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Abstract

This paper is designed to combine the game theoretic investigation of the static or equi-
librium properties of large strategic market games together with the investigation of some very
simple dynamics, which nevertheless are sufficient to show differences between two related
games, one in which both borrowing and trade take place. The role of banking reserves
emerges as relevant and sensitive to the transient state dynamics.

Several 100,000 player games are simulated and the behavior is constructed with the

analytical prediction for the games with a continuum of agents,



Some Dynamics of a Strategic Market Game

with a Large Number of Agents

John H. Miller” and Martin Shubik™"

1. Introduction

This paper combines game-theoretic investigation of the static or equilibrium properties
of large strategic market games with investigation of some very simple dynamics, which never-
theless are sufficient to show differences between two related games, one in which trade uses
fiat money, but there is no borrowing, and the other in which both borrowing and trade take
place. The role of banking reserves emerges as relevant and sensitive to the transient state
dynamics.

Keynes (1936) in his discussion of the demand for money notes the transactions, precau-
tionary, and speculative demands for money. The requirement that individuals use fiat for
bidding is a formalization of the transactions use of money. The motivation to hold money
illustrates the precautionary demand, which appears in the models below.

We use a mixture of results obtained from the mathematical analysis of the equilibrium
conditions for a process model and simple "experimental computational methods" to provide
insight into three problems. They are:

(1) The relationship between the equilibria of finite and the continuum games.

'Department of Social and Decision Sciences, Carnegie Mellon University, Pittsburgh,
Pennsylvania 15213 and Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, New Mexico
87501.

“*Cowles Foundation for Research in Economics, Yale University, New Haven,
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(2) The relationship among the equilibria of the games with and without borrowing. In
the first, the wealth distribution and the price level are both unique once the amount
of money in the system has been specified. In the second, the price level will be
determined (within certain bounds) by the initial conditions, but the shape of the
equilibrium wealth distribution is preserved (with a changed scale).

(3) The stability or instability and convergence to equilibrium of the system with and
without borrowing.

We stress the interlinkage between an analytical approach and simulation and gaming.
The mathematical analysis of equilibrium, though tractable, obscures the critical role of
reserves and forecasting in banking. The finite player game by itself in both the equilibrium
and dynamic versions is difficult to analyze, but can be explored with simulation using the
analytical equilibrium results as a benchmark.

Karatzas, Shubik and Sudderth (KSS, 1992) have established the existence of a stationary
wealth distribution for a class of strategic market games where there is a single perishable
good, say, manna, which is put up for sale each period. There is a continuum of traders each
of whom starts with an initial endowment of fiat money (which can be viewed physically as
"blue chips"). They each bid some amount of their money to buy a share of the manna. Price
is then determined, and the manna is distributed in proportion to money bid. The total
money income obtained from the sale of the manna is then distributed among the traders in
proportion to their (randomly determined) ownership claims.

Figure 1 shows the market mechanism, The bids of the agents (denoted by a' for agent i)
constrained by the agent’s wealth, &', are all aggregated by the market; Q units of the manna
drop into the market; price, p, is formed as indicated; individual consumption is determined
by dividing the amount bid by the market price and then income is distributed to the agents in
accordance with a random variable ¢’ reflecting the ownership claims of i to a portion of Q
and returning to i the income derived from its sale (4'p,), where §! is the realization of ¢/.

A specific example was studied in detail and for this example an analytical solution is obtain-
able. The proofs of the general theorem and the optimal policy for the special case considered
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here are given in the paper noted above. In that paper, however, no analysis of any dynamics
was provided. In this note we consider a game that is a finite approximation of the game with
a continuum of traders. We observe that for the market without lending there is a simple
updating rule which yields an almost stationary price to an approximation which varies as the
number of traders. We also consider the evolution of the wealth distribution as the game is
played many times. In a subsequent section a bank or money market for loans is introduced
together with a bankruptcy law and a default pool which enables all loans to be repaid in full.
We consider the behavior of price and the wealth distribution for this instance as well.

Although it is conjectured that the strategic market game with a finite number of traders
has a solution which converges smoothly to the solution of the game with a continuum, it is
not even known that the finite player game has a pure strategy solution. It is of some inter-
est at least to be in a position to utilize a computation to explore the dynamics of games up to

the size of 200,000 agents.



2. A Simple Strategic Market Game

From the point of view of the economist concerned with conventional models of supply
and demand the model built here is radically oversimplified. The supply of manna is totally
inelastic. Individuals want at most one unit of the good each period. Even more "unrealistic"
from some points of view is that they do not know their current ownership claims as they bid
before they know the outcome of the random variable which will be used to determine the
income size, But many economic decisions are made without knowledge of future income,

this merely emphasises this phenomenon,

2.1. Some Modeling Considerations

Instead of having the consumer good fall into the market, it is possible to construct a
slightly different model where the random variable determines the distribution of the good to
the traders, they then decide whether to offer part of the good to the market or to bid for the
good offered. This market may be regarded as "more realistic” but it has the disadvantage
that the strategy sets of the individuals each period have been doubled. We could even have
them bid and offer personal prices (a la Bertrand-Edgeworth) and this would increase the
market mechanism to four dimensions each period. Our attitude however is that we prefer to
consider the most simple of mechanisms and hence allow for the complications in numbers
and dynamics and in being able to Jook at a loan market, In part 3 we consider the extension

to borrowing, leaving the modeling of buying and selling for future analysis,

2.2. Equilibrium with a Continuum

Before we specialize to the specific utility function the general problem can be posed as
follows:

A bid by each trader is made simultaneously without knowledge of each trader'’s owner-
ship claim to current assets.

After all traders have moved, the random variable determines the ownership claims.
After this the individuals all receive their income from the sale of all assets and utility from

consumption, the game then goes into the next period.
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A policy is described by = = (m, ny, ...) where n, chooses the action a,, on the n® day,
based on the history H, = (s, ag, 51, a¢; .., 5,,_1, a,_1» S,), where s, is the state and a, the

action at ¢.
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¥

Consumption

A Simple Utility Function Saturating at One
Figure 2

A stationary policy takes a, = ¢(s,) (Vn € Ny), where ¢ : § ~ A is a given measurable
function,

Once a, has been selected based on H,, the system moves to the new state
Spp1 = Sp(1 -a,) +y, (n € Ny). In other words, the law of motion is given as q(-|s,, a,)
= Fy (1-0,)()-

According to standard theory (e.g., Maitra (1968)) there exists an optimal stationary
policy n* (with =* = a*(s,) for a suitable measurable function a* : § ~ A, Vn € Ny), and the
optimal reward

(1) W(s) := sup E::, w0 2, B'r(s,, a)
" n=0

foragiven0 < § < 1,is us.c. on § = [0, =) and satisfies the optimality equation



v(s) = max[U(sa) + B-EV(s - sa + y)]
(2) Ocacl

= Usa*(s)) + P-EV(s - sa*(s) +y),
or equivalently, with ¢ *(s) = sa*(s):

v(s) = max{U(c) + BEV(s - c +y)]
(3) Osza<l

= Ulc*(s)) + BEV(s - c*(s) +y) .
Following Karatzas, Shubik and Sudderth (1982) we focus in this paper on the (very) special

case

@ vey - {5055 < 7).

The utility function in a single period is illustrated in Figure 2.

The optimal (stationary) policy of equation (3) has the very simple form

) c'(s) = {i: _? : '; s 1} = u(s) .

We are able to compute explicitly the value function V on N as well as the unique invariant

measure of the Markov chain as shown in Figure 3:

(6) Spep =5, —€°(5,) + ¥y, 5y €Ny

on Ny, when the distribution F has the particularly simple form

Q) P(y=2)=y,P(v=0)=1—ywith0<y<.;:.

1/4

The Markov Chain
Figure 3

Q)
)




Suppose that the random variable y has the simple distribution (7). Then the value

function V() can be computed explicitly on the integers:!

8 - B - .1
(8) V(0) = A + 5 and V(s) = A0 I-B’s EN
where
o pol-Vi-4phyay) 1y
2Py ye[l N ﬁ]
By

Suppose, furthermore, that 5, € Nj; then the resulting random sequence in equation (6) is an

ergodic Markov chain on N, with invariant measure ¢ = (pg, U3, ...) given by

-1 _
(10) po =c(1-vy), uy =y, p, = C[IL]‘ (s 2 2), where ¢ = ——1,

Suppose for specificity y = 1/4 and § = 1/2.
The stationary wealth distribution is as illustrated in Figure 4, where

= .50000

[ SRR

pg = c(l-y) =

py =cy = 1/6 = .16667

4 3
py = | | = 219 = 22222
\I_YJ
( 2
p3 = —Y——} = .07407
(1-v)
f \3
T = 02469
1-v)
-1
p.s=cr—7—]‘ for 5 2 3.
\1-y

10utside the lattice V(-) is determined by linear interpolation

=1 L s - spleid "
Vo) = = |15 ¢ [s])]ﬁ 0<ss

where [s] is the integer part of s.
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2.3. Testing for Equilibrium

In each period in the market a move of an individual player involves the selection of an
amount of money ¢ where 0 < ¢ < s, i.e. where the bid ¢ is greater than or equal to zero and
less than or equal to the wealth s of the individual. A strategy in general is a policy based on
the total known history to date. In a repeated game with a continuum of players and a struc-
ture as is indicated the optimal policy depends only on the individual's wealth and his estimate
of future price. Formally we can imagine the logically well defined, but behaviorally implaus-
ible, proposition that all individuals predict the existence of a sequence of constant future
market prices and optimize on this assumption. If all of their speculations are mutually con-
sistent we have verified the existence of a noncooperative equilibrium.

We can replace this construction by a rather simplistic behavioral pattern which should
also yield the same equilibrium. Suppose that instead of predicting the infinite price series
each trader were considered to be composed of two agents, one fairly simplistic--the forecaster
and the other a sophisticated calculator, but otherwise naive. The forecaster bases his forecast
on the previous market price, the calculator believes the forecast and solves the appropriate
dynamic program. Neither learn from their previous errors. In a projected further investiga-

tion we propose to use a learning dynamics, but for this investigation, even with such a simple



rule, there appears to be some worthwhile inferences in connecting the statics with the
dynamics.

We now make a "leap of faith" with an appropriate caveat attached to it. We will guess
that for very large finite games there is a pure strategy equilibrium and the strategies are of
the same structure as those for the game with a continunm of traders. There is the possibility
that the equilibrium for the finite game might be in mixed strategies and that the convergence
might be to the pure strategy solution of the continuum game but through mixed strategies.

After we have used this simple forecasting mechanism to consider static equilibria, as we
have a fully defined process model and the capacity to examine large games we can at least
perform a "myopic sensitivity analysis," i.e. examine the motion of the system if started away

from equilibrium.

2.4. Dynamics with a Finite Number of Traders

In the defining of the game with a continuum of agents it was necessary to be explicit
about the updating procedure. In particular, an easy convention to use is that individuals con-
dition their choice upon the belief that the previously formed market price will prevail. Given
this prediction, we may then consider the optimal policy myopically applied to this price.

We study the dynamics of the system with all traders following the policy of bidding
min{previous price, current wealth}, As we are forced to use a finite number of traders we
know that we can only at best obtain an approximation to the stationary distribution as there
will always be a certain amount of noise coming through even though numbers are large.

We consider four sizes of games in order to obtain some inkling into the dynamics of the
system. In the first game there are 100 traders, in the second 1,000, in the third 10,000 and in

the fourth game there are 100,000.2 As income could be any real number we face a problem

2We also ran a simulation with 200,000 traders which showed a further shrinkage in the
variance, however for aesthetics we compare n = 100, 1,000, 10,000 and 100,000 with the
continpum,
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in displaying wealth after payment to individuals, this is handled by rounding the income
category in our statistics up or down to the nearest integer.3

The data below were collected at the start of the 20th iteration. The process was simu-
lated 50 times (each with a different random seed), and the values displayed represent the
average and sample standard deviation of the price and wealth distributions.

The following data are for the case where the predicted price for this period is last
period’s price, in symbols j, = p, ;, there is no borrowing, gamma = 0.25, initial predicted
price = 1.0, and initial wealth = 1.0,

Table 1
Wealth Range
Agents
Price [-.5,5) [.5, 1.5) [1.5, 2.5) [2.5, 3.5) [3.5, +)

100 0.9981 50.68 16.10 22.18 7.60 3.44
(0.0720) (2.65) (3.03) (3.68) (2.54) (1.54)

1000 0.9962 49.94 16.55 2245 7.37 3.69
(0.0208) (0.99) (1.13) (1.09) (0.65) (0.44)

10000 0.9992 49.93 16.68 22.40 7.29 3.72
(0.0067) (0.25) (0.28) (0.29) (0.22) (0.18)

100000 1.0008 50.05 16.60 22,30 7.33 371
(0.0024) (0.09) (0.11) (0.11) (0.07) (0.07)

e 1.0000 50.00 16.67 22,22 7.41 247

We observe that even though the system was started away from the equilibrium wealth
distribution, the wealth distribution and the market price for the set of 100 player games is
fairly close to the continuum game and as we progress to bigger games the fit improves.

It is important to pote that in the system with no lending, not only is the wealth distribu-
tion unique, but as soon as the amount of money in the system has been specified the price

system is uniquely determined. This can be seen from equation 11

3 requires some care in presentation of the boxes in order to compare distributions with
different price levels and wealth levels in a useful manner.



11

(11) f:psu(ps) =M

i=1
where ps is the level of wealth and p(ps) is the percentage of the population at wealth ps and
M is the total money supply. Given that p(ps) is unique and M is specified then p is unique.
Thus the dynamic system has only one attractor. Our numerical results indicate that the sys-
tem rapidly converges to this attractor.

An immediate question to ask of any numerical analysis is how robust are the observed
results. We performed a variety of sensitivy analyses in order to explore this issue.

An important item to check is the influence of changes in n. We have illustrated above
in Table 1 the influence on convergence of games with 100, 1,000, 10,000 and 100,000 traders.
There are clear indications of convergence to the continnum distribution.

We also need to check the influence of the initial prediction on the process. In this case
it appears that the initial prediction may influence the first few iterations and then dies away.
We found little influnence of initial price in the range 1 to 2 on the system.

Another aspect requiring checking is the influence of the initial wealth distribution on the
dynamics of the system.

A little elementary game theory for finite numbers indicates that the distribution of
wealth can initially be selected to influence any comvergence to an equilibrium for an arbi-
trarily finite length of time, for example, in a million person game with a million units of
money, all one has to do is give it all to one millionaire then the trickle down will take at least
a million periods.

Examples of some long transients are given when we consider the loan market.

In virtually all dynamical models in economics without overlapping generations it is desir-
able to check the influence of changes in B. In this simple example however the optimal
program is not influenced by changes in p although the value of the program changes. Thus
there is no need for a sensitivity analysis on B.

We might wish to check the influence of a change in y. This change will give a different

stationary distribution as indicated by the solution for the continuum case. An example for
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¥ = .1 has been run as a check, but is not displayed as nothing particularly new can be

gleaned from this variation.

2.5. Some Interpretation

The simulations of the special large finite games with the simple price prediction mechan-
ism and the optimal policy based on the predicted price clearly do not provide a proof of the
open conjecture that the large finite games approach the continuum game in general, but they
do offer some indication of the plausibility of the conjecture. Because of the extremely low
dimensionality of the problem (given type symmetric behavior) we had a chance (in KSS) to
establish uniqueness of the active equilibrium. As soon as we consider two or more goods this
is bound to be false.

The cases considered also indicate that there are zones of convergence for the fairly
simple dynamics proposed, but that there exist initial conditions which can influence the speed
of convergence in an arbitrarily long manner. We are unable to establish if there are zones
where no convergence takes place. But as is shown below considerable differences emerge in

the dynamics between markets with and without loans.

3. A Money Market and Default Reserves

3.1. Borrowing and Lending with a Continuum of Traders

The particular example explored in Section 2 has the interesting property that there is a
relatively straightforward extension of the model to include borrowing and lending with an
extreme form of the handling of default, i.e. the inability of a debtor to repay his loans in a
timely manner results in the debtor being unable to borrow more until he has paid back his
debt. If the rate of interest does not accrue on his debt or is zero and his expected income is
positive he will eventually be able to emerge from debt after the garnishing of his income has
covered the debt.

Figure 5 shows the Markov chain with the bank reserve pool included. This has to be
added to account for all of the money in the system. In the original chain shown in Figure 3,

when we sum the amount of money held by those with wealth levels of 0 and above we
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account for all of the money in the system. If we do the same summation with the new wealth
frequencies we obtain only half of the money. The remainder has to be somewhere. It can
be accounted for by a loan reserve or bank pool whose size equals or is greater than the total
outstanding debt in the economy. This debt can be represented by IOU notes or green chips
which at some point must be destroyed by being converted into blue chips -- ie. by having

debtors pay money to retire their IOU notes outstanding.

Loans

3/4 3/4 3/4 3/4

(O o XK

i 1 1/4 e i 4J
A | 1{4
1 I I
e - -

Repayments

Deposits

The System with a Bank or Loan Pool
Figure §

Figure 5 shows the system where any money of the rich not needed for immediate trans-
actions is swept into the bank or loan pool. The borrowers borrow from the bank. At the
start of every period collections are made from debtors whose incomes are garnished or bor-
rowers who are in a position to pay back. At the start of any period depositors may increase
or withdraw deposits.

At equilibriom Tables 2 and 3 show the location and distribution of all resources for all
individuals and the bank for the economy with a continuum of traders. The nature of the
bank as a buffer guarantees that the depositors are paid back in full if reserves are large

enough. The fluctuations in repayment by the debtors are absorbed by the pool.
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Table 2
Wealth and Financial Flows Without Lending
Level of Wealth
0 1 2 3 4 5 B Zp
Frequency 12 1/6 29 2/27 2/81 | 2/243 -- --
Total Wealth 0 1/6 4/9 2/9 8/81 | 10/243 0 1
Total Spending 0 1/6 2/9 2/27 2/81 | 2/243 0 172
Loanable Funds -- 0 29 4/27 6/81 | 8/243 0 1/2
= Hoarding
Table 3
Wealth and Financial Flows With Lending
Level of Wealth

-1 0 1 2 3 4 5 B ZP
Frequency 172 1/6 2/9 | 2/27 | 2/81 | 2/243 -- 1
Total Wealth -12 0 2/9 | 4/27 | 6/81 | 8/243 172 12
Total Spending 0 176 | 2/9 | 2/27 | 2/81 | 2/243 1/2
Borrowing 0 1/6 0 0 0 0 [1/6]** 1/6
Lending 0 0 0 2/27 | 4/81 | 6/243 1/6
Repay 178 | 1/24 0 0 0 0 [1/6]* --
Deposits 0 0 0 2/27 | 4/81 | 6/243 4/6

*Collections
**Borrowing

The Markov chain shown in Figure 5 is for the example with one period borrowing and
lending, where the following optimal equilibrium policy applies:
If x < 0 the individual cannot spend or borrow
If 0 < x < 1 the individual borrows 1-x and spends 1
If x = 1 the individual spends 1
If x > 1 the individual spends 1 and lends x-1
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Assertion: There exists a stationary distribution with lending with the following properties:

p = the rate of interest = 0
p = price = 1

and there is no hoarding. The amount of loanable funds = 1/6. The bankruptcy pool = 1/2
and the total number of blue chips = 1,

Under the policy above the Markov chain is as before except for a left shift to -1, 0, 1,
2, ... Thus the fraction of the population at -1 is M_; = 1/2 similarly g, = 1/6, p; = 2/9
and p, = 2/3(1/3)° forn 2 2.

The demand for loans by those at wealth = 0is D = 1/6.

The supply of loans is given by

S = gs)_“i [%]'(:—1) - % .

The repayment from those garnished and those borrowers who can repay is:

l 1 + 1 l = l i = 1
42) 46) 4l6) 6
At a rate of interest p = O the lenders are indifferent between hoarding or lending as

they run no risk of not being paid.

3.2. The Moultiplicity of Equilibria

Before we consider the simulations an important theoretical distinction between the game
with and without loans must be made. In the game without loans the equilibrium price is
unique as can be seen from equation 11, but from equation 12 described below we observe

that the equilibrium price may be anywhere in the range between 0 and 2.
(12) Y psu(ps) + B =M .
s=0

This is because the bank reserves B act as a buffer which can be moved up and down to com-
pensate for changes in p in the open range from 0 to 2 and still have equation 12 hold. In the

actnal dynamics our model requires further specification to indicate what happens if a fluctua-
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tion reduces bank reserves to zero. There will be a difference in the dynamics if 100%
reserve banking is considered, i.e. if the bank is not permitted to lend more than its capital, in
contrast with allowing it to lend some fraction of its deposits as well as its own capital.

For the purposes of this paper however we do not wish to digress into the many specific
interesting problems concerning reserve banking in disequilibrium, but to touch on an impor-
tant aspect of dynamics arising from the difference between the no loans and the loans model,
thus we assume the bank always has sufficient reserves.

We have just shown that there is a continuum of equilibrium points for this model thus
the dynamical system no longer has a single target point to aim at but if it is to reach equi-
librium it is aimed at a continuum in the form of an open set of different prices. In disequi-
librium there is thus no clear price level at which to aim. This can have considerable

consequences for the dynamics.

3.3. Dynamics with a Finite Number of Depositors and Borrowers

In this section the same treatment is given for the finite games with depositing and bor-
rowing as was given for the games without borrowing. Before discussing the results some
observations need to be made concerning the differences between the dynamics and the statics
for the two models. The static theory for the continuum predicts the same distribution
shifted one unit to the negative.

In the economy without borrowing all of the money supply is held by the individuals and
half of it is always in hoard. In the economy with lending and the same price level much of
the money must be held in a pool as the sum of all wealth held by individuals with positive
wealth adds to only one half of the money supply.

A new phenomenon appears in the form of the behavior of bank or pool reserves and the
size of deposits. If, as we suggest here, it is useful as a conceptual device to think of money as
some form of physical object such as blue chips issued in finite supply, then the total supply
must be somewhere, thus we must divide the supply between individuals and the bank, When
there are no loans and hence no default, all of the supply is in the hands of individuals.
When there are one period loans we find that in this model we are required to have 50% of
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the supply in the bank, or loan pool if the same price is to be maintained, but by varying the
bank reserves different equilibria with different prices are feasible,

If we were to start the economy with a random distribution of wealth, the model suggest-
ed here would not be fully defined if the pool were too small as the initial borrowing might be
larger than the pool which is not feasible. Even if the pool is large enough to absorb fluctua-
tions we expect that even if the system converges, the level of the pool of reserves will have
been permanently influenced by the activity during disequilibrinm and this in turn influences
price.

Once more we consider four sizes of games in order to obtain some inkling into the
dynamics of the system. In the first game there are 100 traders, in the second 1,000, in the
third there are 10,000 and in the fourth 100,000. As before income could be any real number,
and now borrowing could be any real number up to p§, the expected price. We face a problem
in displaying the wealth categories. This is handled by displaying bins for intervals [-1, 0), [0,
1), ... and showing the frequency of the occurrence of individuals in each category. Table 4
shows information on the loan model which is comparable with the data for the games with-
out loans.

The following data are for the case of p, = p,_;, borrowing, gamma = 0.25, initial price

= 1.0, and initial wealth = 0.5,

Table 4
Wealth Range
Agents

100 0.9868 50.02 17.64 21.56 7.16 242 1.20
(0.0907) (2.68) (3.31) (2.38) (2.13) (1.30) (0.93)

1000 0.9781 50.00 16.66 2241 7.21 2.50 1.22
(0.0347) (0.69) (0.81) (1.15) (0.76) (0.54) (0.34)

10000 0.9761 49.97 16.64 2232 1.34 2.52 1.20
(0.0081) (0.24) (0.27) (0.21) (0.21) (0.16) (0.12)

100000 0.9788 50.04 16.60 22.32 7.33 2.51 1.20
(0.0026) (0.09) (0.11) (0.08) (0.08) (0 05) (0.04)

o 1.0000 50.00 16.67 22.22 7.41 82
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We observe, as in Table 1 that the wealth distributions obtained are close to but some-
what lower than that predicted by the continuum game without loans and that the variances
decrease in size as n increases. Furthermore we cannot conclude that price is converging to 1,

but it is possible that it is converging to a different attractor somewhat below 1.

3.4. Transient Behavior

We now consider transient behavior with and without borrowing. Graphs 1 and 2 illus-
trate the long transients inherent in the banking case. The underlying parameters are set so
that there is borrowing with 1000 agents, gamma equals 0,25, initial price is set at 2,0, and all
individuals have an initial wealth of 0.5. Graphs 1a and 1b illustrate the respective price and
banking paths over the first 50 iterations. Graphs 2a and 2b show the similar information, but

for 10000 iterations (using the identical random seed).
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Graph 3 shows a similar run for a case without banking. Here, the parameters were
identical to those above, except for initial wealth was set to 1.0. Note that relatively little long
term transient behavior is apparent over the 10000 iterations in the model without banking, as

compared to the model with banking.
We also ran simulations with initial wealth of .25 and an initial prediction of price of .5

and obtained similar results with prices essentially cut in half (see Table 5).

Table §
Wealth Range
Agents
Price [-5,0) [0, .5) (5,1 {1, 1.5) [L.5,2) [2, +)
1000 | 0.4904 50.01 16.75 22.28 7.25 2.51 1.20
0.0175 0.75 091 0.96 0.63 0.38 0.34

3.5. Crashes and Variations in Initial Wealth Distribution

The sensitivity analysis of the dynamics to the selection of initial wealth is now considered
and the economies with and without a loan market are contrasted.

The set of graphs below illustrate the potential for price crashes in the system with bank-
ing. We begin by considering an economy with banking and with 1000 agents, gamma equal
0.25, initial predicted price is 1.0, and the initial wealth distribution is set equal to the pre-
dicted stable state distribution for a continuum of traders.

Graph 4 is the LOG of price plotted over the first 200 iterations. The graph is typical of
such crashes, with an initial rapid exponential decay of price, eventually slowing to another
regime of exponential decay at a slower rate (apparently constant to at least 800 iterations),

The wealth distribution during this crash is shown in Table 6 at intervals of 100 periods.

Table 6
Time [-1! 0) [0! 1) [1’ 2) [2’ 3) [3: 4) [4a +)
0 50.0 16.6 22.2 7.5 2.4 13
100 58.2 40.1 1.3 0.3 0.0 0.1
200 54.9 43.4 1.3 0.3 0.0 0.1
300 48.1 50.2 1.3 0.3 0.0 0.1
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The next runs are identical to the above, except we modify the initial wealth distribution.
Here, 10% of the individuals with -1 initial wealth are transferred to the initial wealth equal
to 1 category (thus, maintaining a constant amount of wealth in the system). Graphs 5a, b (5a
is on a log scale) show the price over the first 200 iterations. Note that in this case, the initial
decline guickly moderates and levels off at around 0.38. The associated wealth distributions

are given in Table 7.

Table 7
Time I-li 0) [0’ 1) [19 2) [21 3) [Sv 4) [4s +)
0 40.0 16.6 32.2 7.5 24 13
100 49.6 43.8 6.1 0.5 0.0 0.0
200 50.2 42.2 1.4 0.1 0.1 0.0
300 49.7 43.5 6.4 04 0.0 0.0

Finally, we consider the system with no banking but otherwise with the same parameters
as above and with the continuum stationary wealth distribution. Graph 6 shows the price over
the 200 iterations. Note that the price remained very close to 1,00 throughout all of the first
200 iterations (with a sample standard deviation of 0.02).The wealth distribution also

remained close to the stable state distribution throughout the entire run.
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At first glance the crashing of the prices in the system with banking given initial condi-
tions near the stable wealth distribution appears to be paradoxical, however on closer analysis
it is easy to set up a situation in which initial price drops cut the income of the debtors in a
manner which prevents them from getting out of debt as fast as they would otherwise, which
in turn contributes to the price dropping further and trapping more new debtors. In more
detail the explanation is as follows:

The observed crash is caused by the initial distribution being exactly on the integers
(whereas, after many generations the wealth distribution has been spread across the reals --
thus, explaining why we can see the "identical" distribution and see a crash in one case and not
another.

Cousider the following exact wealth distribution:

-1 0 1

507 160 333

This distribution is very close to the stable state distribution with two modifications. The first
is that we have aggregated all individuals with wealth above 1 into the one category (this eases
exposition and does not alter the fundamental result). The second is that there are slightly
more individuals in the -1 category than predicted (507 verses 500). This can easily happen
due to stochastic influences.

Let the expected price be equal to 1,0. Given the above distribution, there will be
1.0 x 493 = 493 of spending, yielding a price of 493/500 or .986. After spending, the

distribution is given by:

667 333 0
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Now, we add 0.986 x 2 = 1.972 income to a quarter of the population. (Thus, of the 667
individuals with -1, 168 of them will have a new income of 0.972 (1.972 minus the 1 they

owe). This leaves the following distribution:

-1 0 0.972 1.972

499 250 168 83

Total spending in the next period will be equal to 0.986 x 501 = 494, yielding a price of 0.988
(494/500). After spending the distribution is:

-1 -0.986 0G4 0.986

499 250 168 83

It is at this point that the stage has been set for the crash, Notice that there are now 168
individuals who have a slight negative wealth. Also note that if the initial price drops below
one, this will always happen, as the individuals in this category started with -1, received 2 x p
income leaving them with 2p-1, and then spent p, leaving p-1, which is of course negative
since p < 1. (Given the model, the income received at the end of period ¢ is based on the
same price used to determine spending in period t+1.) The system now has 168 individuals in
a slightly negative wealth category, which, implies that they can not participate in the market
(since any level of negative wealth prevents borrowing). After adding income, 75% of the 917
individuals will remain in debt, and therefore only around 313 individuals will be spending.
Thus, the price will experience a sharp decline. Once the price begins its decline, more
individnals are trapped. The above sensitivity to price fluctuations will not happen if the
distribution is spread out across the reals.
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3.6. Preconceived Prediction

What happens when individuals stick with a preconceived nonadaptive estimate of price?
For example, we might suppose that all wish to believe that price "should be" some given
number? This appears to be a trivial example of a totally nonadaptive behavior but it will
turn out that for checking certain equilibria, especially those with borrowing, this simple
nonadaptive rule will have interesting properties. ~We also note that the proposition that
because one’s prediction has been disconfirmed some k times in a row previously does not
constitute a proof that it will be disconfirmed again, but it is a reasonable axiom to accept that
a long series of disconfirmation lowers the probability that it will occur and a Bayesian update
may provide a better decision procedure than a religious belief that: this time we must win
the lottery. This point deals with one of the basic questions concerning subjective probability
and is not discussed further here.

In this section we select two fixed predictions and examine them without and with a loan
market. When there is no loan market there is only one attractor in the system. We observe
that for individuals with the same preconceived predictions in a mass market without loans
their predictions are always disconfirmed unless by chance they have predicted precisely the
right price. Thus we might argue that this nonlearning behavior is unacceptable and unreal-
istic. The situation is different when we consider the economy with borrowing. We encounter
self-fulfilling prophecy. Borrowing is highly dependent on the prediction and this in turn
influences bank reserves which influences the final price equilibrium. As there is a continuum

of equilibria the different predictions become close to self-fulfilling.
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Figures 7 and 8 show the effect of total lack of adaptation when there is a loan market
We consider 1,000 agents with gamma =.25, initial wealth of 1 each and expectations respec-
tively set at .95 and .85 regardless of what happens. We obtain wealth distributions close to
the predicted (they are not shown here) and prices varying around .956 and .875 over 50,000
rups. In equilibrium for the continuum the self-predicting prophecy for the price level is
precise, but the influence of the path to equilibrium on the distribution of resources during

disequilibrium depends on the magnitude of price.

4. Concluding Remarks
4.1. Game Theory, Behavioral Economics and Simulation

In any attempt to deal with infinite horizon games in a formal rigorous manner it is clear
that the formal game theoretic definition of the strategy set permits enormous complexity in
the selection of strategies. In attempting to consider dynamics it appears to be a reasonable
research strategy to confine the selection of strategies to a limited set. An interpretation of
the updating rule used here is that we are restricting the price forecasting so radically that it
implicitly covers the essential aspects of competition with short term forecasting. Essentially,
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virtually any behavioral rule can be interpreted as a strategy in the formal game theoretic
analysis. One may wish to accept or reject its use based on its optimizing properties in the
context of having selected a solution concept.

Once one contemplates the complexity of multiperiod interaction the apparently clear
distinction between behavioral and game theoretic solutions blurs.

One simple utility function used as the basis for our simulations does not constitute a
general proof, but given both the conceptual difficulties in even defining acceptable solution
conventions and in obtaining analytic results we suggest that general insights can be obtained
and new open questions can be generated by the type of exploration illustrated here. But
even more generally a special example may illustrate otherwise overlooked phenomenon.
Specifically, here, this is so for the role of bank reserves and the possibility for a range of self
fulfilling expectations.

It is desirable to be able to extend our investigations to less restrictive models and the
structure of the optimal policy for piecewise linear utility function is known but for more

general shapes considerably more computation is required.

4.2. Comments on the Program and Learning Extensions

A natural extension of the approach adopted here is to replace the combination of the
simple price prediction with dynamic programming by some form of adaptive learning process.
There are two basic reasons for doing this. We can use our simple example where we have
analytical results to check the effectiveness of the learning program against a known analysis,
If this test is met then we can attempt to use the program to provide "solutions" to games with
arbitrarily selected utility functions and then attempt to verify if the solutions obtained are
consistent with the analytical approach (Holland and Miller, 1991).

4.3. The Comparative Stability of Credit Systems
It would be dangerous to claim too much from the analysis of a simple special example
with a simple behavioral rule. Yet there are several specific lessons to be learned. There is a

distinct increase in instability in the system introduced by the credit mechanism that appears
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to be caused primarily by the distinction between a unique price equilibrium level and a con-
tinuum of prices.

It is clear that an individual with no current liquidity, benefits from the presence of a loan
market as can be seen when P is small. But the introduction of a loan market changes the
wealth distribution, here by an artifact of the special example, by a left shift of the Markov
chain as shown in Figure 5, but more generally by a change in distribution and range. In this
change the necessity for bank reserves emerges in order to account for the location of the
fixed supply of money, but as soon as bank reserves are larger than zero a continuum of equi-
libria in the price system appear. This in turn shows that so called "rational expectations" are
not well defined in the sense that many expectations can be self fulfilling in the same system.

Another feature that emerges both from the simulations and the analysis is that if the dis-
equilibrium initial conditions are radically far from an equilibrium the resultant shocks to the
system may cause arbitrarily Jong periods of instability and this is clearly a function of the
nature of the banking system---such as can one lend more than capital, more than capital plus
deposits and what are the rules of default and garnishing, All of these phenomena are
intrinsicaily associated with dynamics and do not appear in the static analysis.

Our last comment concerns the size of the bank reserves and their relationship to the
Fort Knox paradox. In equilibrium with a continuum of traders there is no apparent need for
bank reserves. In disequilibrium with a finite number of traders the size of reserves and the
rules of lending become critical in determining the bank’s ability to extend credit. Just
because some of the reserves may apparently never be loaned does not mean that they are not

used. They are in principle an inventory whose presence lowers the probability of a stockout.
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