Yale University

EliScholar — A Digital Platform for Scholarly Publishing at Yale

Cowles Foundation Discussion Papers Cowles Foundation

10-1-1978

Multiplicative Bidding and Convergence to Equilibrium

Richard Engelbrecht-Wiggans

Follow this and additional works at: https://elischolar.library.yale.edu/cowles-discussion-paper-series

b Part of the Economics Commons

Recommended Citation

Engelbrecht-Wiggans, Richard, "Multiplicative Bidding and Convergence to Equilibrium" (1978). Cowles
Foundation Discussion Papers. 734.
https://elischolar.library.yale.edu/cowles-discussion-paper-series/734

This Discussion Paper is brought to you for free and open access by the Cowles Foundation at EliScholar - A
Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Cowles Foundation
Discussion Papers by an authorized administrator of EliScholar — A Digital Platform for Scholarly Publishing at
Yale. For more information, please contact elischolar@yale.edu.


https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/cowles-discussion-paper-series
https://elischolar.library.yale.edu/cowles
https://elischolar.library.yale.edu/cowles-discussion-paper-series?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F734&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F734&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/cowles-discussion-paper-series/734?utm_source=elischolar.library.yale.edu%2Fcowles-discussion-paper-series%2F734&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS
AT YALE UNIVERSITY

Box 2125, Yale Station
New Haven, Commecticut 06520

COWLES FOUNDATION DISCUSSION PAPER NO. 500

Note: Cowles Foundation Discussion Papers are preliminary
materials circulated to stimulate discussion and
critical comment. Requests for single copies of a
Paper will be filled by the Cowles Foundation within
the limits of the supply. References in publications
to Discussion Papers (other thanmere acknowledgment
by a writer that he has access to such unpublished
material) should be cleared with the author to protect
the tentative character of these papers.

MULTIPLICATIVE BIDDING AND CONVERGENCE TO EQUILIBRIUM

Richard Engelbrecht-Wiggans

October 12, 1978



MULTIPLICATIVE BIDDING AND CONVERGENCE TO EQUILIBRIUM*

by

Richard Engelbrecht-Wiggans

Abstract

General equilibrium strategies may be relatively difficult to deter-
mine. While multiplicative strategies may be much simpler to calculate,
they are not in general in equilibrium. An example shows that such strate-
gies may indeed be quite far from equilibrium, However, if the example is
jterated using Bayesian decision analysis, the strategies quickly converge
to being very nearly in equilibrium

Introduction

The survey of auctions and bidding by Engelbrecht-Wiggans (1978)
reveals that many bidding models assume that individuals will bid a multiple
of an unbiased estimate of an object's true value. Relatively few attempts
have been made to justify such an assumption; some work has been reported
showing that equilibrium strategies may in certain cases be represented
by a function well approximated by a multiplicative function. Such work
however does not resolve whether or not multiplicative strategies are close
to equilibrium in terms of expected profit.

This paper briefly presents a model of auctions as games with incom-

plete information. The mathematics of determining general equilibrium and

*This work relates to Department of the Navy Contract N00014~77-C0518 issued
by the Office of Naval Research under Contract Authority NR 047-006. How-
ever, the content does not necessarily reflect the position or the policy
of the Department of the Navy or the Government, and no official cndorse-
ment should be inferred.

The United States Covernment has at least a royalty-[ree, nonexclu-
sive and irrevocable license throughout the world for Government purposes
to publish, tramslate, reproduce, deliver, perform, dispose of, and to
authority others so to do, all or any portion of this work.



multiplicative strategies is outlined for auctions with symmetric bidders.
_Finally, an example is considered to indicate the degree to which multipli-
cative strategies fail to be in equilibrium. 1In this example, however, if
players participate in a series of similar auctions, always using a Bayesian
analysis of the previous aﬁction to determine their bidding strategy, then
the strategies will be relatively too close to equilibrium after a very

few iterations.

Model

Auctions may be modelled as games Wifh incomplete information as
defined by Harsanyi (1967a, 1967b, 1967c). In such models, "nature" chooses
the true value of the object, the reservation price of the object, and the
number of players from a probability distribution known to all players.
Although nature's choice for the random variables are not revealed to the
players, the players obtain some insight into those choices by observing
an information random variable. The joint distribution of the plavers'
information random variables depends on the outcome chosen by mature; the
conditional density functions are known to all players. Using the know-
ledge about the distributions, a player must specify a bidding strategy;
a.bidding strategy is a function from possible outcomes of the information
random variable to possible bids. Thus, a player's bidding strategy spe-
cifies his bid as soon as he observes the outcome of his information random‘
vériable.

We will consider a somewhat simplified version of this model. The
true value of the object z and the number of players n will be the
outcomes of the independent random variables Z and N with probability

densities h(z) and p(n) respectively. In this discuésion, N will



either be degenerate or Poisson distributed with mean u . The reservation
price C is degenerate (i.e., fixed at some known value c¢ ).

The information random variables will be independent identically
distributed random variables with density f(x) and distribution function
F(x|z) . The information random variables will be assumed to be "monotonic"

in the true value; in particular Pr(Z 3‘zlxi = xi)_z Pr(Z > ZlXi = %)

whenever x:-i X - Finally, our goal is to find a differentiable (almost
everywhere) monotonically increzsing function b(x) suech that all players
using this as their bidding strategy results in a Nash (1950) equilibrium.
From any one player's viewpoint, the probability of having the winning
bid when all players are using the same bidding strategy b(x) 1s equiva-
lent to the probability that the value he observes for his information random
‘variable exceeds each of the values observed by the remaining players.
In particular, under a symmetric set of equilibrium strategies, the prob-
ability Xi =X results in a winning bid is precisely the probability
that Y < x, where Y is defined to be the maximum of all Xj with 3 # 4 .
Thus, define the probability density G(y) and the probability distribu-
tion G(y) ; G(y) 4is given by F(x)n—l if the number of players is fixed

at n, or by exp(-u(l-F(x)) 1if the number of competing players (not

counting player 1 ) 1s Poisson with mean u .

General Equilibrium

The expected profits to a player using the bidding strategy B(x)

when the remaining players are using the strategy b(x) is given by

| (z- bx))EE ™ (b(x)) lZ)-S(X|Z)h(;)dz
] §(x]z)h(z)de (1)
Z

E($ix) =



E(S) = [ [ (2-b@x))6E T b(x))|2) §(x|2)h(2)dzdx (11)
X Z
pifferentiating (I), setting it equal to zero, and evaluating it at
B(x) = b(x) results in the following equilibrium condition on b(x)

b(x)f g(x|2z)§(x]|2)h(z)dz + b’ )] G(x|z) §(x|2)n(z)dz
Z

Z

= [ zg(x|2) {(x|2)h(z)d (11I)
z
Equation (III) is a first order linear differential equation; it is thus
possible to write an explicit symbolic expression for the function b(x)
The required initial condition may be obtained by finding the x* which
satisfies

J (z—c)5(x*|z)G(x*lz)h(z)d; =0 (IV)

A

and setting b(x*) = R, the reservation price. Unfortunately, in prac-
tical situations, evaluating the double and triple integrals in the symbolic
expression for b(x) 1is very difficult. Although the differential equation
can be éolved analytically for very simple distributions 4(x) and h(z) ,
the author has yet to find "reasonable" {§(x) and h(z) fér which b({x)

can be obtalned analytically (as opposed to numerically).

Multiplicative Strategies

One altermative to the general equilibrium appreoach is to find stra-
tegies which are in equilibrium within some restricted class of possible
strategies. A common restriction is to consider only multiplicative stra-
tegies; a player's bid b(x) = b.x . Such an assumption appears quite often,

explicitly or implicitly, in oil lease bidding models.



Along with multiplicative strategiles, a common assumption is that
the information random variable is simply a random multiple of the true
1 [x X
value. In such cases, 6(x|z) = Ef 21 and G(x|z) =G 2l - In oil
lease auctions, f is typically assumed to be the log-normal density.
Using the restriction to multiplicative strategies and assuming that
information is multiplicative, equation (II) may be differentiated and eval-

uatedat B=Db toobtain the equilibriumbid fraction b, whenever f zh(z)dz <=,
2

f wg (w) f (w)dw

b=-—7 z )
[ W g f(wdw + [ WG £ (w)dw
W w

ﬁotice that this equilibrium fraction b is independent of the function
h(z) ; no assumptions need be made about the distribution of nature's
choices of the true value (other than finite expected value) in order to
determine the equilibrium bid fraction. Furthermore, the integrals involved
in calculating thié fraction are relatively simple.

The equilibrium bid fraction b is plotted as a function of the
mean number u of Poisson distributed competitors, in Figure 1, for the
case when the logarithm of x/z is assumed to be normally distributed
with mean zero and variance SZ . The larger the wvariance 32 , the larger
the variance in the error, and the more conservatively players should bid.
For very small mean numbers of competitors, there is a significant chance
that no competing bilds will be submitted, and the equilibrium bid fraction
will be small to take advantage of these possible bargains. Conversely,
as the mean number becomes large, the "bidders' curse' has an increasing
influence, and again players bid conservatively. Although Capen, Clapp and

Campbell (1971) determine optimal bid fraction for an individual in a



decision theoretic model, their results have the same qualitative features.

Unfortunately, there is no assurance that the strategies b(x) = b-x
are in equilibrium if players are not restricted to using multiplicative
strategies. Rothkopf (1969, 1971, 1977a) shows, under conditions equivalent to
assuming that h(z) is a diffuse uniform distribution on [0,) , that
multiplicative strategies are still in equilibrium if players are not re-
stricted. Winkler and Brooks {1977) prove a corresponding result for addi-
tive strategies for the case of additive errors and a diffuse distribution
on z . For other h(z) , this is not in general true. The difficulty
in general arises that for non-diffuse h(z) , there is at least a vague
sense of scale, and players éhould perceive large information outcomes as
possibly arising out of large errors rather than large true values and vice
versa; a posterior Bayes estimate of the true value will in general not be
proportional to the information outcome, but will rather shrink large infor-
mation outcomes down and increase small information outcomes up.

Even though multiplicative strategies are in general not in equilib-
rium, the question remains whether they are close enough to be reasomable
approximations. Rothkopf (1977b) attacks this question by calculating equi-
librium linear strategies (b(x) = a + b:x) and shows that if the variance
of the error is small compared to the variance in nature's choices for the
true value, then the multiplicative term strongly dominates the additive
factor; slightly less precisely, but perhaps more intuitively, as h(z)
becomes relatively diffuse compared to the spread in the error, multipli-
cative strategies are close to equilibrium linear strategies. This approach
does not, however, examine how much multiplicative strategies and equilib-
rium strategies differ in the expected profit realized by a player. A sub-

gequent example shows that this difference may be substantial.



An alternative to multiplicative strategies is to use multiples of

Bayes estimates, where the Bayes estimate is given by

[ 26(x|2)h(z)dz

A

T §(x]z)h(z)d= (V1)
Z

E(zlx) =

ﬁnfortunately, the bid fractions will now depend on h(z) ; Figure 2 plots
the equilibrium Bayes multiplier for the case when the logarithm of 2z 1is
distributed normally with mean zero and variance t2 specified in the graph
and the logarithm of the error x/z 1is distributed normal with mean zero
and variance s2 equal to one. While Bayes multipliers may be closer to

being in equilibrium than multiplicative strategies, they are also not in

general in equilibrium.

Bayesian Iteration

Since multiplicative strategies are not in eQuilibrium, one might
ask what would happen if players using multiplicative strategies were allowed
to use more general bidding strategies. In particular, how would players
bid in subsequent similar auctions. if they each performed a Bayesian analysis
on the previous auction; in subsequent auctions, an individual uses the
strategy B(x) which maximizes equation (I) for each x , where b(x)
denotes the strategy used by all players in the previous auction. If this
process is repeated yet a third; and fourth, etc., timé, would the bidding
strategies eventually converge to an equilibrium?

In order to investigate these questions, consider an example in which
the logarithm of the true value (in $1000's) is normally distributed with
mean 8.5 and variance 2.5; the logarithm of the multiplicative error is

normally distributed with mean zero and variance one; and the number of



competitors is Poisson distributed with mean u=5 3 These values and assump-
tions were chosen to provide a simple example of a nature similar to a
typical offshore oil lease sale. (Although we will compare the distribution
of bids under equilibrium bidding with the distribution reported by the U.S.
Geological Survey (1978) for OCS Sale #40, this is only to indicate that
numbers in the example are of a magnitude encountered in actual auctions.
The choice of distributions and parameters is in no way intended as an en-—
dorsement of the validity éf such choices for models of oil lease sales.)

In Figure 3, the bidding equilibrium multiplicative bidding strategy
is plotted as a function of the posterior Bayes estimate. The optimal (Bay-
esian) response of an individual player to such bidding strategies, for this
example, happens to be indistinguishable (within the accuracy of our numeri-
cal routineé) from the equilibrium Bayes strategy. Notice, that Table 1
indicates that if all other players are using the multiplicative strategy,
any individual may increase his expected profit.by about one half by switch-
ing from the multiplicative strategy to his optimal (Bayesian) response.
Since, one unit in the table corresponds to approximately a million dollars,
this implies that if palyers in off shore oil auctions indeed bid multipli-
catively, any individual could gain on the arder of a half million dollars
per lease by using his optimal response; multiplicative strategies are clearly
not very near to equilibrium!

If all players bid multiples of Bayes estimates, then some improve-
ment is still possible for any individual who deviates. Table 1, howevef,
Indicates that this potential improvement is less than that obtained by
going from multiples of information outcomes to multiples of Bayes estimates.

Figure 3 also plots the optimal response to strategies which are a multiple

of Bayes estimates.



9

This process may be iterated. One can assume that each player uses
the optimal response to the strategies used in the previous auction. The
reiative expected profits and the different bidding strategies are given
in Table 1 and Figure 3. Notice that after only a very few iterations,
such a procedure converges on a strategy which is as close to equilibrium
as we can distinguish using our (relatively crude) numerical methods.
'_finally, in Figure 4, the distribution of bids under the above limiting
gg;stribution is compared to the distribution observed in 0CS Sale #40; while |
f;he match is far from perfect, the correspondence is close enough to suggest

that multiplicative strategies may indeed be hundreds of thousands of dollars

from being in equilibrium.

Conclusion

In this paper, auctions are modelled as games with incomplete infor-
métion; in particular, we consider symmetric games with multiplicative
errors. When strategies afe restricted to be multiples of the information
observed, the equilibrium strategies are relatively simple to calculate
compared to the general (unrestricted) equilibrium strategies. Equilibrium
multiplicative strategies are independent of the distribution of true value
for an object, but are unfortunately not necessarily very close to being
in equilibrium.

As an alternative, one might consider bidding strategies which are
multiples of posterior Bayes estimates., Such estimates are more difficult
to calculate, but appear to be cleser to equilibrium, at least in our par-
ticular example. Questions remains as to what conditions on the distribu-
tion of true values and information result in Bayes estimates being closer

to equilibrium, and how close in general are Bayes multipliers to the optimal
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response to multiplicative strategies.

An example is presented showing that multiplicative strategies, as
well and multiples of Bayes estimates, are not verf cloge to equilibrium.
However, under repeated application of a Bayesian analysis, either of these
strategies quickly converges to a strategy which is very close to equilibrium.
For what conditions on the model does such convergence occur? If, in general,
strategies converge rapidly to equilibrium, then this technique may be used
to calculate equilibrium strategies. Such convergence would also assure

that even less sophisticated minded bidders would use equilibrium strategies

after a relatively small number of "learning experiences.”
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TABLE 1

16

Bidding Strategy

1L IIT Iv Vv
Bidding Strategy Multiple| Best Best
of Remaining of Bayes|Response|Response
Players Multiplicative |Estimate| to II to III {"Equilibrium"
I 1.32 1.76 1.62 1.76 1.72
1I .95 1.14 1.22 1.19 1.20
111 .66 .81 .82 .86 .85
v .76 .96 .95 .99 1.00

Relative Expected Profit as a Function of Bidding Strategy Versus Strategy
Used by Remaining Bidders (Each unit is slightly over $1,000,000)
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