hold at step n, we see that

Vn+1(w1,s) - Vn+1(w2,s) = TV (wy,5) — TV (was) =
= A(wy,s)-A(was) — [cwlxn(wl,s)—cwzxn(wg,s)] +

* ﬁ';/{zf [zgllvn(wl’§1’+ew’)'qw,(§llIS’”')]P(‘U' |wixyn’) =

— 2' [z§2,vn(w' ’§2I+eW’ )qw2(§2’ I S,ﬂ' )]p(wl l w23x21ﬂl)]}pn,
(A3)

> A(wy,5)-A(wzs) + ﬁ-zl{z/ [z_,z,vn(w’l’gI+ew§+ew’2)qw1w2(§l 5,7" )p(w) | waxyn’) —
A A

P AGCE S P L IHCI LD C] wnxy 1)) -p(wilwixin o,
2
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— e /=y - ne , -,
= ;’ZJ;Z};?[‘J (w18 +ew,1+ew;) Vi (w;,8 +ew',+ew;)]'

(5" |5,9")-p(wi| wixnn’ ) p(ws | wax,n’)-p 0,

4 =

*qwle n

where x; = xn(wi,s); §;, wi are similarly defined; § = s—ewl—e is the

v Qww,
marginal distribution derived from either a4y qw]w(E’ |s,p’) = Z,;qwi(g’+e“1§ Is,n’),
i

i#j; and ‘ (prime) indicates next periods (random) realization of the variable. The
first inequality in (A3) is due to the use of x(w;s) at (wys) and substitution of
the appropriate marginal probabilities. The second inequality follows from the
monotonicity of A(w;s), c(w), Vn(w,s) in w, once one observes that the set of s’
and their associated probabilities must be identical at both w, as they arise from the
same § and hence their only difference lies in the firms at w; and w; which here
invest identically. The first step of the induction follows from an identical argument

to that of (A3) with A(ws) in place of V%(ws). o

Proor: (b) From the first order conditions for the maximization of (A2), given in
equation (6.b), we know that x(ws) > 0 if and only if G(ws) =
= ﬁ-;,z V(w |w,s,n’)-px(w’]w,x(w,s),rz’)-pﬂ, > c(w), where V(u'|ws,n’) =

wl

= 2. V(w8 +e . )a, (3" |s7"). Part (a) shows that V(-) € [0,V] and that by
sl

monotonicity in w, Vs,  lim V(ws) = ¢ and lim V(ws) = V. Therefore, as the
support of zlpx(-).pﬂ, is finite [k;+ko+1 elements] and ;Iz’px(w’l-).pn, = 0,
Vs, im G(ws) = 0. Indeed, letting p = max , {;’px(w’]-)-pﬂ,}, Glws) <

< B [V(wtky| ) = V(wky| )] = pre,l 0 as w-— 2o Define yfs):= min{ w|
G(ws) > c(w)} and &s):= max{ | G(ws) > c(w)}. Clearly w(s) and &fs)
are finite, for otherwise V cannot remain bounded, and hence have finite maximum

and minimum. Further, x(ws) =0 if (ws) e C= Cl u Cu’ where Cl =
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z {(ws)|w< ofs)} and C = {(w,s)|w > @x5)}.
Finally, for a finite termination policy we need to show that, for each s, there
exists an w(s) > —o such that V(ws) = ¢ for all w < w(s). First notice that

when x(w,5) = 0 the Bellman equation (3) becomes

V(ws) = A(ws) + ﬁ-{ g pn-V(ulw,s,n)} =

(A4) n==ks

= ﬂ [1—_229,7]'62&}0(5,')'\7(%') + ﬁ'é P Q ( ) (“H"h ))

where @Q Wl(s") is the s—th row of the finite—dimensional stochastic matrix
representing qw(i’ls,n) and V(w,-) is the column vector of firm values at w for
each structure s. Let &(s) = min{w| A(w;s) > (1-F)¢} and w* = max [{w<ifs)]
Vs, x(w,s) = 0 }] > —», as there are only finitely many s € S (A.7.b). Then for all

w ¢ w* equation (A4) holds, so we can write in matrix notation

(A5) V= A, + Q0 V, — ﬁ;p Qun B0V

where Qwry is the stochastic transition matrix for each exogenous shock 7, Vw is

the vector of values at w, and AnV wEV, -V - Solving (A5) we get
[=6Q41Vy, = Ay,—F ;p Qunbq¥u

(a8) v, = 60, a, - ﬁ[I~ﬁQw]'1;p QB YV, ¢

1-AQ,q1 (1= = A1-8Quq1 Joy Quy AV, €
where § is a column vector with ¢ for each structure s. Note that A an is
nonnegative by the monotonicity of V in w. The first inequality in (A6) follows
from the lower bound on V, the second from that on A, and the third from the
fact that [[-8Q w]—lﬂi = (1—B)’1$, A nV w20 and Q is a stochastic matrix
[the maximal eigenvalue p(Q w) <¢1] forall 5 so [I-8Q wO] is invertible and has a
positive definite inverse. Hence for all s € § and —w < w ¢ *, V(ws) = ¢. For

each s, let w(s) = max{w| V(ws) = ¢}, and let L = {(ws)| V(ws) = ¢}.
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Then x(ws) =0 on L and x(ws) =1 elsewhere. o

ProoF: (c) The proof of this assertion follows from a demonstration that all states
(ws) ¢ L are transient and hence will never be returned to after some finite (random)
time. All states (w,s) € L are recurrent, indeed absorbing, i.e. Prob{ 3 7>t|

(wt,st) € L and (wT,sT) g L} =0. Since the probability of a step from w to
wt+n, 1€ {-kj ... ,~1} is always strictly positive (A.4), and w* > —w, it is easy
to show that the probability of reaching some state in L is positive and hence the

probability of returning to any state NOT in L must be less than ‘one’. That is,

¢ 1-F, = 1- ) 1,
g ¢ 1R DR

where j = (ws) £ L, F.. is the probability of ever returning to j, F. = S .
i VR /P §

where ijxj = Prob{first return to j occurs at time n}, and Fy, fy refer
similarly to reaching k from j Transience of all (ws) ¢ L implies the existence
of the a.s. finite stopping time T(wo,s0) [Doob (1953), Chapter V.3].

The stochastic monotonicity of T(-) is shown by a coupling argument. To
prove that the stopping time is stochastically increasing in w consider w; > w; and
initial states (ws,5,) and (wy,50). Denote (for this argument only) the underlying
measure space by {UZXP} with elementé u. Let wi(u) be the sample path

(sequence) arising from initial w; at u € U. For each possible u € U define the

min{t>0| w%(u) = wf(u)}, and the new sequence

{ uf(u) if wf(u)—wi(u) > 0 for all t> 7(u)

stopping time T(u)

wHu)

]

wi(u) otherwise

Note that: (a) the random sequence {u},s,} 2 {w%,st} with probability one;
(b) because the random sequence {w’,st} is a Markov process and a stopping time is
Markov, the distribution of {w}.s;} is the same as that of {wf,st}. Property (a),

the monotonicity of the value function, and the stopping rule imply that T(uf:,st) >
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> T(“’t’st) with probability one. Property (b) and the continuous mapping theorem
(Billingsley, 1968) imply that the distribution of T(wf,st) is the same as that of
T(w:,st). Since the latter stochastically dominates T(w%,st), the proof is complete.

Q.E.D. n

PRrOPOSITIOR 2: Let sn(w) =5 + n-e . Under Assumptions (A.0) to (A.6), for all
weN, and all s¢€ ﬂi: lim V(ws () = ¢, ie Ve>0 3n, such that
N-w

n 2 n, implies V(ws,(w)) < ¢+ e

ProoF: Writing s for s (o), letting Pi(;wos )((w,s)|{x*,x*}) be the probability
n

of reaching (ws) in t steps from (wp,5,) under the optimal investment and

shutdown policies {x*,x*}, and letting I L(-) be the indicator function of the

shutdown states, we can write

b < V(wos,) =t Ly wgo

¢ zgﬂtu}io (AT s+ By, o (@ XD <

t

RS- (@)L (08)] Pl ¢ y((w5) {x5x))

S ? w,S) v (l_ﬁ)¢] ( )((W,S)Hx*,x*})
w—O “n
where the first inequality is due to ignoring the cost of the optimal investment
generating the transition probabilities, and the second from using (1-5)¢ in place of
A(ws) whenever it is larger. Let p (s .t.e,) be the probability that a firm starting
at (wp,55) will have w, 2 w, conditional on a particular t—period sequence, ey, of

realizations of the exogenous process and the decision structure {x*,x*}. By (A.3),

A(ws) <A (o) = S“P{Slzw*zwsw*zn}A(w»s) = (1-A)¢ + &n)
for s € S (w) where &(n) is monotone decreasing to zero in its argument. Hence,

for any of the n firms starting at wp, we can write
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¢(VOJo, )S

(AT) ¢ tE [Z JPufeptie) zA S D) 5 ey ep (p],

. [Z pr(.)kzoo(m)[ =[F0) ll—pw(-)]“’k_lP(et)]
Lo |6 8P il

where [E] is the number of k—combinations of n objects, and P(et) is the
probability of the realization, e,, of the exogenous process. Let f(n,t) be the
function in the large square brackets in the second line of (A7). Clearly f(n,t) < A

S gA = (1—[3)—15 < o. Hence, by the Lebesgue Dominated Convergence
t=0

Theorem for sums, it suffices to show that for every t, Allg f(n,t) = 0, for which it
further suffices that for each w
n—1
-1 k —k-1
(A8) pw(-)kggoum[nk o, ¥1-p (P a0
for almost every e Now note that

%i} = arglﬁmax{ lc+1(1_p )n—k—l}'
Thus, for any N < n-1,

n=1
klog(k-f-l) [nil] [pw( . )]k+1[1_pw( . )]n—-k—l ¢

X fz;[nﬂ E IS I

O |

(A9)

—1 k+1 —k-1
Z (n—l) (n~k) Qc:}) [nn1_<12]n + HN+1) <

[ ﬁk—t};)-k—ﬂ] + AN+1).

Now fix ¢ > 0 and let n; be the minimum n such that f(n+1) gé and n,

n —1
be the smallest n > n;~1 such that ¢ 2 Q—(iB——- #1— < 5 Hence (AS8)
holds, so that for n > n,, V(wo,sn) < € as required. Q.E.D. o
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ProOF: [Corollary 1] We use Proposition 2 to show that for any s, 3 M < o such
that Vm > M, V(s,m) < € ¢ xyy- We do so in two stages; first for 0t =
{w‘)—kz, ... ,u®}, and then for general Q°. In the first case all entry occurs at
w'+n giving

V&(s,m) = ﬁzn{zs/V(uﬂ+r],m-ewo+n+s’)qo(s’]s,n)Jpn.
For each of a finite number of 75 and each s/, V(:)<é+ ¢ for m >M by
Proposition 2, gives the desired result. Ir the general case, entry is distributed by ©
on the finite set 0. The proof is immediate by contradiction. Assume that m is
unbounded. Then, as 7 s everywhere positive on N®, there will be an unbounded
number of firms at each w € N. But then by Proposition 2 V(ws) < + € VweE

0° showing that there could not be an unbounded number of entrants. o

Proor: [Corollary 2] Proposition 2 shows that if there are enough firms in any state
w then the value to being in that state is arbitrarily close to ¢. While this insures
that entry in any period must be finite, it is only sufficient to cut off entry if there
are sufficiently many firms above the highest entry state. For the industry to remain
finite we must show that a sufficiently large number of firms will actually cut off all
entry, so that the industry can never become larger. To do 50 we strengthen
Proposition 2 in Lemma 1 to show that there can never be more than a finite number

of firms at any w € {1,K} without their all desiring to exit the industry

K

immediately. Letting N w be that number for each w, we see that N= I N

w=1 Y

is sufficiently large that for V s € én(l), V>N, Ve(s,m) < x{, Vm?>l1.

Lewms 1: For each w, 3N  such that Vo2 N, V(ws+n-e ) = ¢.

PRooF: Proposition 2 gives us an n , such that forall n2>n V(vstn-e ) <

< ¢ + e We now show that by increasing n sufficiently we can drive the
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continuation value, V() [the expression within braces in equation (3)], below ¢.
At each w there are two cases to consider: (a) x(w,r) = 0 and (b) x(w,-) > 0.
Case (a): x(w,-) = 0 implies Vc(w,s+n-ew) < A(w,s+n-ew) + ﬁ-V(w,s+n-eu). But
Assumption (A.3) says that 3 n* such that A(w,s+n;-eu) < (1-8)¢ — ¢. Hence,
for n?2 min{nw,n;}, Vc(w,s-l-n-eu) < (1-fp—€+ fp + e < & o
Case (b): x(w,-) > 0 implies that there is a positive probability of advancing to any
w' € {wk,, ... ,wtki}. Hence there exists an n* such that with probability 1—¢;
there are at least n ) ~firms at w+k). Therefore, letting V = supyV(w;s),
Vi(ws+n¥e ) ¢ A(ws+n*e ) + f(l—¢)(§+e) + e,V <
< (1-B)¢ — € + B(1—€))(¢+€) + B,V <
< ¢—e—Ped + PV + Bleg)e =
< ¢+ (7 - 0y — (1-Al1-)))e

where ¢ comes from (A.3) as in case (a) [n* > n:)]. Hence we need only choose

n > o* so large that (V — ¢)Be; < (1-5(1—¢;))e. o
Q.E.D. o
kkkkkkkkkkkkkkk

ProposiTION 3: Under assumptions (A.0) — (A.5), assumption (A.6) holds with
Q(-]-) defined using (6.c) and (7), when qw(é’ |s,n) is defined by equation (8).

Proor: We need to show that Q(-]-) is a (probability) density generating a regular

conditional probability distribution for a Markov process in S. Let £ (s,B) =

Z Q(s’|s). Clearly 2(s,-) is a probability on the o¢—field of all the subsets of
s'EB

the finite set S: 2(s,0) 20, £(55) =1, and Z2(s5,AUB) = £ (5,A) + £(5,B)
for AnNB=9¢ andall s €S. Further, 2(-,B) is evidently measurable in its

first argument for each B ¢ S. Finally, by its definition, the map s — 2 (5,B) is
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a version of Prob{s’€B|s}. Hence Z£(.,-) is a regular conditional probability
distribution [Freedman (1983), Appendix 10]. An easy construction shows the process

{s,} to be Markov. Indeed, letting ¢, be the associated canonical (projection)
n—1

process, it is clear that Prob{{,=s€S; t=0, ... n} = 1 Q(st+1|st) and that
t=0

(A9) Prob{s,_ ,€B|sg, ... 5.} = S,ZBQ(S’Ist) = 2(s,B) = Prob{s,  ,€B|s,}.
Hence £ is the transition probability function for a Markov process and Q(-|-) is
its kernel. Thus Q(-|-) assumed in (A.G) exists at an equilibrium defined as in
are well defined.

(6), and its marginals qw(-), qwlwz(-%

Q.E.D. o

FkEkkkRkRkkk kKKK

TreoreM 1: Under Assumptions (A.0) — (A.5) there exists an equilibrium (*),

satisfying conditions (6.a—e).

Proor: To prove existence of this rational expectations equilibrium, we need to show

the mutual consistency of four fundamental mappings:

Q) V: QxS — [6,7] C R,
(i) x: xS — [0,%] ¢ R,
(iii 2: 8 — A5

(iv) Ve MxS — [$,V] ¢ B,

where M = {0,1, ... ,M} is the set of numbers of potential entrants and AS is the
set if probability measures with support in the finite set S, i.e. a simplex of
dimension |S|—1. Finiteness of 2, S and M follow from Propositions 1 and 2
respectively. 4 is the conditional probability distribution generated by the Markov
" transition kernel, Q [see Proposition 3 proof]. Given a transition kernel Q (6.c)

characterizing the behavior of the industry structure, s, individual firm optimization
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generates an x (6.b) which solves equation (3 or 6.a), yielding both an optimal
valuation of w-states and industry structures, V (6.2), and optimal exit from that
structure. V together with Q then generate the value of entering the industry, \'a
(4), that determines the number of new entrants, m(s) (5 or 6.d). The optimal
investment, exit, and entry decisions of firms in turn define [see (A.4), (A.5)] a
transition probability function, 2, for the industry structure through equations
(6.c) and (7). An equilibrium will exist iff the resulting 2 is the same as that
which determined the optimal valuation and investment functions of firms in the
industry. We will use a fixed point argument to show that there exists such a 4,
and hence appropriate Q, V, x, and V& functions also exist, all satisfying the
required properties (6.a—d).

First note that each of the mappings, V, x, £ Ve, can be represented by a

point in a compact subset of real Euclidean space: V € [¢,\7]Q’S, x € [O,i]QxS,

’ S
Ve e [d),V]M‘S, and 2 € [AS] , where S and Q are compact. This is an
immediate consequence of Propositions 1 and 2 and the definition of 2 in (6.c).
S -

Define a mapping (: [AS:' — [O,i]g'sx[d:,\-’]n"sx[d;,\_/]M'S, which takes a market
structure transition function into an optimal investment policy and optimal valuation
function for any firm in the industry, and an optimal valuation for any firm
considering entry. This mapping is generated by the solution to the Bellman equation
(3) for a given transition probability function for industry structures and by equation

_ - M S
(4). Define a2 mapping ¢ [O,R]Q'Sx[q),V]ﬂxsx[qa,V]M S [AS} , which takes an
optimal investment policy and state and entry valuations into a market—structure
transition function. This mapping is determined by equations (6.c) and (7).

S S
Finally, define the mapping ¥ [AS] — [AS] by the composition ¥ = ¢o(.

In all cases we work with the appropriate product topology.
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LemMa 2: ¢ is a continuous function.

Proor: As T [see equation (Al)] is a continuous (algebraic) function of the
transition kernel Q of £, V = TV also depends continuously on 2. Asin
Proposition 1, x(w,s) uniquely solves G(w,s) = c(w), where G(ws) =

ﬁ'; ) V(W lws,n)-p(w' |wx(ws)n')p,, and V(w'|wsn) =
/w/

2- V(w',8"+e,,)q,(3|8n"), and satisfies the Kuhn—Tucker condition in equation
sl

(6.b). Hence x is clearly a continuous function of V and 2. As V is
continuous in the discrete topology on xS and all the operations in (4) are
continuous, s0 is V®. Finally, since all these mappings are indeed functions (single

valued), ( is continuous as the composition and product of continuous functions. mn

Lemma 3: ¢ is a continuous function.

ProoF: Any investment policy, x(w,s), uniquely determines state transition
probabilities through m{w’|wx) [see assumption (A.4)]. These are the probabilities,
P, w(n,s), given in the transition matrix P [see the Remark following equilibrium
definition (6)]. Clearly, by assumption (A.4), they depend continuously on x.
Further, the number and distribution of new entrants, i.e. their transition probabilities,
are determined by the fixed function m(.) [see equation (5) and Assumption (A.5)]
which depends continuously on V€ and hence V. The industry structure transition
kernel, Q, is uniquely determined by these probabilities as shown in equations (6.c),
(7), and the discussion following (7). The algebraic operations in these equations are
all continuous, so0 £ depends continuously on x, V, and V& Therefore Y isa

continuous function again as the composition-of continuous functions. o

S S
Lema 4 The function ¥ [AS] — [AS] has a fixed point, 2£*, i.e.
S
2% ¢ [AS] such that 2* = ¥(2%).
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ProoF: The function ¥ is evidently continuous as the composition of two

S
continuous functions. Further, [AS] is clearly convex and is compact by
Tychonoff’s Theorem (as the Cartesian product of compact sets). Thus ¥ maps a
compact convex set into itself continuously, so that Brouwer’s Fixed Point Theorem

[Smart (1974)] gives the desired result. o

Thus we have shown that there exists a 2 such that the V and x functions
satisfying equations (6.a) and (6.b) generate the transition kernel Q satisfying
equations (6.c) and (7). Therefore the first three conditions of the definition of an
equilibrium have been shown to be satisfied. The remaining condition (6.d) is an
immediate consequence of preceding Propositions, while (6.e) is an arbitrary initial

condition. Q.E.D. o

ERERRRRRRRRRRES

Txeorem 2: Under Assumptions (A.0) through (A.5) at equilibrium (*) [and (6)):
a) The stochastic process s = <[st},‘:i0 € (S",8¢#) with initial state s° is Markov
with stationary transitions Q(s,s’) and distribution P,
b) The state space, S, contains a unique, positive recurrent communicating class
RcS.
c) There exists a unique, invariant probability measure, p*, on S such that
py = [mQ(s,s)]'1 for s € R, and 4} =0 for s € S\R,
where m(Xs,s’) is the P —expectation of the time of first reaching state s’.

d) VseS, p.n(s) —_
-

Proor: (a) This is an immediate consequence of Proposition 3 when we define the

elements of the matrix @, @s,5’), to be given by the equilibrium transition kernel:
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QXs,s’) = Q(s’|s), incorporating optimal exit and entry, as well as investment,
decisions. In the notation of Proposition 3, the Kolmogorov consistency theorem

insures that the measure Ps is uniquely given by:
™1
(A10) P{¢ =5, for t=01, .. ,7} = e iOQ(st’SH—l)' o

11
Proor: (b) The existence of a unique positive recurrent communicating class will be
shown through a series of lemmata. First we argue that at least one such class, R ¢
€ S, must exist due to the compactness of S. Next we show that it contains a
distinguished state, 5 € R, such that all states s € S communicate with §, i.e.
3n 21 such that P{¢ =8} > 0. Hence every recurrent state must belong to the
same communicating class (i.e. that containing §) and so must belong to R, proving

uniqueness. More formally, we have the following:

LemMa 5: There exists a positive recurrent communicating class, R C S.

Proor: As S is compact (finite), there must exist some state & that is essential
[Freedman (1983), 1.56].41 Define R = {s€S| s—&} where i—j iff i—j and j—i,
and i—j iff 3n>0 such that Q"(i,j) > 0. R C S implies that R is finite and
therefore compact. Hence any infinite sequence {fn} C R must contain infinitely
many §, for some & € R. Therefore, for any s € R, 3 § such that

P{¢{, =& io0} > 0. By Theorem 1.51 in Freedman (1983), the probability of ever
returning to §, fQ(§,5) = 1, so that B is recurrent. But then §—s € R implies
fQ(8,8) = 1Q(s,5) = {Q(s,8) = 1, Vs e R. R is therefore a recurrent class, and as it

is finite it must- be positive recurrent-by Theorem-1.78 in Freedman (1983). o

41A state i is essential iff ‘i communicates with j implies that ¢j communicates
with i’. State i ‘communicates’ with state j iff @no(i,j) > 0 for some n > 0.
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LemMA 6: There exists an § such that, Vs €S, s—5.

Proor: Let 5 = (0, ... ,ON,0, ... ,0) where N > 0 1is a finite number of firms at

« = minQ® We will show that there exists a finite trajectory, {so,sl, ,sT},

with positive Ps—probabi]jty such that §g = 8 and sp = §. We do this in two

stages.

(i)  Forall s let s’ be defined as follows: sf =0, s/ = Sypp foral wi
W, w2 w(s), and 8/ =5, ; + m(s). Thus competition of all firms outside
the industry inexorably advances, while the investments of all active firms fail to

yield any success. Then [see Assumptions (A.4) and (A.5)]

Q(S,S’) = p——l. )n( )[W(UI w:x(w»s))]} wlp(wo)lm(S)l >0,
w2 W(s

as must be any finite product of these transition and entry probabilities. Repeat

until all active firms have dropped (at some 7'1) to w9 or lower:
sT1 = (no,nl, ST N ,0}.
This occurs in finite time as the initial industry structure is finite (Corollary 2).

(i) For all s ¢ {s| 5, =0 Yw>u} let s’ be defined as follows: 5, =0, w>

/ —— . / — . .
swo—swo+m(s), Sie 1 =0 S, =58, 1
competition advances, while all active inside firms, except those at w®, fail to

w < w1, Again outside

generate any success with their investment. Firms at w? succeed in holding
their own. Again such a transition has strictly positive probability [(A.4) and

(A.5)):

Q') = p_ It wnx(uns)] . w‘gw[r(w|w,x(w,s))1's“'-P(aﬂ)'m(s)] >0,

where W.z {weQ| w(s) ¢ w < .u® }.  Repeat until all firms below «® have
exited the industry. Again finiteness of the industry insures that this will occur in

sp = (0, .. ,O,N0, ... ,0),

n

finite time Ty This yields, at T = Ty + Ty §
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where N = argminn{m(o, .. ,0n,0, ... ,0) = 0}

I
=
&
+
-«
]
W~
—
+
—
B
o
o

LEMMA 7: § € R.

ProOF: By Lemma 6, §—35, where § is the recurrent state whose existence was

proven in Lemma 5. As § is recurrent, §—~§ must follow [Theorem 1.55 in

Freedman (1983)]. Hence §~—% implying 5 € R. 0

LEmMA 8: Let § be any recurrent state, 8 € S. Then 8 € R, i.e. R is the
only recurrent class and s ¢ R implies that s is transient.

Proor: By Lemma 7, §—5. By the definition of recurrence, §—§. Further, § €

€R and so § € R must hold [Theorem 1.55, Freedman (1983)]. Hence R is

unique and any s ¢ R must be transient. o

Proor: (c) This is an immediate consequence of the existence of a single positive

recurrent class: see Freedman (1983), Theorems 1.81, 1.88. o

Proor: (d) By = v@" (13) and hence converges iff the matrix Q" does so. By

Freedman (1983), Theorem 1.68, lim Q"(s;s’) = 0 if s’ is transient (s’ ¢ R),

n~+o

and by Theorem 1.69(c), if s’ 1is recurrent (s’ € R) then

1im Qn(S,s’) = __Mi&
D~w mQ(s’,s')
where ©Q(s,s’) = P {¢{ =s' for some 020}, P is defined in (A10), and

mQ(s’,s’) is defined above. Notice that, for all n, vQ* is a probability measure.
Hence 4 converges to some- probability measure, lim =7 (say). Now notice
that 7Q = (lim vQ")Q = v-limQ" Q = v imQ® = lim vQ" = 7 so0 that = is an
invariant probability measure for Q. However, by part (c) above, p* i the only

(unique!) invariant probability measure, and therefore = = p*. Q.E.D. o
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ProoF: (Corollary 3) That p*Q = p* was shown in Theorem 2. That Pﬂ* (A10)

is stationary is an immediate consequence of that fact. Let Ky be the t—th period

distribution starting from p*: B = Q= = p*Qt = p*Qt_l = . =u*Q =
= u*. Q.E.D. o
Rk Rk Rk Rk k%
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