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1 Introduction and Summary

We study in this paper stationary competitive equilibria in an economy with fiat money, one
non-durable commodity, infinitely many discrete-time periods, no credit or futures markets,
and a measure space of "non-homogeneous" agents -- who can differ in their preferences and
in the distributions of their (random) endowments. These agents are immortal, and hold
money in order to affect the random fluctuations in their endowments.! In the aggregate,
these fluctuations offset each other, and equilibrium prices are constant.

Our two central issues here are time and uncertainty; we carry out an equilibrium analysis
that focuses only on consumption, distribution of wealth, and price formation. From this
point of view, the production of the commodity (units of which the agents receive as endow-
ments, from period to period) is assumed to be determined exogenously. Furthermore, in the
setup considered here, money can only be hoarded; one can indeed envisage a slightly modi-
fied framework in which every agent, in addition to hoarding his money, can also put it in a
savings account or invest it in some risky asset(s). Such a framework appears in a series of
papers by W, Whitt (1975a-d), again in a setup without active consideration of the institu-
tions associated with these possibilities (banking, stock exchange). In the interest of con-
creteness, we have preferred to keep the model as simple as possible, in order to concentrate
on the above-mentioned features only. We hope that in the future we shall be able to build
on this work, and try to capture (and to describe endogenously) additional desirable features
such as Joan markets, interest rates, insurance, overlapping generations, and the like.

This paper concentrates on the basic mathematical analysis of a class of infinite horizon
stochastic strategic market games. Because there is a continuum of agents, each with no influ-
ence on price, the analysis is close to that of competitive equilibrium, However, it is noted
that we present a well defined process model with an active rle for fiat money. The equilib-
rium solution considered is more accurately described as a type-symmetric noncooperative

equilibrium which coincides with a competitive equilibrium.

1A nonstochastic infinite horizon version of the strategic market game was first presented
in Shubik and Whitt (1973).
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As the model defined provides a full description of process, we hope to be able to con-
sider its dynamics as well as its stationarity properties. In this paper, however we limit our
main observations to equilibrium.

A npatural economic extension to the model presented here is to permit borrowing and
lending. When this is done, a money rate of interest may be formed endogenously. If this
rate is positive there will be an incentive to lend rather than to hoard money as a means of
preserving buying power from period to period. However, in a truly dynamic game of strategy
with borrowing, it is possible that the system could attain a state where a borrower is unable
to pay the amount he has promised to pay. In such a circumstance in order to well define the
game, bankruptcy, settlement and reorganization rules must be specified as part of the game,
This is not just an institutional comment, but a logical necessity. There may be many ways to
define these extra rules. It is not clear a priori that there should be a unique optimal rule.

The existence of a stationary wealth distribution and optimal policy established here
involves much of the population inventorying money from period to period. This changes
considerably with the introduction of loan markets, In a projected separate expository paper,
the economic motivation is presented in more detail together with several examples including
models with loan markets and a cyclical supply of the commodity.

In this paper, by limiting our concern to one commodity, we have been able to obtain not
only existence but also the uniqueness of equilibrium in some limited instances. As soon as
there are two or more goods this no longer holds true. A natural extension of this work is to
consider both experimental games and behavioral simulations to see if there is any tendency

and any reasons why one attractor is selected over others.

1.1 The Model

In order to describe our model, let us start with an index set / = [0, 1] and a non-atomic
probability measure ¢ on it, representing a collection of agents and the "spatial" distribution
on this collection, respectively. Each agent « in I has a utility function u® : [0, =) - [0, =)
with 4%(0) = 0 which is increasing, concave and continuously differentiable, and has finite

right-hand derivative at the origin.



At the beginning of the nth period of play, the price of the commodity is p,_;(w); and
each agent « enters with an amount S} _;(») in fiat money, and with information 5, _;. (The
o-field S5 _, measures past prices {p;, k = 0, 1, ..., n-1}, as well as past wealths, endowments
and actions {S§, S§, Y}, b%, k = 1, .., n-1} of the agent; it may or may not measure corres-
ponding quantities for other agents.) Based on this information, each agent "bids" a certain

amount b%(w) € [0, S;;_;(w)] of fiat money for consumption in the nth period; the total bid is

(11) B,(0) = [ ba(w)é(da) .
I

Then the agents’ random endowments {Yj(w)},.; are announced for the period ¢ = n,

denominated in units of the commodity. We shall assume that the total endowment

(1.2) Q = [ Yy(o)(de)
I

is non-random and constant from period to period, whereas for each agent « in / the endow-
ments Y, Y5, .. are independent, identically distributed (IID) random variables with com-
mon law A*. A new price is then formed according to the rule

B,(w)

(1.3) Pn(0) = 0

as the ratio of total bid over total endowment. Each agent receives his bid’s worth

of commodity, denominated in the new price, and consumes it immediately, thereby "earning"

utility ¥ (x5(w)), ¢ € I in that period; he also receives his endowment’s worth of fiat money
Pa(0)Y,(0)

in this price, and thus goes into the next time period with wealth

sy 55(0) = S5_y(0) - BE(©) * pu(0)Ya(0) , @ €1 .

This procedure is then repeated ad infinitum, and results in a total reward of



1.5) F(w) 1= Y p"ux,, (w)

n=0

for agent « € I, where p € (0, 1) is a discount factor. It should be noted that the prescription

(1.3) preserves the total amount of wealth (fiat money) in the economy

(1.6) W) = [ Si()a),
I

from period to period, because from Eqgs. (1.4) and (1.1)-(1.3) we have
(1.6)’ W,(0) = W,_1(w) - B,(w) +p,(0)0 =W, (), foralln e N.

All the quantities G, S, by, Y; (¢ € I, n € N) are random variables, defined on a prob-
ability space (Q, &, P). For a given a € I, the bids b}; are J%_,-measurable for all n € N,
where {J7}7., is an increasing sequence of sub-o-fields of 3, and 3% _, represents the
information accumulated by agent « up to the beginning of period ¢ = n. As we mentioned
already, for n > 1 this information includes past prices {p;, k = 0, 1, ..., n-1}, as well as past
levels of wealths, endowments, and actions S§, S}, Y%, b§, k = 1, ..., n-1; it may not include
the corresponding quantities for (any) other agents. We set §§ = o(5%, p;).

In this analysis we limit our concern to pure strategies, For consideration of some of the
measure theoretic difficulties associated with randomized strategies, see Dubey and Shapley
(1980, 1992).

A strategy n® for agent a € I determines the bids b7 for every n € N. A collection of
strategies I ={n"}, ,, together with the given distributions, {1} _, for the random endow-
ments of different agents and the equations (1.1)-(1.4), determines the joint distribution of all
the random variables that we have introduced. In particular, the expected total reward
E[¢/*(w)] is determined for every agent a € ], and we have a well-defined stochastic game.

For any collection II of strategies as above, consider the sequence of random measures

a7 v, ©) = [ 1L(S(0))é(da) , A € K0, =)

I

which describe the distribution of wealth in the various time periodsn = 0, 1, 2, ... .
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We say that a collection Tl = {#%}__; of strategies results in a stationary competitive
equilibrium (p, 1), where p € (0, «) and p belongs to the space 4 of probability measures on
[0, =), if
(i) withpy =p,vg=pwehavep, =p, v, = u, ¥n € N, and

(1'8) [ S
(i) #% maximizes E* 2, _,8"u%(b,, (w)/p) over all strategies n“ for a € I .

1.2 Outline of Resulis

We shall construct explicitly such a stationary competitive equilibrium in Section 7, by
first analyzing in considerable detail the individual agent’s optimization (Dynamic Program-
ming) problem with p, = p € (0, «) fixed from period to period. We set the stage for this
analysis in Section 2, where we define the single-agent optimization problem, study some of its
elementary properties, and discuss a few examples that can be solved fairly explicitly. The
analysis of the Dynamic Programming Equation

Ogcss

Vi(s: p) = max u"[ﬁ] + B [ Vi - ¢ + py; P)A"@y)
(1.9) o

= uﬂ[@] + B f Vi(s - c%(s; p) + py; PYA"(dy) ,
0

namely, of the value function V*(s; p) and the optimal (stationary) consumption policy ¢®(s; p),

is carried out in Sections 3 and 4.2 Under the conditions
(1.10) 0< j yASy) < b, [ yA%(dy) < =
0 0

on the distribution A%, we are able to obtain very precise information about c®(: ; p), which
in turn leads to the existence of a unique invariant measure for the associated Markov Chain

{sp(@)}7=p given by
(1.11) s:‘l(m) = s:(w) - c“(s:(m);p) + pY:d(w) , n €Ng.

In addition, this invariant measure is shown to have finite first moment. Section 5 is devoted

2We have changed notation from b (for bid) to ¢ to emphasize consumption.
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to the case when the utility function u® is strictly increasing on all of (0, =). Section 6 treats
the case when there is a finite saturation point h® := inf{c > 0; u®(c+s) = u(c), vs 2 0}.
The analysis is quite interesting in itself as an instance of a discounted, infinite-horizon
dynamic programming problem, where the ergodic behavior of the resulting optimally con-
trolled Markov Chain as in (1.10) is analyzed in detail.
Once this analysis has been carried out, a simple aggregation of the various ergodic meas-

ures u* via the formula

(112) B; p) = [ u(4; p)d(de) , A € A, =)
I

is easily shown (in Section 7) to lead to the stationary competitive equilibria (p, g(:; p)),
p € (0, ). This is accomplished first in the homogeneous case A® = A, u® = u (Va € ]) and
then for countably (respectively, uncountably) many homogeneous classes of identical agents; cf,
Theorems 7.3, 7.6, and Remark 7.7 for the details. Finally, it is seen that such an equilibrium
pair (p, p(; p)) is specified uniquely for any given level W = [gsi(ds; p) of the initial
"money supply” (which remains fixed from period to period, as in (1.6)'); see Remark 7.4.

13 Relevant Literatare
The intellectual progenitor of this work is the unpublished paper of W. Whitt (1975d),
which considers the "homogeneous case” u® = u, A” = A(Va € I) and seeks stationary com-

petitive equilibrium (defined in a sense weaker than ours) as a fixed point in (0, =) x %/ for

the system of equations
“e(s; s
a13) _ Jacts puia)
[ ZICH
(1.14) b = [ YR, 4 e a0, =) .

o
In this work, we take a different tack, namely, we construct a solution to (1.13), (1.14) by first
studying in detail the ergodic behavior of the individual Markov Chain as in (1.10); cf.
Theorem 7.3. The "non-homogeneous” versions of these equations are then studied by aggre-

gating as in (1.12) the invariant measures across classes of agents; cf, Theorem 7.6.
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Related work on stationary competitive Markov equilibria -- always using fixed-point
methods -- has been carried out in Lucas (1978), (1980), Shubik (1986), Bewley (1986), and
Duffie et al. (1988), among others.

One-person dynamic programming problems, similar to that of Sections 2-4, have been
treated by several authors including Hakansson (1970), Whitt (1975a-c), Yaari (1976),
Schechtman (1976), Schechtman and Escudero (1977), Mendelssohn and Sobel (1980); see
also the survey paper of Deaton (1991).

2 Preliminaries for the One-Person Game, and Simple Examples

Consider a single agent, operating in a one-commodity economy, who seeks to maximize
his total discounted utility during an infinite stage game by optimally dividing current wealth
between immediate consumption and savings for the future. We formulate the problem as a

dynamic programming (or Markov decision) problem with the following ingredients:
(2.1) S = [0, =) is the state space and a state s € § represents the wealth of an agent.

(2.2)  The utility function u : S - S is concave, nondecreasing, has a finite derivative
from the right at 0, which we write as p := u'(0+) or simply u'(0),
0 < u’'(0) < =, and u(0) = 0. (In later sections, we shall assume additional

properties.)

{2.3)  An agent with wealth s may select any action a from the set A(s) = [0, 5] of
possible actions. We interpret the agent’s choice of an action 4 as a decision
to purchase a/p units of the given commodity, where p € (0, =) is the price
of the commodity.

(The commodity is assumed to be nondurable, and is thus consumed immediately, resulting in

a reward to the agent of r(s, @) = u(a/p). Here r is the reward function of the dynamic pro-

gramming problem, but we shall use the utility function instead.)

(24) The law of motion determines the distribution of the next state s; for an

agent at state s who selects action a, by the rule



2.5 s, =s-a+pY.

Here Y is a nonnegative random variable with a given distribution A, which represents the

agent’s income for the period in units of the commodity. We assume 0 < m := EY
= [A(dy) < =.

(2.6) The discount factor p € (0, 1) .

A plan = is a sequence (ng, 74, ...) Wwhere n, chooses the action a,, on the nth day based
on the history &, = (s, a9, 51, Gy, «-» Sy_11 9,15 §,) ©f previous actions and states. The agent
seeks a plan n which will maximize the total expected discounted utility.

For simplicity we set the price p equal to 1. There is no real loss of generality, since this
amounts to redefining the utility function and the income variable Y (see also Remark 4.6).

With this assumption, the motion formula of the system becomes

2.7) s

el 2S5, —8, +Y, ,, n=01,..,

where Y = Y, Y), ... are independent and have the same distribution 2.
A plan n, together with this law of motion, determines the distribution of the process

Sgs g 515 @1, - . We define the refurn function for = to be

(2.8) 1)) = Ey,

i B"u(an)l , SES.
n ={)

The optimal return or value function is defined by

(2.9) V(s) := sup I(n)(s), s€S .

- A plan = is optimal, if V = I(z).
If u is bounded, then our problem is a discounted dynamic programming problem as in
Blackwell (1965). Even if u is unbounded, we shall see that many of Blackwell’s techniques
can be successfully adapted.

First, introduce the n-day return from a policy r as

(2.10) I(n)(s) := E..

n“

ﬂku(ak)]
k=0



and the n-day optimal return

(2.11) V, (s} := sup I (n)(s)

fors €5,n = 0,1,... Recall the notation p = u’(0), m =E(Y).

2.1 Lemma: Fors € S andn = 0, 1,..,, let k,(s) := psp"/(1-p) + pmB”[n - (n-1)p)/(1-p)>.
Then we have

(a) V(-’) < k(}(‘) ’
) V) <V,(5) +k,,46), n=1,2, ...
Thus V is finite, and V,, converges up to ¥, uniformly on bounded intervals.

Proof: It follows from our assumptions on u that u(s) < ps for all s € §. Also, for
n=1,2,..,

S

+Y

=So-ao+Yl-ﬂl+Y2—'"—ﬂ n

n
ssg+ Y+ Y, .
Hence,

I(m)(sg) < 2 B"Eu(sg + Yy + =~ + Y,) < p% B"(sg + nm) < ko(sg) »

=an

and
I(m)(so) = I(x)(sg) + k_);l B¥Eu(sy + nm) < kofso)
¢ L®)eo) + k.él B<pG + k) = 1,(R)60) + knut0) -
Take the supremum over n to get (a) and (b). O

Standard dynamic programming arguments show that V satisfies the optimality equation
(2.12) V(s) = sup [u(a) + BEV(s - a +Y)]
Osass
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and that the V,, can be calculated by "backward induction” from the formulas
Vols) = 0, Vils) = u(s)

(2.13)
Voa1(5) = sup [u(@) + PEV,(s -a + Y)] .
Osass

Introduce, as in Blackwell (1965), the operator T defined for Borel functions ¢ : § - [0, =] by
(Tw)(s) = sup [u(a) + BEY(s -a + V)] .
O<ecs

Notice that T is monotone (ie., ¥; s ¢ = T{; < T{,), and that (2.12) and (2.13) can be

rewritten as
(2.14) V=V, V, =TV, =T"0,

A plan = is stationary if there is a function ¢ defined on § such that 0 < ¢(s) < 5,5 € §,
and = uses action c¢(s) whenever the current state is s. Sometimes we shall call ¢ the consump-
tion function for n. Here is a characterization of optimal stationary plans which is well-known

for u bounded (Theorem 6 of Blackwell (1965)).

22 Theorem: For a staﬂonary plan n with consumption function ¢, the following conditions
are equivalent:

@ I(n)=V,

() V(s) = u(c(s)) + BEV(s ~c(s) + Y), s €S,

(©) Td(x)) = Kr) .

Proof: (a) =~ (b): For any stationary plan n corresponding to a consumption function ¢, it
follows from the definition of I(x) in (2.8) that
I(n)(s) = u(c(s)) + BEKx)(s - c(s) + V) .
Now use (a).
(a) = (c): Immediate from the optimality equation (2.12).

(b) = (a): Let E denote expectation under = withs =s;,. Then (b) can be rewritten as

V(sg) = u(c(sy)) + BEV(sy) .
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Iterate to get, forn = 1, 2, ..., in conjunction with Lemma 2.1(a):
n
Visp) = EY, 8hule(sy)) + B"EV(s,
k=0

= I(n)(sp) + B"EV(s,,,1)

< L(n)(sg) + P""1Ekp(sq + Yy + = + Y,

= I(n)(so + B"*kglsg + (n+1)m) = I(n)(so)
asn - =, Hence, V < I(n). The opposite inequality is obvious.

(c) = (a): Iterate (c), to get I(n) = T"(I(x)) 2 T'0 = V,. By Lemma 2.1, V,, 1 V.
Hence I(n) 2> V. 0

We conclude this introductory section with a few simple examples.

2.3 Example: A linear utility function. Let
uf@) =a, 0<a <

Intuitively, an agent with this utility function gains nothing by saving for the future and,
because of the discount factor, stands to lose by doing so. Indeed, the unique optimal station-

ary plan = corresponds to the consumption function
cs) =5, 0s5 <,

An agent with this plan and initial wealth s will consume s on the first day, and the daily

income on each day thereafter. Hence,

I(z)(s) = u(s) + E|Y B"u(Yn)] =5+ Y p'm s+ B ”_.

nel n=1 1-p

It is easy to check that I(n) satisfies the optimality equation (Theorem 2.2(c)). Hence, = is
optimal. Uniqueness follows from the fact that, for each 5, only @ = c(s) =s achieves the

supremum in the optimality equation.
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2.4 Example: A generalization of Example 2.3. Assume there exist positive numbers L and M
such that BM < L and that u(-) is continuously differentiable, with L < u’(s) < M for all
s € S. Then again the optimal stationary plan n corresponds to c(s) = s, for all s. To see

this, set

W) = I(56)) = u) + I3, a"u(Y,,)] = u(s) + a%“j‘pﬁ .

To check that w satisfies that optimality equation, consider the function
p(a) := u(a) + PEw(s -a +Y)
-u(a)+BEu(s—a+Y)+[}2%, 0Osass.

It suffices to show that ¢ has its maximum at @ =s, But

o'(a) =uw'(a) -PEu'(s ~a +Y) 2L -PM 20, 0 saxs.

25 Example: A piecewise-linear utility function with saturation. Assume

a, 0sacsl,
u(a)={1’ a>1.

For an agent with wealth s € [0, 1], the same intuition as for Example 2.4 suggests there is no
point in saving for the future. However, if s > 1, it seems equally clear that there is no point
in consuming more than 1 unit of wealth because consuming more results in no additional
utility. So define n to be the stationary plan corresponding to

s, 0ss <1,

It can be shown that n is optimal in complete generality (cf. Appendix). However, we shall

only consider here the special case when the income variable Y has the Bernoulli distribution

P[Y =0] = 1-y, P[Y =2] =y with 0<y<-;-

(so that E(Y) < 1, where h = 1 is the point at which u(-) "saturates"). It can be seen that, in
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this simple case, the return function I(n) for the plan = is given by

(2.16) K(n)Gs) = _1_}_6 - % , seN,

on the integers, and by linear interpolation between them:

2.17) I(n)G) = —L - [—-— - (s - [s])]elﬂ, s e, =) .

Furthermore, the resulting Markov chain

Spe1 =S, —€(,) + Y, 4, n=0,1,2,.,

has a unique invariant probability measure p = {p;}; .y, concentrated on the nonnegative integers

as follows:
j-1
(2.18) =c¢(1-y), wy=cy, = c[IY T for j =23, ..
=Y

In the above, we have set

(2.19) o 1o V1 - 48%(1-y) , o= 122
2By 1-v

To see that = is optimal, it suffices, by Theorem 2.2(c) to show that TI(x) =I(x). The
details of this verification are somewhat laborious, but straightforward.
To verify (2.18) suppose first that s; € N. The state space of the Markov Chain {s,};

n=(

is Ny, the chain is positive recurrent, irreducible and aperiodic, with transition probability

matrix
(1-y 0 y 0 O O )
1-y 0 y O O 0
0 1-y 0 y O 0
0 0 1-y 0 v 0
0 0 ¢ 1-y O Y
S ! : : : : )

and a unique invariant probability measure p, which satisfies pg = (1-Y)(ikg + u1y),
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Ky = (1-7)kg By = Y(pg + By) + (1-Y)u3, and p; = ypu;  + (1-y)p;4q} forj 2 3. The
solution of this system is given by (2.18).

Finally, suppose that the initial state s; is an arbitrary number in (0, )N and let
x := 55 - [sg]. Then the state space of the Markov chain becomes N, u N;, where all the
states in N, := {x, x+1, x+2, ...} are transient, and N is a (communicating) class of positive
recurrent states. More precisely, the chain starts out in s, and stays in the lattice N, until the
first time it visits the origin (which is almost surely finite); from that time onward, the chain
remains in N;. It is thus clear that the probability measure p of (2.18) is the invariant meas-

ure for this case as well,

2.6 Example: A piecewise-linear utility function without saturation. Assume that

forsome 0 < ¢ < 1, and

P[Y-O]:%:P[Y=2].

We shall see that, under appropriate conditions on the positive constants ¢ and B, namely

(2.20) B2 s L <p<c1<c =,

an optimal consumption function is given by

s ; 0<ss1

(@21) cs)=11; 1l<ss2
s-1; 2 <s < =
For instance, (2.20) is satisfied by ¢« = 1/2, B = 3/4,
Let O(-) = I(z)(*) be the return function of the stationary plan n corresponding to c(?)

of (2.21); then Q(-) satisfies
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s + (B2){QO) + 2(2)] ; 0gss <1
Q0s) =11 + (P2)QG-1) + Q(s+1)] s 1ss<2
1+ a(s-2) + (B2)[Q(1) +QB3)]; 2ss <=

(2.22)

Since Q(0) = (B2)[QO) + Q(2)], Q2) = 1 + (B)IQ() + QB3)], Q1) = 1 + Q(0), and

observing that for 1 < s < 2 we have

26-1) =5 -1 + ()[R0 + 22)]

and

QG+1) = 1 + a(s-1) + (B2)[Q(1) + 2B)] ,

we may re-cast (2.2) in the more explicit form

Q) +s s 0sss<1
(2.22y Q@) = 1Q(1) + (B2)(1+e)(s-1) ; 1 <5 52
2(2) + «(s-2) i 2<85 <

Because 1 2 g(1+u) > « from (2.20), the piecewise-linear function Q() is concave. It

remains to check that Q(-) satisfies the optimality equation
@12y 2() = maxlu(a) + 2oe-a) + go m)}] , s €0, )
(recall Theorem 2.2), or equivalently that the function

(2.23) 4,0) = u(a) + 2(Q—a) + Q)] 054 <5

is increasing on [0, c(s)] and decreasing on (c(s), s}, for any given s € (0, =).
This is straightforward by considering each interval (0, 1], (1, 2), [2, =) separately, under
the conditions of (2.20). We omit the details.
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3 The Basic Recursion Formula

In order to establish properties of the value function V, we will first show that many prop-
erties of u are inherited by the functions ¥, given by the recursion (2.13). To do this, we

introduce a general recursion formula

(3.1) As) = 7,(5) := sup [u(a) + PEw(s -a +Y)], s€§.
O<cacs
The following assumptions are made on ¥ and w in this section

A.l: In addition to the properties (2.2) already assumed for it, the utility function « has a

continuous strictly positive and strictly decreasing derivative on § = [0, =),
A.2: The function w : § ~ S has properties (a) and (b) also.
A3: u'(0) = w'(0).

Notice that we write u’(0) and w'(0) for the derivatives from the right at 0. Likewise,
we say that a function is differentiable on [0, =) if it is differentiable on (0, =) with a right
derivative at 0.

ForO0 <s < =and 0 s a < s, define
(3.2) ¥, (a) = §,,(a) 1= u(a) + BEw(s -a + 7).
Then

¥, (@) = u'(a) - BEw(s - a + )
is continuous and strictly decreasing for 0 < a < 5. (As above, we are writing ¢;(0) and §!(s)
for the right and left derivatives at 0 and s, respectively. Also, there is no difficulty with
taking the derivative inside the expectation, because 0 < w'(s) < w'(0) and w(s) < w(0)
+ w'(0)s, 5 € S.) Furthermore,
¥,/(0) = w'(0) - PEw'(s+Y)
2 w'(0) - Pw'(0) = (1-P’(0) > 0.

Thus, for s > 0, y, has its mavimum on [0, 5] at a unique point c(s) = c,(s) € (0, s]. Set

¢(0) = 0. Then, foralls,

(3.3)



17

(3.4) e(s) = u(c(s)) + PEw(s ~¢(s) + V).
Our primary goal in this section is to establish the following result.

3.1 Proposition: The function ¢ inherits all the properties assumed for w. This is, ¢ satisfies
A.l and ¢(0) = u’'(0). Furthermore,

3.5) v(s) = u'(c(s)), on §. O

A secondary goal is to establish a number of properties for the consumption function c.
Several of these properties will be used in our proof of the proposition.

Extend w to be C! and strictly concave on (-, =), in such a way that w'(s) - + as
s ~ -, Then Y, is defined on [0, =), and ¥, strictly decreases to -= as @ ~ «, Thus, by
(3.3) the equation y;(a) = O has a unique solution a = &(s), and the function ¢ is continuous.
Hence,

(3.6) c(s) = E) A s

is continuous also.

32 Lemma: Let0 sa s5; <5, Then
() ¥g (@ + 55 - 59) < ¥ (@) < ¥ (a),
(b) c(sy) < c(s9),
(€) 51 - c(s1) s 57 - €(s2).
Proof: (a) Because w' is strictly decreasing,
¥, = u'(a) - BEW'(s; -a +7)
> u'(a +5; -5y) - BEW'(sy + 55 -5 + Y)

= ¥ (@) ;

and because u’ is strictly decreasing,
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tl.v,'l(a) =u'(a) - PEw'(s; —a +Y)
>u'(a+sy-5) -PEwW(s, -(a+5,-5)+7Y)
= V,(@ + 53 -5y .
(b) By (a) and the definition of ¢(sy), ¥ .(c(s;)) > ¥; (c(sy)) 2 0. Hence, c(sy) > c(sy).
(c) If c(s;) = s,, the inequality is trivial. Suppose c(s;) < s,. Then q;_;l(c(sl)) = 0 and,
by (a), lll;z(c(sl) + 55 -~ 5;) < 0. Hence,

c(5y) < c(sy) +55 -3 . O

For every w, there is a nonempty interval [0, s*], in which it is optimal to consume

everything available,

33 Lemma: Let s* be the supremum of those s € S such that Y;(5) 20. Then 0 < 5* < =,
and one of the following is true;
. 0 < s* < = and s” is the unique element of § such that u'(s*) = BEw'(Y).
Furthermore, c(s) = s or ¢(s) < s according as 0 <5 <s* ors > s*.
I s* == and, for every s € §, u’(s) > BEw'(Y) and c(s) = s.
In both cases I and II,

3.7 As) =u(s) + BEw(¥), 0 <5 <s5*, 5 < +o,

Proof: Observe that ¢(s) = s if and only if ¢ (s) = u'(s) - BEw'(Y) 2 0. Also,
u'(0) - BEwW'(Y) = u’'(0) - pw’'(0) > 0.

Everything follows easily. =

If 0 < s* < = as in case I of the lemma, then we can write

s* = I(BEw'(Y))
where I is the inverse of the continuous, strictly decreasing function u’.

We shall need to compare various z,’s and c,’s. Here are some useful facts.
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34 Lemma: (a)w sw; = o<z,

) w' swi=c2cyands* >s].

(c) If w, increases to w' and w,(0) increases to w(0) as n - o, then s, decreases to s,
v,(s) increases to #(s) and c,(s) decreases to c(s),s € S, as n —~oo,

(In the above, ¢, has been written for ¢, , ¢, for ¢, , and s; for s .)

Proof: (a) is obvious from the definitions of # and #; in (3.1). To check (b), notice that, if
w' < wj, then y;, 2 ¥, and it follows easily thatc > ¢;. It’s also easy to use the previous
lemma, together with the fact that u’ is decreasing, to see that s* > sj. Now consider (c). If

w,, increases to w’, then

w,(s) = w,(0) + j w,!(f)dt
0

increases to

w(s) =w(0) + [ sw‘(t)dt :
0
So by (a) and (b), #, increases to a limit #, ¢, decreases to a limit 7, and s, decreases to
some¥. We need to show that? = ¢, 7= ¢, and ¥ = s*.

I 2(s) = s, then c,(s) = s for all n and so u’(s) 2 PEw,(Y) for all n. By the monotone
convergence theorem, Ew,(Y) - Ew'(Y) and therefore u'(s) > BEw’(Y), which implies that
c(s) = s = 2(s).

If Z(s)< s then, for sufficiently large 7, ¢, (s) < s and ¢, (s) satisfies

u'(c,(s)) = BEw,(s - c,(s) +Y).
Letn - = to get
w'(Z(s)) = BEW'(s - () + V)

and, hence, 2(s) = c(s).
To see that P = ¢, calculate as follows:
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os) = u(c(s)) + PEW(s - c(s) + Y)
= B, fu(c,(s)) + BEw,(s - c ) + V)]
- lim, ,(s) .
The first and last equalities are by the definitions of ¢ and c,, respectively. The second equal-
ity uses monotone convergence, together with the fact that ¢, decreases to c.
To see that T = s*, first assume ¥ < =, Then s; < « for n large and w’ 2 w,/ for all

n. Thus, by (b), s* <= and, by Lemma 3.3, part I,
s* = I(PEw'(Y)) = lim I(Ew,(Y)) = lim s .
n n

Now assume ¥ = o; j.e. s; = o for all n. Then by Lemma 3.3, part II,

u'(s) > pEw(Y), s€S, all n.

Hence,

u'(s) = BEw'(Y), seS.

However, u’ is strictly decreasing on § and it follows that the last inequality must be strict as

well, Sos* = =, O

Proof of Proposition 3.1. If s* =, the proposition is immediate from (3.7). So assume
0 < 5* < was in Lemma 3.3, part [. Again, it is immediate that » has the desired properties
on [0,s°]. On [s*, =), c = & by (3.6), and c(-) is given implicitly by
(3.8) u'(c(s)) = BEw'(s - ¢c(s) + V) .
If w is bounded and twice continuously differentiable, then ¢ is continuously differentiable on
[s*, =) as follows from the implicit function theorem. Now differentiate (3.4) and use (3.8) to
get

P(s) = ') + B(L - CE)EW(s - cs) + V)

= u'(e(s)) .

Furthermore, the left and right derivatives at s* of ¢’ agree, because c(s*) = s*.

For the general case, when w may be only once continuously differentiable, we can
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approximate w by a sequence {w,} of bounded C? functions which satisfy our Assumptions
A.2 and A3, such that w,(0) increases up to w(0) and also w,, increases up to w’' as n ~ .

Then, by Lemma 3.4,

o#s) = lim, v,(s) = lim,[7,(0) + [ w'(c,())dr)

0

= (0) + j u'(c(f))dt .

0

It is now easy to check that # has the desired properties. O

4 The Value Function and the Optimal Stationary Plan

In this section, we continue to assume that the utility function u satisfies Assumption A.1,
and we shall use the techniques of Section 3 to study the dynamic programming problem.

Here is our main result.

4.1 Theorem: Assume that u satisfies

(a) The value function V is concave, strictly increasing, and continuously differentiable on
S.

(b) There is a unique optimal stationary plan =, corresponding to a continuous function
c:S - Ssuchthat 0 <c(s) <s, and s - ¢(s), s ~ 5 - c(s) are nondecreasing
(©) V'(s) = u'(c(s)), s €85.

(d) There exists s* (0, =] such that c¢(s) = s fors <s* and c(s) < s fors > s*,

Proof: As in Section 2, let Vy = u, V,,; = TV, and set ¢,,,; = cy, 5,4y = sy for
n = 0,1, ... By Proposition 3.1 and induction, we see that the functions V,, satisfy A.1, and
Vn+1(") * u(cn-u-l(s)) + pEVn(s - Cn+](s) + Y) y

V1) =u'(c, ;) , s €S.
Notice that, for all s,

(4.1)

Vi) = u'(ey(5)) 2 w'(s) = Vg(s)
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so that, by Lemma 3.4, c,(s) s ¢,(s). Thus
V5(s) = u'(ca(s)) 2 w'(ey(s)) = V() .
Using induction, one easily shows that ¥, are increasing in n, and the ¢, are decreasing in n.
By Lemma 3.4, the s, are decreasing also. Define
c(s) :=limc,(s5), 5€5.
n

By Proposition 3.1, and the monotone convergence theorem,

V) - V(0) = Eim[V,,(s) - V,,(0)]

=lim [ u'c,@)dt = [ w(c(t)dt .
n 0 0

This establishes (a) and (c).

Now ¢(s) and s - ¢(s) are nondecreasing because, by Lemma 3.2, ¢ ,(s) and s - c,(s5) are
nondecreasing for every n. It follows that ¢ is also continuous, Furthermore, a passage to the
limit in (4.1) gives
4.2) V(s) = u(c(s)) + BEV(s - c(s) +Y)
and, by Theorem 2.2, ¢ corresponds to an optimal stationary plan. Thus, c¢(s) maximizes

¢ (a) =u(@) + pEV(s -a +Y), Osasxs.
Notice
9/@) = u'(a) - BEV'(s -a + Y)
is strictly decreasing in @ because u’ is strictly decreasing and, by (c), V' is nonincreasing. It
follows that c(s) is the unique maximizing value for every s and, therefore, ¢ is the unique
optimal stationary plan. This completes the proof of (b).

For (d), let s* = o if u’'(s) > BEV'(Y) for all 5, and let s* = J(BEV'(Y)) otherwise,

where [ is the inverse function for u’. In the second case, s* > 0 because u’(0) = V'(0)

> BEV'(Y). 0
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4.1.1 Comment: Matthew Sobel observes that Theorem 4.1.(d) is valid under the weaker
assumption that u satisfies only (2.2).

42 Corollary: If 0 < 5* < o, then s* = J(BEV'(Y)), where I is the inverse function of u’.
Proof: c(s) = s if and only if u'(s) > BEV'(Y). O

Here is another property of the optimal stationary plan.
4.3 Theorem: If u satisfies A.1 and ¢ corresponds to the optimal plan as in Theorem 4.1, then

lim, ., o(s) = =

Proof: Suppose first that u is unbounded. Then, obviously, V is unbounded also. Now if ¢ is
bounded by b, b < = and = is the corresponding stationary plan, then

Vis) = I(x)(s) s u(b) + Pu(d) + pu(d) + = = ‘;—“’-B) .

We conclude that ¢ is unbounded. The result follows, since ¢ is increasing.
Next assume that u is bounded and set u(«) := lim,_, u(s), V(=) := Lm___ V(s).

4.4 Lemma: V(o) = u(=)/(1-p).

Proof: Fors e Sandn = 1,2, .., V(ns) = Z}25Bu(s) = (1-B"Ju(s)(1-B). Letn - = and
then let 5 -~ = to get V(=) 2 u(=)/(1-B). The opposite inequality is even easier,
Return to the proof of Theorem 4.1, and use the lemma to get
V) = u(e(s)) + BEV(s - €s) + Y)
< u(c(s)) + pu(=)/(1-B) ,

and in the limit as s - =

u(=) ) + L)
2 < uten - 073

where ¢(=) ;= lim ¢(s). Since u is strictly increasing, we conclude c(=) = = 0O



24

45 Remark:c The function V'(s) is equal to u’(s) on [0, s*], and equal to u'(c(s))
= BEV'(s —c(s) + Y) > u’(s) on (s*, =). Therefore, we have

V'(s) = max{u’'(s), PEV'(s -¢c(s) + V)], Vs e S.
We deduce that for the Markov chain {s,},/_, given by 5,,,;, = s, - ¢(s,}) + Y, ,,, and with
§p:=¢(s,), 0 ;= inf{n < O;s, <s*}, M, := p"V'(s,) = p"u’(§,), n € N; is a supermartin-

gale and My,,, n € N is a martingale.

4.6 Remark: Suppose that, in (2.5) the price p € (0, =) of the commodity is not equal to one,
so that the motion formula (2.7) takes the form:s, ., =s, -a, + pY,,;,n =0, 1, ... Then
the return function of (2.8) becomes I(n)(s; p) = E:O_S[E:,Dﬂ"u(ana))], and the corres-
ponding value function

Vis; p) = su&[u[g.] + BEV(s - a + pY; p)
4.3) Ose

- u[M] + BEV(s ~ ¢(s; p) + pY; p)
P

by analogy with (2.11) and Theorem 2.2(b). It is quite obvious that the value function V(s; p)
and the (stationary) optimal strategy ¢(s; p) have the scaling properties

(4.4) Visp; p) = Vs 1) = V(s) ﬁc(sp;p) = c(s; 1) = <(5)

foralls € (0, =), p € (0, =).
Furthermore, assume that the Markov chain

(4.5) Sy =85, —¢(s,.3p) *+pY,, n=1,2 ..

has 2 unique stationary distribution p(4) := p(A; 1), if p = 1 (cf. Section 5 for a study of this
question); then it also has a unique stationary distribution y(A4; p) for any other value of p in
(0, =), and this is given by

(4.6) u{Ad; p) = uGA] ; A € K[0, =) .
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5 The Stationary Distribution

Assume that the untility function u satisfies Assumption A.1 of Section 3, and let & be the
optimal stationary plan with consumption function ¢ given by Theorem 4.1. In this section we
assume that the agent uses =, and study the resulting Markov chain of successive states of
wealth sy, s, ... given by s, ., = 5, -¢(5,) + Y,, n = 0, 1, ... Our main result is that the
chain is positive recurrent, with a stationary distribution u which can be regarded as an equilibrium

distribution of wealth for many independent agents facing the same problem (cf. Remark 7.4).

5.1 Theorem: Under the optimal plan =, the Markov chain {s,}, .o has a unique stationary

distribution p. O

The proof will be based on the renewal theorem or, more precisely, one of its corollaries
(Theorem 3.5, p. 153 in Asmussen (1987)).

Let s* € (0, =] be as in Theorem 4.1. If s* = =, thens, = Y, forn = 1, 2, ... and the
stationary distribution is just the common distribution A of the Y,’s. So assume, for the rest
of this section, that 0 < s* < = and define R = {0, s*]. The set R is a regeneration set for the
chain, because whenever s, € R we have c(s,,) = s, and 5,,,, = Y, ,,. Thus, whenever the
chain visits R, it starts over with initial distribution A. Our theorem will follow from that of

Asmussen (1987), if we show that regenerations occur in finite expected time. Define

(5.1) Tt = inf{n 215, € R} ,

so that t* is the time of the first regeneration and, if s, € R, t* is the length of a typical
cycle. Theorem 5.1 will follow from the proposition below.

5.2 Proposition: If s, is constant, or if s, is random and Esj < =, then Et* < =, ]

The proof will be given in several lemmas. First, observe that since, by Theorem 4.3,
¢(s) -~ = as s ~ =, there exists ¥ such that s* < ¥ < wand s > ¥ ~¢(s) 2 EY + 1. We

shall first show that the expected time to reach [0, 3] is finite. Define

(5.2) T:=infln 2 0;5, <3} .
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53 Lemma: For s; constant, ET < (sp - )% + c(?).
Proof: The idea is to compare {s,}, ., with the random walk {X,}"_, defined by
(5.3) Xo=59, Xp01=X,-¢(®)+Y,,,, n20.
Notice X, > s, for all n < 7, because c(s) = ¢(¥) fors 2 3. So, if
(5.4) Ty := inffn 2 0; X, <3},
then Ty > ¥. Now the random walk has drift -c(¥) + EY < -1, and it follows from a ver-
sion of the optional sampling theorem (or Wald’s equation) that, for sy > ¥,
So = EX?X

Ety = e X
(5.5) c(®) - EY
sso—EX?xss0—3'+c(3').

We are using here the inequality E(Xy,) = E[Xy (- c(®) + Yo 123 -c@) O
5.4 Lemma: For s, random, we have EY < E(sy - M)* + ().

Proof: Condition on sy, and use Lemma 5.3. O

The next idea is that, once the chain reaches [0, 3], it will go on to reach R in a fixed,
finite number of periods, with a probability which is bounded away from 0. We shall first
show that the income variable Y is less than s* with positive probability. Define

£g ;= infle > 0; P[Y 2 ¢] = 1} .
55 Lemma: s* > e
Proof: Recall that [ is the inverse of u’ and is strictly decreasing. Now use Theorem 4.1 and
Corollary 4.2 to see that

I(BEV'(Y)) = s* = I(w'(s*)) = I(u'(c(s"))) = I(V'(s")) .

Hence,

BV'(s*) < V'(s*) = BEV'(Y) < BV'(gy) ,
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where the final inequality uses the definition of e, together with the fact that V' is
nonincreasing. The desired inequality now follows from the same fact. a

5.6 Lemma: There is a positive integer N and a number n € (0, 1) such that

(5.6) Plts <Nlsg=s] 2n, Vs e(s"7].

Proof: Choose & € (gg, s*) by the previous lemma. By definition of ¢y, ¢ = P[Y < 8] > 0.
Then, for ¢ > s*, ¢(t) 2 ¢(s*) = s* and

Pl<() +Y <8 -5"]2¢.
So the process s, -- whenever it is to the right of s* -- moves at least a distance 8 - s* (to the

left) with probability at least «, namely P[s,, , < s, - (s* - 8)|s, > 5*] 2 «. Now choose N

so that (-8 + s*)N > ¥ - s*, and set | := o O
We are ready at last for the

Proof of Proposition 5.2: First write
5.7 =T+,

where t is the additional time to reach [0, s*] after reaching [0, ¥]. By Lemma 5.4,
ET < =, and we need only show that Et < o,

To see this, think of an entry of the process into [0, 3] as the start of a "trial"; call the
trial a “success,” if the process goes on to reach [0, s*] within the next N days and call it a
"failure" otherwise. Notice that, by Lemma 5.6 the probability of success is at least n and, in
the event of a failure, the process will be at a random state which is stochastically smaller than

T+Y ++Yy,
a random variable with expectation ¥ + NE(Y) < e« Thus, by Lemma 5.4, again the

expected time until the next entry into [0, 3] is a random variable o with finite expectation.

Therefore, t is stochastically dominated by a sum
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T
(5.8) Z=YW,,
k=1

where the W, are independent random variables; each of them is equal to N with probability
at least n, equal to a variable o®) distributed like o with the remaining probability, Finally, T
is a geometric stopping variable distributed like the number of Bernoulli trials until the first
success. By Wald’s equation, Et < EZ = E(T)E(W;) < =~

This completes the proof. a

It is well-known (cf. Asmussen (1987), p. 152) that the stationary measure p of Theorem

3.1 can be represented as

tt-1
.9) pA) = ——E, T 1,60 , 4 € (0, »)
E,(t*) k=0
or equivalently as
© -1
(5.10) [ fon@s) = ——E, 3 fiso)
0 (1) k=0

for every measurable f : {0, =) - [0, =), Here t* is the stopping time of (5.1), and the sub-
script A in E, means that the initial state s; of the Markov chain has the distribution 4 (of
the random variables Y, Y}, Y5, ...). From Lemma 5.4 and the assumption [gyi(dy) < =, we
have E;(t*) < =. On the other hand, (5.10) yields

o -1
(5.11) ds) = 1 _E .
Jo SP'( ) El(.c*) 1’§0 Sk

We shall need conditions, under which this expression is finite.

5.7 Theorem: Under the additional assumption E(Y?) = j'a’yzl(dy) < =, the stationary dis-
tribution p of Theorem 5.1 has finite first moment: [gsp(ds) < . O

The rest of the section will be devoted to a proof of this result. Clearly from (5.11) it
suffices to show
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-1
(5.12) E E’k] <,
k=0
(5.13) ["'1
El E Sk < = N
k=T

where T is the stopping time of (5.2). Now in the notation of (5.3), (5.4) we have
?-1 -1
(5'14) EL[E Sk] < EI[E Xk]
ko0 k=0
and thus, in order to prove (5.12), it suffices to establish the analogous property for the
random walk of (5.3).

5.8 Lemma: Let { = &g, £, ... be a sequence of IID random variable with P(§ > -b) = 1 for
some b € (0, =), E(£) < 0 and E(§?) < = For any given x € (0, «), consider the random

walk X, = x + 27248, n € N; and the stopping time o, := inf{n € Ny; X,, < 0}. We have

o.-1
(5:15) fx) = E[E X,,] <=, %€=
ne0
and
(5.16) [ fo)rdey < =
. 0

for any distribution A on [0, «) with finite second moment.

Proof: By amalogy with Lemma 5.3, we have E(o,) < = On the other hand, Xo,,-l <
XG‘_I —X,‘ - -Eo,-I s b and inductively: Xo,-z < 2b, X0‘_3 s 3b, .., X < bo,, almost

-1
surely, Therefore, 0 < 2:10 X, sba (1 + 0)/2 as. and thus
(5.17) 0 < f@) < 2[E(D) + E(a))] < =
* 2 X X

since E(02) < = = E(£?) < « (cf. Gut (1988), p. 78).
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This proves (5.15); for (5.16), let us start by observing that o, is stochastically larger than
oy, if x > y. Thus, it suffices to show
(5.18) Y fm)a((n-1,n)) < =,
n=1
To this end, fix an initial position x = n € N, and introduce the stopping time

k-1
Ry :=inflk > 1; X, < n-1} = i 21;2515-1
¥

and its independent copies
Ry := inl{k 2 1; X"*T: sXT1 - 1}, vy
Rj+1 = in.f{k z 1 Xk*T} £ X]} - 1} .

Obviously o, s I}.;R;, and thus E(o,) < n'E(R,), E(s?) < Cn? for all n € N, where
C € (0, ») is a constant depending only on E(R,), E(R%). Now from (5.17) we obtain

f(n) s bCn?, and (5.18) is obviously satisfied. o

Proof of Theorem 5.7: Take ; = ¥; - b in Lemma 5.8, where b = ¢(3); it is easily seen that
the conditions of the lemma are satisfied. We conclude that, for the random walk {X, },.., of
(5.3), the right-hand side of (5.14) is finite. This proves (5.12).

To prove (5.13), it suffices to show that there exists a constant C € (0, =), such that

-1

g6) :=E, J} s|sC, Vs e[0,7].
k=0

But from the fact that s ~ x - ¢(s) is nondecreasing, one can check easily that the mapping
s ~ g(s) is nondecreasing as well, so it suffices to prove g(¥) < =, Now let us recall the setup

and the notation of the proof of Proposition 5.2. Repeating the type of reasoning that we

employed there, we observe that, by analogy with (5.5), the random variable E;:]lsk (with

59 = ) is stochastically dominated by a sum of the form
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5:5) Z-%W,.
k=1

Here T is as in (5.8), and the W, s are IID random variables; each of them is equal to A, with
probability n, and equal to 4, + B, with probability 1-n, k = 1, 2, ... . The sequences
{4} =1 {By};=; are independent, and consist of IID random variables; A, is distributed
like 22§ s; (with sp = ¥), whereas B is distributed like £ 2} 5; (with s, having the distribu-
tion of ¥ + Yy + = Yy ). Obviously E(4,) < =, and E(B;) <= from (5.14) and Lemma
5.8. Therefore, E(W,) < = and

<*-1

BO) =E, & | Y, si| < EMEW) < =.

ke wl}

6 The Saturated Case

In this section we consider a utility function which saturates at a finite value. More

precisely, we impose the following condition in place of Assumption A.1.

B In addition to the properties (1.2), we assume the following:
(i) There exists b € (0, ~) such that u(x) = u(h) forh <x < =,
(ii) u has a continuous derivative on S= [0, =),
(iif) u’ is strictly positive and strictly decreasing on (0, k).

If the income variable Y is greater than or equal to k with probability one, then the prob-
lem is trivial. After the first period, the agent can always attain the maximum possible utility
and, consequently,

V) = ) + X Bult)

n=1

Bu(h)
(1-p)

= u(s) +

Furthermore, the optimal plan is not unique because, for s > h, any action in the interval

[k, 5] is optimal.
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The situation is more interesting if Y is less than h with positive probability. Indeed, the
methods of Sections 3 and 4 can be adapted to prove all the conclusions of Theorem 4.1 if
Assumption A.1 is replaced by B together with the condition P[Y < k] > 0. (Part (d) of
Theorem 4.1 can be strengthened to say 0 < s* < =) However, it is no longer true as in
Theorem 4.3 that the optimal consumption function c(s) approaches infinity as s - =, It is
intuitively clear that ¢(s) < h, and it can be shown that ¢(s) » h, as s - .

The method of Section § can also be adapted to prove the existence of a unique sta-
tionary distribution as in Theorem 5.1 under assumption B and the additional assumption
EY < h; furthermore, the additional condition E(Y?) = [5y®A(dy) < = guarantees that this
stationary distribution has a finite first moment). If, instead, EY > h, the Markov chain

{5, },,=¢ is DOt positive recurrent, and has no stationary distribution.

7 Stationary Competitive Equilibrium

Consider now an index set = [0, 1] and a non-atomic probability measure ¢ on &(J); the
set I represents an uncountable collection of agents, whereas ¢ represents the "spatial" distri-
bution of these agents on J. Each agent « € J has a utility function u%(-) and receives a
sequence of random endowments Y9, Y3, ... ; these are independent copies of the nonnega-
tive random variable ¥*, whose distribution we shall denote by A%. For each a € I, the utility
function #%(-) and the distribution A% satisfy the assumptions imposed on them in Theorems
5.1,5.7.

In particular, if the price p € (0, =) of the non-durable commodity is announced in
advance and fixed from period to period, each agent o € I faces an infinite-horizon dis-
counted dynamic programming problem of the type (2.7), (2.8). For this problem, the value
function ¥ (s; p) and the optimal consumption level c®(s; p) satisfy, by analogy with (4.3), the
Bellman equation
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ViGs; p) = muﬂ[g] + BEVE(s - ¢ + pY; p)
(7.1)

L ¥ .
- u“[f-—(s’ P)] + BEV*(s - c®(s; p) + pY"; p) .
P
According to Theorem 5.7, the Markov chain
(71.2) s: = ’:-1 -c*(s,_sp) + pY: yn=12 ..

has then a unique invariant measure y%(ds; p) with finite first moment, and

(73) [ (s PYu"(ds; p) = pEQY™)
0

L

(74)  p*4;p) = [ Pls - c*(s; p) + pY*) € Alu"@s; p) ; A € A0, =) .
0

(This last identity merely states the invariance of the measure p*(: ; p), whereas (7.3) follows
from (7.2) by taking expectations, and recalling that E(s¥) = [gsu®(ds; p) = [gsn®(ds) is
independent of n and finite; cf. Theorem 5.7.)

Consider now a situation, in which all these agents interact with each other in the follow-
ing way. At the beginning of period t = n (n € N), with price p,_;(») and random wealths
5% _,(w), a € I across agents, each agent a bids the amount by(w) = c*(Sy_j(@); p_y(w)).

Thus, the total amount bid is given, by analogy with (1.1), as

(1.5) B (0) = [ *(S;_1(©); Pus(©))b(d0) .

I

Then the endowments {Y%(w)}, . for the period ¢ = n are revealed for all the different

agents; it is assumed that the total endowment in each period t = n namely

(1.6) Q, = [Yr(w)b(de),
I

is it non-random; in particular,
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(.7) Q, = Q:= [E(r)dde), W €N, .
I

A new price is then formed, as the ratio of total bid over total endowment:

B,(w)

7.8 =
(7.8) Pn(©@) o

= 2 [ 85 4(0) Ppy(0)bde) .
¢

Finally, each agent consumes his bid’s worth xj(w) = c*(S5_j(w); p,_i(@))p,(w) and
receives his endowment’s worth (denominated in the new price), thereby receiving a reward
u®(x5(w)) for the nth period and starting the next period t = n+1 with price Pp(w) and
wealth

7.9 5, (w) = 8, _1(0) - (S, _1(0); py_g(w)) + Py (0), ael.

This procedure is then repeated ad infinitum,
It should be noted that, with %, := o(pg, §§; « €I) and 7, := o(p,S5, Y5, @ € L k = 1,
- 1) for n € N, the random variables p,(w), S} () (¢ € I) are measurable with respect to

#,_; and #,, respectively, for n € N. Let us also introduce the random measure

(7.10) vad, ©) = [ 1,(S5(w))d(de) ; A4 € #[0, =), neN,
I

which describes the spatial distribution of wealth across agents, at time t = n,

7.1 Remark: If the agents are homogeneous (ie., they all have the same utility function
u = u® and all the random variables Y* have the same distribution A as the random variable

Y), then the formula (7.8) takes the simpler form
(7.11) Pal0) = 5 [ €6 praa(@))nus(@s; 0)
0

where @ = [gyA(dy), and (7.3), (7.4) become

(7.12) [ els; pn@ds; p) = pQ,
0
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(13) waip) = [ AP gy, A e 0, )

0
We are now in a position to introduce the notion of a "stationary competitive equilibrium" for
the system of interacting agents (strategic market game) described in this section, and to con-
struct such an equilibrium explicitly in terms of the invariant measures p“, « € I of the indi-
vidual Markov Chains in (7.2). We deal first with the homogeneous case of Remark 7.1, and
then extend that result to the case of countably (Theorem 7.6) and uncountably (Remark 7.7)

many homogeneous classes of agents.

7.2 Definition: A stationary competitive equilibrium is a pair (p, i), where p € (0, ) and p is a
probability measure on {0, «)), such that with p, = 0 and vj; = p we have p, = p and
v, = u,foralln =1, 2, .. in (7.8), (7.10).

It is relatively straightforward to construct a stationary competitive equilibrium in the
homogeneous case of Remark 7.1. To accomplish this, let Y{(w), Y3(w), ... be independent
copies of the measurable mapping Y : I x Q ~ [0, =) with marginals

(7.14) Plo € Q; Y¥(w) € A] = A(4), Va €1
(7.15) dla €I, Y(w) € A] = A(A), Vo € Q

for any A € A[0, =)) (e.g., Feldman & Gilles (1985), Proposition 2).

7.3 Theorem: In the homogeneous case u® = u, A* = A (Ve € I), for any given p € (0, =)
and with p() = p( - p) the ergodic probability measure of (7.13), the pair (p, ) is a sta-
tionary competitive equilibrium and satisfies the equations (1.12), (1.13).

Proof: It suffices to show p,(w) = p, v;(*, @) = p(*; p). Indeed, from (7.11) and (7.12) we
have

(7.16) pi(@) = L [ c(s pvolds; @) = 2 [ e(ss pIu(ds; p) = p
Q 0 Q 0

and from (7.10), (7.9), (7.13):
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vi4, o) = ple e I; S:(u) € A}

= le € I; (Sp(@) - c(Sy(w); p) + pYi(w)) € A)

(7.17) - I dle € L; (s - c(s; p) + pYy(w)) € Al-dla € I; S5(w) € ds)
0

- ){A -5 ;c(s; p)]p(,,-_,; P)=pA;p), YA e A[0,w). O
0

7.4 Remark: In the setting of Theorem 7.3, the constant size of "money supply” W, in (1.6) is
given by W = [Gsu(ds; p) = p[psu(ds; 1); with this fixed size specified in advance, there is
only one equilibrium pair (p, p) € (0, ) x 47in Theorem 7.3, namely

(7.18) p = Wilgsp(ds; 1), u(ds; p) = u[% 1] .

On the other hand, the quantity of (7.5) becomes: B = [gc(s; p)u(ds; p), and the ratio

44 . Q
[esu(ds; p)  [gsu(ds; 1)

0 :=

¥l

acquires the significance of a "societal measure of relative risk-aversion" for the economy as a

whole.

75 Open Question: Suppose that, in the homogeneous case of Proposition 7.3, we set Po(w)
=p € (0, p) and vy(-, @) = u(-, q) for some g € (0, =), g * p. What can be said about the
limiting behavior of the (non-random) sequences {p,},, eN, = (0, =), {v, Ynen, € 27 Q

In order to deal with the non-homogeneous case, let us imagine that the space I of agents
has been partitioned into countably many disjoint "clans" J,, k € N so that ] = Ueaily
wi = &) > 0, Z;.w, = 1. Agents in each clan J, receive endowments with the same
distribution 1,, and have the same utility function u* (both Ak, u* satisfy the conditions of
Theorems 5.1 and 5.7). More precisely, consider for each k € N a measurable function

ky : I, x Q@ ~ [0, ») with marginals
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(7.14) Plo € 4; *Y%(0) € A] = 3%¥(4) , Ve €I,
(7.15) dle € I; ¥Y*(w) € A] = A1), Yo e Q

for any A € ([0, =)); let Y% (), ¥¥§(w), ... be independent copies of this function (for fixed

a € I, these represent the independent daily endowments for agent «), and set

(7.19) Q. := I yikdy), Q := Y w0, A:= Ewk}.k .
0 k=1 k=1
Agents in the "clan" I, have the same utility function u*, and face the same dynamic program-
ming problem
V(s p) = maxuk[ﬁ] + B [ VA - a + py; p)ik@)
(7 1), 0zas 0

- u"[-‘-ﬁ(-’-i-ﬂz] + B [ VA - s p) + by PYAR@)
p 0

corresponding to a price p € (0, =) that is held fixed from period to period, with optimal sta-

tionary consumption plan c"(s; p) and invariant measure p"(ds; p) that satisfy

73y [ &G p)u*ds; p) = pQ;
0
74y vt p) = | l‘[“‘ s+ e p)]u"(ds; P). VA €[, ).
0 p
We introduce also the aggregate of these invariant measures:
a1y i(4; p) :=kz;wku"(A;p) = [ u"4; p)b(da) , A € A0, =)) .
- I

7.6 Theorem: The countably non-homogeneous case. With the above assumptions and nota-
tion, the pair (p, p) with p(*) = &(* ; p) as in (1.11)’ is a stationary competitive equilibrium,
for any p € (0, ). And as in Remark 7.4, there is only one such pair for any given, fixed
level of the "money supply" W = [5sii(ds; p) = pJ;[5u(ds; Db(da).
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Proof;: For k € N, introduce the random measures
(7.20) ky (A, ©) := ;1.4»(« €l S5(0) €4), n €N,
k
so that v,(4, ©) = T, wiv,(4, @) in (7.10). Suppose that py(w) = p and vy(-, ©)
= pk(-; p), for all k € N (so, in particular, vo(-, @) = (- ; p)). In order to establish equi-

librium, it suffices to show py(w) = p, *v,(-, w) = ¢ ; p) (and thus, in particular,
vy(*, ©) = p(-; p)). Indeed, from (7.8), (7.3)’, and (7.19) we have

py(w) = E j (S50 p)d(da)
7.8y Z“’k f c*(s; P)n*(as; p)

-1 Ywo =p

k=1

and from (7.20), (7.9), (7.15)", and (7.4)’

kv, 0) = wi¢{¢ € Ii; Sq(w) - k(Sg(w); p) + PFYI(0)) eA}
k
1 I ble € I; kY‘;(m) € ‘iLk(s"” d(a€ I; Sy(w) € ds)
0 p

f 4- MC(S’P)] k@s; p) = uk4; p), Yk e N, 0

7.7 Remark: Finally, we consider the uncountably nonhomogeneous case as follows: let I, K
be copies of [0, 1] and set § = ] x K. One thinks of an element («, k) of & as an agent
a €1, of type k € K. We endow I, K, and & with their Borel o-fields, and consider a non-
atomic probability measure ¢ on #(J) with marginal w on K and with regular conditional
probability ¢* on J, givenk € K:
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¥(B) = [ ¢"Bw(k) , VB € D) .

K

Agents of the same type are supposed to have the same utility function «*, and the same dis-
tribution A¥ of daily endowment; u(®k) o uk 2@k o 3k for every k € K, p € (0, =), so we
can define

i p)= [ W5; pw(dh) = [ po%(; p)o(de, di) , A € (O, =)) .
K 3

It can be shown then, by analogy with the proof of Theorem 7.6, that (p, u(: ; p)) is a station-
ary competitive equilibrium, for every p € (0, =). We omit the (straightforward) details.

8 Appendix

We shall establish in this section the optimality of the stationary plan = of Example 2.5,
for the problem treated there, and for an arbitrary sequence of nonnegative random variables
Y, Y5 ... . In order to set the stage for these investigations, let us consider a random

sequence (5q, €g), (51, €;), ... with

Snel =g ~€(5,) *Ypy1» 5 20
(A1)
€hel =€ * B"*lu(c(sn)) , €20,

Let us also look at another sequence (¢, dg), (¢, dy), ... generated by the same mechanism,
but with possibly different initial conditions:

biet =4, c(tn) +Ype1r 8020

(A2)
dpoy =4, + Bn'lu(c(tn)) » dg 2 0.

Al Lemma: If 5q < #y, ey < dy, then sy < ¢;, e; < d,; and by induction s, < ¢,, ¢, <d, (n € N).

If furthermore, 0 < #, - 55 s dy - ¢,, then we have 0 < ¢, - 5, s d; - ¢, and by induction

0<¢,-5,x<d, -e,(n €N}). O

In the proof of this lemma, and of other related results, we shall find it convenient to
consider separately the following three cases:



sp21. Then 5 =55 -1 +y;, e, =¢;, +

(A)
tl‘to"l"’yly dl'd[)""ﬂs
O0<sgsty<1l. Then s, =y, , ¢, = ¢5 + Psy
(B)
ty=yy, dy=dy + By,
0<sy<1s<t;,. Then s, =y,, €, =¢, + PBsy
©

tl'to“l"’yl, d1'd0+p.

Proof of Lemma A.1. Since t; - 55 2 0, djy - ¢y 2 0, we have from cases (A)-(C) above:

0~ Sp; (A)
(A3) ty -5 = 0; (B =20
to -1 ; (C)
and
do - € (A)
(A.4) dy ~e; =1(dy - ¢€p) + Bltg ~50); (B)f 20

(o - €o) + P(1 - 5p) 5 (O)
establishing the first claim. For the second, just notice that (A.3), (A.4) imply
(dp - €g) - (8 - 50} 5 (A4)
(A.5) dy-e) - -5 = (dy - €p) + Bty - 50} 5 B)p 20
(dy -ep) + B(1 -39 + (1 -15); (C)
Under the inductive assumption d - ¢y 2 ¢ - 55 2 0, the first two expressions are nonnega-
tive and the third one dominates (t; - so) + B(1 - 55) + (1 - £5) = (1+B)(1 - 59) 2 0, as we

are in case (C); thus, the expression of (A.5) is nonnegative.,

A2 lemma: If 0 <ty -5y sey-dythen0 <t -5, se; -d; and by induction0 <¢, - s,
se, -d, (n €N).
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Proof: From (A.3), (A.4) we obtain
(eg - dp) - Bltg ~s¢) 5 (A)
(A-6) @y -e)-( -5 = (eg - dg) + Bltg -s¢); (B)f 20
(g - dp) + B(1 -9 + (1 -1 ; (O)
Thanks to the assumption ey - d 2 ty - 53 2 0, the first term is nonnegative, the second dom-
inates (1-B)(ty - sp) 2 O, whereas the third one dominates (to -5g) - B(1 -5 + (1 -¢)

= (1-B)(1 - sg) =2 0. Consequently, the expression of (A.6) is nonnegative. O
Suppose now that we start at s, > 0, and employ the strategy =; schematically.

(A7) x = [0 %1 7% " c(sg) + Y 525 o
c(sg), c(sy); c(sp), - '

For an arbitrary but fixed ¢, € [0, s¢], consider now the strategy ¥ that first uses c,, and then

switches to the strategy = for n 2 1; schematically,

(A8) x -

So, tl = 50 - Cﬂ + Yl’ tz, e
cp €(ty), c(ty), .

Denote by I(n), I(%) the rewards that correspond to these two strategies, starting at sy If we
manage to show that
(A9) I(?) < I{xn)

holds, for any given s, € [0, =) and ¢, € [0, 5), then Blackwell’s verification theorem guaran-
tees that = is optimal. Notice also that both strategies are stationary, so the expectations that
appear below refer exclusively to the random sequence {Y, }, .o We have

I(x) = EY Pu(e(s,)) = u(c(s) +E,4E,l): a"“u(c(s,,))]
(A.10) n=0 n=0

= E(lim2)) ,
n

where {3}, ?,}, - is generated as in (A.1), with initial conditions

(A.11) Y =5, T =ule(sy)) = ulsy) -
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Similarly,

I(x) = Ef) Bu(c,) = u(co) +E,l,{E,lf) B lu(c@ ..))‘
(A.12) n=0 n=0

= E(limd,),
n

where {T,, d,} ., is generated as in (A.2), with initial conditions

(A.IS) To = ‘1 ’ 30 = u(CO) .

A3 Theorem: For.any 59 € [0, =), ¢ € [0, 5p] we have the comparison (A.9). In particular, n
is an optimal (stationary) strategy.

Proof: In view of (A.10), (A,12) it certainly suffices to show the "pathwise comparison"

(A.14) 2, 2d Vi € Ny

n?*

almost surely.

Obviously from (A.11), (A.13), (A7), (A8): T, -3 = ¢ - 5y = u(sy) - ¢ and
7, - dy = u(sp) - ulcy) 2 0. We distinguish the following cases:

() u(sy) 2 ¢ Then 0 <%y - 35 s & - d; (the first inequality by assumption, the
second amounts to u(sy) - ¢ s u(sy) - u(cy) which is obviously true), and the pathwise
comparison (A.14) follows from Lemma A.2.

(i) u(s)) < ¢g < 1. Then we have 0 s X -7, < ¥, - d,. The first inequality by
assumption; the second amounts to 2u(sy) 2 u(cy) + ¢g, which holds because

2(sg —cg) 20359 s 1

2u(sq) - ulcg) ~ <o = 2(1 - ¢g) 2055 2 1]

and the pathwise comparison (A.14) follows from Lemma A.1.
(iii) cg > 1. In this case we have ) - T = ¢co - u(sg) = ¢o - 1 2 0, 7, - d
= u(sq) - u(cy) 2 0, and (A.14) follows again from Lemma A.1.
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