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1. INTRODUCTION

The Bayesian approach to modeling and inference in time series econometrics has become in-
creasingly popular in recent years. Examples include the use of Bayesian priors to achieve economies
in VAR parameterizations (Litterman, 1986; Doan, Litterman and Sims, 1984), Bayesian modeling of
cyclical behavior in macroeconomic time series (Geweke, 1988) and Bayesian evaluations of the evi-
dence in support of the presence of stochastic trends (DeJong and Whiteman, 1991; Schotman and
Van Dijk, 1990; Phillips, 1991a, b). Advances in simulation-based technology (Kloek and Van Dijk,
1978; Geweke, 1989) and improvements in analytic devices like the Laplace approximation method
(Phillips, 1983, 1991a; Tierney and Kadane, 1986; Tierney, Kass and Kadane, 1989) have both con-
tributed to the successful implementation of Bayesian methods in time series applications.

Concurrent with the growing empirical use of Bayesian methods, there has been continued dis-
cussion of foundational issues, such as acceptance of the likelihood principle (Poirier, 1988) and the
form of prior densities to represent the notion of "knowing little" in advance of data analysis
(Phillips, 1991a; Zellner, 1984, 1990). Such matters are obviously of great importance and have, of
course, been discussed in earlier literature (e.g. Barnard, Jenkins and Winsten, 1962; Basu, 1973;
Hartigan, 1964). However, time series applications do raise issues that deserve further attention like
the treatment of initial conditions, nonstationarity, high dimensional parameter spaces and even semi-
parametric model formulations.

Some econometricians, notably Sims (1988) and Sims and Uhlig (1991) have argued recently that
time series models provide important examples where Bayesian and classical methods differ funda-
mentally. Phillips (1991a) showed that some aspects of the differences described in those papers, like
the phenomena of disjoint classical confidence intervals in comparison to symmetric Bayesian confi-
dence sets, are the result of the use of uniform priors, which Phillips argues are inappropriate in a
time series context. However, not all of the apparent differences between classical and Bayesian
methods in time series models can be explained in this way. For instance, in classical theory the
Gaussian log-likelihood of an AR(1) model with a unit root cannot be asymptotically approximated
uniformly by a quadratic without a change in the units of measurement (or equivalently, a random

time change), since the sample variance of the data carries information about the autoregressive



parameter and, upon standardization, has a limit that depends on this parameter and may even be
random. By contrast, the likelihood principle that underpins Bayesian theory identifies the informa-
tion content of the data with the likelihood function itself and, conditional on the given data, the
Gaussian log-likelihood in this case is indeed quadratic for all sample sizes. The same result can be
said to hold approximately in large samples for many non-Gaussian cases, as shown in Sims (1990)
and Kim (1992). These additional differences between the classical and Bayesian approaches to infer-
ence arise because of the critical role of data conditioning in Bayesian analysis. They are every bit as
fundamental as the question of which prior to use and they are especially significant in time series
modeling where data conditioning has important implications.

The present paper seeks to explain and to reconcile these differences. Our analysis shows how
traditional Bayesian inference that is based on the posterior distribution implicitly involves a change in
the underlying probability measure, leading to a new Bayesian frame of reference for the data gener-
ating mechanism. When this change of reference measure is taken into account the symmetric Gauss-
ian posterior density centered on the maximum likelihood estimate (MLE) is explained by the fact that
the model to which inference that is based on the posterior relates is itself changed to a path depen-
dent model where the coefficient is replaced by the MLE. Understanding this path dependent model,
which we call the "Bayes model,” and the measure associated with it is important if one is to properly
interpret the results of traditional Bayesian inference based on the posterior density. We explore the
consequences of this change of measure and model by studying several examples in detail. These,
together with an analysis of some Bayes tests that we propose, are given in Sections 2 and 3 of the
paper. Sections 4 and 5 outline a theory for the general case of a single parameter model where no
assumptions concerning stationarity or rates of convergence are required. These sections also give a
new proof that the likelihood function is asymptotically Gaussian and show how the Bayesian data
density may be approximated asymptotically by a local exponential martingale that plays a big role in
our theory. Section 6 concludes the paper, describes the results of some related research by the
authors that uses the concepts of this paper, and offers some thoughts for further work.

The following notational conventions are employed in the paper. M, is used to represent a

continuous L, (i.e. square integrable) martingale, local martingale or semimartingale, and the square



bracket [M], = [M, M], denotes its quadratic variation process. Similar notation is employed in the
case of a discrete time martingale M,, and in this case we use <M> = (M, M),l to denotes the con-
ditional quadratic variation process. A, (respectively, 4,) is often a shorthand notation for quadratic
variation process (respectively, conditional quadratic variation). W, and occasionally §, denote
standard Brownian motion which is signified by the symbolism "BM(1)". The symbol " =" signifies

equivalence or equivalence in distribution and " << " denotes the absolute continuity operator.

2. FIRST ORDER AUTOREGRESSION IN CONTINUOUS TIME

2.1. The Likelihood

We start our analysis with a continuous time diffusion model because this case will illustrate the
main ideas of the paper in a simple way and thereby (we hope) make more accessible the general case
to be discussed in Sections 4 and 5. Moreover, in our general discussion we will see how the discrete
likelihood function admits an approximation in terms of continuous martingales that leads to an anal-
ysis which is similar to that of the simple diffusion model.

Specifically, our model in this section is the following stochastic differential equation for the

Ornstein-Uhlenbeck process Y;

) ay,=BYdt +dw,, t =2 0

where W, = BM(1). The processes Y, and W, are defined on a filtered sequence of measurable
spaces ({, #) with Y, and W, adapted to &. Let P‘f be the probability measure of Y, given by (1)
with parameter 8 on this filtered space and let us define P, = P? which will subsequently serve as a

reference measure. The probability measure P‘f has density with respect to P, given by the following

Radon-Nikodym (hereafter, RN) derivative
_ B _ 1 a 2 o Yz
2) L, = dP,ldP, = exp\B JoY dY, - (1/2)8° [y Y. ds] .

The form of (2) is actually well known in the literature (e.g. Ibragimov and Has’minski, 1981, p.
16).
The log-likelihood corresponding to (2) is



3) Ag = logL,) = B fo¥.dY, - (1/2)8* [6¥2ds = BV, - (1/2)6°4, , say

from which we derive the maximum likelihood estimator (MLE)
-1 t -l
B, = 47, = (1oras) Crovary

Observe that 3, is the usual continuous time least squares estimator of 8 in (1) i.e. the estimator that
minimizes the formal "error sum of squares" functional {§(@, - ﬁys)zds.

The likelihood process (2) may now be written as
@ L, = exp{(1/2)8°A4,}exp{-(1/2)B - B4} .

Only the second exponential factor of (4) depends explicitly on £ and this is proportional to a
NG, A:l) density. In conventional Bayesian inference it is this latter factor that plays the key role in
determining the shape of the posterior. The first factor, being independent of 8, is traditionally
ignored in the transition, via Bayes theorem, to the posterior. We shall have much more to say about

this matter in the ensuing discussion.

2.2. Bayesian Inference
Let 7(8) be a prior density for the parameter 8 in the model (1). This density need not be
proper and could, for instance, be uniform. Combining the prior w(8) with the likelihood as given

in (4) we have the process

) T, = x(®)@PYIdP) = w(B)L, = x(@)exp{(1/2BA exp{-1IDB - B)*A})

[ exp (12824, | [r @4 Zexpt-206 - B,>2A,}]
= [exp{(l/z)BfA, - (1/2)ln(A,)}} [w(B)A}/zexp{—(I/Z)(ﬁ - B,)ZA,}} )

When =(6) is uniform, II, is proportional to the posterior density N§, Ajl) for 8 and might
therefore be called the posterior process. The decomposition of the II, into the two factors in square
brackets in (5) is important in what follows. As we shall see, the first factor is a local martingale and
produces the density process that changes the measure to a Bayesian frame of reference. Since the

first factor does not explicitly involve the parameter § the Bayesian posterior is, in effect, propor-



tional to the second factor in square brackets in (5). Thus, in conventional Bayes inference, the
transition from prior to posterior via Bayes theorem leads us to ignore the first factor as "irrelevant"
for inferential purposes. We will find, however, that the first factor is not irrelevant from a con-
ceptual standpoint.

Let us now take the case of a uniform prior #(8) = 7y = (27)~ 2. The particular choice of the
constant 7y = (2m)~ V2 in this prior will be explained later in Section 3. Integrating (5) with respect
to B we define the measure Q, by the RN derivative

©) dQJdP, = fgn(B)@PPIdP)ds = A7 exp{(1/2)6°4,} .

This expression gives the density (with respect to the reference measure P,) of the data that is implied
by the model (1) and a uniform prior on 8. If the derivatives in (6) were taken instead with respect

to Lebesgue measure (v), we would have the usual Bayesian data density or mixture density
dQJdv = [xm(B)dPidv)as .

For this reason we call Q, the Bayes measure. It will be convenient to write the derivative process
(6) in the alternate form

) Z, = A7 Pexp{(112)5P4} = A7 exp{(1)VPA'}

Under P,, we note that V, = [§Y.dY, is a martingale with quadratic variation process 4, = [6¥2ds.

A special case of (7) that is of some independent interest is
@®) Z' = 712 exp{(112)W7}

where W, = BM(1). In fact, by a suitable time change that is achieved by setting

9 7, = inf{s : 4, =2 1}

we may replace the continuous martingale V, by a Brownian motion (e.g. Protter (1990), Theorem
41). Specifically, we have

V, =W, as,0 <1< o
t

and then

10)  Z, =2Z as.

e}



Thus, by using the time change (9) we may replace Z, by the (apparently) simpler process Z;. Z; has
some very interesting stochastic properties. In particular, Z; does not have finite expectation, as is
immediately clear from the form of (8). However, it does have finite conditional expectation and,
indeed, satisfies the martingale property that E(Z;|#) = Z! a.s. The process Z, is, in fact, a local

martingale as we prove the following result.

THEOREM 2.1. Z, and Z; are continuous local L, martingales under the probability measure P(-|%),

where 7 is a stopping time such that T > Q a.s. (P). O

REMARKS

(i) The reason for the use of the stopping time 7 and the conditional measure P(- |#) in Theorem
2.1 is that with the initialization at t = 0, Z; = o a.s. (P). The simple conceptualization of this
outcome is that at r = 0 we have no data and the improper prior measure (whose mass is infinity)
dominates. Our use of P(-|#) stresses the positivistic side of our theory: we will describe Bayes
models only when there is given data. If we were to commence with a proper prior on § then this
difficulty at the initial value would not arise. We examine this case below, where the proper prior is
based on data accumulated over a preliminary or pre-sample period such as the interval (0, z] for
some fixed ¢, > 0.

(il) The translation of measure from P, to Q, that is effected by (6) is important in the interpreta-

tion of Bayesian inference. Using (6) we see that equation (5) for the process II, now has the form

II

= 7(@)dPPiap, = (dQ,/dP,)[(Zr)‘”zA,' Pexp{-(112)B - B)4,}

dQJdP)N@B,, A" .

a1
The Bayesian posterior process for B, viz. N(3,, A;‘), is now obtained from (11) by changing the
reference measure from P, to Q,. We can write this as

(12) TP = I(dP/dQ,) = =(B)dPPIdQ) = NB, 4,") .

We can interpret this translation of measure as saying that the reference frame for a flat prior Bayes-

ian analysis is provided by the data dependent measure Q, rather than the original reference measure

P,



(iii) The posterior density I'Ilf in (12) is the traditional instrument of Bayesian inference about 8.
Since TI3 is Gaussian and the distribution is symmetric about the MLE §,, Bayesian inference based
on Hf appears to be much simpler than classical inference based on B, (whose sampling distribution is
asymmetric and complicated in analytic form). This observation has led some investigators, notably
Sims (1988) and Sims-Uhlig (1991), to conclude that Bayesian inference is simpler and logically
sounder than classical methods in this context. However, the transition from II, to H’f and the simple
Gaussian posterior NG, Aj‘) is achieved by the implicit change of measure from P, to Q, as the
above analysis shows. Under data conditioning and from a Bayesian perspective it is equivalent to
work with either II, or I'Ilf since the factor of proportionality between these processes, viz. dQ/dP,, is
dependent only on the data and is absorbed into the constant of proportionality in the transition from
the likelihood function to the posterior. However, only I'Ilf as given in (12) makes explicit the under-
lying reference measure Q, that is implicit in the use of the Gaussian posterior density N(B,, A;l).
We will explore the consequences of this change of reference measure in terms of the implied prob-
ability model below.

(iv) Observe that the measure Q, is induced by the local martingale Z, from the relation dQ/dP,
= Z, given in (6). In consequence, Q, is a o-finite measure rather than a probability measure and
Q) = [oZdP, = E(Z) = . This is, in fact, the result of using an improper (diffuse) prior
density on 8 in the construction of II,. Nevertheless, associated with Q, are proper conditional
densities Q(- |.9,; ) that follow from the ratio

dgJp,  Z,

a3 ot =
a0, /P,  Z,

- expl(1/2) B4, - oA}

for all t = 1, where 1, > 0 is some alternative initialization of the process. We can use this fact the
deduce the probability model that is implied by the use of Q, as the reference measure. First we will
show in the lemmas that follow that we can write the density ratio R, given in (13) in a more reveal-
ing form. The probability measure associated with the conditional density R, is then given in

Theorem 2.4. O



LEMMA 2.2

(14 (U2)diB4, - In(d)] = BAV, - (/2)R%d4, . O

LEMMA 2.3. The density ratio R, in (13) may be written in the alternate form

15) R, = exp{G, - (1/2)[G, G];}
where G, = E;OB;st' Moreover, we can write
(16) R =1+ [foRgGs ,

50 that R, is the Doléans exponential of G, Under P, V, and hence, G, are continuous martingales.

If Elexp{(1/2)[G, G),}] < oo, then R, is also a continuous martingale and

a7  ER)=1.0

REMARKS

(i) The form of the density R, given in (15) is called a Doléans exponential (cf. Meyer, 1989, p.
148 in the appendix to Emery, 1989). This exponential is especially interesting in the statistical
theory of stochastic processes because it is known to represent the limit of the likelihood function for
stochastic processes in very general situations (see Strasser, 1986, Theorem 1.15). When G, is a con-
tinuous local martingale, then so too is the process R, (e.g. Chung and Williams, 1990, Theorem
6.2). When G, is a continuous L, martingale, as it is under P,, and when E(exp{(1/2)[G, G];}] <
(which can always if necessary be arranged by the use of a suitable stopping time), then R, is also a
continuous L, martingale (see Ikeda and Watanabe, 1989, Theorem 5.3, p. 152). In this case R, is
known as a density martingale and it represents a proper probability density.

(ii) Let us now consider the case where we wait until time 7, for a minimal amount of informa-
tion about the process to accﬁmulate. In this case we can use the data over the period [0, 7] to con-
struct a suitable prior density for 8. A mnatural choice is to take the posterior densities for 8 given in

(12) based on information up to f;. That is, we set
B -1
x(®) =1, = NB,, 4,) -

Now combine this prior with the likelihood for the data over the interval [z, ¢]. Using an obvious nota-



tion in which the second subscript #, indicates the new initialization we have the joint density process

B
1) 1, = =@L,, =L

g iy
= nf;exp{ﬂ fi YAy, - (DB §; des}
= IL/L,)
= (@7, 12, (P PZN@,, A7)IL,]
- [Z/Z,)N®, 47"
(19) = RNGB, 471 .
Now R, = dQ/dP,| % = Z,/Z,0 is the conditional data density given information in the start up

period [0, #5]. Note that R, depends only on the data and not on 5. Note also that the joint process

Hmo in (18) leads to the same posterior process, viz. N(B,, Ajl), from (19) as would have been
obtained directly from (12), where the initialization in the process was set at £ = 0. In this sense
there is coherent Bayesian updating, so that inferences made at time ¢ will agree, irrespective of the
initialization, provided that the prior information is properly updated.

(iii) Observe that the joint density process given in (18) of (8, Y,) conditional on & can be

t
written as
dPPiap, . -l
@0 I, = ﬂ(ﬁ)——ﬁ————- = RNB, 4, ,
dP’ /dP
LI
where
. zZ,  dg/dp,
'z, do,dP,

It follows that the posterior density process for £ at time ¢ has the form

dPP1d,
dP, /a0,

B

@y I, = 7@ = NG, 47,

where inferences about 8 are centered on the MLE 6,. Comparing (20) and (21), we see that the
reference measure for the construction of the likelihood function changes from the measure P to the

measure Q. The situation is analogous to that described earlier when the initial condition was set at



t = 0 (see Remark (i) following Theorem 2.1). In effect, the frame of reference for a Bayesian
posterior analysis based on Hﬁ,o = N(B,, A, 1) is provided by the data dependent measure Q, and the

associated density process R,. [

It is now of interest to find an explicit form of the model that corresponds to the density process
R,. This model turns out to be trajectory dependent and it provides the frame of reference in a Bayes-

ian analysis of the "classical” model (1). The model is given by (1)B in our next result.

THEOREM 2.4. (a) Under a uniform prior for 8 in the model (1) the process l'I’f determines a
sequence of Gaussian posterior distributions N(B,, A;l), i.e. normal with mean B, and variance A:l.
The same posterior density II’f = N(S,, A','l) applies if an initialization at 1ty > 0 is selected and the
prior for 8 is chosen as the posterior IIZ Jfrom the earlier period [0, t;).

(b) Bayes methods that are based on the posterior TI® imply a replacement of the underlying
reference measure P, in (1) with the Bayes measure Q, defined by (6), i.e. the likelihood function on
which Bayes inference is based relies on dP‘f/dQ, not dP‘f/dP, as in (2).

(¢) The Bayes measure Q, has conditional density process R, given by (13) for some ty3 > 0. R,
is the likelihood ratio or density process of the output {YS}’,0 Sfor any ty of the nonlinear stochastic

differential equation
(1)B @Y, = B Y,dr + dW,, 1>0

in which the parameter f that appears in the model (1) is replaced by the trajectory dependent value

B, = [§YdY/ [§¥ids. ©

In a Bayesian analysis of model (1) with a uniform prior on § there is no commitment to a par-
ticular value of 8, i.e. there is no concept of a true dynamic model (1) with a true value of §.
Instead, in such a Bayesian ahalysis the underlying reference measure P, (i.e. the probability measure
of the standard Brownian motion that drives (1) and for which Y, = W, when § = 0) is replaced by
what we have called the Bayes measure Q,. This measure Q, is trajectory dependent and thus, to a
Bayesian, the reference model evolves according to the recorded history of the process (on which all

Bayesian inference is conditioned). The Bayesian reference model is the nonlinear stochastic differen-
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tial equation (1)B and is an evolving parameter model. Theorem 2.5 tells us that Bayesian inference
based on the posterior density process H’f relates to a trajectory based version of the original model,
i.e. (1)B, rather than the true original model. In effect, a Bayesian approach to inference on model
(1), whereby one conditions on the available data, involves the implicit adoption of a path dependent
measure which treats the parameter of interest as evolving in such a way that it is continuously updat-
ed as new data becomes available.

What we argue is that the simplicity of the posterior density H’? = N, A;l) needs to be temp-
ered by the fact that this posterior is associated with a path dependent reference measure Q, and a
model, (1)B, that is itself path dependent and very different from the classical model (1). In the
context of the new model (1) the simple Gaussian posterior N(8,, A7) centered on B, seems quite
logical. However, we emphasize that inference about § that is based on the N(B,, A;l) posterior

needs to be interpreted in the light of the new model (1)B not the classical model (1).

3. AUTOREGRESSIONS IN DISCRETE TIME, BAYES MODEL TESTS,
POSTERIOR ODDS AND SOME MODEL EXTENSIONS

3.1. The AR(1) Model and its Gaussian Likelihood

Our model in this section is the Gaussian AR(1)

u, = iid NQO, o

(22) H,:Y =aY_; +u,
where 0> = 1 and the process is initialized at # = O with ¥, any $-measurable variable. Y, and u,
are defined on a filtered sequence of measurable spaces (@, %) with ¥, and u, adapted to #. We use
P to represent the probability measure of ¥ = {¥}] conditional on ¥;. So when o = 0 we have
the measure P2 and when o = 1 we have the random walk H, with measure P. = P,, which will

serve as our reference measure.

The log-likelihood of H,,, given H, as the reference model and conditional on ¥, is



In(dP%/dP,) = In[(dP%/dPOYdPYIdP,))

>
¥
1

~(A)TNY, - o¥>y + AT}, - ¥,

23) KE'Y,_(AY, - (KLY,

where b = «-1. Since H, is our reference model it will be convenient in what follows to work with
the deviation h as our parameter rather than «, just as in (23) above.

The likelihood process is given by L, = dP%/dP, = exp(A,), and the score function process is
N, = A, /oh = TUY,_AY, - KEIY>, =V, - hd, , say,
giving the MLE
@4 h, - 47V, = @ )EY,_AY) .
We can now write the likelihood process in the form
@5 L, = expl(IDRAJexp{-(IID)h - A YA},

analogous to the continuous time case.

3.2. The Bayes Posterior Process, Bayes Model and Bayes Measure
Suppose we have given a prior density (%) on & = a-1. The joint density process for (8, ¥") is

then

I, = 7(W)(dP%/dP,) =x(h)L, = m(Rexp{(1/2)A2A, }exp{-(1/2)(h-h A}

(26) 7 Pexp{ (1120824, [ 4! Pexp{ -1k - A, P )]

As in the continuous case, we shall take the case of a uniform prior on A with the improper
density x(h) = (2x)~'2, Integrating (26) over h, we define the discrete Bayes measure Q, by its

derivative with respect to P, i.e.
@7)  dQ/dP, = [yx(h)dPyIdP,)Ydh = A Pexp{(1/2)h7A,)
@8) = A Pexp{(12)V2A]"} = 2, | say.

Note that V, = I1Y,_,AY, = LY, ,u, under H, so that V_is a P -martingale. Its conditional qua-
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dratic variation process is

<V > = L'V E[(AY)? LY., = A, , say.

] =
7,

Then Z, in (28) has a general form in terms of the martingale V, and its quadratic variation process
A,. This form, like the continuous version given in (7), is important in generalizing our ideas and

methods beyond the simple models considered here and in Section 2. Note the special case where V,,

is a random walk with quadratic variation process 4, = n, leading to
Z! = n"Pexp{(12n)V7} .
The process Z, (like Z; in (8)) satisfies the martingale property EZ|#£) = Z) as. (m < n) even

though Z_ itself is not integrable.

Using (27) we now write (26) in the form

IL, = w(h)(dP,/dP,)

(d0,/dP 21124, Pexp{-(112)(h - h,)*A,}]
29) - (dQ,/dP)NG,, A7) .

Thus, as in the continuous case, the Bayesian posterior process for A, viz. N(i,, A;D), is obtained

from (29) by changing the reference measure from P, to Q,, i.e.
o4 -1
30) 1L = IL@P,JdQ,) = x(B)dP3ldQ, = Nk, A,) .

This translation of measure has the same interpretation as in the continuous case: Bayesian inference
based on the Gaussian posterior IIZ = N(A,, 4;') involves an implicit change of reference measure to
the path dependent measure Q.

Like Q,, Q, is o-finite, since Q, () = [gZdP, = E(Z) = oo, but the measure does give rise
to proper conditional densities Q,,(* |.9’no ) for some ny = 1 from the ratio

do J/dP,  Z - -
O dPy _ Zn [A,,/Ano]"’2exp{(1/2)",2,f4n1 - 12V A

3)
Gb a0, 7P, N,

R, say.

n



The following lemma gives an alternative representation of R, that is very important in understanding

the model associated with the measure Q,.

LeEMMA 3.1

n (72zf) Pexp{-(12£) (&S, - A,_,Y, )}

32 R =
62 t=ng+] (172m) exp{-(1/2)(AY)%}

n

wheref, =1+ ¥2_/4,_,. O
THEOREM 3.2

(33)  dQ,/dQ, = I 1(1/21rf,)”2exp{-(1/2f,)(AY, -h_ Y, 0% . O

t-ng+

REMARKS

(i) Expression (33) gives the conditional density of the measure Q, given & . Note that
dQ,,/dQ,,O = (dQn/dv)/(dQ,,U/dv) ,

so that (33) is in fact the conditional density with respect to Lebesgue measure (v) of Q, given 7 X
As we see below in Theorem 3.3, the form of (33) reveals the nature of the model associated with the
measure Q,.

(i) Let ny be interpreted as a time when a minimal amount of information about the process ¥,
has accumulated. For instance, if ny = 1 there is just enough data to estimate 4 by }31 = YpAY,

= AY,/Y;. For values of ny = 1 we can use the period 0 < 7 < ny to construct the prior
B

w(h) = H,,o =
we get (as in the case of (18))

N(ﬁno, An'ol). Combining this prior with the likelihood based on data over ny < 1 < n

B 2 -1
I, = N, A7)

which is the same as (30). Thus, there is coherent updating in the prior and posterior when the initial

condition is shifted from ¢t = O0to 7 = ny. O
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THEOREM 3.3

(@) Under a uniform prior w(h), the posterior process Ilff is Gaussian with distribution
N(ﬁn, A;') at time n. The same posterior applies when a different initialization ny is chosen and the
prior is updated to w(h) = Ilgo.

(b) Bayes methods that are based on the posterior Hf imply the use of the discrete Bayes measure
Q,, as the reference measure in constructing the likelihood.

(¢) The model to which Q, refers is the time varying parameter model

n

(35) H&n—l . Y = &H—IYH-I + vn 1y n z no +1
where the evolving parameter &, _, is the path dependent MLE

G, =1+ h 1= ET_IY:Y,,A/ET_IY:Z-l

n- n-—

and v, = iid NQ©, £,) with

-1
G6)  fo=1+ YA, =1+ Y /T

=1 -

In particular, the conditional density of Q, given Z, . is identical to the conditional density of data

generated by the model (35) given & . O

REMARKS

(1) As in the continuous case, traditional Bayes inference converts the concept of a true model
(here H,, with reference measure P,) to a Bayes model (here H&"_l, with reference measure Q,) in
which the parameters evolve according to the observed trajectory of the process. The form of the
"Bayes model" (35) follows directly from the conditional density dQn/dQnO given in Theorem 3.2 by

(33). Setting ng = n—1 in the latter expression we have

BN dQ,/dQ, , = dQ,dv|g = (12af) Pexp{-~(U2f)AY, - A,_i¥, )} = Nh, Y, f,)
n-1

which is the conditional density of the most recent observation Y, given the past history of the process
to Y, _, (ie. given & _,).
(ii) The Bayes model (35) is identical to a classical prediction model for ¥, given # _,. Note

that &,_,Y,_, is the MLE of the Wiener-Kolmogorov predictor E(Y, | #_;) = a¥,_, in the model
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(1) where the expectation is with respect to P* measure. The variance, f, = 1 + Y2_ /4, _,, of the
error process v, in (35) is the asymptotic variance of the classical prediction error ¥, — &,_,Y, _;
=u, — (&,.; — o)¥,_;. In our Bayesian context under the measure Q0 , &,_,Y,_; = E(¥,|%_))
is the conditional expectation directly (i.e. the Wiener-Kolmogorov predictor under 0, measure) and
f, = var(¥, |#£_,) is the conditional variance. This equivalence between the Bayes model that cor-
responds to the path dependent measure O, and the asymptotic form of the classical prediction model
goes a long way towards reconciling the differences between Bayes and classical inference in simple
time series models like (1).

(iii) It should be pointed out that model (35), when interpreted as a Bayes model for the data, has
some advantages over the classical prediction model interpretation of (35). First, (35) is an exact
finite sample result in Bayes theory whereas the classical interpretation of (35) relies on asymptotic
theory, in particular, 1/4,_, is the asymptotic variance of the estimator &,_, whereas it is the exact
variance of the posterior distribution of . Second, the model (35) carries with it the measure 0,
This is especially useful when we come to compare models, e.g. a model like (35) with a similar
model in which there is a unit autoregressive root (i.e. AY, = u,) for which the associated measure is
P,. Model comparisons of this type (which in the case just given amount to a test of the presence of
a unit root) can then be performed by considering the likelihood ratio of the respective measures, i.e.
dQ,/dP, in the example given. This idea forms the basis of the approach to inference that we recom-
mend for Bayes models like (35).

(iv) It is interesting to observe that the error process v, in the model (35) is a nonlinear ARCH
process, unlike the error in the continuous time Bayes model (lE)‘ Note, however, that as n = o,
YE_IIA,,_1 —, o 0 and the ARCH effects die out for large n.

(v) The Bayes model Q, that corresponds to the model (35) was originally defined by the RN
derivative dQ,/dP, given in (28) and this in turn relied on the uniform prior 7(h) = (2x)~!"2. Since
0, is a o-finite measure, any other choice of non zero constant for the uniform prior (%) would lead
t0 a measure equivalent to O, (i.e. each measure would be absclutely continuous with respect to the
other) and the conditional distributions dQ,/dQ,_; would be exactly the same for each measure.

Thus, the Bayes model (35) is invariant to the choice of the scale in the uniform prior. The particular



choice n(h) = @m) ™12 is motivated by the following argument. If in place of P, as the reference
measure we chose instead the measure Pg (corresponding to & = 0 in model (22)) we would have

dQ 1dP® = A7 exp{(1/2)a24,} .

Under P2 we have the canonical model y, = u, = iid N(0, 1) and then n='4, -, , 1. Hence, twice

the logarithm of the likelihood ratio dQn/dPg scaled by n'”2 (to avoid a degenerate limit) is
2 In[n"%(dQ,/dP)) = &4, - In(n714,) = 6GA, + 0,(1) .

Note that &24,, is the Wald statistic for testing the hypothesis « = 0. Thus, with the explicit choice
of the prior m(a) = (27) ™! the likelihood ratio dQ,/dP° is asymptotically equivalent to the classical
Wald and likelihood ratio tests of the null hypothesis Hy : « = 0. O

3.3. A Bayes Model Test

Bayes methods change the frame of reference to a Bayes measure (Q,) and Bayes model (Hé,.—x)'
It should therefore be possible to test one Bayes model against another using a likelihood ratio test. It
is possible to pursue both classical (Neyman-Pearson) and Bayesian (posterior odds) approaches at this
point. The former is valuable because it facilitates comparisons with other classical tests (e.g. of the
unit root hypothesis). We will therefore proceed along these lines in this section and in Section 3.4.
However, as will become clear in Section 3.5 our recommended procedure for practical implementa-
tion is Bayesian and is based on posterior odds.

We now apply this idea, starting with model H v From (27) we see that twice the log-

likelihood ratio is
(38) 2 1n(@Q,/dP,) = h2A, - In(4,) .

Under H, we standardize A, by n~2 to ensure a well defined limit process. This leads us to define

the Bayes model likelihood ratio test statistic as
(39)  BLR = R2A, - In(n24) .

" When the error variance o2 in H; and H, . is unknown and must be estimated we employ the esti-
n

mate
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6 = nT'LNY, - &Y,
and then the BLR statistic is

@40)  BLR

A24,/6% - In(n~1A4 /) .
Using standard functional limit theory we obtain:
THEOREM 3.4. Under H,

1 2 12 12
41 BLR, BLR, = (SOSdS> / IOS - In( joS ) = g(S)
where S(*) = BM(1) is standard Brownian motion. [

We may use the statistic BLR, to conduct a classical test of H| against H, (o # 1). Critical
values of the limit functional are readily obtained by simulation. Letting gq o5 denote the right tail

5% critical value of g(5), a 5% level test of H; against H, (o # 1) is provided by the criterion
BLRU > 80‘95 .

Observe that the BLR, statistic is a nonlinear mixture of the Dickey-Fuller (squared) t-ratio sta-
tistic, A24,/6%, and the Anderson-Darling/Sargan-Bhargava statistic n"24,/6>. (The latter would
apply precisely if o> were estimated under the null by s> = n~!L%(AY)?). Rates of divergence of the
statistic BLR, are easily seen to be O,(n) under the alternative o« < 1 and O,(la|") under the alterna-

tivea > 1.

The performance of the BLR test in finite samples was explored in simulations and the results
are reported in Figure 1. Comparisons were made between the BLR  test and the Dickey-Fuller #-test
(DF(#)) and coefficient test (DF(q)). In each case the size of the test was set at 5% and the graphs in
Figure 1 show the power functions of the three tests for the sample size » = 100. The results show

that there is little to choose between the tests at this sample size.
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3.4. Some Model Extensions
The ideas of the last subsection can be used to develop tests for a unit root that apply in models
with drift, with deterministic trends and with transient dynamics. These extensions will be considered

in turn to illustrate the theory. First we look at models with intercept or drift, i.e.

Hyo ' Y,=p+a¥,_ +uy

H,:YL=p+Y  +uy
where u, = iid N(O, 1) and the time series are initialized at ¢+ = 0 with ¥, being #-measurable. We
shall proceed with the same general notation as before. The density process of H, | with reference to

H; (whose measure is represented by P,) is
dP*'/dp, = exp{—(l/Z)E'l'(AY, - (1/2)ET(AY3)} = exp{(ETAYJu - (1/2%42"} :

Let w(u) be the prior density of y and f, = n_lE’l’AY, be the usual maximum likelihood estimate

under H,, ;. Then the posterior process is

T)@dPY' 1dP,) = T(u)exp{ipn - (1/2)p%n}

0,

1]

@) n'“2exp{ﬂ3n/2ﬂ[vr(u)n‘”exp{—(l/z)(u - by
The Bayes model measure Q’;" is determined by the RN derivative
@3)  dO™idP, = n"V2 exp{plni2} ,

and associated Bayes model B, ; is

n

AY, o1 = By * Vaar 5 Vel g = NO, (+D)/m)
n

in place of H), |
Following (38) and (39) the Bayes model likelihood ratio test of Hﬂ’1 against the null reference

model H,_ 1 is just

BLR(,) =2 1n(n1’24Q,'j"/dP,,) = ni2 |

with asymptotic distribution given by
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@5) BLR(p,) = X] ,
under P, (i.e. H,_q ). Again, when the error variance is to be estimated we may use
& = n LAy, - g,
and the test statistic is
A 2200
BLR,(j,) = nji,/o* ,
with the same limit distribution as (45).
BLR and BLR, are Bayes model likelihood ratio tests for the presence of a drift in the model H, ;

with a unit root. Our next object is to find the BLR test of model H, , against model H#,l. The

density process of H,, , with reference to H, is

dP¥1dP, = exp{-(1/)Z](¥, - p - a¥,_)* + (UDZ](AY)S

exp{-(1/2)Z}(AY, - p - hY,_)* + (UDZ}(AY)%

exp{-(I/)T](AY, - 6'X)* + (/)T}(AY)%}

exp{6'TX,AY, - (1/2)0'T}X.X,6}
where 6 = (u, h) and X, = (1,Y,_y). The maximum likelihood estimator of 6 is
b, - [Txx) @xary.

If =(6) is the prior density of 6 then the posterior process is

I, = x@dPlap, , P =PIt

Using the same approach as before we now decompose this density into two factors as
@6) I, = [|4,] " exp{(1/2)8,4,0,} | [x(®) |4, Pexp{(-1/2)€ -8, 4,6 -8,)}] ,
where 4, = I1X,X;. The Bayes model measure is then obtained from the derivative
@n  dQbidp, = |4 | Pexp{(1/2)8,4,8,} .

This is a useful general form of the Bayes model measure that will be utilized extensively in what

follows. After a little calculation in the present case with 8; = (@,, A,), we find
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dQ’iap, = exp{(1/2)}23):’;(Y,_1 - Y. ) - (1/2)1n(n)3’,‘(¥,_1 - i/_l)Z) + (U2)n(, + fzni’_l)z} ,
Now j, = AY - 4, ¥ so that the above expression simplifies to
@)  dolaor! - exp{(l/2)ﬁnE';(Y,_1 Y. )? - (1/2)1n(nz’;(Y,_, - "_1)2) + (1/2)nm>2} .

Next observe that the Bayes model measure for Bu,l is, from (43),
49)  doM'/dP, = exp{(1/2)nAY: - (1/2)In(n)} .
Combining (48) and (49) we obtain
50 dolidor! = @Qlsap yap,aQ"")
- exP{(l/z)ﬁiz',’(Y,_l - Y ) - (1/:2)111(2',’(1’,_1 - Y_l)z)} .
Factoring in the sample size n to ensure a limit distribution for n_ZZ”{(Y,_l — )—’_1)2, we have
BLR = 21n(n(ng/de:’])) = BNy, - YR - 1n(n'2x’l’(y,_, - __,)2) .

Finally, estimating the error variance by &° = n‘ZE’{(Y, — 8,X)), we have the Bayes model likelihood

ratio test

BLR, = h2Z}(¥,., - Y_ )X - 1n{n-2z’;(y,_, - ?_,)2162} :

THEOREM 3.5. Under H) = H,_g
BLR, BLR, = [ 53§dsr - In(fo8Y) ,
where S() = S() — IE,S is demeaned Brownian motion and S(*) = BM(1). ©

Models with higher order deterministic trends can easily be accommodated in this approach. Let
k , .
S1)  H,,:Y =Xe+a¥,y +u, u =iid N0, ¢

be a model with auxiliary regressors X, = (1, ¢, 12, ooy t") and parameters ¢’ = (g, 1, ..., 4
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Proceeding as before, we find the Bayes model

koo roa N o .
Yu*l = Xn+1¢n + O‘nYn * Vnet = Zn#lan * Vnat s

G2 Bl,:

, -1
Vil = NO, (1 + Z,,,4.'Z,,))

-1
where 8, = (¢,, &,) = (z’;z,z;) €iZY), Z; = (X;, Y,_)) and 4, = £]Z,Z/. The Bayes model
measure for BY , is then obtained from (47).
In a similar way, when we restrict the autoregressive coefficient to o = 1 we obtain the Bayes

model

k ’ - . ’ "1
(53) B, : AY, XpatPn * Vasr 5 Vaetlg = NO, (1 + X 147X, ,

n+l = 4p
-1
with ¢, = (E’I'X,X,') (XT1X,AY) and A, = E{X,X;. The Bayes model measure for Bs’;’l is again
given by expression (47). We now have
dQP*ag?" = @Y */ap,) @t 1ap,)

exp{(1/2)8, T1ZZ))0, - (1De, T XX)e, - (1/DIn(|T1Z,Z] |1 E1X X! )}

(54) exp{(1/DA2Y,04Y | - (1/)In(Y,04Y )}

where &, = 1 + A, Y, = (Y, ¥;, ..., ¥,_) and Qy is the orthogonal projection matrix onto the
range of X = [X;, ..., X ]".
The Bayes model likelihood ratio test of H’;’a against Hé,I is therefore based on the statistic
BLR = 2 In{n(dQ@?"*/dQ"")}
2 ! - '
= ASY/ 047 | - In(m72Y 047 ) .
Again, when o2 is estimated we have
(55)  BLR, = KXY,0,Y_/&* - In{n"X(Y,04Y. )/e%}

where 8% = nTIZN(Y, - ¢.X, - &,Y,_,)%
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THEOREM 3.6. Under the null model H,| (i.e. Hy | with ¢ = 0) we have
te oo, (1c2 1
(56)  BLR, BLR, = (5osgs) /1482 - In( §353)

where S;(°) is the detrended Brownian motion

Sy r) = S@) - 8 - byr - - by

with

1 -1y
5 - (50p<r>p<r>') fap()S()

andp(r) = (1, r, ..., 7%)'. O

The statistic BLR, in (55) may be used to test H’;:{ (a model with a unit root and drift process of
degree k—1) against H’;ia (a trend stationary model with trend degree k). Both (55) and its limit dis-
tribution given in (56) are invariant to the trend coefficients ¢ under the maintained hypothesis that
¢, = 0, i.e. that Y, follows a process which can be decomposed into the sum of a kM order determin-
istic trend and a stochastic trend. The statistic (55) may therefore be used to test for the presence of a
unit root in a time series model where there is a maintained deterministic trend. In this sense, the
Bayes likelihood ratio test BLR, may be regarded as a Bayes version of the classical tests of Dickey-
Fuller (1981), Phillips-Perron (1988) and Ouliaris-Park-Phillips (1989).

Figure 2 shows the power curves of the BLR, and Dickey-Fuller r—test (DF(z)) and coefficient
test (DF(a)) when k = 1 (i.e. there is a fitted linear trend in (51) and (52)) and n = 100. The size
was controlled at the 5% level for each test. The power functions show that the BLR, test has greater

finite sample power than the DF(f) test but lower power than the DF(a) test.

Models with trends and transient dynamics can be treated in the same way. Consider for
example the commonly used augmented Dickey-Fuller model

k

Hy o' Y= oY, + DAY, + Xjo +u, u = iid NO, o)

7

where X, is the same trend polynomial as in model (51). Bayes models can now be constructed in the
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same way as (52) and (53) but with the additional regressors AY,_,, ..., AY,_p +1- The RN deriva-

tive of the respective Bayes measures of these models is then

8 Ve exp{(IDALY1047 )
o' (Y407 )7

where A, = d,_,, 6, = (Y2, 0x¥_)7'(Y1;Ox1), Oy is the projection matrix onto the orthogonal

complement of the range of X = [X;, ..., (10UX¥ X; = [X;, AY,_,, ..., AY,_p]. Estimating o? in
the usual way, i.e. by the MLE % from the more general model H,, . Wwe obtain the likelihood

ratio statistic
_ RN .91
(59) BLRo =2 ln{n(dQn /dQn )}

= BLYZ06Y_ (167 ~ In{nX(Y_ 0¥ /%) .

Under the null hypothesis H} | (i.e. Hj | with ¢, = 0) BLR, in (59) has the same limit as that
given in Theorem 3.6 by (56). Tests based on the BLR, statistic (59) are therefore Bayes versions of

the augmented Dickey-Fuller test (cf. Nelson-Plosser (1982) and Said-Dickey (1984)).

3.5. Bayes Model Posterior Odds

How do Bayes model likelihood ratio tests relate to conventional Bayes testing procedures like
posterior odds ratios and best Bayes tests? To address this question we look at these aiternatives in
the context of the simple autoregressive models H, and H; considered earlier (see (22)).

Let 7, and =, represent the prior probabilities of H; and H,. The posterior odds ratio of H, to

H, is

and the "Bayes factor” in favor of H,, is dP5/dP,. If we use a loss structure to penalize incorrect
decisions and form a basis for action, then the Bayes solution corresponds to the choice that mini-
mizes the Bayes risk. When the loss function is symmetrical in the sense that the losses from type I

and type II errors are set to be the same, the decision rule is (cf. Zellner, 1971, pp. 295-297):

(60) if dP3/dP, > =,\/%, , then decide in favor of H,
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i.e. decide in favor of H, if the posterior odds > 1. The criterion (60) is sometimes called the "best
Bayesian test" of H, against H; (e.g. Grenander, 1981, Theorem 3, p. 111) or the Bayes solution
(Hall and Heyde, 1980, p. 163).

To implement the decision rule (60) we would need to have a specific model H,, and value of &
to incorporate in the criterion. As we have argued earlier in the paper, Bayes methods do not rely on
the concept of a true model like H, with a true value of the parameter «. Instead, as shown in
Theorem 3.3, Bayes methods (with a uniform prior on «) imply the replacement of the model H, by
the trajectory-based version given in (35) where the parameter &, _; relies on the latest available data
on the trajectory and is updated as soon as new data is available. As we have seen, corresponding to
this model is a path dependent measure Q,. In constructing a posterior odds test it therefore seems
appropriate that we compare the prior odds with a Bayes factor that is determined by the likelihood
ratio of the two competing Bayes models. In the present case, these are H&ﬂ_1 as given by (35) and

the unit root model H,. Noting that

0, exp{(IDAT]Y2 )}

dapP. 12
R S

This leads to the following decision rule

(61)

62) if dQ,/dP, > m/m, then decide in favor of the Bayes model H, | over

the model H, with a unit root.

Since (61) relies on knowledge of o2, we construct the following statistic (analogous to BLR in (40))

when ¢2 is unknown:

d 1R 162

" (E’,‘Yf_l/az)

s

where 6% is MLE of ¢? that is used in BLR, in (40). We will call (61)' the Bayes model posterior

odds criterion. We then have the decision rule:

(62)’ if dQn/dPn(az) > m/m, , then decide in favor of the Bayes model H, » over

the model H, with a unit root.
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Setting the prior odds to be unity, as we will often wish to in practice, this reduces to the very simple
criterion

(62)"  if dQ,/dP,(%) > 1, then decide in favor of H, _,over H, .

THEOREM 3.7. The Bayes model posterior odds test for the presence of a unit root in (22) is based
on the criterion

(63)  "if d0,/dP(&%) < 1, then accept H; (i.e. a unit root).”

This test is completely consistent in the sense that type I and type II errors both tend to zero as

n-—> oo,

Next we consider the case of a model with trend and transient dynamics. To be explicit, we

shall take the common case of a linear trend (k = 1) and write model (57) as
64)  Hy,po: Y, =o¥,y +u+Bt+FVAY,  +u, u =iid NO, @) .

Extensions to the general case follow in a straightforward manner. From (64) we construct three
Bayes models corresponding to the following specifications:

@ «o
®) a=1,8=0,u = 0(aunit root and no drift or trend in (64))

1 (a unit root in (64))

(¢) a = 1,8 = 0 (aunit root and no trend in (64)).
The Bayes model posterior odds tests that correspond to these specializations are:
@) if dQﬁ""ﬁ'“/dQ‘f,"“'B'l(az) < 1, accept the Bayes model with a unit root.
") if dQﬁ'“'ﬁ'“/dQ‘,‘;'o’o’](&z) < 1, accept the Bayes model with a unit root
and no drift and no trend.
<) if de'“'ﬁ'“/dQ‘,‘."“'o'l(&z) < 1, accept the Bayes model with a unit root
and a drift but no trend.
The first of these tests is a Bayes model posterior odds version of the classical ADF test. The
second and third tests are joint and they are the Bayes model posterior odds analogues of the classical
joint F tests of Dickey-Fuller (1981), i.e. $, and $; in the Dickey-Fuller notation.

Each of the posterior odds tests in (a)-(c) above is completely consistent in the sense given in
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Theorem 3.7. These tests have the additional advantage over classical tests that it is not necessary to
have detailed tabulations of critical values for the multitude of tests that correspond to the different
non standard distributions that apply depending on the nature of the deterministic regressors that are
included in the regression model. For instance, in the "classical” version of the Bayes model likeli-
hood ratio test given in Theorem 3.6, the limit distribution of BLR  is different and requires different
tables of critical values for every value of &, the degree of the time trend in the fitted regression. For
these reasons, we recommend the use of the posterior odds versions of these Bayes model tests, i.e.
(65) and (a’)-(c’).

Finally, we observe that criteria such as (a’)-(c’) are really model selection criteria. In effect,
the RN derivative of the measures of the respective Bayes models is an instrument for comparing
models with a decision criterion that leads us to select the model with the greater density a posteriori.
In the present case, the criterion is being used to determine the evidence in support of a unit root.
But the principle has a much wider range of application and can, for instance, be used to determine

lag length in an autoregression, trend degree and the presence or absence of a unit root.

4. TOWARD A GENERAL THEORY

The results in Sections 2 and 3 of this paper are all derived for linear models under Gaussian
distributional assumptions. The purpose of this section and Section S is to show how the ideas we
have introduced extend to a much wider class of models. We will also show that the form of the
Bayes measure Q,, as given for example by (6), (28) and (47) in linear models, is retained asymptot-
ically even in rather general situations. Our analysis will start with continuous time processes as in
Section 2 and we will later show how the theory for discrete time processes can be embodied in that
of the continuous time case by a suitable embedding technique. This approach has certain advantages:
(i) we can use the theory of continuous square integrable (L,) martingales and exponential martin-
gales, which is elegant in itself and which leads to results that are of independent interest; (ii) there is
no need to distinguish stationary, nonstationary and explosive cases (as is usually the case in discrete
time); and (iii) determination of the Bayes model that is implied by the use of Bayes rule in the gen-

eral time series case is simpler in continuous time and can be used to infer the corresponding model
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in the discrete time case. The embedding theorem that enables us to achieve this (Theorem 4.7) is

therefore of special interest.

4.1. General Exponential Bayes Measures

The framework we start with is fairly general but we hope the advantages of this will soon be
apparent. Let (Q, & P) be a probability space and let (%), o be an increasing family of right contin-
uous sub o-fields of # Let M(?) be a continuous local martingale with respect to & and let A(?) be its
quadratic variation process, i.e. [M], = A(?).

Now suppose we have a stopping time 7. For instance in our set up 7 might be a stopping time

defined as
(65) 7 = inf{s : As) = ¢}

for some constant ¢ > 0. This could be interpreted as a minimal information time, where we meas-
ure information in terms of the quadratic variation A(#) and prescribe a level by minimal information
by the constant ¢. Now let (7,),5¢ be a family of monotone increasing and continuous (in a) stop-

ping times such that A(7,) is a.s. (P) bounded. This could be arranged, for example, by setting
(66) 7, = inf{s : A(s) = ce}, a2 0

so that the process is, in effect, stopped before the quadratic variation gets too large. Note that with
definition (66) the family (7,),5 ¢ i8, in fact, initialized at 7y = 7.

Consider the stopped process M,(f) = M(tA7,). M, () is a continuous local martingale with
quadratic variation process A (t) = [M,], = A(tA7,) (e.g. Protter (1990), Theorem 22, p. 59).
Moreover, since A(r,) is bounded we have E{[M_ ], } = E{A(r,)} < oo and, therefore, M,(t) is a
continuous L, martingale (Protter (1990), Corollary 4, p. 67). This shows that we can produce
martingales from the originalv local martingale by employing the stopping time 7,. But, in addition, if
we now index our process by a as in (66) and let @ - oo, then we effect a fundamental time change
in the process whereby the "new time" is measured by the information content (as measured by A(r)
of the original process.

Our next result shows how to construct a new measure Q, from the original probability measure
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P using exponential martingales that are based on M(7,) in the new time frame.

THEOREM 4.1. The measure Q, defined by the RN derivative

daQ, _ exp{M(7,) - (1/12)A(7,)}

VT ity A

is a probability measure on (Q, & ) and

©8)  0,ls =0,

Sforall 7, > 7, = 7q, i.e. the restriction of Q, to .9;‘ is given by Q. O
REMARKS

(i) Theorem 4.1 shows how to construct probability measures that correspond to exponential
families directly from given local martingales. This is done even without assuming the existence of
the expectation of the exponentials by allowing for a suitable time change in the process. In effect,
given any continuous local martingale we can find a suitable initialization and time change in the
process so that a new probability measure belonging to an exponential family is constructed from the
given local martingale.

(ii) The process of construction described in Remark (i) is precisely what was done in the explicit
case of the martingales V, = [§WdW, (r = 0) and G, = j,'OBSdVS (r = t;) in Section 2, see Lemma
2.3 in particular,

@iii) To illustrate, let V, (f = 0) be a continuous martingale with V; = 0 and quadratic variation
process A, = [V],. In this case we can set the initialization at t+ = 0 and for 6 € R we have the

exponential family
©9)  dQliap = exp{ov, - (112)6P4,} .
With a suitable sequence of stopping times 7, = 0 this now defines a parameterized sequence of new
probability measures Q‘?r as in (67). When V, = [WdW, and 6 = §, (69) reduces to the likelihood
process L, given earlier in (2).

(iv) Next consider the process K(f) constructed from the martingale V(t) and its quadratic varia-

tion A(r) as follows
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K@) = VO224Q0) - (1/2)InAW) .

(We assume that A(r) > 0 a.s. (P) forr > 0.) Note that
70 exp(K@) = AQ) exp{(112)Vi4; "}

corresponding to the form of the process Z given by (7), where V, = {§Wd4W, and W, is Brownian

motion. We use the following lemma which gives the Ito differential of K(z).

LEMMA 4.2

1) dK(@) = [V()/A@®1aV(r) - (1/2)[V(t)/A(t)]2dA(t) O
Now define, as in (67),

R

. = exp{K(7,) - K(1p)} = exv{ I:;‘K(r)dt} = exp{G, - (112)[Gl,} ,

where G, = G(7,) = j::[V(t)/A(t)]dV(t). Note that since V() is a martingale

a
G = j;O[V(s)/A(s)]dV(s) is a martingale also and its quadratic variation process is

[GI() = jio[V(s)/A(t)]sz(s) . This gives us the exponential process

R@) = exp{G() - I/DIGI®)} ,

and using the stopping time 7, we have

(72) R, = exp{G, - (11))[G],} = exp{K(r,) - K(7p)} ,

as required, where [G], = [GI(r,). For a suitable choice of stopping times 7, (such that
E(exp{(1/2)[G],}) < o), the process R, given in (72) is a martingale with E[R,] = 1 and thus, as in
Theorem 4.1, R, effects a change in probability measure. Note that in this case the new measure is a
path-dependent measure that depends only on the history of the original martingale V(¢), i.e. it is not a
parameterized measure like that induced by (69). Given the form of (70) and the role that we have
seen specialized versions of this process play in the transition to the posterior density using Bayes
rule, it will be useful to describe the path dependent measures that are induced by R, in (72) exponen-
tial Bayes measures. In the following we will see how they can be constructed in a fairly general

case.
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(v) Observe that (67) and (72) are defined for the "time changed" o-fields .9;a. If sup,, o4
= o a§. (P)then7,—> o as. (P)asa~ o and then & = V, ¢ F,, . Since (67) and (72) also
apply for the stopped process M(tA7,) and G(tA7,) and therefore for tlje stopped fields & Ary WE
can see that they apply approximately for 5 to the extent that & . approximates & for large a (and
hence large 7,). If, on the other hand, sup,,A(f) < o a.s. (P), then A(t) and exp{(1/2)4(1)} are
bounded a.s. (P) and E[A(f)] < o and E(exp{(1/2)A(®)}) < co. In this case, M(¥) is a martingale
with E(exp{(1/2)[M],}) < oo and (67) defines a new probability measure without the time change to

.. [

a

4.2, Approximating the Bayesian Data Measure by an Exponential Bayes Measure
Let us start by assuming that we have given a parameterized family of probability measures Pf
on the sequence of filtered spaces (), #). Suppose § € R and P‘f << p, some o-finite measure on

@, #). If w(9) is a prior density on § then the mixture
®, = fgr@®)P'do
is the Bayesian data measure. Note that if w(f) is improper then @, will be o-finite and we will

accommodate this possibility in what follows. Let 6° be the "true value” of ¢ and set P9 = P,GO‘ We

will write the likelihood function in terms of the density L,(6) = dP‘?/d)”(,J and then the density of @, is
d®JdP® = [em@)@PlidPYdo = fmO)L(6)do .

Our object is now to show that ®, can be approximated asymptotically by an exponential Bayes meas-

ure @, and to find its general form.

THEOREM 4.3. Assume the following conditions hold:

(C1)  £48) = In(L (V) is twice continuously differentiable with derivatives £{(6) and £(6).

(C2) Under Pf, 4 51)(6) is a continuous local martingale with quadratic variation process

A 6) and A(6) > = a.s. (Pg) ast— oo,

€3 (€P@) + 4,0)/A4,6) »0as. F)ast—> o,
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(C4) There exist continuous functions w0, 6') such that w(8, 8) = 0 and such that for all

6, 8' in some neighborhood N5(9°) ={6:16 — 6°] < & of 0° we have
(€20 - £206)314,060) < w0, 6" as. (P9
for each t, and w8, 6) = we, (8, 6) a.s. (P°) uniformly for 8, 6’ € Ny(6°) and
w0, 0) = 0.
(C5) The maximum likelihood estimate 0, for §° is consistent, i.e. 6, — & a.s. (P°).
(C6) Forany 8 > O and wg = {8 : |6 — 6°| = 6} we have

4l 1, (@P'1aPDas > 0 as (PY) .

where A, = A,(¢°).
(or)} The prior ©(6) = (2'rr)_”2 is uniform on R.

Then

d®, d
(74) _(;/_Q(; -1 as. (P9
dP, dp,

where Q, is the exponential Bayes measure defined by the following RN derivative with respect to P‘,’

40, _ exp{UR)ViA])

12

s =
dP; A

b

Where V, = E,(U(()O) and A, = A,(Oo). The derivative (15) may also be written in the following

asymptotically equivalent forms.

6)  dQJdP° exp{(lfz)(é, - e")zA,}/A,“2

and

exp{e,Bpy/al* . O

1l

(76)  dQJdP?
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REMARKS oN (C1)-(C7)

(i) Condition (C1) is standard in the asymptotic theory of regular estimators. So is the first part
of (C2) - in the usual maximum likelihood theory (e.g. Hall and Heyde (1980), p. 157) £(f) is a
continuous L, martingale under P§. The conditional variance process of £{(§) (the time clock of the
martingale) is the quadratic variation 4(6) since £{1)(¢) is continuous and the square bracket process
A,(0) is therefore identical to the angle bracket or conditional variance process (e.g. Protter (1990), p.
63). The requirement that 4(f) — o a.s. (Pe) ensures that there is eventually an infinite amount of
information about the process in the likelihood function. It corresponds to the usual persistent excita-
tion condition in regression theory.

(ii) Condition (C3) says that BSZ)(G) + A,(t) must be small relative to 4,(f) asz = o. This is a
version of the usual requirement that J, /I, - —1 as n — oo in the theory of maximum likelihood
where I is the conditional variance of the score and J, is the Hessian of the likelihood (see, for
instance, Hall-Heyde, 1980, p. 160). In the present case mote that £2() + (£{V(8))* is a local
martingale (as in the standard ML theory) and, moreover, since £{)(6) is a local P? martingale, so

also is (351)((9))2 — A,(6). Hence, we would expect the sum of these local martingales

0 + 4,0) = {ef(e) + (ef”(e))z} + {A,(o) - (35”(9))2}
to be small relative to the quadratic variation process A,(6), thereby giving intuitive support to (C3).

(iii) Condition (C4) is a smoothness condition. It requires, in effect, that relative differences in
£@(6) and £P(6") be bounded above by an equicontinuous family of functions w/(6, 6') in some
neighborhood of 6° with the property that when § = ¢’ the limit function w, (6, 6) = 0.

(iv) Condition (C5) is standard. It could be replaced by an explicit condition on the behavior of
the likelihood ratio dP?/dP? as t - oo in closed sets like w; = {#: |6 — 6°| = 8} that do not contain
6°. For instance, one commonly occurring condition (e.g. Walker, 1969, p. 83 and Hall-Heyde,
1980, p. 158) would, in the present case, take the form that for every 6 > 0 there is a k(6) > 0 such
that

ap?
P| sup _; < exp{-4,6%%@®)}| = 1.
€ w; dPx
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A somewhat stronger version of this condition is that for 6 > 0 there exists a k(6) such that

ap’
(C5")  exp{4, (6" ()} sup —5 <1 as. ®%
€ w; dp‘

as t - oo, Then, if the prior density w(f) were proper we would have

AL69'? §, x(ONAPYIAP)AD < A6%? sup (@PIdP)) |, w(6)df
€ w,
(C6") < A,6%"%exp{-4,%k©)} = 0 as. (P%), as t > oo

in view of (C5'). Result (C6’) is the natural alternative to condition (C6) when the prior density w(6)
is proper. As it stands, (C6) simply requires that the average density dP?/dP(,) over a closed set like
w; that does not contain 6° is small relative to A}’z as t - oo, When w(f) is proper (C6') shows that
the average density, which in this case is Iwaw(O)(de/dP?)d{), is exponentially small in A,(()o) as
t - o, The explicit condition (C6) does not therefore seem to be overly strong and allows us the
extra convenience of working with improper priors.

(v) Condition (C7) sets the prior w(f) to be uniform at the constant level @m) "2 This corres-
ponds to the specification used earlier in Sections 2 and 3. We may in the present case replace this

condition by
(C7) The prior density w(6) is proper and continuous at 6 = 6° with w(6y) > 0

(c.f. Walker, 1969, p. 81 and Hartigan, 1983, p. 109). In view of result (C6') we could now elimin-
ate (C6), replace (C5) by (C5'), (C7) by (C7’) and we would obtain

(75") fﬁ/d_Q’ - 20"2x(% as. PY

apP? ap?

in place of the stated result (75). In this case the exponential Bayes measure defined in (76) is asymp-

totically proportional (up to the constant scalar (2)27(6%)) to the Bayesian data measure ¢, O
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REMARKS ON THEOREM 4.3

(i) We can write result (74) in the form d®/dQ, — 1 a.s. (PO), which tells us that the exponential
Bayes measure Q, is identical to the Bayes data measure ®, as £ - . In its present form (74) tells
us that the data density d(P,/dP? is asymptotically equivalent to the exponential local martingale given
in (75). This local martingale defines the exponential Bayes measure Q,.

(ii) Using (75) we have
2Un(dQ/dPY) = V24 - In(4,)

the first term of which is a quadratic form in the score V, = eﬁl)(eo) that corresponds to the classical
score statistic. The statistic dQ/dP°, which as we have seen in Section 3.5 is our posterior odds test
statistic for testing 6 = 6°, can therefore be interpreted as a form of penalized score test in which the
size of the penalty (for estimating ) is determined by the quadratic variation 4,. Note that (75) can,
in fact, be computed under the null hypothesis § = 6°, just as the classical score or LM test, simply
by using the value of 6 under the null.

(iii) Formulae (76) and (77) give alternative (asymptotically equivalent) expressions for dQ,/dP?.

Of particular interest is (77) because we can rewrite this in the form
In(dQ/dPY) = £,3) - (1/2)n 4, ,

which is related to the BIC criterion of Schwarz (1978). Here E,(@,) is the maximized value of the
likelihood (ratio) functional (compare the error sum of squares minimand that appears in the usual
form of the BIC criterion) and In(4,) is the penalty for including 6 as a free parameter (i.e. free rather
than set equal to the fixed value § = 6, as in the competing model for which P‘,) is the probability
measure).

(iv) Theorem 4.3 remains true under random time changes. Thus, if (7,), is a family of mon-
otone increasing and continuous stopping times for which 7, = oo as a — oo, then in place of (74) we

have for the time changed measures @ and Q_ a similar convergence as a > o, i.e.
a a
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ae ae_ do
e o a4 50 as. (Po),asa—*ocu
dg,

. dP, dP,

The time change could be selected, as in (66), to ensure that the quadratic variation A(r,) is a.s. (PO)
bounded, and then V, = V, . is a continuous L, martingale. If we also condition on a minimal
information time such as 7y = 7 in (65), then the exponential Bayes measure given in (75) is a proper
probability measure in the new time frame and with the new initialization, just as in Theorem 4.1.

(v) Define the posterior density process for 6 by the ratio (using Bayes rule)

18)  TP®) = n(O)dP 1aPd)! jgr(9)@P’idPP)de

x(0)(dP'1dPY(d® JdP)

7(®)dP’1d®, .

Applying Theorem 4.3 we see that the Bayes data measure ®, in this expression for II’f(G) can be
replaced by the exponential Bayes measure Q, with a relative error that tends to zero as ¢ — oo,

Thus, the asymptotic form of the posterior density process is simply
1) I ~ x®)@PdQ,) , as 1 o,

which is obtained by multiplying the prior by the likelihood (ratio) function taken with respect to Q,
as the reference measure. As the following Corollary to Theorem 4.3 shows, the density Hf(ﬁ) is, in
fact, asymptotically Gaussian in form with a N(§,, 47!) density. The equivalence in (79) shows that
this result on the asymptotic Gaussianity of l'I’f(()) should be interpreted in the light of the reference
measure Q, with respect to which the likelihood (viz. de/dQ,) is implicitly being computed. As in
the case of the linear models discussed in Sections 2 and 3 this change of reference measure from P

to Q, alters the frame of reference with respect to the interpretation of the posterior density for 6.

COROLLARY 4.4. Suppose the conditions of Theorem 4.3 hold. Given M > 0, let N':’ = {6 :

(6 — 8)°4, < M} and define
80) @ 8, A7) = @m) 24 Pexp{-(1/2)(6 - B4, .

The posterior density process (18), i.e. II’,? = r(e)dff/d(}",, is asymprotically Gaussian N(@,, /ij‘)
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with density (80) in the sense that

B
o J__S)__ .

— -0 as (P%
pEN"1p(6; 6,, A, )

ast—> oo, [1

(vi) The density ratio R(?) = dQ,/dP‘,) which defines the measure Q, in (75) can be written as in
(70) in the form R() = exp{K()} with K¢t} = V(P/24() ~ (1/2)In(A(®)). Using the stopping time
sequence (7,),»¢ and initialization 7, = 7 given in (65) and (66), we can define the time changed
density process

R, = R(1)/R(7) - exp{K(r,) - K(1p)}
exp{G, - (1/D)[G],} ,

L}

where G, = G(1,) = j::(V(t)/A(t))dV(r) just as in (72). Now let A() = V(r)/A(f), which is, in
effect, a linearized MLE (i.e., §, — 6° = V/4, + o(f, — 6°) as t - oo -- see equation A(24) in the
appendix). Then, G, = j:ofz(t)dV(t) . The process R(¢) and stopped process R, are analogous to the
density ratio R, of the linear model studied in Section 2. As in Lemma 2.3, we find that &, satisfies
the integral equation
Ta

R, =1+ ITOER(s)dG(s) ,
and
(82) dR, = R(1)dG(1) = R Hh(r)dV(r,) .
This is a nonlinear stochastic differential equation for ®, = %(r,), showing how the density process
R(r,) is updated using the latest available (in & ) value of the linearized MLE fz(-ra) and the incre-
ment in the score process dV(7,) at time 7,. The model to which the exponential Bayes measure Q,
relates is therefore determined by the nonlinear stochastic differential equation (82), which prescribes
the evolution of the path dependent density ®, = R(r,) from a given initialization at a = 0 (i.e. 7))

in terms of the linearized MLE ﬁ(fa) and the increment in the score dV(r,), both of which are

continuously updated as a increases.
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(vii) Equation (82) is the updating equation for the likelihood ratio density process ®,. In the
linear model (1) we were able to obtain an explicit Bayes model for the data, viz. (1)B, corresponding
to the path dependent Bayes measure Q,. Interestingly, with a further time change in the process it is
possible to construct a similar Bayes model for the data in the general case. To do this we use the

following lemma

LEMMA 4.5. Suppose V, is a continuous local martingale with Vy = 0 and quadratic variation pro-
cess A, for which A, -~ o a.s. (P%). Then there exists a Brownian motion X, and a family of stopping

a
times (0,),q With 0, —~ oo as t - o such that V, is indistinguishable from §,'XdX. O
The time change o, in the theorem is constructed using the rule

®3) o= inf{p : _\'ngds > A,} .
Then

B4 h, = VJA, = [oXdX/ [gX’ds

Tan Tan
G, = G(r,) = Irohtdvl = Srohtxo,dxa, )
and

Taz2 Tar2y,2
(Gla = Iy ohidA, = | hX,dr .

H g,
The time changed density process &, now has the form of the exponential martingale

“ﬁ,zxfldt} .

7,
7o

Tan
(85) R, = exp{G, - (112)[G],} = exp{ jroh,XU‘an’ - ({1712)§
As in the proof of Theorem 2.4 we observe that (84) is the likelihood ratio density process for the
model

86)  dX, = hX,dr +dW,, 1 =14,

where W, is a Brownian motion and ﬁ, is given in (85). The nonlinear stochastic differential equation
(86) is an explicit form of the Bayes model to which the path dependent exponential Bayes measure Q,

relates. The model (86), like (1)B, is trajectory dependent and here relies on the path of the Brown-
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ian motion X, which is time changed so that the martingale jg’XdX is indistinguishable from the

score process V, = fﬁl)(ﬁo). We can think of (86) as being the model for the score process V, under
the Bayes measure Q,.

(viii) One other way of thinking about Theorem 4.3 is that the measure O, as determined by (75)
is the "Bayes measure” of the continuous time linear model whose probability measure 17,’ say, for

h = 6 — 6° belongs to the exponential family of densities (with respect to P?) given by
dPHapPY = exp{nv, - (HH12)4,} .

When V, = [{Y.dY, and 4, = {{¥2ds, this corresponds with the density (2) and the continuous time

model is then the diffusion equation (1).

4.3. The Discrete Time Case
Let {Y,}] be a discrete time series defined on the filtered sequence of measurable spaces (Q, #}.
Let Pﬂ be a parameterized probability measure of {Y,}] with # € R. Suppose 69 is the true value of 8

and that P/ << »,, some o-finite measure on (2, &). We write the RN derivative of P with respect

®) L0 = aPidp? = @Plidv )1aprlidv,) .

If w(6) is a prior density on @ then the Bayesian data measure is given by the mixture

0
@, = IRP';d(), as in the continuous time case. Suppose 6° is the "true value" of 6 and let Pg = Pz .

The following result is the analogue of Theorem 4.3, showing that ®, can be asymptotically approxi-
mated by an exponential Bayes measure in discrete time.

THEOREM 4.6. Assume the following conditions hold.

©1)  £,0) = In(L,(8)) is twice continuously differentiable with derivatives £{V(6) and £{P(6).

(D2)  Under P2, £{D(9) is a zero mean L, martingale with conditional quadratic variation

process B, (6) and B, (6) = o a.s. (Pe) asn- oo,
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©3)  (€2@) + B®)VB, ~0as. (P)asn— oo,

D4 There exist continuous functions w,(6, 6') such that w,(6, 8) = 0 and such that for all
6, 6" € Ny(8% = {6: |6 — 6°] < &} of ° we have
{£D(6) — £2)(6")}/B,(6) < w,(@, §") a.s. (P
Jor each n and w, (6, 8') > w, (8, 8') a.s. (PO) uniformly for 6, §' € N6(0°).

D5) The maximum likelihood estimate 9,, - 6% a.s. (PO.
De6) Forany6>0andw5={0:|0—0°| > 6} we have

B,” {,(dPYdPY)ds = 0 a.s. (P%)

where B, = B (6°).

D7) The prior w(f) = Q@m)~ 12 s uniform on R.
Then
ae®, ; dQ,,

- 1as (P%
aP? ap?

(88)

where Q,, is the exponential Bayes measure defined by the following RN derivative with respect to Pg

dQ, exp{(1/12)V>B]"}
dPO Bl/2

n n

(89)

y

where V, = £{0(8%). The derivative (89) has the following asymprotically equivalent forms

00 ag,ap? = el - 9FB 18"

and

exp{¢,(®,)}/B 2 o

n .

©1)  dQ,/dP’

REMARKS
(i) Conditions (D1)-(D7) mirror (C1)-(C7) used in the continuous time case. The only difference
is that we now use the conditional quadratic variance process B, () = <¢{D(6)> in place of 4,(6)

= [£{D(6)]. Writing the log likelihood as
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©2) @) = L1, @/0)In@Ly6) - Iy O] = Tp1&(6) , say.

Then
B, = Ip_ B0 %) = <tP©)>

which is the conditional variance of the martingale £{"(8) under P/ (c.f. Hall-Heyde, 1980, p. 157).

(ii) Writing the discrete time posterior density as

12@) = 7(6)@PYIdP/ [gm(6)@PYdPYae = x(6)aPde,

we deduce in the same way as Corollary 4.4 that 115(0) is asymptotically Gaussian N(@n, B;l).

Moreover, in view of the equivalence (88) we have
09 I ~ x@)@P’d0,), as n- o,

so that the asymptotic Gaussian posterior N(@n, B;’) is to be interpreted with respect to the path

dependent Bayes measure Q,. U

It is rather more difficult than in the continuous time case to determine the form of the implied
Bayes model from the form of the discrete time local exponential martingale (89). We can however
use our theory for the continuous time case to analyze the discrete time case by an embedding tech-
nique. We will show that we can embed the local martingale (89) into a corresponding continuous
time process whose Bayes model we have already studied in Section 4.2. The discrete time Bayes
model can then be regarded as simply the model of the discrete observations from the continuous
process. An advantage of this embedding is that we can analyze the model without making a special
cut in the asymptotic theory for nonstationary time series (i.e. in the case of a unit root). This is
because in the continuous time case there is no difference in treatment between the stationary and
nonstationary cases.

To begin, we continue to assume conditions (D1)-(D7) hold and then the asymptotic approxima-
tion (88) applies. Our objective is to find an alternative representation of (89) in terms of a continu-
ous process. It will be convenient for us to write the increments in the score process given in (92) at

6 = 6° as &, = £,(6%. Then we have
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©5) v, =60 = T,

which is a Pg—martingale with conditional variance process B,. Let &, be the o-field generated by
&)t

THEOREM 4.7. Assume (D1), (D2) and the following conditions hold:

D8)  supys(E@E}) < = .

E(6| %)
21 '—?—"_2
{E(skiﬁi_,)}

Jor some constant C; > 0.

D9)  sup, < C, as. (PY

(D10)  There exists some v with 0 < y < 1 such that

2
E(e,|%,_1)
B'Y

n

- 0as. (P%.

Then there exists a probability space (Q, G, P) supporting (V,, B,),~ , a standard Brownian motion

W, and stopping times (1,),» such that

exp{(112)V°B"} exp{(1/2)W(r,)%/1,}

BI/Z Tl/2

n n

(96) -las. (P . O

ReEMARKS oN (D8)-(D10)

(i) Condition (D8) requires that fourth moments of the martingale differences ¢, in (95) exist and
are uniformly (in k) bounded above. It could be relaxed to a weaker (2+r)-moment requirement on
g for some r with 0 < r < 2, at the expense of making the proof (and some of the other conditions)
of Theorem 4.7 a little more complicated.

(ii) Condition (D9) impbses a bound on the relative conditional fourth moments of g. (D9)
requires that the ratio of the conditional fourth moment t0 the square of the conditional second
moment 0f & be uniformly bounded above. This means that the kurtosis of the conditional distribu-
tion of ¢, cannot be too large relative to the square of the variance. For a stochastic linear regression

model y, = 6'x, + u, with 4, = iid N, 1) and #_-measurable regressors, the score process incre-
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ments are & = X4, and then

4 4

EE %) 20%x; _

SuPgr>1 — SUPz>1 il
{E(&'k*«ﬁ_])} 0 Xy

In this case the condition (D9) is fulfilled regardless of the structure of the regressor x,.
(iii) The conditional variance process B, is often interpreted as the time clock of the martingale
V, in the sense that it records the information content of the process up to time period n. The incre-

ment in the information content from period n—1 to period 7 is

2
d, =B, - B,_; = E(c,|%,_)) .

n n
Condition (D10) requires that the incremental information d,, be small (by an order of magnitude or
power of B,) relative to the total information content B,. We can explore the implications of this
requirement in the linear AR(1) model (22). In this case we have g = y,_,u and E(s%|.9;_l)

= y2_,0%. (D10) requires that

2
yn—laz

O
(E’{yf -1 02)7

-»0as. (P,

for some v in the interval 0 < y < 1. Take the stationary case first. Here || < 1 and we have

n~IE2_ = 0,,(1) and (97) holds if
2
Y,-1/n¥ > 0as. (P),

which holds by the Borel Cantelli lemma if sup,,E(yfl) < o and ¥ > 1/2. In the unit root case

where & = 1 we rescale the numerator and denominator of (97) as follows:

2
©8) n ]n(]n(n)){yn_,az/n In(In(n))}

-
nz"/(ln(ln(n)))"{‘;"]’yf_,02/[n2/]n(1n(n))]}
By the law of the iterated logarithm we have

s
lim sup In-1

rl =24 as. (P,
neoo 1 1n(In(n))

and by a result of Donsker-Varadhan (1977, p. 751) that is used in Lai-Wei (1982, p. 364) we have
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' _oti4 as (P,
nso  n?/In(In(n))

so that (98) is of order O(n =2 *!(In(In(n))’ *7) as —» 0 a.s. (P) provided y > 1/2. Hence, (97) and
thus (D10) hold in the stationary and nonstationary AR(1) model for y > 1/2. O

REMARKS ON THEOREM 4.7

(i) In the proof of Theorem 4.7 we use the fact that the discrete time martingale V, can be
embedded in a Brownian motion so that, by changing the probability space if necessary, we can write
V, = W(r,) ass. (P) for some stopping time 7,. This is simply an application of the conventional
Skorokhod embedding of a martingale, as discussed in detail by Hall-Heyde (1980, Appendix 1).
What Theorem 4.7 shows in addition is that it is also possible to approximate the conditional variance

process B, by 7, asymptotically. This means that the discrete exponential process
99) M, = B"V2exp{(12)V2/B,}
can be embedded asymptotically in the local exponential martingale

100)  Z, = 7. Pexp{(112)W(r, )1} .

Tn n

(i1) What is the model corresponding to the local exponential martingale ZT"? As discussed in the
argument following equation (8) where we first encountered this exponential process, Zr,, is a time
changed version of the process Z, given in (7) and this process defines the Bayes measure for the
model (1)B. thus, under the conditions of the theorem, the original discrete time process can be
embedded into a continuous process whose score function evolves according to a nonlinear stochastic
differential equation of the form (1)B.

(iii) One consequence of the proof of Theorem 4.7 is that (On a new probability space if neces-

sary) V, = W(r,) and

V., W(r
Z/ ) - 1as. (P),
Bn Tﬂ

as n = . Using Lemma 4.5 there exists a Brownian motion X and stopping times p,, such that
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V, = Wr,) = [oXdX

n

and
Wr)ir, = lo'XdX ! §o"Xds .

With this equivalence we can interpret the martingale V, as a sequence of discrete observations taken
from the stochastic differential equation (86) at the discrete times g, = p,, n = 1, 2, ... . The Bayes
model corresponding to the discrete exponential Bayes measure Q, defined by (89) can therefore be

regarded as a model for discrete data embedded in the continuous system (86). U

5. CONCLUSION

This paper puts forward the idea that Bayesian modeling of time series involves a special frame
of reference, one that seems very different from classical modeling. In classical models, the starting
point is a model or likelihood in which a hypothetical true value of the parameter is postulated. By
contrast, the conventional Bayes treatment of the same problem involves the replacement of the clas-
sical model with one where the parameter is updated each period according to the latest observation.
Conceptually, the Bayesian frame of reference, which eschews the notion of a true parameter value, is
a time varying parameter model in which the parameter value is determined by the penultimate value
of the MLE, i.e. by recursive maximum likelihood. We call the new model the Bayes model and its
associated probability measure the Bayes model measure.

The new frame of reference in Bayesian modeling arises incidentally in the passage from prior to
posterior density and results from the data conditioning that is explicit in the likelihood principle.
One consequence that has important practical consequences is that the Bayes model inevitably inherits
the statistical properties of the recursive MLE on which it is based. In time series models, this
includes the bias and skewness of the finite sample distribution of the MLE. Whereas classical
methods compensate for these properties by taking the sampling properties of the estimator into

account, conventional Bayes methods that are based on the use of the posterior distribution do not.
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This helps to explain the poor sampling properties of such Bayes methods in autoregressions that were
reported in the simulation exercises in Phillips (1991).

In spite of the above mentioned difficulties, we have shown that it is possible to mount meaning-
ful Bayes model tests by taking into account the correct Bayes model measure that underlies conven-
tional Bayesian inference that relies on the posterior distribution. When applied to autoregressions, it
turns out that this principle can be used to derive classical Dickey-Fuller and augmented Dickey-
Fuller tests, Alternative Bayes model likelihood ratio tests and posterior odds criteria are also
suggested. In the case of posterior odds we find that correct use of the Bayes model measure in com-
putation of the Bayes factor leads to a scaling that is equivalent to the use of a conditional type of
Jeffreys prior and leads to a criterion that is, in fact, a generalization of the Schwarz (1978) BIC
criterion. This new criterion can be used for model selection and for hypothesis testing and we have
shown in the paper how to apply it in the context of unit root tests in autoregressions with trends.

This paper is a beginning. Our main concerns have been: (i) the conceptual framework that the
Bayes frame of reference implies; (i) the practical import of the new frame of reference in modeling
and in statistical tests; and (iii) the development of an asymptotic theory that justifies our procedures
in non-Gaussian models. Later work will extend our treatment to more general multivariate modeis,
explore the properties of our posterior odds model selection criterion and illustrate the use of our

methods in empirical work.
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6. APPENDIX

PROOF OF LEMMA 2.1. In view of the equivalence (10) under the time change (9) we need only
prove the result for the process Z;. We can proceed to compute the conditional expectation E(Z;|.%),
s < t, directly as follows.

Let X = W) — W(s) = N, —s) and write Z! = 1~ 2exp{(1/2£)(W(s) + X)*}. Then

EZ/|%) = " Pexp{(1120)W(s)} 2 (t-5)] 172 [pexp{(1/2) W)X - (1/20)X? - (1/2(t-5))X*}dX

= 2exp{(1/2t)W(s)*}exp{ ((t-5)/2ts)W(s)*}

2n(-9)1""2 fgexp) - {X2 - 2L25xw() + [’;Ssrwm)z] dx

1~ 2exp{(1/20)W(s)*}exp{((t-5)/2ts)W(5)*}

A
2t(-s5)

L27(-9)1712 3] - 27(;1-?) [X - t_;fW(s)} 2dX

1~ exp{(1/25) W(s)%} (t/s5)' 2
s 2exp{(1/25)W(s)*}
(A1) =z,

fl

as required. Note, however, that Z; is not integrable even though the conditional expectation exists.

To show the local L, property of Z, we introduce the stopping time sequence
g, =inf{t > 7: W> 2 m}, n €N

and note that g, - o a.s. as n —+ o by the law of the iterated logarithm for Brownian motion.

Define the new process Z; = Z' and note that Z; is bounded and therefore square integrable for

tho,
all t > 7. Now, using the fact that Z; satisfies the martingale property, we have for 7 < 5 < ¢

EZ|9) = B2y, |%) = BEZ, |99
- B |9 = 2/ e = 2 .

5

Thus, Z7 satisfies the martingale property and is in L, for ¢+ > 7. The process Z; is initialized at

t = 7 where the stopping time 7 > 0 a.s. (P), because Z; = o a.s. (P) and thus the process is not
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properly defined with an initialization at ¢ = 0. The process Z; = Z} , . is a uniformly integrable
n
martingale for each n and, consequently, Z; and Z, are continuous local L, martingales, giving the

required result.

PROOF OF LEMMA 2.2, Taking stochastic differentials and employing Ito’s rule, we have
A2)  dIARBA, - (2)InA)] = BdBA, + (2)dIB, BIA, + (UDBdA, - (1/2)4]dA, .
Recall that 8, = A7V, so that

(A3)  dB, B, = -A%dAV, + A7'av, .

and

(A4 diB, B), = 4;7d4, .

i}

Using (A3)-(A4) in (A2), we have
BAV, - B2dA, + (U2)A dA, + (11DFPdA, - (/DA dA, = Bav, - (1/2)B%dA,

giving the required result (14).

PROOF OF LEMMA 2.3. From (13) and (14), we deduce that

R, = exp{ 184V, - (112)FdA,)}

exp{ BV, - (1) ijdeAd,}

- (1) G, 61}

GI
(AS) G, - 112G, G} ,

fl

exp

exp{
{

as required for (15). By stochastic differentiation
1
dR, = R{dG, - (1/2)d[G, G]} + ER,d[G, G, = R4G, ,

and integrating we have

t 1
f deRs = S‘oR‘d G,
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or
R =1+ j,'odeGs ,

since R_= 1. This proves (16). Finally, note that since V, is a P-martingale (recall that when
0
B=0,V,= [{WdW,) and dG, = B4V, we have
E@G,|%) = BE@V,|%) =0,

so that G, is also a P,-martingale. It follows from (16) and Theorem 5.3 of lkeda and Watanabe

(1981, p. 142) that E(R,) = 1, as required.

PROOF OF THEOREM 2.4
(a) Under a uniform prior for § the posterior density process is

7 « a%exp{-(1/2)B - B)*A} = NGB, 4) .

When the prior 7(8) = (m)~!2, we have Il = N(f, 47! exactly as in (12). When the
initialization is at t; > 0 and 7(8) = H’fo we get the posterior Hﬁ b = N@, A7) again as shown in
the analysis leading up to equation (21) of the text.

(b) As explained in the argument that follows equations (11) and (12) of the text the posterior

density is
¥ = x(8)@P’ldQ,) .

Under Bayes methods of inference, working with H‘f is equivalent to working with
10, = x(8)@P?/dP)

since the factor de/dP, by which they differ is only dependent on the data (i.e. it does not depend on
B) and, hence, becomes constant upon data conditioning. The absorption of this factor in the constant
of proportionality ensures that the effective likelihood function for Bayes inference is the RN
derivative def/dQ,. Thus, the new frame of reference for interpreting the posterior IIZ is the
reference measure Q, not P,.

(c) From (13) and (14) we have the density process
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=
n

exp{ i1 18V, - (1/2)33:14]}

exv{ fi [B,Y.AY, - (1/2)3fyfds]}
which is the likelihood ratio density process for the model
dy, = BYdt + dW,, t = ¢, .

This holds for all 1 2 7, and any #; > 0. It therefore holds for + > 0. Thus, R, is the likelihood

ratio of the output process of the nonlinear stochastic differential equation (1)B.

PROOF OF LEMMA 3.1. Notethat 4, = A, + ¥2_, = A _,(1 + ¥2_,/A _)) and thus by

recursion we have:
n-ny-1

(A6) Ay =4y, T (1 Yo Ay ) = Ay T £,

n
"o t=ny+1
Next

Vidl - Ve ATl = ATV, ¢ Y LAY - Ve (1 Yo /A, )

n

-1 2
=A, {2ﬁn-1An-1Yn-1AYn * (AYnYn-l)2 - ﬁn—lAn-lYf-l}

"

Ar:l{—(AYn - ﬁn—IYn—1)2An—l + (AYn)zAn}

Yn—l)z(An-l/An) + (AYn)2

-(aY, - h

n-1

~(8Y, - k1Y, Plf, + (AT,

and by recursion we have

A7) VA VAT - LY av, - by e Y @nR.

"o " t=ny+1 t=ng+1
Combining (A6) and (A7) in (31) we get

R

n

(An/AnO)"/Zexp{(l/2)V2nA;1 - (1/2)V§OA;01}

n Qaf) " V2exp{~(112f}AY, - h,_,¥,_)}}
t=ng+1 (127) 2exp{-(1/2)(AY %}

as required.
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PROOF OF THEOREM 3.2, Rewrite the ratio R, in (31) as R, = (dQn/dPn)/(dQnO/dPnn)
= (dQ,,/dQno)/(dPn/dPno). Observe that

n
dP/dP. = T (172m)"exp{-(1/2)(AY)?
n no ¢

t=ny+1

being the conditional density of {¥,} given 9;0 under H; (i.e. when 2 = 0). The required result

n
no+1

follows directly.

PROOF OF THEOREM 3.3. Parts () and (b) follow directly from the form of (30). To prove (c)
note that from (32) that R, is the likelihood ratio and Q, is the measure for the model which

conditioned on & _, is

AY, = h, Y, | +u,, unlyn_l = NGO, f,)

where f,, is given by (36). This model is the same as

Y, = (1 + ﬁn—l)Yn-l +u,, un|9" = NQO, 1)

and the stated result follows.

PROOF OF THEOREM 3.4. Under H; we have
2 n 2
BIR = (B, u) (ER) - na R
i 2 12 12
= ( jo.S'dS) 1 §o8° - In( §o5°) .

Since % — ¢ a.s. under Hj, the same result applies to BLR,.

PROOF OF THEOREMS 3.5 AND 3.6. These proofs follow the same line and involve a routine
application of functional limit theory and the L, projection geometry given in Park and Phillips (1988,

1989) for sample moments of residuals from regressions of integrated processes on deterministic

trends.
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PROOF OF THEOREM 3.7. Note that

o

dQ, /AP (%) = (z';yf_,/a2 exp{(1/2R2ET Y2 163

where 52 = n~'EN(Y, - &,¥,_,)°>. When H, is true (i.e. @ = 1 in (22)) we have
R I8 = (0@, - DPIn2EiY g7 = 0,(1)

so that
dQ,/dP, () =, 0 .

Hence, P(dQn/dPn(ﬁz) < 1) = 0 as n = o and the type I error tends to zero as n — oo,

When H, is false and |«| < 1, say, then
RZENY 167 = Vn G, - DB /67 = 0,()
and 7Y, _,/6% = O,(n), so that
In[dQ,/dP (8%)] = O,(n)
as n - oo, It follows that dQn/dPn(éz) diverges as n —» oo and P(dQn/dPn(&z) >1)—»>1lasn— oo,

Thus, the power of the test tends to unity and the type II error tends to zero as n - oo. By a similar

argument the same behavior obtains when o« > 1.

PROOF OF THEOREM 4.1. Let X, = M(r,) — M(7y) and note that X, is a bounded continuous
local martingale and hence a continuous L, martingale. Then
dQ,/dP = exp{X, - (1/2)[X,)}
is the stochastic exponential of the martingale X,. But since X, is bounded for all @ > 0, we have
E(@exp{(1/2)[X],}) < o, forall a > 0,
and thus by Theorem 5.3, p. 152 of lkeda-Watanabe (1989) R, = dQ,/dP is a continuous martingale
with E[R,] = 1, for all @ > 0. The measure Q, is defined by the integral of R, viz

Q,B) = [gRAP, VB € Za ,

and le.ia’ = @, forall 7, > 7, 2 0 as in Ikeda-Watanabe, p. 191. Since ER) =1, Q, defines a

probability measure on (2, & ).
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PROOF OF LEMMA 4.2. By Ito differentiation we have

dK(@) = {VEAVE) + (1R2)YAVO)PYAP - (LIDVO*AER) 2dAD - (112)A@R)'dA®@)
= [V@)/A@)AV(E) - (L2)[VEIAWDT*dA,

since (dV(1))? = dA(f). This gives the required result.

PROOF OF THEOREM 4.3. The proof follows the general idea given in Walker (1969) and
Hartigan (1983, Sec. 11.2), but does not rely on a specific rate of convergence for the MLE 9,, nor
on asymptotic normality of 9,, nor on any ergodic properties for the Fisher information.

As in (C6) define ws = {6: |§ — °| = 6 > 0} and let Ny = R — w;. We can choose 8 > 0
such that Nj corresponds to the neighborhood of 6% in (C4) i.e. N5(0°). Then,

(A8)  dOJdP = (fy, + jwa)w(ﬁ)(de/dP?)de I+ Iy, say

Under (C7), I§ = @m)~ 12§ wa(dP’Z/dP?)dG and
A9 A -0 as. (P9

4

by (C6).

Next using (C7), we write I; as
Iy = @m)™1”2 jNa(de/dP?)de = @2m)? v, exp{£,(6)}d8
and define for some large M > 0 the neighborhood of 8,
(A10) N, =1{6: (0 -8)%4, < M}
with N = R — N, Then
Al I = e fy N + I, = @O + L), say.
Consider I, first. Taking 2 second order Taylor expansion of {(6) we have
A12)  £6) = £8) + 112626, - 8,7
where 6, lies on the line segment between 8, and §. Now

A13) 1P )0-8,2 = -A60-8)% + {1£26,) - £2EA, + (£P6% +4,1/436-6,4, .
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Under (C3)
A14)  [£P6p) + A)A, > 0 as. (PY
and under (C4)
A15)  £96,) - £26%/4, < web,, © 0 as. (P%
uniformly for § € N;. Hence combining (A12)-(A15) we have
£46) = £,8) — (1246 - 8)°(1 + &6)]
where g(f) - 0 a.s. (P%) uniformly for 6 € N;. Using this expansion we have

I = exp{t,8)} Iy, Anexp{-(LUDAL6 - 8)[1 + e}

(A16) A7 Pexp{2,0)32m) 1 + O(exp(-M%2)) + O(n,)]

where for 6 € N; we have |g(t)| < n,— 0 a.s. (P%). 1t is in fact possible to choose M in (A10) in

such a way that M — oo as ¢ — oo. We may, for instance choose M = M, = (1/2)6°A, and then
(A17) M, —> o as, (PO) ast—> o |
Now consider /, in (A11). Using (A12) again we have
L = § Anexp{8,O)}do = exp{e,8)} §, | Ncexp{(l/Z)ffz)(em)(H—9,)2}d6 .
5NN, 5NN
Now
£26,) = -A41 - 14, + £6%4, - 1£76,) - ¢E)/A}
and in view of (A14) and (A15) we find that for large enough ¢
8¢96,) < -(1/2)4, as. (P
for § € Nj. It follows that we may bound I, by the expression
L < exp{¢,6)} Ivn N‘cexp{—(1/4)A,(0—9,)2}d0

< exp{2,(B)} fyeexp{-(1/4)4,(0-6)7}d0

(A18) = A7 exp{£,(8)}@m) 20(exp{ -(1/AM?}) .
Combining (A16) and (A18) we have
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A19) I = A7 Pexp{e, B} 1 + 0, (1)]
and then, using (A8), (A9) and (A19) we obtain
A20)  d@JdPY = Iy + If = A7 Zexp{eB)}1 + o, (1)] .

To complete the proof of the theorem we find an alternative representation of the factor

exp{¢,8,)} in (A20). Noting that £,6°) = 0 we have the two Taylor expansions
A21)  £8) = (@6, - 6% + 126, b, - 6
and
a22) 0 ="0) = £ + £6,)6, - 69
with 6, and 6, lying on the line segment joining 8, and 6°. Combining (A21) and (A22) we have
68 = 4, - 67126, - 2676,,))
= a2, - GO)ZA,{[efz’(oml) - e9(6% + ¢P(6% + 4,)/4,
- 2026, - (@) + (2 + 44, + 1)

= (1), - 6Fa01 + 0,
using (C3) and (C4). It follows that (A20) may also be written as

(A23)  d@JdP° = A,‘“zexD{(uz)(é, - 00)2A,}[1 + 0,(1)]

giving the stated result (74) using the form (76) for the derivative dQ,/dP,.
Finally, we can use (A22) again, giving

0 = 7@ + {676, - t76% + 76 + 4, - 436, - )

(A24) ¢D% - 4,0, - O + o,,(1)]

in view of (C3) and (C4). Noting that (D% = V, is a P° martingale, we can combine (A24) and
(A23) to give

(A25)  d@JdP, = A7 Pexp{(L2)VPAT 1 + 0, (1))
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as required by expression (75) of the theorem for the exponential martingale

dQydP° = A7 Pexp{(1/2)V2A'}

1

Thus, using all three asymptotically equivalent forms of dQ/dP, given by (75), (76) and (77) we have

a®, d
_’/ﬁ -1 as. (PY

P’ ap}

and the theorem is proved. OJ

PROOF OF COROLLARY 4.4. Using the same line of argument as that leading up to (A16) in the

proof of Theorem 4.3 we have

%) = =©)@P’ld®) = x6)@P1aPiae 1aP?)

@m)12@P?1aPY1d0 JdPY1 + 0,,(1)]
= @124, %exp{e,(6) - £B)}1 + 0 (1))
= @m 124 Pexp{-(112)(0 - 8)%4,01 + £ ®)[1 + o, (1))
where ¢,(6) - a.s. (P°) uniformly in N; N M. Since 8, »,, 6% and 4, = 4,(8% > o as. (%) we

have N“f C Nj as. (PO) for large enough ¢ and fixed M > 0. Then

I 6)

su ul_—“—-_l -0 a.s. (PO)
0eN0(6; 6, A, )

-1

giving (81) as required.

PROOF OF LEMMA 4.5. Under the stated conditions it is well known that there is a stopping time
v, = inf{s : A, > 1}

such that Vy' is indistinguishable from a Brownian motion W, (e.g. Protter, 1990, Theorem 41, p. 81).

We can write this equivalence as

V=W, as. 0t < o,
! 4
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Now suppose we let X; be another Brownian motion on the same space and construct the family of

stopping times (0,),5¢ 88
. . tPy2
0, = 1nf{p : foXids = A,} .
Then jg'XdX is a martingale with quadratic variation process jg'des =A,as 0 <t < o Like

V,, the process [g'XdX is equivalent to the time changed Brownian motion W, . Hence, we have
t

a'
V, = JoXdX =W, as. 0 <¢< o
and
V, = [o'XdX = W, as. 0<1< o

giving the required result.

PROOF OF THEOREM 4.6. The proof is virtually identical to the proof of Theorem 4.3 but uses

the conditional variance process B, = <£{D(6%> in place of the quadratic variation 4, = [£{D(§%)].

PROOF OF THEOREM 4.7. Since {V,, &, n = 1} is a zero mean L, martingale we can embed
this process in a standard Brownian motion. By Theorem Al, p. 269 of Hall-Heyde (1980) there
exists a probability space (Q, & P) supporting (V,, = Iley),~ , a standard Brownian motion W and
stopping times (7,),~ such that V, = W(7,) and, if & C &is the o-field generated by (V,)] and
W() for 0 <t < 7, then

H%(i) 1, is &-measurable,

H2G)  E{(1, - 7,_)?|&_,} < GE(}&,_)) as. (P) where C, = 32/72,

and

H2(Gii) E{(7, - 7,_1)|&_} < EE|&_) as. (P

To prove (96) we need to show that

(A26) [V2B, - W(r %1, - In@B,/r) = 0 as. (P).
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Take some positive constant § < 1. (Later on in the proof we will require that 8 lie in the interval

(14+y)2 < B < 1.) Then

(A27)

Vo WGP Wl -6 1,
B, T, 2B £ B,

n n

By the law of the iterated logarithm for Brownian motion (e.g. Shorack and Wellner, 1986, p. 27)

lim sup W) =1
e {27, In(n(7,)}"

so that
(A28) WP 50 as. (P,

since 2—8 > 1. Next observe that

-B 1 - B/
9y M B mdmBIW @,

E

and 8 < 1 imply that B, /7, = 1 a.s. (P), and hence, in view of (A27) and (A28), it is sufficient for

n

(A26) to prove that (A29) holds. This is easily seen to be equivalent to proving
(A30) (1, - B)/B® >0 as. (P

for 8 < 1, which we now set out to do.
Set 7 = 0 and By = 0 and define
B. - B._, = E(c°|&
dj =B - By = E5|&.y)
and
Aj = Tj - Tj']- .
Then
7w = By = TG - 1) - By - By} = Ti(&; - d))

and so rewriting (A30) we need to prove

A31)  BENA -d) >0 as (P).
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By Kronecker’s lemma, (A31) holds if ET(AJ. - aG)/B? < oo, a.s (P), which holds by Chow’s
theorem (Hall-Heyde, 1980, p. 35, Theorem 2.17) if

(A32) ETE{[(AJ. - dj)/BfT|Zj_l} < o, as. (P)
since ET; — dj)/Bg* is a martingale.

Now E{(4; - d)*|&_} = E(a3|&_) — & < E(a}|&_,), so that it is sufficient for (A32)
to prove that

(A33) IECI|E_)BY < o, as. (P).

Using H2(ii) we have

IA

EE}IE.) < GEC; 8. as. (P)

A

2
gca{E(ef l%’-l)} as. (P)
because of (D9). Therefore, (A33) holds if

2
(A34) x;’“(E(eJﬂa;_l)) B < w, as. (P).

holds. Since dj = E(A?|ZJ’-_1) = Bj - Bj_l, we may write the left side of (A34) as

B. - B._
(A35) ET[_L_TBJ__‘ EE|E ) .
B

J

Now take some M > 0, possibly large. Then by (D10) we have

(A36) PIE(2|&,.)/B) > M at most finitely often] = 1 .

The event

(A37) [E(e,zllg;l_l)/BZ > M at most finitely often]

implies the event

EQ, B]-Bj-l
1 528
J

which implies

2 » [B;-B;. B;-B;_
E(ejpz.;_l)szm,[ ! _J llMB]w’lV[ 7 251

B> B’

E(ejzl%’_l) for some finite N:i
Jj J




ov

B;-B; ,
7B
B;

B;-B;_,

28y
B;

+E?I

28
B;

o B"'B'_ o .
(A38) [21 [ I” 1 B | & ) < ME; [ E(£|&_,) for some finite N:I ‘

Let p = 26—+ and since (D10) holds for v with 0 < v < 1 we may choose £ in the interval

(1+9)/2 < 8 < 1 and then p = 28— > 1. We have
Iy (B; - B;.)/B = £ dJBf
where B; = B; ;| + d; = T{d,. Since d, = 0 a.s. (P) for all k and B > = as. (P)asj—> o by
(D2) it follows by Dini’s theorem (e.g. Knopp, 1956, Theorem 1, p. 125) that
(A39) IdyBf < w as. (P)
because p > 1.
Event (A37) implies (A38) which in view of (A39) implies

w[B: - B;.
a40) [P | EE|Z) < o
Bzﬁ 7'

J

In view of (A36) we deduce that

P{Er

thereby proving (A34). This in turn establishes (A31), (A30) and thus (A26), which gives the stated

B;- B,
B

EE|Z_) < ocil > P[E(ei|8;_1)BZ > M at most finitely often| = 1
j

result (96).
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