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Abstract

I examine treatment effect heterogeneity within an experiment to inform external validity.
The local average treatment effect (LATE) gives an average treatment effect for compliers. I
bound and estimate average treatment effects for always takers and never takers by extending
marginal treatment effect methods. I use these methods to separate selection from treatment
effect heterogeneity, generalizing the comparison of OLS to LATE. Applying these methods
to the Oregon Health Insurance Experiment, I find that the treatment effect of insurance on
emergency room utilization decreases from always takers to compliers to never takers. Previous
utilization explains a large share of the treatment effect heterogeneity. Extrapolations show that
other expansions could increase or decrease utilization.
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1 Introduction

A researcher runs an experiment to estimate a treatment effect that is internally valid. However, the

local average treatment effect (LATE) obtained from an experiment is not globally externally valid

if the treatment effect varies across individuals. I use information available within an experiment

to determine whether the treatment effect is likely to vary across experiments.

The LATE gives the average treatment effect for compliers who select into treatment strictly

according to random assignment (Imbens and Angrist [1994]). The LATE is equal to the difference

in average outcomes between treated and untreated compliers. If the LATE is internally valid,

then selection into treatment is random among compliers, but selection need not be random in the

experiment as a whole. In many experiments, there are always takers who select into treatment

and never takers who do not select into treatment regardless of random assignment.

The LATE does not depend on the treated outcome of always takers or the untreated outcome

of never takers, but these observed outcomes can be informative about selection and treatment

effect heterogeneity. A difference in the average untreated outcomes of compliers and never takers

provides evidence of selection. A difference in the average treated outcomes of compliers and

always takers provides evidence of selection, treatment effect heterogeneity, or both. Under the

same assumptions required to identify the LATE, I use observed outcomes and assumptions about

observed outcomes to separate selection from treatment effect heterogeneity.

Always takers are more likely to select into treatment than compliers, who are more likely to

select into treatment than never takers. Assuming weak monotonicity or linearity in untreated

outcomes from always takers to compliers to never takers, I bound or estimate the unobserved

average untreated outcome of always takers. If the bound or estimate plus the LATE cannot equal

the observed average treated outcome of always takers, then I conclude that the treatment effect

cannot be the same for always takers and compliers.

I bound or estimate the unobserved average treated outcome for never takers by assuming weak

monotonicity or linearity in treated outcomes from always takers to compliers to never takers. If

the bound or estimate minus the LATE cannot equal the observed average untreated outcome of

never takers, then I conclude that the treatment effect cannot be the same for never takers and

compliers. If the treatment effect varies from compliers to other individuals within an experiment,

then the LATE cannot be globally externally valid.

My methods build on marginal treatment effect (MTE) methods developed by Björklund and

Moffitt [1987], Heckman and Vytlacil [1999, 2005, 2007], Carneiro et al. [2011], and Brinch et al.

[forthcoming]. Traditionally, the MTE could only be identified in settings with continuous instru-

ments. Therefore, MTE methods could not be applied to experiments with discrete or binary

interventions. However, recent extensions provide approaches to identify the MTE in settings with

discrete instruments, thus allowing for the application of MTE methods to experiments. Experi-

ments make the separation of selection and treatment effect heterogeneity clear.

The weak monotonicity assumptions that I impose to bound treatment effects on always takers

and never takers are weaker than the linearity assumptions imposed in the literature. In some
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cases, the bounds that I obtain do not include the LATE. Therefore, the bounds provide new tests

that can reject global external validity under weaker assumptions than existing tests.

Imposing the linearity assumptions made in the literature, I estimate average treatment effects

for always takers, never takers, and other groups of interest. The literature identifies an MTE with

a discrete instrument, but it recovers inframarginal treatment effects using weights developed for

a continuous instrument. For example, the literature recovers a single “treatment on the treated”

estimate, but I recover separate average treatment effects for always takers and compliers using

weights that I develop for a discrete instrument.

Using the weights, I decompose average treated outcomes into heterogeneous selection and

treatment effects. I also decompose OLS estimates into heterogeneous selection and treatment

effects. This decomposition generalizes the Hausman [1978] test that compares OLS to LATE to

account for selection and treatment effect heterogeneity.

Finally, imposing additive separability between observables and unobservables as in the litera-

ture, I incorporate observables to estimate more general MTE functions. I show that these MTE

functions can be used to estimate different treatment effects for individuals with different observ-

able characteristics. I develop an approach to quantify how much treatment effect heterogeneity is

explained by observables. I also develop approaches to extrapolate treatment effects to individuals

in other potential experiments using variation in observables and unobservables.

I apply these methods to examine the impact of insurance on emergency room (ER) utiliza-

tion using data from the Oregon Health Insurance Experiment (OHIE). Legislation requires that

emergency rooms see all patients, regardless of whether they have health insurance, making the ER

the main portal through which the uninsured enter the healthcare system. ER utilization of the

uninsured places a burden on other players in the healthcare system. Furthermore, the uninsured

themselves could potentially get higher quality, less expensive, and more coordinated care through

other outlets. For these reasons, policymakers are particularly interested in how ER utilization will

change in response to other health insurance expansions such as the Affordable Care Act.

The OHIE is arguably the “gold standard” for evidence on the impact of insurance on ER

utilization because it is a recent randomized experiment, but there is reason to question the exter-

nal validity of the Oregon LATE, which indicates that health insurance increased ER utilization

(Taubman et al. [2014]). LATEs from a credible natural experiment that increased health insurance

coverage, the Massachusetts reform of 2006, show that ER utilization decreased or stayed the same

immediately after the reform (Miller [2012], Smulowitz et al. [2011], Chen et al. [2011], Kolstad and

Kowalski [2012]). Evidence on the ER utilization of other populations of newly insured individuals

also yields varying results (Currie and Gruber [1996], Anderson et al. [2012, 2014], Newhouse and

Rand Corporation Insurance Experiment Group [1993]).

I find that the treatment effect of insurance on ER utilization decreases from always takers

to compliers to never takers in the OHIE. Previous ER utilization explains a large share of the

treatment effect heterogeneity. The treatment effect heterogeneity that I find in Oregon indicates

that a different policy could increase or decrease ER utilization, depending on which individuals it

induces to gain coverage.
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In the next section, I present a model that I use to define global external validity in terms of

the MTE. I discuss application of the MTE without observable heterogeneity in Section 3, and I

discuss application of the MTE with observable heterogeneity in Section 4. In Section 5, I discuss

extrapolation. In Section 6, I apply MTE methods to the OHIE, and I extrapolate the results to

other contexts. In Section 7, I provide lessons for the design of future experiments, and I conclude.

2 The MTE and the External Validity of Experiments

2.1 Model of Selection into Treatment within an Experiment

Let D represent a binary treatment such as health insurance coverage, and let Y represent an

observed outcome such as emergency room utilization. YT is the potential outcome of an individual

in the treated state (D = 1), and YU is the potential outcome of an individual in the untreated state

(D = 0).1 In the OHIE context, YT represents potential emergency room utilization with health

insurance, and YU represents potential emergency room utilization without health insurance. The

following model relates the potential outcomes to the observed outcome:

Y = (1−D)YU +DYT .

In this model, an individual selects into treatment D if the net benefit of treatment, ID, is greater

than or equal to zero. ID consists of an observed component p and an unobserved component UD

as follows:

ID = p− UD. (1)

Since UD enters (1) negatively, I refer to it as the unobserved net cost of treatment. UD can have

any distribution, but the quantiles of any distribution are distributed uniformly between 0 and 1.

I therefore normalize UD ∼ U(0, 1) so that UD represents the fraction of the population with an

equal or lower unobserved net cost of treatment. In the OHIE context, UD could include pent-up

demand for ER utilization, hypochondria, income, health, and any observable factor that is not

specified in the model.

Since p enters (1) positively, I refer to it as the observed net benefit of treatment. In any ex-

periment with a binary instrument Z that indicates winning the lottery, there are two observed

values of p. The baseline treatment probability pB ≡ P (D = 1|Z = 0) gives the potential

fraction treated if the entire population were to remain in the baseline world without an experi-

mental intervention. The intervention treatment probability pI ≡ P (D = 1|Z = 1) gives the

potential fraction treated if the entire population were to be eligible for the intervention. Because

we can express p ≡ P (D = 1|Z), we can refer to p as the potential fraction treated. The observed

fraction treated in the full sample is a weighted average P (D = 1) = s(pB)pB + s(pI)pI , where

s(pB) ≡ P (Z = 0) represents the share that loses the lottery and s(pI) ≡ P (Z = 1) = 1 − s(pB)

1Rubin [1974], Rubin [1977], and Holland [1986] developed the idea of potential outcomes. I have changed the
traditional notation from Y1 to YT and Y0 to YU to facilitate standardized notation for concepts that I introduce
later.
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represents the share that wins the lottery.

Individuals select into treatment if their unobserved net cost of treatment UD is less than or

equal to the potential fraction treated p. As summarized in Figure 1, individuals with low net

unobserved costs of treatment, 0 ≤ UD ≤ pB, the baseline treated (BT), select into treatment

even if they lose the lottery (D = 1 and Z = 0), so they are always takers. Individuals with

high net unobserved costs of treatment, pI < UD ≤ 1, the intervention untreated (IU), do

not select into treatment even if they win the lottery (D = 0 and Z = 1), so they are never

takers. The remaining individuals with intermediate net costs of treatment, pB < UD ≤ pI , the

compliers, select into treatment strictly according to random assignment and determine the local

average (LA). Compliers who lose the lottery are untreated compliers, and compliers who win

the lottery are treated compliers.2

Figure 1: Groups of Individuals in an Experiment

Baseline Treated (BT) Baseline Untreated (BU)
Z=0, D=1 Z=0, D=0

Always Takers Untreated Compliers and Never Takers
Intervention Treated (IT) Intervention Untreated (IU)

Z=1, D=1 Z=1, D=0
Always Takers and Treated Compliers Never Takers

Baseline Treated (BT) Local Average (LA) Intervention Untreated (IU)
Z=0, D=1 Z=D Z=1, D=0

Always Takers Compliers Never Takers

p: potential fraction treated
UD: net unobserved cost of treatment

0 ≤ UD ≤ pB pB < UD ≤ pI pI < UD ≤ 1

0 pB pI 1

Always takers, compliers, and never takers often cannot be identified at the individual level

because they are observed in mixed groups. Lottery losers who do not receive treatment (D = 0 and

Z = 0), the baseline untreated (BU), include untreated compliers and never takers (pB < UD ≤
1). Similarly, lottery winners who receive treatment (D = 1 and Z = 1), the intervention treated

(IT), include always takers and treated compliers (0 ≤ UD ≤ pI). In the full experimental sample

of size N , the randomized intervention sample treated (RIST) includes all individuals with

D = 1, all baseline and intervention treated. Similarly, the randomized intervention sample

untreated (RISU) include all individuals with D = 0, all baseline and intervention untreated.

The depiction of pB and pI in Figure 1 provides more information than the first stage. By

definition, pI − pB is equal to the first stage, P (D = 1|Z = 1) − P (D = 1|Z = 0). Therefore,

the first stage gives the share of compliers, but it does not convey the shares of always takers and

never takers separately. The reporting of pB or pI in addition to the first stage informs whether the

2The primitives of the model incorporate the assumptions required to identify a LATE discussed by Imbens and
Angrist [1994]. The lottery affects the outcome through takeup (the instrument is relevant) and only through takeup
(the exclusion restriction holds). Furthermore, the impact of the lottery on takeup is monotonic: there are no “defiers”
that would have received the treatment at baseline but do not receive it given the intervention.
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experimental intervention induces treatment of compliers with high or low net unobserved costs of

treatment UD relative to the entire sample.

An individual who is an always taker or never taker in a given experiment could be a complier

in another experiment that induces different selection into treatment with a different instrument Z.

Imagine that the distance between the baseline and intervention treatment probabilities becomes

infinitesimal such that we can refer to a single intervention treatment probability. When the

intervention treatment probability is zero, only the individual with the lowest net unobserved cost

of treatment (UD = 0) is a complier. As the intervention treatment probability increases from 0 to

1, the marginal individual at each value of UD = p is a complier.

2.2 The Marginal Treatment Effect MTE(p)

The marginal treatment effect (MTE), as popularized by Heckman and Vytlacil [1999], is

the difference between the treated potential outcome and the untreated potential outcome for an

individual marginal to selecting into treatment – an individual for whom the unobserved net cost

of treatment UD is equal to the observed net benefit of treatment p:

MTE(p) = E(YT − YU |UD = p).

MTE(p) is defined for a particular value of p, but it can be informative to plot the function

MTE(p) as the potential fraction treated p increases from 0 to 1. If the outcome Y represents

some dimension of the net gain from treatment in dollars, then MTE(p) can be interpreted as the

willingness to pay for treatment with respect to Y for an individual at the margin of selecting into

treatment, so MTE(p) is a demand function. If the outcome Y instead represents some dimension

of the cost of treatment in dollars, then MTE(p) is a marginal cost function. In general, Y can

represent any outcome that could be affected by treatment, in dollars or any other units. In the

OHIE context, Y is a measure of emergency room utilization.

The marginal treatment effect is the difference between the marginal treated outcome

(MTO) and the marginal untreated outcome (MUO):

MTO(p) = E(YT |UD = p)

MUO(p) = E(YU |UD = p).

I also refer to the marginal untreated outcomeMUO(p) as the marginal selection effect MSE(p)

because it identifies selection. Because untreated individuals do not receive treatment, any change

in the untreated outcome as the fraction treated p increases reflects only selection. In the OHIE

context, the difference in ER utilization between the uninsured lottery losers and the uninsured

lottery winners identifies selection. MUO(p) describes how the ER utilization of the marginal

uninsured individual changes as coverage increases. Under the marginal untreated outcome

test for selection, if MUO(p) is not constant in any range of p, then there must be selection in

that range.
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The marginal untreated outcome test for selection generalizes the Einav et al. [2010] cost curve

test for selection in insurance markets because it can be applied to any outcome Y and any treatment

D. In insurance markets, a downward-sloping MUO(p) indicates adverse selection, and an

upward-sloping MUO(p) indicates advantageous selection. In the Einav et al. [2010] special

case, Y is insurer cost and D is an indicator for enrollment in a generous insurance plan relative

to a basic plan. If marginal insurer cost in the basic plan decreases as enrollment in the generous

plan p increases, then higher-cost individuals have adversely selected into the generous plan.

The marginal treated outcome MTO(p) reflects treatment effect heterogeneity as well as se-

lection. In the OHIE context, MTO(p) describes how the ER utilization of the marginal insured

individual changes as coverage increases. If there is no treatment effect heterogeneity, then MTO(p)

reflects selection in the same way that MUO(p) reflects selection: a downward slope indicates that

individuals with higher values of the outcome have selected into treatment. If there is no selection,

then MTO(p) reflects how the treatment effect changes as the fraction treated increases: a down-

ward slope indicates that individuals with bigger treatment effects (and hence more to gain from

treatment) have selected into treatment. In the general case with treatment effect heterogeneity

and selection, the slope of MTO(p) at each potential fraction treated p depends on the sign and

magnitude of the selection and treatment effects.

The marginal treatment effect MTE(p) isolates the treatment effect from MTO(p) by purging

out selection from MUO(p). MTO(p) includes the treatment effect and selection, and MUO(p) in-

cludes only selection. Therefore, MTE(p), the difference between MTO(p) and MUO(p), includes

only the treatment effect.

In insurance markets, when the treatment D represents insurance and the outcome Y represents

insurer cost, the treatment effect identified by MTE(p) is known as moral hazard. Moral hazard

need not be the same across all individuals: MTE(p) identifies how moral hazard varies with

selection. Previous research has referred to the way that moral hazard varies with selection as

“selection on moral hazard” (Einav et al. [2010]), but I refer to it simply as moral hazard to avoid

confusing it with selection.3

3Previous attempts to separate selection from moral hazard in insurance markets often conflate the two, especially
if moral hazard varies. For example, under the Chiappori and Salanie [2000] “positive correlation” test, a correlation
between insurance coverage and insured spending could indicate heterogeneous moral hazard or selection or both.
Under the Finkelstein and Poterba [2014] “unused observables” test, a correlation between a covariate and insurance
coverage and a second correlation between the same covariate and insured spending could indicate heterogeneous
moral hazard or selection or both. Under the Einav et al. [2013] cost curve test, an insured marginal cost curve
MTO(p) that is not constant could indicate heterogeneous moral hazard or selection or both. In Hackmann et al.
[2015], my coauthors and I do not allow for heterogeneous moral hazard, so we refer to all variation in MTO(p) as
“selection.” However, the cost curve test isolates selection when applied to the uninsured cost curve MUO(p), and it
isolates heterogeneous moral hazard when applied to the difference between the insured and uninsured cost curves,
the MTE(p).
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2.3 Inframarginal Outcomes and Treatment Effects with MTE(p)

We can construct inframarginal treated outcomes, untreated outcomes, and treatment effects from

MTO(p), MUO(p) and MTE(p) by applying general weights ωg(p) to all three functions:

gTO =

∫ 1

0
ωg(p)MTO(p)dp (2)

gUO = gSE =

∫ 1

0
ωg(p)MUO(p)dp (3)

gTE =

∫ 1

0
ωg(p)MTE(p)dp (4)

where gTO is the general weighted average treated outcome (TO), gUO = gSE is the general

weighted average untreated outcome (UO) or selection effect (SE), and gTE is the general

weighted average treatment effect (TE). For any weights ωg, the weighted average treatment

effect is equal to the difference between the weighted average treated outcome and the weighted

average untreated outcome: gTE = gTO − gUO. In Table 1, I introduce weights for the discrete

groups of individuals introduced in Figure 1, as well as combinations of the groups.

In Column 1, which includes always takers, the baseline treated treated outcome (BTTO):

E(YT |0 ≤ UD ≤ pB) = E(Y |Z = 0, D = 1) is observed, so it is reported in bold, along with all

other quantities in Table 1 that do not require linearity of MTO(p) or MUO(p). The baseline

treated untreated outcome (BTUO): E(YU |0 ≤ UD ≤ pB), is not observed because always

takers always receive treatment, but it can be calculated with (3). The average treatment effect

for always takers, the baseline treated treatment effect (BTTE): E(YT − YU |0 ≤ UD ≤ pB),

can be calculated as the difference between the BTTO and the BTUO.

Column 2 includes the baseline untreated, which consists of untreated compliers and never

takers. This group is policy-relevant because it includes all of the potential individuals to which

health insurance could be expanded before the intervention. Column 3 includes the intervention

treated, which consists of always takers and treated compliers.

As shown in Column 4, which includes never takers, the intervention untreated untreated

outcome (IUUO): E(YU |pI < UD ≤ 1) = E(Y |Z = 1, D = 0) is observed. The intervention

untreated treated outcome (IUTO): E(YT |pI < UD ≤ 1) is not observed, but it can be

calculated with (2). The average treatment effect for never takers, the intervention untreated

treatment effect (IUTE): E(YT −YU |pI < UD ≤ 1), can be calculated as the difference between

the IUTO and the IUUO.

Column 5 includes all treated individuals in the experiment, the randomized intervention sam-

ple treated, RIST = s(pB)BT + s(pI)IT . Column 6 includes all untreated individuals in the

experiment, the randomized intervention sample untreated, RISU = s(pB)BU + s(pI)IU . Unlike

the previous groups, these groups reflect the experimental design through the shares of individuals

that win and lose the lottery.

Column 7 gives the local average weights, which represent the compliers. The local average
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Table 1: Treated Outcomes, Untreated Outcomes, and Treatment Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Group Baseline Treated 

(Always Takers)
Baseline Untreated
(Never Takers and 

Untreated Compliers)

Intervention Treated
(Always Takers and 
Treated Compliers)

Intervention Untreated
(Never Takers)

Randomized 
Intervention 

Sample Treated

Randomized 
Intervention 

Sample Untreated

Local Average
(Treated and 

Untreated 
Compliers)

Average

g BT BU IT IU RIST RISU LA A

RISUTO LATO ATO

Untreated Outcome
UO

BTUO BUUO ITUO IUUO RISTUO RISUUO

Treated Outcome
TO

BTTO BUTO ITTO IUTO RISTTO

LAUO AUO

Treatment Effect
TE = TO - UO

BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

Selection
UO/TO

BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

RISUTE/RISUTO LATE/LATO ATE/ATO

-

Treatment Effect
TE/TO

BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO

OLS = TTO - UUO BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO -

(RISOLS - 
RISUTE)/RISOLS

- -
Treatment Effect
TE/OLS

BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

Selection
(OLS - TE)/OLS

(BOLS - 
BTTE)/BOLS

(BOLS - 
BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS - 
IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

0 0

0

Calculation of the bold quantities does not rely on linearity of MTO(p) or MUO(p).

1

0 0 0 0 1

0 0 1

0

𝟏𝟏
𝐩𝐩𝐁𝐁

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
𝐩𝐩𝐈𝐈

𝟏𝟏
𝐩𝐩𝐈𝐈

𝟏𝟏
(𝟏𝟏 − 𝐩𝐩𝐈𝐈)

𝐬𝐬(𝐩𝐩𝐈𝐈)
𝐩𝐩𝐁𝐁 + 𝐬𝐬(𝐩𝐩𝐈𝐈)(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
𝐩𝐩𝐁𝐁 + 𝐬𝐬(𝐩𝐩𝐈𝐈)(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝟏𝟏
(𝐩𝐩𝐈𝐈 − 𝐩𝐩𝐁𝐁)

𝐬𝐬(𝐩𝐩𝐁𝐁)
𝟏𝟏 − 𝐬𝐬(𝐩𝐩𝐈𝐈)𝐩𝐩𝐈𝐈 − 𝐬𝐬(𝐩𝐩𝐁𝐁)𝐩𝐩𝐁𝐁

𝟏𝟏
𝟏𝟏 − 𝐬𝐬(𝐩𝐩𝐈𝐈)𝐩𝐩𝐈𝐈 − 𝐬𝐬(𝐩𝐩𝐁𝐁)𝐩𝐩𝐁𝐁

if 0 ≤ p ≤ 𝑝𝑝𝐵𝐵 ∶

if 𝑝𝑝𝐵𝐵 < p ≤ 𝑝𝑝𝐼𝐼 ∶

if 𝑝𝑝𝐼𝐼 < p ≤ 1 ∶

9



treatment effect (LATE): E(YT − YU |pB < UD ≤ pI) gives the average treatment effect for

compliers, which is equal to the difference between the local average treated outcome (LATO):

E(YT |pB < UD ≤ pI) and the local average untreated outcome (LAUO): E(YU |pB < UD ≤
pI). Experimenters often refer to the LATE as the “treatment on the treated” estimate, which

can be misleading. The LATE gives the treatment effect on compliers, but in experiments with

always takers, always takers are also treated. The weights that I have introduced in Table 1 allow

me to calculate treatment effects for various treated groups, while the traditional Heckman and

Vytlacil [2007] weights for a continuous instrument used by Brinch et al. [forthcoming] only yield

one “treatment on the treated” estimate. Using my weights, the baseline treated treatment effect

BTTE gives a “treatment on the treated” estimate for always takers; the intervention treated

treatment effect ITTE gives a “treatment on the treated” estimate for always takers and compliers;

and the randomized intervention sample treated treatment effect RISTTE gives a “treatment on

the treated” estimate for all treated individuals in the randomized intervention sample. The terms

LATE, BTTE, ITTE, and RISTTE convey which groups of treated individuals are included, while

“treatment on the treated” does not.

Column 8 reports the average weights ωA(p) = 1. The average weights represent all always

takers, compliers, and never takers. The ATO, AUO, and ATE are not observed, but they can

be calculated with MTO(p), MUO(p), and MTE(p). In the OHIE context, the ATO gives the

average ER utilization if all individuals were insured, and the AUO gives the average ER utilization

if all individuals were uninsured. The average weights are the only weights in Table 1 that do not

reflect a specific experimental intervention.

2.4 The External Validity of an Experiment

A general treatment effect gTE recovered from an experiment is globally externally valid if

MTE(p) is constant for all p. One treatment effect is locally externally valid for another if both

treatment effects are equal. Empirically, the local average treatment effect from the OHIE might

not be globally externally valid, but it could be locally externally valid for other treatment effects

of interest.

3 Applying MTE(p) without Observables

3.1 Using Observables to Motivate Identification without Observables

Identification of MTE(p) with an experiment relies on the same information that Katz et al. [2001]

and Abadie [2003] use to identify the average observable characteristics of always takers, never

takers, and compliers. Recall from the model that always takers are individuals with 0 ≤ UD ≤ pB;

compliers are individuals with pB < UD ≤ pI ; and never takers are individuals with pI < UD ≤ 1.

The primitives of the model require that the experiment is internally valid: the distribution of

10



the unobserved net cost of treatment UD is the same among lottery winners and losers.4 Therefore,

the shares of always takers, compliers, and never takers are the same among lottery winners and

losers. The share of always takers is pB; the share of compliers is (pI − pB); and the share of never

takers is (1 − pI). Although compliers cannot be observed directly, these shares help to identify

their average characteristics.

Individuals who go untreated despite winning the lottery identify the average characteristics

of never takers: E(X|D = 0, Z = 1) The average characteristics of the individuals who lose the

lottery and go untreated, E(X|D = 0, Z = 0), are a weighted average of the average characteristics

of never takers and untreated compliers. Using the shares of never takers and compliers, the average

characteristics of untreated compliers are identified via

1

pI − pB
[(1− pB)E(X|D = 0, Z = 0)− (1− pI)E(X|D = 0, Z = 1)] . (5)

Similarly, individuals who gain treatment despite losing the lottery identify the average charac-

teristics of always takers: E(X|D = 1, Z = 0). The average characteristics of the treated individuals

who win the lottery, E(X|D = 1, Z = 1), are a weighted average of the average characteristics of

always takers and treated compliers. The average characteristics of treated compliers are identified

via
1

pI − pB
[pIE(X|D = 1, Z = 1)− pBE(X|D = 1, Z = 0)] . (6)

Using the untreated and treated compliers, we can obtain an estimate of the weighted average

characteristics of all compliers.5

In practice, few experimenters report the average characteristics of compliers, never takers, and

always takers. If average characteristics are statistically the same across all groups, then they assert

that the experimental LATE will be valid in other contexts. If characteristics are not the same,

then experimenters still estimate the LATE. With some assumptions required for MTE methods,

experimenters can use the information embodied in the comparison of compliers to always takers

and never takers to bound or estimate a marginal treatment effect function that generalizes the

LATE.6

4Covariates can be used to test internal validity. If the lottery winners do not have the same same average
characteristics as the losers, then it is unlikely that the unobserved net cost of treatment UD is the same among
lottery winners and losers.

5The weighted average is equal to the average characteristics of untreated compliers from (5) weighted by s(pB)
plus the average characteristics of treated compliers from (6) weighted by s(pI). We can also compare the untreated
and treated compliers to test internal validity.

6Identification of the average characteristics of always takers, never takers, and compliers requires cross-tabulations
of the data by the treatment D as well as the instrument Z. In contrast, identification of the LATE only requires a
tabulation of the outcome Y by the instrument Z and a separate tabulation of the treatment D by the instrument Z.
In fact, even if the outcome Y and the treatment D are only available in separate datasets, then the LATE can still
be obtained by two-sample instrumental variable estimation. It is not surprising, then, that additional information
from cross-tabulations can yield heterogeneous treatment effects.
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3.2 Identifying Bounds on Outcomes and Treatment Effects

Applying (5) and (6) to an outcome Y in lieu of a characteristic X identifies the local average

untreated outcome (LAUO) and the local average treated outcome (LATO):

LAUO =
1

pI − pB
[(1− pB)BUUO − (1− pI)IUUO] (7)

LATO =
1

pI − pB
[pIITTO − pBBTTO] , (8)

where BUUO = E(Y |D = 0, Z = 0), IUUO = E(Y |D = 0, Z = 1), BTTO = E(Y |D = 1, Z = 0),

and ITTO = E(Y |D = 1, Z = 1), following the notation introduced in Table 1.

Along the horizontal axis of Figure 2, the potential fraction treated p increases from no treatment

to full treatment. As p increases, individuals with successively higher net unobserved costs of

treatment UD select into treatment. Always takers have lower net unobserved costs of treatment

(0 ≤ UD ≤ pB) than treated compliers (pB < UD ≤ pI), so all of the always takers select into

treatment before all of the treated compliers. Untreated compliers have lower net unobserved costs

of treatment (pB < UD ≤ pI) than never takers (pI < UD ≤ 1), so all of the untreated compliers

select into treatment before all of the never takers.

Figure 2: Bounds and Estimates of MTE(p) - Hypothetical example
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Along the vertical axis of Figure 2, I depict treated outcomes, untreated outcomes, and treat-

ment effects. In the left subfigures, I depict hypothetical observed values for the LAUO, the average

untreated outcome of untreated compliers, and the IUUO, the average untreated outcome of never

takers, with dashed lines over the relevant ranges of UD. The hypothetical LAUO is less than the

hypothetical IUUO, so the marginal selection function MUO(p) slopes upward on average from pB

to 1. In the OHIE context, if the untreated compliers have lower average uninsured ER utilization

than the never takers, then there is advantageous selection on average from the baseline level of

coverage to full coverage. The average slope of MUO(p) from 0 to pB is not identified without

further assumptions because the average untreated outcome for always takers, the baseline treated

untreated outcome (BTUO), is not observed.

Comparison of the observed treated outcomes of always takers and treated compliers identifies

the slope of the marginal treated outcome function MTO(p) from 0 to pI . In the hypotheti-

cal example depicted, the always takers have a higher average treated outcome than compliers

(BTTO > LATO), so MTO(p) slopes downward on average from 0 to pI . In the OHIE context, if

always takers have higher average insured ER utilization than treated compliers, then there could

be adverse selection or a decreasing treatment effect on average as coverage increases from zero to

the intervention level. The average slope of MTO(p) from pB to 1 is not identified without fur-

ther assumptions because the average treated outcome for never takers, the intervention untreated

treated outcome (IUTO), is not observed.

If we are willing to assume that the selection effect is weakly monotonic in p, implying that

MUO(p) is weakly monotonic in p, then we can obtain a bound on the average untreated outcome

of always takers (the BTUO). The average outcome of untreated compliers provides an upper bound

(BTUO ≤ LAUO < IUUO) or a lower bound (BTUO ≥ LAUO > IUUO), depending on the

observed relationship between the average untreated outcomes of compliers and never takers. Al-

ternatively, or in addition, if we are willing to assume that the treated outcome is weakly monotonic

in p, implying that MTO(p) is weakly monotonic in p, then we can obtain a bound on the average

treated outcome of never takers (the IUTO). The average outcome of treated compliers provides

an upper bound (IUTO ≤ LATO < BTTO) or a lower bound (IUTO ≥ LATO > BTTO). In

the OHIE context, these bounds could be useful for forecasting the ER utilization associated with

alternative policies.

Unlike alternative assumptions, weak monotonicity cannot be violated by observed outcomes7

Weak monotonicity of MUO(p) and MTO(p) is a reasonable assumption if there is natural ordering

of always takers, compliers, and never takers. Monotonic covariate values from always takers to

compliers to never takers provide reassurance that weak monotonicity is reasonable.

The two separate assumptions of weak monotonicity of MUO(p) and MTO(p) form the basis

for two separate tests of global external validity. As depicted in Figure 2, LAUO < IUUO, so we

assume that MUO(p) is weakly upward-sloping, implying that BTUO ≤ LAUO. If we observe

7Huber et al. [2015] impose alternative assumptions to bound the BTUO and the IUTO. They assume that
compliers have weakly larger treated and untreated outcomes than always takers and never takers. However, it is
possible to observe violations of their assumptions, given that LATO, LAUO, BTTO, and IUUO are observed.
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that BTTO > LATO, so MTO(p) is strictly upward-sloping in the same range, then the implied

lower bound on the average treatment effect for always takers (BTTE) is strictly greater than

the LATE, as depicted.8 If we make the alternative or additional assumption that MTO(p) is

weakly upward-sloping, then the implied upper bound on the average treatment effect for never

takers (IUTE) is strictly less than the LATE. Either bound can reject the global external validity

of the LATE. The combination of both bounds implies BTTE > LATE > IUTE. Similarly,

if MUO(p) is weakly downward-sloping and MTO(p) is weakly upward-sloping, then the bounds

imply BTTE < LATE < IUTE. In summary, if MUO(p) and MTO(p) have slopes of opposite

sign, then the difference between them cannot be constant for all p, so both bounds reject global

external validity.

If MUO(p) and MTO(p) have slopes of the same sign, then implied bounds on treatment effects

are not informative about global external validity. Additional structure on MTO(p) and MUO(p)

can yield a test of global external validity that is informative in all cases. It can also yield point

estimates in lieu of bounds.

3.3 Identifying MTE(p)

Brinch et al. [forthcoming] impose linearity of MUO(p) and MTO(p) to identify a linear MTE(p)

with a binary instrument. Linearity is a stronger assumption than weak monotonicity. However,

the traditional implicit assumption of global external validity of the LATE assumes that MTE(p)

is linear with a zero slope. Under linearity of MUO(p) and MTO(p), MTE(p) is linear, but it can

have a nonzero slope.

Linearity of MUO(p) and MTO(p) does not require that the individuals most likely to select

into treatment have the largest treatment effects. For example, in the OHIE context, if the most risk

averse individuals are the most likely to select into treatment, then MUO(p) can slope downward.

If the most risk averse individuals increase their ER utilization the least upon gaining insurance,

then MTO(p) and the resulting MTE(p) can slope upward. In this example, the individuals most

likely to select into treatment have the smallest treatment effects. The slopes of MTO(p), MUO(p),

and MTE(p) are determined empirically subject to the linearity assumptions.

To impose the linearity assumptions, Brinch et al. [forthcoming] assume that the slope of

MUO(p) at every point from 0 to 1 is equal to the average slope of MUO(p) from pB to 1.

They also assume that the slope of MTO(p) at every point from 0 to 1 is equal to the average slope

of MTO(p) from 0 to pI . As depicted in the right subfigure of Figure 2, these assumptions intro-

duce heterogeneity in outcomes within always takers, compliers, and never takers, while preserving

8The proof proceeds as follows:
LAUO < IUUO =⇒ BTUO ≤LAUO (by weak monotonicity of MUO(p))

=⇒ BTTO −BTTE≤LAUO (by BTTE = BTTO −BTUO)

=⇒ −BTTE ≤LAUO −BTTO

=⇒ BTTE ≥BTTO − LAUO

=⇒ BTTE ≥LATE + BTTO − LATO (by LATE = LATO − LAUO)

=⇒ BTTE ≥LATE + BTTO − LATO > LATE (if BTTO > LATO).
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the mean outcome within each group. Furthermore, they impose that the last always taker and

the first complier have outcome MTO(pB), and the last complier and the first never taker have

outcome MUO(pI).

Under these assumptions, the two points (pB+pI
2 , LAUO)9 and (pI+1

2 , IUUO), labeled with

square markers, identify the linear MUO(p) and the two points (pB2 , BTTO) and (pB+pI
2 , LATO),

labeled with circular markers, identify the linear MTO(p):

MUO(p) =
(1 + pI)BUUO − (1 + pB)IUUO

pI − pB
+

2(IUUO −BUUO)

pI − pB
p (9)

MTO(p) = BTTO − pB
pI − pB

(ITTO −BTTO)+
2(ITTO −BTTO)

pI − pB
p. (10)

MTE(p) is the difference between the marginal treated outcome functionMTO(p) and the marginal

untreated outcome function MUO(p):

MTE(p) =
1

pI − pB
(pI(BTTO −BUUO) + pB(IUUO − ITTO) + (IUUO −BUUO))

+
2

pI − pB
((ITTO − IUUO)− (BTTO −BUUO))p. (11)

Given these functional forms, every element of Table 1 can be expressed in closed form.10

Brinch et al. [forthcoming] derive MTE(p) without constructing the LATO and the LAUO using

the average untreated outcome (AUO): AUO(p)= E(YU |X = x, UD > p) = 1
(1−p)

∫ 1−p
0 MUO(u)du,

and the average treated outcome (ATO): ATO(p)= E(YT |X = x, UD ≤ p) = 1
(p)

∫ p
0 MTO(u)du.

Linearity of MTO(p) and MUO(p) implies linearity of AUO(p) and ATO(p). The two points

(pB, BUUO) and (pI , IUUO) identify AUO(p), and the two points (pB, BTTO) and (pI , ITTO)

identify ATO(p):

AUO(p) = BUUO− pB
pI − pB

(IUUO −BUUO)+
IUUO −BUUO

pI − pB
p (12)

ATO(p) = BTTO− pB
pI − pB

(ITTO −BTTO) +
ITTO −BTTO

pI − pB
p, (13)

from which they derive the marginal untreated outcome function MUO(p)11 given by (9) and the

marginal treated outcome function MTO(p)12 given by (10).

9The combination of the linearity of MUO(p) and the uniformity of UD implies that the median complier (p =
pB+pI

2
) has the average treated outcome of all compliers.

10For example,

BTUO =
(1 + pI − pB)BUUO − IUUO

pI − pB
BUTO = BTTO − BTTE − ITTO

pI − pB

ITUO =
BUUO − (1 + pB − pI)IUUO

pI − pB
IUTO =

ITTO(1− pB + pI)−BTTO

pI − pB
.

11MUO(p) = d[(1−p)AUO(p)]
d(1−p)

= − d[(1−p)AUO(p)]
dp

= −(1− p) dAUO(p)
dp

+ AUO(p).
12MTO(p) = d[pATO(p)]

dp
= p dATO(p)

dp
+ ATO(p)
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3.4 Unexplained Heterogeneity with MTE(p)

If MTE(p) has a nonzero slope, then there is unexplained treatment effect heterogeneity that can

be quantified as follows:

RMSD =

√∫ 1

0
(MTE(p)−ATE)2dp (14)

where the root mean squared deviation (RMSD) can be interpreted as the standard deviation of the

unexplained variance in the outcome Y in the experimental sample, in the same units as Y . Under

global external validity, MTE(p) = ATE and RMSD = 0. The RMSD is more informative than

the comparison of LATE to ATE. In the absence of global external validity, it can be possible that

LATE = ATE, but it cannot be possible that RMSD = 0. Furthermore, when LATE 6= ATE,

RMSD quantifies how much the treatment effect varies across individuals.

3.5 Identifying Optimal Treatment Probabilities with MTE(p)

MTE(p) allows for positive treatment effects for some individuals and negative treatment effects

for others. Suppose that MTE(p) is downward-sloping. Define p∗ as the potential fraction

treated p at which MTE(p) is zero:

p∗ = −pI(BTTO −BUUO) + pB(IUUO − ITTO) + (IUUO −BUUO)

2((ITTO − IUUO)− (BTTO −BUUO))
, (15)

which gives the potential share of individuals in the experimental sample with a positive treatment

effect when MTE(p) is downward-sloping. The downward-sloping MTE indicates that individuals

with positive treatment effects select into coverage first, so the first p∗ of individuals to select into

treatment have a positive treatment effect, and the remaining individuals have a negative treatment

effect. If a policymaker wants all individuals with positive treatment effects to receive treatment,

then p∗ gives the optimal value of the intervention treatment probability pI . If pI 6= p∗, then the

optimal policy makes treatment more or less attractive to bring pI closer to p∗. If MTE(p) is

always positive or negative in the range 0 ≤ p ≤ 1, then it is optimal to treat everyone or no one,

respectively.

Suppose that MTE(p) is upward-sloping. If a policymaker wants all individuals with positive

treatment effects to receive treatment, then the optimal fraction of individuals to treat is (1− p∗).
Unfortunately, it is harder to use blunt policy levers to target treatment optimally because the

first p∗ individuals to select into treatment should not receive it. In this case, the optimal policy

does not simply involve making the treatment more or less attractive for all individuals. Rather,

it involves targeting the treatment to the individuals who should receive it.

If the outcome Y measures the benefit of treatment in dollars, then MTE(p) can be used to

calculate the deadweight loss that results from treating a suboptimal fraction of individuals. If

the baseline treatment probability is optimal (pB = p∗), then the deadweight loss is equal to the

integral of MTE(p) from pB to pI , which is also equal to the LATE. Under this interpretation,

the LATE is the distortion associated with shifting the treatment probability from the baseline
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probability pB to the intervention probability pI with the intervention. In the Einav et al. [2010]

context, if Y measures the cost to the insurer in the generous plan relative to the basic plan, and

pB is optimal, then the LATE gives the deadweight loss due to moral hazard.13

The optimal treatment threshold need not be zero. Suppose that there are two different linear

MTE curves: one measures marginal benefit in dollars, and the other measures marginal cost in

dollars. Given these two curves, the optimal treatment threshold does not occur at p∗ where the

marginal benefit intersects zero; it occurs where the marginal benefit equals marginal cost.

3.6 Decomposing Treated Outcomes into Selection and Treatment Effects

All of the treatment effects in Table 1 have been purged of selection. However, all of the treated

outcomes do reflect selection. For any group g of individuals represented by weights ωg, we can

decompose the treated outcome into shares due to selection and treatment effects as follows:

gSE

gTO︸ ︷︷ ︸
selection

+
gTE

gTO︸ ︷︷ ︸
treatment

= 1,

because gTO = gSE+gTE. In the OHIE context, this decomposition tells us what share of insured

ER utilization in any group g is due to the composition of the group as opposed to moral hazard

in that group. We can also decompose a change in treated outcomes across groups into selection

and treatment effects.

3.7 Decomposing OLS Estimates into Selection and Treatment Effects

Consider an OLS regression run on the sample of individuals that lose the lottery, the baseline

individuals. The baseline OLS (BOLS) estimate is the difference between the baseline treated

treated outcome (BTTO) and the baseline untreated untreated outcome (BUUO). BOLS can be

affected by selection because it compares the observed outcome for a group of treated individuals,

the BTTO, to the observed outcome for a different group untreated individuals, the BUUO. To

eliminate selection, we must compare the treated and untreated outcomes for the same individuals.

We can compare the BTTO = E(YT |0 ≤ UD ≤ pB) to the unobserved untreated outcome for the

same group of individuals, the BTUO = E(YU |0 ≤ UD ≤ pB), to obtain the BTTE. Alternatively,

we can compare the BUUO = E(YU |pB < UD ≤ 1) to the unobserved treated outcome for the same

group of individuals, the BUTO = E(YT |pB < UD ≤ 1), to obtain the BUTE. We can therefore

decompose BOLS into shares due to selection and treatment effects in two ways as follows:

BOLS −BTTE
BOLS

+
BTTE

BOLS
= 1

BOLS −BUTE
BOLS︸ ︷︷ ︸
selection

+
BUTE

BOLS︸ ︷︷ ︸
treatment

= 1.

13The LATE does not give the deadweight loss due to selection, which has been purged from the MTE.
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Similarly, the intervention OLS (IOLS) estimate is the difference between the intervention

treated treated outcome (ITTO) and the intervention untreated untreated outcome (IUUO). We

can decompose IOLS into shares due to selection and treatment effects in two ways, as shown in

Table 1. Selection and treatment effects can vary from BOLS to IOLS, so there is no reason to

expect that their respective decompositions will yield the same answers. Decompositions of BOLS

and IOLS are both of interest because they reflect selection and treatment effects for different

groups of individuals.

Rather than reporting BOLS and IOLS separately, experimenters often report randomized

intervention sample OLS (RISOLS), the OLS estimate on the full sample. RISOLS is equal to

the difference between the randomized intervention sample treated treated outcome (RISTTO) and

the randomized intervention sample untreated untreated outcome (RISUUO). We can decompose

RISOLS into the shares due to selection and treatment effects in two ways as shown in Table 1.

Experimenters often compare LATE to RISOLS with the intent of obtaining the share of

RISOLS due to the treatment effect. If there is no treatment effect heterogeneity, then LATE =

RISTTE = RISUTE, and LATE/RISOLS gives the share of the OLS estimate due to the treat-

ment effect. However, if there is treatment effect heterogeneity, then RISTTE and RISUTE are

directly comparable to RISOLS because they reflect the same group of individuals, but LATE is

not directly comparable to RISOLS because it only reflects compliers.

Although it is common to report RISOLS, it is not a very informative statistic for two reasons.

First, unlike BOLS, it reflects the impact of the experimental intervention. Second, unlike BOLS

and IOLS, RISOLS reflects the share of the sample that loses the lottery s(pB), so it changes with

the experimental design. I recommend reporting BOLS and IOLS in addition to RISOLS. Under

the assumptions required to identify MTE(p), the comparison of BOLS to IOLS provides a test of

global external validity.

3.8 Difference-in-Difference Test

Angrist [2004], Brinch et al. [forthcoming], and Bertanha and Imbens [2014] propose tests of global

external validity that I implement using the following difference-in-difference regression:

Y = λDZDZ + λDD + λZZ + λ, (16)

where Y is the outcome, λD is the coefficient on the binary indicator for selecting into the treatment

D, λZ is the coefficient on the binary indicator for winning the lottery Z, λDZ is the coefficient

on the interaction of selecting into treatment and winning the lottery, and λ is the coefficient

on the constant term. This regression compares four observable average outcomes: the baseline

treated treated outcome BTTO = E(Y |D = 1, Z = 0); the baseline untreated untreated outcome

BUUO = E(Y |D = 0, Z = 0); the intervention treated treated outcome ITTO = E(Y |D = 1, Z =

1); and the intervention untreated untreated outcome IUUO = E(Y |D = 0, Z = 1).

The coefficient λD is equal to BOLS = BTTO −BUUO. On its own, λD does not inform the

presence or absence of selection or a heterogeneous treatment effect. Even if λD = 0, there could
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be selection and a heterogeneous treatment effect that balances it.

The coefficient λZ is equal to IUUO −BUUO. If λZ = 0, then there is no selection. However,

the absence of selection does not imply global external validity because the treatment effect can still

be heterogeneous. In general, even if there is no selection, BOLS 6= IOLS 6= RISOLS 6= LATE.

The coefficient λDZ is equal to IOLS −BOLS = ((ITTO − IUUO)− (BTTO −BUUO)). If

and only if IOLS is equal to BOLS, then λDZ = 0, and any treatment effect derived from MTE(p)

from an experiment is globally externally valid. When this condition holds, MTE(p) has zero slope,

per (11), so there is no treatment effect heterogeneity.

The regression in (16) makes these tests simple to implement. The asymptotic or bootstrapped

standard errors from the regression provide direct tests for whether each coefficient is equal to zero.

The joint test of λDZ = λD = 0, which tests whether the treatment effect is globally externally

valid and equal to zero, can be implemented as a post-estimation t-test.

Regardless of the outcome of the bounds tests introduced in Section 3.2, researchers will likely

want to impose the linearity of MTO(p) and MUO(p) required for the difference-in-difference

test. If the bounds reject global external validity, then linearity of MTO(p) and MUO(p) will

allow researchers to recover a heterogeneous treatment effect with MTE(p). If the bounds do not

reject external validity, then linearity of MTO(p) and MUO(p) will allow researchers to run the

difference-in-difference test. Researchers willing to run the difference-in-difference test can obtain

MTE(p) and all of the quantities derived from it without imposing further assumptions. Therefore,

researchers willing to run tests from the literature that I implement with the difference-in-difference

test should also be willing to report MTE(p) and all of the quantities derived from it.

3.9 Difference-in-Difference Test Using Observables

We can incorporate covariates into the difference-in-difference test to formalize the comparison of

the characteristics of always takers, never takers, and compliers discussed in Section 3.1. Suppose

that we implement (16) using a single covariate from the vector X as the dependent variable in

lieu of the outcome Y . In this implementation, the coefficient λD tests whether the observable

characteristic is related to baseline takeup; the coefficient λZ tests whether the experiment induces

selection on that observable characteristic; and the coefficient λDZ tests whether the observable

characteristic has a different relationship to intervention takeup than it does to baseline takeup.

We can obtain further insight by regressing the outcome Y on the same covariate in the sample

of lottery losers. Using the estimated coefficients, we can obtain a predicted outcome for all lottery

losers and winners, and we can use that predicted outcome as the dependent variable in a new

difference-in-difference test. If we find a nonzero coefficient using the actual outcome, but we do

not reject that the coefficient is equal to zero using the predicted outcome, then we have found an

observable basis for baseline takeup, selection, or selection on the treatment effect, respectively.

We can also implement a more powerful test by predicting the outcome Y using the entire

vector of covariates X in the sample of lottery losers. If we cannot reject zero for all coefficients in

the resulting difference-in-difference test, then we can be more confident that all selection has an
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observable basis. In insurance markets, if there is an observable basis for selection, then pricing or

risk adjustment on that observable basis could alleviate or eliminate welfare losses.

3.10 Using Observables for Subgroup Analysis with MTE(p)

Researchers often perform subgroup analysis by estimating a LATE in each subgroup with covariate

vector x. Researchers can also estimate a marginal treatment effect in each subgroup as follows:

MTEx(p) =
1

pIx − pBx
(pIx(BTTOx −BUUOx) + pBx(IUUOx − ITTOx) + (IUUOx −BUUOx))

+
2

pIx − pBx
((ITTOx − IUUOx)− (BTTOx −BUUOx))p. (17)

where (17) replaces all terms in (11) with their subgroup-specific values. For example, BTTOx =

E(Y |D = 1, Z = 0, X = x). The comparison of MTE(p) across subgroups informs whether the

treatment effect varies in the same way with the unobserved cost of treatment UD in each subgroup.

Even if the MTE is the same in each subgroup, then it can be misleading to compare LATEs

across subgroups. The LATEs are only equal across all subgroups if the LATE in the full sample

is globally externally valid. If the LATE in the full sample is not globally externally valid, then

the LATEs are not necessarily comparable across subgroups because the probabilities of treatment

conditional on losing the lottery pBx ≡ P (D = 1|Z = 0, X = x) and winning the lottery pIx ≡
P (D = 1|Z = 1, X = x) can differ across subgroups. The MTEs are comparable across subgroups

even if pBx and pIx differ across subgroups.

4 Applying MTE(x,p) with Observables

4.1 Identifying MTE(x,p) with Observables

We can combine information across subgroups to estimate richer MTE functions. Within each

subgroup with covariate vector x, the two points (pBx+pIx
2 , LAUOx) and (pIx+1

2 , IUUOx) iden-

tify a linear MTOx(p), and the two points (pBx
2 , BTTO) and (pBx+pIx

2 , LATOx) identify a linear

MUOx(p). However, if we assume that MTEx(p) is the same across subgroups, then we have more

than four points to identify linear or nonlinear marginal treatment effects. By further subdividing

the sample into finer subgroups, we can achieve nonparametric identification. Furthermore, if we

are willing to impose some structure on how covariates enter an MTE(x, p) function, then we can

relax the assumption that MTEx(p) is the same across subgroups. If the structure holds, then it

is more efficient to estimate a single MTE(x, p) than it is to estimate a separate MTEx(p) within

each subgroup.

Brinch et al. [forthcoming] specify the following functional forms that impose additive separa-

bility of observables and unobservables:

MTE(x, p) = E(YT − YU |X = x, UD = p)=(βT − βU )′x+mte(p) (18)
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MTO(x, p) = E(YT |X = x, UD = p) =β′Tx+mto(p) (19)

MUO(x, p) = E(YU |X = x, UD = p) =β′Ux+muo(p), (20)

where mto(p) and muo(p) are general functions of p such as global or local polynomials, and

mte(p) = mto(p) −muo(p).14 The first component of each function depends on a given observed

vector of characteristics x, and the second component depends on the unobserved net cost of

treatment UD = p. Variation across subgroups in the observed outcomes identifies the additive shift

terms β′Tx and β′Ux, which determine the intercepts of each function. Variation across subgroups in

the unobserved net cost of treatment through pBx and pIx identifies the parameters of the functions

mto(p) and muo(p), which determine the slopes of each function. In these functional forms, the

intercepts differ across subgroups, but the slopes do not.

It is tempting to think of MTE(p) as an approximation to MTE(x, p). However, the inclusion

of covariates changes the interpretation of the unobserved net cost of treatment UD. As more

covariates are included in model, they are purged from the residual unobserved net cost of treatment

UD in the spirit of Altonji et al. [2005]. In the limit, if every element of the unobservable becomes

observed, then MTE(x, p) becomes a horizontal line.

To examine how the treatment effect varies with unobserved heterogeneity that still remains

after taking all included covariates into account, the experimenter can graph the sample marginal

treatment effect (SMTE), the average MTE(x, p) over all N individuals i in the experiment:

SMTE(p) = 1
N

∑
i(βT − βU )′xi + mte(p). To examine the how the treatment effect varies with

observed heterogeneity, the experimenter can compare MTE(x, p) for two different values of x. For

example, the experimenter can examine the maximum amount of variation in the treatment effect

that can be explained by observed heterogeneity by comparing the MTE(x, p) with the smallest

observable component, minMTE(x, p) = mini (βT − βU )′xi + mte(p), to the MTE(x, p) with the

largest observable component, maxMTE(x, p) = maxi (βT − βU )′xi +mte(p).

The MTE(x, p) model generalizes the instrumental variable (IV) regression model. The tra-

ditional IV model imposes that the treatment effect is the same for all individuals, regardless of

whether the model includes an additively-separable vector of observables. The IV model that in-

teracts a vector of observables with a treatment indicator D allows the treatment effect to vary

with observed heterogeneity. In contrast, the MTE(x, p) model allows the treatment effect to vary

with observed and unobserved heterogeneity.

4.2 Estimating MTE(x,p)

I detail a global polynomial algorithm for estimation of MTE(x, p) in Section OA.1.15 Estimation

via low order global polynomials allows for extrapolation beyond the experimental support. Higher

order global polynomials offer greater flexibility, but they rapidly approach positive or negative

14I specify these functions in lowercase to avoid confusion with MTO(p) and MUO(p), the marginal treated and
untreated outcome functions that do not depend on x.

15For all estimates, I bootstrap by household ID for 200 replications, and I report the standard deviation as the
standard error or the 2.5 and 97.5 percentiles as the 95% confidence interval. I construct analogous intervals to obtain
significance stars.
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infinity just outside of experimental support. Local polynomials also offer greater flexibility, but

they cannot be extrapolated without ad hoc assumptions. Furthermore, functions estimated via

local polynomial estimation are not often smooth. Small jumps in the estimated the average treated

and untreated outcome functions ATO(x, p) and AUO(x, p) can lead to wild fluctuations in the

MTE(x, p) functions derived from their slopes.

4.3 Identifying Optimal Treatment Probabilities with MTE(x,p)

Predictions from MTE(x, p) allow the experimenter to assess which observable subgroups x are

likely to react positively or negatively to an intervention. For some subgroups, the observable

component of MTE(x, p), (βT − βU )′x, might be large enough that the treatment effect is always

positive. Similarly, there could be other subgroups in which the treatment effect is always negative.

In any remaining subgroups, if MTE(x, p) is linear, then analysis of positive and negative treatment

effects follows from Section 3.5. If MTE(x, p) is nonlinear, then it can cross zero at more than one

point. Under the optimal policy, MTE(x, p) should be weakly decreasing, and it should cross the

optimal treatment threshold only once.

4.4 Inframarginal Outcomes and Treatment Effects with MTE(x,p)

We can construct inframarginal treated outcomes, untreated outcomes, and treatment effects for

each subgroup with covariate vector x as follows:

gTO(x) =

∫ 1

0
ωg(x, px)MTO(x, px)dpx (21)

gUO(x) = gSE(x) =

∫ 1

0
ωg(x, px)MUO(x, px)dpx (22)

gTE(x) =

∫ 1

0
ωg(x, px)MTE(x, px)dpx (23)

where px = p(D = 1|Z,X = x) and the general weights are the same as those given in the bottom

row of Table 1 with pBx and pIx in lieu of pB and pI .16 To summarize (21)-(23) across subgroups

in the experimental sample, using each individual i in the experimental sample, we can construct:

SgTO =
1∑

i P (i ∈ g)

∑
i

P (i ∈ g)gTO(xi) (24)

SgUO = SgSE =
1∑

i P (i ∈ g)

∑
i

P (i ∈ g)gUO(xi) (25)

SgTE =
1∑

i P (i ∈ g)

∑
i

P (i ∈ g)gTE(xi), (26)

16I estimate these probabilities using predicted probabilities from the estimation algorithm in Section OA.1.
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where P (i ∈ g) is the probability that each individual i in the sample is a member of group g.17

The prefix S indicates the sample average over individuals with observables xi in group g. For

example, the sample local average treatment effect (SLATE) is the average treatment effect

for the compilers, and the sample average treatment effect (SATE) is the average treatment

effect for everyone in the experimental sample. The SLATE and the SATE average MTE(x, p)

over p and x, while the LATE and the ATE average MTE(p) over p.

It is more informative to compare SgTE across samples S with different observable character-

istics than it is to compare SgTE across groups g with different unobservable characteristics. The

comparison of gTE across g is informative about global external validity. However, individuals in

different groups can have different observable characteristics, so SgTE need not equal for all g,

even if there is no unexplained heterogeneity.

4.5 Unexplained Heterogeneity with MTE(x,p)

We can quantify unexplained treatment effect heterogeneity in MTE(x, p) by generalizing (14) as

follows:

RMSD(Xc) =

√∫ 1

0
(SMTE(p)− SATE)2dp (27)

where RMSD(Xc) can be interpreted as the standard deviation of the unexplained variance in the

experimental sample, after taking a subset of the vector Xc of the available the vector of observ-

ables X into account with MTE(xc, p). Using this expression, we can decompose the unexplained

treatment effect heterogeneity in MTE(p) into the portion is explained by observables and the

portion that remains unexplained:

RMSD(X0)−RMSD(Xc)

RMSD(X0)︸ ︷︷ ︸
explained

+
RMSD(Xc)

RMSD(X0)︸ ︷︷ ︸
unexplained

= 1,

where X0 represents the null set of covariates. If RMSD(Xc) = 0, then all treatment effect

heterogeneity is explained by covariates Xc incorporated into MTE(xc, p).

5 Extrapolation

5.1 Extrapolation Considerations

In theory, two experiments that are exactly the same should recover the same MTE. Therefore, a

Hausman [1978] test should not reject the null hypothesis that both MTEs are the same, and it

17Table OA9 gives the expression for P (i ∈ g) for the group g in each column. The probability that each individual
is a complier, P (i ∈ LA), incorporates the observed characteristics of compliers through pBx and pIx, in a way that
is consistent with the observed characteristics of compliers derived in Section 3.1. I incorporate characteristics in this
way so that the Oregon SLATE only reflects the observed characteristics of the Oregon compliers. Therefore, it is
informative to compare the Oregon SLATE to the Oregon LATE, which reflects only Oregon compliers. For all g,
the SgTE only reflects the observed characteristics of individuals in the group in the sample.
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should be possible to extrapolate from one experiment to the other using either MTE. In practice,

if anything varies across experiments, then experimenters should exercise caution in extrapolation.

For example, the outcome Y must be measured in the same way across experiments for the

MTEs to be the same. Even within a single experiment, the MTE for one outcome can be upward-

sloping while the MTE for another outcome can be downward-sloping. In the OHIE context, if

ER utilization and primary care utilization are substitutes, then the MTE for primary care can be

upward-sloping even as the MTE for ER utilization is downward-sloping.

The treatment D must also be measured in the same way across experiments for the MTEs

to be the same. Different measures of treatment result in different intervention and treatment

probabilities pI and pB. They also result in different marginal treated and untreated outcome

functions because the individuals used to identify those functions vary as the definition of treatment

varies.

Unobserved heterogeneity UD must also be the same across experiments for the MTEs to be the

same. If two experiments are drawn at random from a broader pool, then MTE(p) and MTE(x, p)

should be the same. However, in MTE(x, p), unobserved heterogeneity UD is a function of observed

heterogeneity captured in covariate vector X. Therefore, X must be measured in the same way in

both experiments for UD in MTE(x, p) to be the same. If X is measured in the same way in two

experiments, but one experiment over-samples on some element of X, then it should be possible to

re-weight MTE(x, p) so that it is comparable across experiments, as I discuss in Section 5.3.

Unobserved heterogeneity UD is not likely to be the same in one experiment that samples

at random from a broad pool as it is in another experiment that samples at random from lottery

entrants from the same pool. However, the experimenter can compare MTEs from both experiments

by taking a stand on the range of UD from the broad pool that is represented by the individuals

who enter the lottery. One natural assumption is that the fraction f of individuals who enter the

lottery would be the individuals with the lowest net unobserved costs of treatment in the broad

pool. If this assumption holds, then the MTE from 0 ≤ p ≤ 1 on the sample individuals who enter

the lottery should be equal to the MTE from 0 ≤ p ≤ f < 1 on the broader sample. Extrapolation

from the sample of individuals who enter the lottery to the broader pool requires extrapolation to

potential treated fractions that exceed full treatment: p > 1.

If the instrument Z is the same across experiments, then the MTEs should be the same. How-

ever, there are also cases in which the instrument can differ and the MTEs can still be the same. For

example, suppose that the one instrument has a strictly larger treatment incentive than another,

such as free treatment vs. discounted treatment. If UD is the same in both experiments, then

the baseline treatment probability should be the same in both experiments, but the intervention

treatment probability should be greater in the experiment with the larger incentive. The LATEs

from both experiments need not be the same, but the MTEs should be the same. One caveat

is that the estimated MTE(p) might not be the same across experiments if the true MTE(p) is

nonlinear and the two intervention probabilities are very different, requiring more reliance on linear

extrapolation.

If two instruments offer very different incentives, then the MTEs might not be the same, but
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the ATEs recovered from the MTEs should still be the same. Just as UD is a function of observed

heterogeneity through X, it is also a function of the instrument through Z. Suppose that men

have larger treatment effects than women and the instrument in one experiment incentivizes men

to take up treatment but the instrument in another experiment incentivizes women to take up

treatment. The MTE from the first experiment will be downward-sloping because as the fraction

treated increases from 0 to 1, men are treated first and then women. However, the MTE from the

second experiment will be upward-sloping because women select into treatment first. In this case,

MTE(p) will be different in both experiments. However, the amount of unexplained treatment

effect heterogeneity as calculated with RMSD will be the same, and the ATEs will be the same.

5.2 Extrapolating with MTE(p)

If extrapolation is merited, then gTO, gUO, and gTE can be extrapolated to reflect different

treatment probabilities using (2)-(4) by substituting hypothetical values of pB, pI , s(pB), and s(pI)

into the formulas for the general weights wg(p) in Table 1. For example, suppose that Oregon

policymakers are contemplating making more coverage available via a new intervention in which

lottery winners who sign up for health insurance receive discounted, as opposed to free, coverage.

Pilot tests indicate that the new intervention treatment probability will be p′I . By extrapolating

RISTTO with cost as an outcome, policymakers can determine what share of individuals s(p′I)

they can declare as lottery winners given available funds.

5.3 Extrapolating with MTE(x,p)

SgTO, SgUO, and SgTE can be extrapolated to reflect different treatment probabilities and

characteristics as follows:

SgTO(A,B) =
1∑

i∈A P (i ∈ g)

∑
i∈A

P (i ∈ g)

∫ 1

0
ωg(xiA, pxiB)MTO(xiA, pxiB)dpxiB,

(28)

SgUO(A,B) = SgSE(A,B) =
1∑

i∈A P (i ∈ g)

∑
i∈A

P (i ∈ g)

∫ 1

0
ωg(xiA, pxiB)MUO(xiA, pxiB)dpxiB,

(29)

SgTE(A,B) =
1∑

i∈A P (i ∈ g)

∑
i∈A

P (i ∈ g)

∫ 1

0
ωg(xiA, pxiB)MTE(xiA, pxiB)dpxiB,

(30)

where each individual i in sample A has observed covariate vector xiA. In sample B, individuals with

the same x as individual i have treatment probability pxiB. A and B can be the same sample, and

either can be the actual experimental sample. If both are the experimental sample, conditioning

on A and B can be suppressed, and the equations simplify to (24)-(26).

For example, the SLATE can be extrapolated to a hypothetical sample A that has more men
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if MTE(x, p) includes a covariate x for men. Other approaches have been proposed to re-weight

local average treatment effects based on observed characteristics. My approach also allows for

re-weighting based on unobserved characteristics that manifest themselves as different treatment

probabilities for the same observed characteristics.

5.4 Decomposing Differences in Extrapolations with MTE(x,p)

Using (28)-(30), we can decompose differences between two samples A and B into differences in

observables (explained) vs. unobservables (unexplained). For example, we can decompose the

difference between two SLATEs in two ways as follows:

SLATE(A,A)− SLATE(B,A)

SLATE(A,A)− SLATE(B,B)
+
SLATE(B,A)− SLATE(B,B)

SLATE(A,A)− SLATE(B,B)
= 1. (31)

SLATE(A,B)− SLATE(B,B)

SLATE(A,A)− SLATE(B,B)︸ ︷︷ ︸
explained

+
SLATE(A,A)− SLATE(A,B)

SLATE(A,A)− SLATE(B,B)︸ ︷︷ ︸
unexplained

= 1. (32)

5.5 Extrapolation to a Natural Experiment

Any experiment can be interpreted as a natural experiment that took place in the post-period but

not in the pre-period for lottery winners. Therefore, if pre-period data are available, it is possible

to estimate the MTE using the natural experiment. Equality of the MTE from the randomized and

natural experiments validates the results. In the OHIE context, no individuals receive insurance

in the pre-period because they must be uninsured to enter the lottery, so there are no always

takers, and I cannot estimate a separate MTE using the natural experiment. However, I can

use the observed change in outcomes from the pre-period to the experimental period, Y − Ypre,
to validate extrapolations from the MTE estimated with the randomized experiment. To assess

the performance of extrapolations from the MTE, I can compare them to extrapolations from the

LATE and the RISOLS. I can also compare them to extrapolations of the MTE from Monte Carlo

simulations in which the estimated MTE is the true MTE.

6 Application: The Oregon Health Insurance Experiment

6.1 Replication

I replicate the main LATEs reported in Taubman et al. [2014] using publicly-available Oregon

administrative data. I examine three measures of emergency room utilization Y : an indicator for

any ER visit, a count of the number of ER visits, and a dollar amount of ER total charges.18 All

18For each outcome, I run regressions on the largest set of observations for which all variables are available. Even
though Taubman et al. [2014] does not include ER total charges in the main results, I examine it because it is more
continuous than the other two measures of ER utilization. ER total charges (reported in the data as “total charges”)
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measures include individuals with zero visits. The endogenous variable D is an indicator for any

Medicaid coverage, which includes Medicaid coverage obtained via the lotteried program or the

main program. I refer to individuals with D = 1 as “treated” or “insured,” and individuals with

D = 0 as “untreated” or “uninsured.”19

The coefficient in the first column of the top panel of Table 2, which I replicate exactly, indicates

that individuals who receive Medicaid coverage increase the probability that they visit the ER by

6.97 percentage points on a base of 34 percentage points among the lottery losers (a 21% increase).

The coefficient in the middle panel indicates that individuals who receive Medicaid coverage increase

their visits to the ER by 0.388 visits on a base of 1.00 visits among the lottery losers (a 39%

increase).20 The coefficient in the bottom panel indicates that individuals who receive Medicaid

coverage increase their total charges by $847 on a base of $3,620 among lottery losers (a 23%

increase).

For comparison to Taubman et al. [2014], I report standard errors clustered by household ID in

brackets. I also report standard errors block bootstrapped by household ID in parentheses. Both

standard errors are similar. The estimates for any visits and the number of visits are statistically

different from zero at the 1% level, and the total charges estimate is not statistically different from

zero at conventional levels.

Following Taubman et al. [2014], the results in the first column include two covariates. The

first is a measure of ER utilization before the experimental period, specified in the same way as the

outcome Y . When I omit this covariate in Column 2, the point estimates remain almost unchanged

for the first two measures of ER utilization. The point estimate for charges decreases, but it remains

positive.

The second covariate is a count of the number of lottery entrants in the household. Multiple

individuals in the same household could enter the OHIE lottery by signing up for a waitlist for

Medicaid coverage. However, if any individual in the household won the lottery, then all household

members were treated as winners. About 20% of entrants had another entrant in their household,

and a very small fraction had two other entrants in their household. Because of the lottery design,

individuals in households with more than one entrant won the lottery at a much higher rate: 57%

vs. 34%. Because the indicator for winning the lottery Z is not balanced on the number of lottery

entrants, it is unlikely that the distribution of UD in the full experimental sample is the same for

lottery winners and losers.21 Therefore, it is unlikely that OHIE results that do not control for the

number of lottery entrants are internally valid. As noted in Taubman et al. [2014], the LATEs for

is the sum of the list prices of all care provided during the ER visit and any associated hospitalization. The amounts
actually paid, which are not observed, are generally much lower than total charges because of discounts. However,
because the insured and uninsured receive different discounts, the comparison of total charges is more informative as
a measure of resource utilization than the comparison of actual payments would be.

19Several individuals with D = 0 gained health insurance through other means, but they were still “untreated”
and “uninsured” by Medicaid.

20I cannot replicate the result exactly because of censoring and truncation performed to limit the identification of
human subjects in the publicly-available data, but my estimate is very similar to the coefficient of 0.41 on a base of
1.02 visits reported in Taubman et al. [2014].

21Indeed, the comparison of the characteristics of lottery winners and losers yields several statistically significant
differences in the full experimental sample.
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Table 2: OHIE Replication and Extension

(1) (2) (3) (4) (5)

Medicaid 0.0697 0.0763 -0.0146 0.1816† 0.0531†
(0.0251)** (0.0266)*** (0.0271) (0.0684)** (0.0286)*
[0.0239]*** [0.0257]*** [0.0266] [0.0661]*** [0.0279]*

Covariates Any pre-visits,
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,646 24,646 24,646 4,951 19,643

E[Y|Z=0] 0.34 0.34 0.34 0.21 0.37

(1) (2) (3) (4) (5)

Medicaid 0.388 0.344 -0.048 0.700 0.267
(0.121)*** (0.152)*** (0.156) (0.248)*** (0.175)
[0.107]*** [0.131]*** [0.134] [0.237]*** [0.151]*

Covariates Pre-visits,
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,615 24,622 24,622 4,948 19,622

E[Y|Z=0] 1.00 1.00 1.00 0.45 1.09

(1) (2) (3) (4) (5)

Medicaid $847 $509 -$990 $878 $428
($767) ($785) ($788) ($1,432) ($927)
[$769] [$807] [$805] [$1,361] [$935]

Covariates Pre-charges,
Lottery Entrants

Lottery Entrants No Covariates No Covariates No Covariates

Regression sample Full sample Full sample Full sample
2 Lottery 
Entrants

1 Lottery 
Entrant

Observations 24,621 24,630 24,630 4,950 19,628

E[Y|Z=0] $3,620 $3,639 $3,639 $1,639 $3,971

Any ER Visits

Number of ER Visits

ER Total Charges

Test of equality of coefficients in Columns (4) and (5): ††† p<0.01,  †† p<0.05,  † p<0.1.

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped standard errors in parentheses, asymptotic 
standard errors in square brackets. Standard errors are clustered at the household level.
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ER utilization are not robust to the removal of the control for the number of lottery entrants. As

reported in Column 3, the coefficients for all three specifications of ER utilization are negative, and

none are statistically different from zero.

Columns 4 and 5 report results from separate regressions for individuals in households with

two lottery entrants or a single lottery entrant, respectively.22 The results within these subsamples

should be internally valid because randomization within each subsample should result in the same

distribution of UD among lottery winners and losers. The Taubman et al. [2014] approach of

controlling for the number of lottery entrants could also produce internally valid results if the LATE

in the full sample is globally externally valid, and thus the treatment effect is the same regardless

of the number of lottery entrants. However, if the treatment effect varies across subsamples with

different numbers of lottery entrants, then a linear control for the number of lottery entrants does

not guarantee internal validity.

Comparison of Columns 4 and 5 provides the first evidence that the LATEs from Oregon are not

globally externally valid and that the treatment effect could vary with selection. Across all measures

of ER utilization, the LATE is larger for individuals in households with two lottery entrants: 18

vs. 5 percentage points, 0.7 vs. 0.3 visits, and $878 vs. $428. The coefficients for any visits are

statistically different from each other at the 10% level. If individuals in who entered the lottery

with household members had a stronger desire to gain coverage than individuals who entered alone,

then this comparison provides preliminary evidence that the treatment varies with selection: the

impact of insurance on ER utilization is larger for individuals more likely to gain coverage.

The sample with one lottery entrant is my preferred replication sample. Because it includes the

vast majority of the full sample, it is likely to be more representative of other samples of interest.

One difficulty in extrapolating to any other sample of interest is that a variable that captures the

same information as the number of lottery entrants is unlikely to be available. Household size is a

potential candidate, but it is distinct from the number of lottery entrants because not all members

of a household entered the lottery. Household size is not available in the administrative data, so it

is not possible to further restrict the sample with one lottery entrant to households with only one

member.

6.2 Average Characteristics of Always Takers, Compliers, and Never Takers

The first column of Table 3 provides summary statistics on my replication sample. I report summary

statistics on the observables available in the administrative data, including gender, age, selection of

written materials in English, measures of pre-period utilization, enrollment in SNAP (food stamps)

and TANF (welfare), and whether the individual signed up for the lottery on the first day. Columns

2 and 3 show that the lottery winners and losers have the same average values of these covariates,

and the corresponding t-tests reported in the bottom panel do not raise concerns about internal

validity.23 In contrast, as shown in Columns 4 and 5, the treated and untreated individuals do not

22I omit the small number of individuals with three lottery entrants.
23The coefficients on female and SNAP reject internal validity at the 10% level, but the coefficients on the predicted

outcomes, which provide a higher-powered test less subject to multiple hypothesis testing, do not.
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have the same average values of these covariates. The individuals who take up treatment are more

likely to be female, on SNAP or TANF, and they have higher ER utilization in the pre-period.

Thus, there seems to be some observable basis for selection into insurance.

Columns 6 through 9 report cross-tabulations of the data based on whether each individual

won the lottery, as well as whether each individual gained Medicaid coverage. Some individuals

who lost the lottery still gained coverage through the main Medicaid program, so they must be

always takers. They make up 15.2% of the lottery losers, so we can infer that they make up the

same percentage of the overall sample given internal validity. Therefore, pB = 0.152. As shown in

Column 6, always takers have a 72% probability of being female, which is much larger than the

probabilities in other columns. It is likely that the main Medicaid program had more generous

eligibility thresholds for women. Some women might not have been eligible for Medicaid when they

signed up for the lottery, but they might have become eligible upon becoming pregnant. Other

individuals might have been eligible through the main program when they entered the lottery, but

they did not know about their eligibility or they had not taken steps to enroll. Emergency rooms

often sign eligible individuals up for Medicaid after they incur ER charges, which could partially

explain why always takers have higher pre-period utilization than other groups.

Column 9 reports statistics on never takers who lost the lottery but did not enroll in Medicaid.

Entrants were not required to submit proof of eligibility to enter the lottery. However, winners

were required to submit eligibility information and to meet the eligibility requirements to enroll

in Medicaid. Therefore, never takers did not gain coverage, either because they did not submit

their information in time or because they were not eligible. As shown, never takers had much lower

pre-period ER utilization than always takers, amassing less than half of the total charges. Never

takers make up 58.9% of the lottery winners, and thus the same fraction of the full sample by

internal validity. Therefore, pI = 1− 0.589 = 0.411. The always takers plus the compliers make up

almost three quarters of the sample of individuals who entered the lottery, so the treatment effects

on them should be of interest to policymakers, but the LATE only gives the average treatment

effect on the 25.9% of the sample that are compliers.

Columns 10 and 11 report the average characteristics of treated and untreated compliers, cal-

culated from comparison of Columns 6 and 7 and the shares of always takers and never takers

via (5) and (6).24 Although the treated and untreated compliers appear to have slightly different

characteristics, the t-test results for predicted outcomes reported in the second panel show that the

characteristics are not statistically different, providing further evidence of internal validity.

Column 12 reports the combined characteristics of the treated and untreated compliers. Stud-

ies that report average characteristics of compliers often compare the average characteristics of

compliers to the average characteristics of the full sample to informally assess external validity. In

the OHIE context, the comparison of covariates across Columns 1 and 12 raises minimal concerns

about global external validity. However, compliers are included in the full sample, so it is more

informative to compare the compliers to the always takers and never takers than it is to compare

them to the full sample. The comparison of the characteristics of the compliers to the characteris-

24Previous research on the OHIE has reported average characteristics of compliers (Finkelstein et al. [2015]).
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Table 3: Average Characteristics and Outcomes of Always Takers, Never Takers, and Compliers

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Randomized 
Intervention 

Sample 
Average

Intervention Baseline Randomized 
Intervention 

Sample 
Treated

Randomized 
Intervention 

Sample 
Untreated

Baseline 
Treated 
(Always 
Takers)

Baseline 
Untreated 

(Never Takers 
and Untreated 

Compliers)

Intervention 
Treated 

(Always Takers 
and Treated 
Compliers)

Intervention 
Untreated 

(Never 
Takers)

Local Average 
(Treated Compliers)

Local Average 
(Untreated 
Compliers)

Local Average (All 
Compliers)

RIS RIST RISU BT BU IT IU LAT LAU LA

Covariates
Female 0.56 0.55 0.56 0.64 0.53 0.72 0.53 0.58 0.53 0.50 0.55 0.53
Age in 2009 40.7 40.7 40.7 40.5 40.7 39.4 40.9 41.3 40.3 42.4 42.4 42.4
English 0.91 0.91 0.91 0.91 0.91 0.90 0.91 0.92 0.91 0.93 0.92 0.92
Any ER visits, pre-period 0.34 0.34 0.34 0.42 0.32 0.45 0.32 0.39 0.31 0.36 0.35 0.35
Number of ER visits, pre-period 0.87 0.86 0.87 1.18 0.77 1.36 0.78 1.05 0.73 0.87 0.88 0.88
ER total charges, pre-period $2,440 $2,387 $2,468 $3,514 $2,099 $4,210 $2,156 $3,024 $1,942 $2,328 $2,642 $2,534
On SNAP, pre-period 0.57 0.58 0.57 0.75 0.51 0.77 0.53 0.74 0.47 0.72 0.67 0.69
On TANF, pre-period 0.02 0.03 0.02 0.07 0.01 0.09 0.01 0.05 0.01 0.02 0.01 0.01
Signed up for lottery on first day 0.09 0.10 0.09 0.12 0.09 0.10 0.09 0.13 0.07 0.15 0.13 0.13

Predicted outcomes
Any ER visits 0.37 0.37 0.37 0.42 0.35 0.44 0.35 0.41 0.34 0.39 0.38 0.39
Number of ER visits 1.09 1.09 1.09 1.40 0.99 1.54 1.01 1.30 0.95 1.15 1.15 1.15
ER total charges $3,935 $3,915 $3,945 $4,826 $3,652 $5,222 $3,716 $4,546 $3,475 $4,150 $4,264 $4,225

Outcomes
Any ER visits 0.37 0.38 0.37 0.51 0.33 0.55 0.33 0.48 0.31 0.44 0.39 0.40
Number of ER visits 1.12 1.16 1.09 1.73 0.92 1.89 0.95 1.62 0.85 1.45 1.19 1.28
ER total charges $4,009 $4,082 $3,971 $6,996 $3,061 $8,794 $3,109 $5,732 $2,930 $3,944 $3,516 $3,664

N for number of ER visits 19,622 6,743 12,879 4,725 14,897 1,956 10,923 2,769 3,974 1,745 3,333 5,078

Covariates
(2) - (3)

λDZ

    [(8) - (6)] -
[(9) - (7)]

λD

(6) - (7)
λZ

(9) - (7)
λDZ = 0 
λD  = 0

λDZ = 0 
λZ   = 0

λD = 0
λZ = 0

λDZ = 0 
λZ   = 0
λD = 0

Female -0.012* -0.045* -0.133*** 0.188*** -0.006 *** *** *** ***
Age in 2009 -0.019 -0.075 2.504*** -1.470*** -0.668*** *** *** *** ***
English 0.002 0.007 0.018* -0.008 -0.003 * * * *
Any ER visits, pre-period 0.002 0.009 -0.045*** 0.132*** -0.013 *** *** *** ***
Number of ER visits, pre-period -0.002 -0.007 -0.259*** 0.579*** -0.045 *** *** *** ***
ER total charges, pre-period -$81 -$314 -$973*** $2,054*** -$214 *** *** *** ***
On SNAP, pre-period 0.012* 0.045* 0.033** 0.236*** -0.063*** *** *** *** ***
On TANF, pre-period 0.003 0.012 -0.049*** 0.084*** 0.001 *** *** *** ***
Signed up for lottery on first day 0.006 0.023 0.051*** 0.005 -0.016*** *** *** *** ***

Predicted outcomes

Any ER visits 0.002 0.007 -0.020** 0.089*** -0.013*** *** *** *** ***
Number of ER visits 0.002 0.007 -0.186*** 0.532*** -0.060** *** *** *** ***
ER total charges -$29 -$113 -$435** $1,506*** -$241** *** ** *** ***

Outcomes
Any ER visits 0.014* 0.053* -0.045** 0.213*** -0.023*** *** *** *** ***
Number of ER visits 0.069* 0.267* -0.171* 0.939*** -0.104** *** ** *** ***
ER total charges $111 $428 -$2,882*** $5,685*** -$179 *** *** *** ***

(10) - (11)

*** p<0.01, ** p<0.05, * p<0.1; Statistical significance was assessed using bootstrapping.
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tics of always and never takers casts more doubt on global external validity than the comparison

of the compliers to the full sample. At the same time, monotonicity in characteristics from always

takers to compliers to never takers provides reassurance that it is reasonable to extrapolate across

the groups to recover heterogeneous treatment effects.

6.3 Difference-in-Difference Test

The difference-in-difference test using covariates formalizes the comparison of the compliers to the

rest of the sample. Results in the second panel of Table 3 show that some covariates are related to

baseline takeup (λD 6= 0); some covariates are related to selection (λZ 6= 0); and some covariates

have different relationships to baseline takeup than they have to intervention takeup (λDZ 6= 0).

When we use these covariates to predict the outcomes Y among the lottery losers, we still see

some statistically-significant evidence that casts doubt on global external validity. Results from

the difference-in-difference test using the outcomes in lieu of the covariates reject global external

validity (λDZ 6= 0) at the 10% level or better. The results also show statistically significant evidence

of selection (λZ 6= 0) for two measures of ER utilization. The rejection of the null of no selection

indicates that RISOLS includes a nonzero selection effect. The rejection of global external validity

indicates that the LATE does not apply to all individuals under the assumption that MUO(p) and

MTO(p) are linear in p.

6.4 Bounds on Outcomes and Treatment Effects

The left subfigures in Figure 3 show that we cannot reject global external validity of the Oregon

LATE under weak monotonicity of MTO(p) and MUO(p) alone. Each subfigure includes a different

measure of the ER utilization outcome Y . Each plots the BTTO, LATO, LAUO, and IUUO, as

reported in Table 3 over the relevant range of UD. For number of visits, the only difference between

the actual outcomes plotted in Figure 3 and the hypothetical outcomes plotted in Figure 2 is the

value of the IUUO (the hypothetical value is 1.3, and the actual value is 0.85).

For all three measures of ER utilization, the untreated outcome for never takers (IUUO) is

smaller than the untreated outcome for compliers (LAUO), indicating adverse selection into health

insurance, instead of advantageous selection, as depicted by the hypothetical example. For all three

measures of ER utilization, the treated outcome for always takers (BTTO) exceeds the treated

outcome compliers (LATO), also indicating adverse selection, or a decreasing treatment effect, or

both. Because the MUO(p) and MTO(p), both slope downward, the bounds do not reject global

external validity of the LATE in this application.

However, the bounds could still be informative for ER providers in Oregon. The bounds on the

BTTE imply that upon gaining insurance, always takers increase the average visit probability by

no more than 0.16 (BTTE ≤ BTTO − LAUO = 0.55 − 0.39), their number of visits by no more

than 0.7, and their total charges by no more than $5,638. The bounds on the IUTE imply that

upon gaining insurance, never takers increase their average visit probability by no more than 13

percentage points (IUTE ≤ LATO−IUUO = 0.44−0.31), their number of visits by no more than
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Figure 3: Bounds and Estimates of MTE(p)
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0.6, and their total charges by no more than $1,014. If Oregon decided to require everyone in the

lottery sample to have insurance, the bounds imply that their average visit probability would be

no more than 0.27 (ITTOpI + (LATO− IUUO)(1− pI) = 0.48(0.411) + (0.44− 0.31)(1− 0.411)),

their average number of visits would be no more than 1.02, and their average charges would be no

more than $2,953.

6.5 Estimates of MTE(p)

The solid lines in the right subfigures of Figure 3 depict the marginal treatment effect MTE(p) for

each measure of ER utilization. The LATE, which gives the average treatment effect for compliers,

is the single point on MTE(p) with the diamond marker. Because MTE(p) is not equal to the

LATE for all p, it is clear from the figure that the LATE is not globally externally valid, as indicated

by the difference-in-difference test.

For all measures of ER utilization, MTE(p) is downward-sloping, indicating that moral hazard

is largest for the first individuals to select into treatment, and it decreases as subsequent individ-

uals select into treatment. As reported in the first columns of Table 4, the slope of MTE(p) is

statistically different from zero at the 1% level for any visits and total charges.25 The slope is not

statistically different from zero for the number of visits, but the LATE is not statistically different

from zero, either. Across all measures of ER utilization, the marginal treatment effects for always

takers are positive and larger than the marginal treatment effects for compliers. This pattern could

arise if the individuals with the most pent-up demand for ER utilization select into coverage re-

gardless of the lottery outcome, and individuals with lower levels of pent-up demand only select

into coverage if they win the lottery.

In health economics, there is a long-standing question about whether there is heterogeneity in

moral hazard across individuals who use different amounts of care. If moral hazard is the same in

levels across all individuals, as would be the case if the LATE from Oregon were globally externally

valid, then efforts to reduce moral hazard among high users would be just as effective as efforts

to reduce moral hazard among low users. However, if moral hazard is greatest among the high

users, then efforts that focus on curtailing their moral hazard will have the greatest impact. The

slope of the estimated marginal selection effect shows that the individuals most likely to sign up

for coverage are the individuals that would have the most utilization if they were uninsured, and

the slope of the estimated marginal treatment effect shows that the individuals most likely to sign

up for coverage increase their utilization the most upon gaining coverage. Therefore, in the OHIE,

moral hazard is greatest among the individuals who consume the most care.

For all measures of ER utilization, MTE(p) is positive for some individuals and negative for

others. The marginal treatment effect changes from positive to negative when the fraction treated

increases to p∗ = 0.43 for any visits, p∗ = 0.48 for the number of visits, and p∗ = 0.30 for

25I do not plot confidence intervals for MUO(p), MTO(p), and MTE(p) because they can be misleading. Unlike
the confidence intervals obtained from integrating each function over a range of p, which are of interest and reported
in Table 4, confidence intervals at a particular value of p are not of independent interest, and they are generally much
wider.
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total charges. For total charges, p∗ < pI , which indicates that even though OHIE compliers

have positive treatment effects on average, some compliers decrease their total charges when they

select into insurance. All never takers have negative treatment effects for total charges, and most

never takers have negative treatment effects for the other two measures.26 However, the negative

treatment effects for never takers are not observed in the OHIE because the never takers do not

gain insurance.

Although it is plausible for never takers to have negative treatment effects (for example, they

could plausibly decrease their ER utilization by substituting to primary care), it is not plausible for

never takers to have negative outcomes (for example, they could not plausibly have a negative visit

probability, a negative number of visits, or negative charges). As depicted in Figure 3, MTO(p)

and MUO(p) are almost always positive when ER utilization is measured in terms of any visits or

the number of visits (MTO(p) for number of visits is negative for 3% of the sample). However,

when ER utilization is measured in terms of ER total charges, MTO(p) is negative for 45% of

the sample – all never takers and some compliers. Therefore, even though it could be desirable

to specify the outcome in terms of ER total charges because it is more continuous than the other

measures, the linear extrapolation of ER total charges is the least plausible. Accordingly, when I

report inframarginal outcomes and treatment effects, I place the least emphasis on estimates that

rely on MTO(p) for ER total charges in the range of UD in which it is negative.

6.6 Inframarginal Outcomes and Treatment Effects from MTE(p)

Table 4 reports average treated outcomes, untreated outcomes, and treatment effects recovered

from MTO(p), MUO(p), and MTE(p). Column 1 reports estimates for always takers, the baseline

treated. The baseline treated treated outcome, BTTO, is observed, so it is reported in bold, along

with all other quantities that do not require linearity of MTO(p) and MUO(p). On average,

always takers visit the ER with probability 0.55, they make 1.89 visits, and they incur $8,794 in

total charges. The baseline treated untreated outcome, BTUO, is not observed because all always

takers receive coverage, but it can be estimated by weighting MUO(p). The estimated BTUO shows

that on average, if the always takers were uninsured, they would visit the ER with probability 0.42,

they would make 1.35 visits, and their ER total charges would be $3,801. The estimated BTTE

shows that upon gaining insurance, always takers increase their average probability of an ER visit

by 0.12, their average number of visits by 0.54, and their average total charges by $4,944. All of

these estimates are much larger than the corresponding estimates for compliers reported in Column

7, and the crosses indicate that they are statistically different.

Column 2 gives treated outcomes, untreated outcomes, and treatment effects for the baseline

untreated individuals, which include never takers and untreated compliers. This group is policy-

relevant because it represents the potential pool of individuals to whom coverage could be expanded

after the experiment. The average untreated outcome for these individuals, BUUO, is observed, but

the average treated outcome is not. Weighting the marginal treated outcome functionMTO(p) gives

26There are some never takers with positive treatment effects for any visits and number of visits because p∗ > pI .
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Table 4: Treated Outcomes, Untreated Outcomes, and Treatment Effects in Oregon: MTE(p)

(1) (2) (3) (4) (5) (6) (7) (8)
Group Baseline Treated 

(Always Takers)
Baseline Untreated 
(Never Takers and 

Untreated Compliers)

Intervention Treated 
(Always Takers and 
Treated Compliers)

Intervention Untreated 
(Never Takers)

Randomized 
Intervention Sample 

Treated

Randomized Intervention 
Sample Untreated

Local Average (Treated 
and Untreated 

Compliers)

Average

Intercept Slope g BT BU IT IU RIST RISU LA A

0.55*** 0.28*** 0.48*** 0.22*** 0.51*** 0.27*** 0.44*** 0.32***
0.59*** -0.53*** (0.53, 0.57)††† (0.18, 0.38)††† (0.46, 0.50)††† (0.09, 0.34)††† (0.49, 0.52)††† (0.16, 0.37)††† (0.41, 0.47) (0.24, 0.40)†††

(0.55, 0.63) (-0.76, -0.30) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
0.42*** 0.33*** 0.40*** 0.31*** 0.41*** 0.33*** 0.39*** 0.35***

0.44*** -0.18*** (0.36, 0.49)††† (0.33, 0.34)††† (0.35, 0.45)††† (0.30, 0.33)††† (0.36, 0.47)††† (0.32, 0.34)††† (0.35, 0.43) (0.33, 0.36)†††
(0.37, 0.52) (-0.31, -0.06) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

0.12*** -0.05 0.08*** -0.10 0.10*** -0.06 0.05* -0.02
0.15*** -0.35*** (0.05, 0.19)††† (-0.15, 0.05)††† (0.03, 0.13)††† (-0.23, 0.03)††† (0.04, 0.15)††† (-0.17, 0.04)††† (0.00, 0.10) (-0.11, 0.06)†††

(0.06, 0.23) (-0.62, -0.11) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

1.89*** 0.83** 1.62*** 0.55 1.73*** 0.76** 1.45*** 0.99***
2.05*** -2.12*** (1.73, 2.03)††† (0.26, 1.49)††† (1.47, 1.72)††† (-0.18, 1.40)††† (1.61, 1.81)††† (0.14, 1.47)††† (1.25, 1.66) (0.53, 1.54)†††

(1.81, 2.28) (-3.48, -0.61) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
1.35*** 0.95*** 1.25*** 0.85*** 1.29*** 0.92*** 1.19*** 1.01***

1.41*** -0.80*** (1.04, 1.74)††† (0.91, 1.00)††† (1.01, 1.55)††† (0.78, 0.92)††† (1.03, 1.63)††† (0.89, 0.97)††† (1.00, 1.43) (0.94, 1.11)†††
(1.06, 1.85) (-1.50, -0.21) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

0.54*** -0.12 0.37** -0.29 0.44** -0.17 0.27 -0.02
0.64*** -1.32 (0.12, 0.88) (-0.70, 0.54) (0.01, 0.62) (-1.08, 0.58) (0.07, 0.70) (-0.79, 0.55) (-0.09, 0.54) (-0.50, 0.51)

(0.14, 1.07) (-2.94, 0.44) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

$8,794*** -$3,006 $5,732*** -$6,068** $6,996*** -$3,824 $3,944*** -$1,218
$10,582*** -$23,601*** ($7,626, $9,902)††† (-$7,423, $1,380)††† ($4,987, $6,547)††† (-$11,844, -$420)††† ($6,356, $7,591)††† (-$8,617, $903)††† ($2,557, $5,436) (-$4,858, $2,409)†††

($8,828, $12,393) (-$34,299, -$12,906) BTTO BUTO ITTO IUTO RISTTO RISUTO LATO ATO
$3,801*** $3,109*** $3,621*** $2,930*** $3,695*** $3,061*** $3,516*** $3,214***

$3,905*** -$1,383 ($2,034, $5,809) ($2,906, $3,345) ($2,284, $5,145) ($2,545, $3,341) ($2,180, $5,423) ($2,899, $3,276) ($2,445, $4,744) ($2,831, $3,697)
($1,892, $6,208) (-$5,200, $1,878) BTUO BUUO ITUO IUUO RISTUO RISUUO LAUO AUO

$4,994*** -$6,115*** $2,111*** -$8,998*** $3,301*** -$6,885*** $428 -$4,432**
$6,677*** -$22,218*** ($2,587, $6,998)††† (-$10,552, -$1,638)††† ($387, $3,584)††† (-$14,857, -$3,206)††† ($1,440, $4,873)††† (-$11,686, -$2,053)††† (-$1,436, $2,142) (-$8,056, -$723)†††

($3,555, $9,326) (-$33,486, -$11,076) BTTE BUTE ITTE IUTE RISTTE RISUTE LATE ATE

ER Total Charges: RMSD = $6,414***($3,197, $9,667)

*** p<0.01, ** p<0.05, * p<0.1. Bootstrapped 95% confidence intervals in parentheses. Statistical significance (difference from the LATO, LAUO, or LATE): ††† p<0.01,  †† p<0.05,  † p<0.1.
Calculation of the bold quantities does not rely on linearity of MTO(p) or MUO(p).

Treatment 
Effect
TE

Untreated 
Outcome
UO

Treated 
Outcome
TO

MTE(p)

MUO(p)

MTO(p)

Function

Untreated 
Outcome
UO

MUO(p)

MTE(p)

MTO(p)

MTO(p)

MUO(p)

MTE(p)

Any ER Visits: : RMSD = 0.10*** (0.03, 0.18)

Number of ER Visits: RMSD = 0.38***(0.03, 0.85)

Untreated 
Outcome
UO
Treatment 
Effect
TE

Treated 
Outcome
TO

Treated 
Outcome
TO

Treatment 
Effect
TE
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an estimate of the insured ER utilization of these uninsured individuals. The baseline untreated

individuals would visit the ER with 28% probability when insured, but we only observe them visiting

the ER with 33% probability when uninsured, so the BUTE implies that insurance decreases the

probability of an ER visit by 5 percentage points for all individuals who were uninsured at baseline.

The number of visit results tell a similar story. The results show that insurance decreases the

number of visits by 0.12, from a BUUO of 0.95 to a BUTO of 0.83. The BUTE in terms of ER

total charges is also negative, but I interpret it with caution because the BUTO is also negative.

Column 4 gives results for the never takers, the intervention untreated. Never takers visited the

ER an average of 0.85 times, much less frequently than the always takers, who visited 1.89 times,

and the compliers, who visited 1.19 times. However, the IUTE estimates imply that never takers

would visit the ER even less, an average of 0.29 fewer times, if they had health insurance. The

estimates also imply that they would have a 10 percentage point lower probability of visiting the

ER, which is about half of their observed probability of visiting the ER.

Column 7 reports the local average treatment effect LATE for comparison to the other treatment

effects. Even though the LATEs in terms of number of visits and total charges are not statistically

different from zero at conventional levels,27 many of the treatment effects on other groups are,

indicating that even if there is no detectable treatment effect on the compliers in an experiment,

there could be detectable treatment effects on other groups of interest. As shown with crosses, the

LATE is often statistically different from other treatment effects of interest, indicating treatment

effect heterogeneity.

Column 8 reports ATO and AUO estimates that indicate that the average number of visits

among everyone that entered the lottery would be 0.99 with insurance but 1.01 without insurance,

implying a very small ATE. The ATE is so small because there are roughly as many individuals

with positive treatment effects as negative treatment effects. Because heterogeneous treatment

effects negate each other, the simple comparison of ATE to LATE obscures a substantial amount

of treatment effect heterogeneity. The RMSD estimates at the top of each panel show that the

standard deviation of the unexplained variance in ER utilization across all individuals that entered

the lottery is a 10% visit probability (27% of the average probability), or 0.38 visits (34% of the

average number of visits).

The ATE among all entrants is policy-relevant because it gives the treatment effect on all

individuals who entered the lottery. The ATE among all entrants extrapolates the treatment effect

to individuals who were not eligible for coverage, since proof of eligibility was not required to enter

the lottery. As I discuss in Section OA.2, I can use eligibility information in the administrative

data to recover an MTE(p) and treatment effects for eligibles. The estimates are very similar to

the estimates that include ineligibles, so I include the ineligibles in my preferred sample.28

27The standard errors obtained by recovering the LATE from MTE(p) are exactly the same as those obtained from
the regressions in Table 2.

28I aim for the OHIE to a be a model for other applications, and I do not want to suggest that other applications
require eligibility information.
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6.7 Treated Outcome Decomposition Results

In Table 5, I decompose the treated outcomes from Table 4 into selection and treatment components.

Column 1 shows that selection accounts 71% of the observed number of visits among always takers.

In other words, 71% of the visits that the always takers make to the emergency room would still take

place were they to lose coverage. However, always takers also increase their utilization when they

gain coverage, and that moral hazard is responsible for 29% of the visits that they make to the ER.

The 99% confidence intervals reject one and zero for all three measures of ER utilization, indicating

that the treated outcome for always takers reflects a combination of selection and treatment effects.

As shown in Column 7, the average utilization of compliers shows a greater role for selection.

For compliers who gain insurance, selection explains 88% of the probability of any visit, 82% of

the number of visits, and 89% of total charges. The decomposition rejects full selection at the 90%

level or higher for the first two measures of ER utilization, as shown by the significance crosses.

However, when ER utilization is measured in terms of total charges, some compliers, (those with

p∗ = 0.30 ≤ UD ≤ 0.41 = pI) have negative treatment effects. The combination of negative

treatment effects and positive selection effects results in a decomposition that cannot reject full

selection.

The decompositions of the treated outcomes for all of the untreated groups also reflect negative

treatment effects. Table 4 shows that untreated compliers and never takers would have a 28%

probability of visiting the ER if they had insurance, but they have a 33% probability without

insurance, so the BUTE is negative. The decomposition in Table 5 shows that the predicted

probability of visiting the ER with insurance would be 1.17 times higher if the treatment effect

were instead zero.

I can also decompose the difference in outcomes between insured lottery winners (the interven-

tion treated) and the insured lottery losers (the baseline treated). The results of this decomposition

should be of interest to insurers because they explain why average ER utilization is lower for in-

sured lottery winners than it is for insured lottery losers. Relative to the insured lottery losers, the

insured lottery winners are 7 percentage points less likely to visit the ER, they visit the ER 0.26

fewer times, and their total charges are $3,062 lower. The slope of the marginal untreated outcome

function relative to the marginal treated outcome function indicates that selection explains 33%

(-.18/-.53) of the visit probability difference, 38% of the visit number difference, and 6% of the

total charge difference. In other words, some of the difference in ER utilization between insured

lottery winners and insured lottery losers reflects adverse selection – the lottery losers that took up

coverage had a higher propensity to consume ER care even when uninsured. However, the main

reason for the difference is moral hazard – the lottery losers that took up coverage increased their

utilization by more upon gaining coverage.29

29The comparison of the intervention treated (always takers and compliers) to the baseline treated (always takers),
though policy-relevant, is not as direct as the comparison of always takers to compliers. The always takers visited
the ER an average of 1.89 times, while the compliers with insurance visited the ER an average of 1.45 times. The
BTTE shows that health insurance increased the ER utilization of always takers by an average of 0.54 visits, and the
LATE shows that health insurance increased emergency room (ER) utilization for compliers by an average of 0.26
visits. The comparison of the decompositions in Columns 1 and 7 shows that moral hazard is responsible for a larger

38



Table 5: Decompositions of Treated Outcomes and OLS Estimates into Selection and Treatment
Effects

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline 
Treated 

Baseline
Untreated

Intervention
Treated

Intervention
Untreated

Randomized
Intervention 

Randomized
Intervention 

Local 
Average

Average

BT BU IT IU RIST RISU LA A

0.77*** 1.17*** 0.83*** 1.44*** 0.81*** 1.23*** 0.88*** 1.07***
(0.65, 0.92)††† (0.87, 1.81) (0.73, 0.95)††† (0.91, 3.67) (0.70, 0.93)††† (0.89, 2.08) (0.77, 1.01)† (0.86, 1.44)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.23*** -0.17 0.17*** -0.44 0.19*** -0.23 0.12* -0.07
(0.08, 0.35)††† (-0.81, 0.13)††† (0.05, 0.27)††† (-2.67, 0.09)††† (0.07, 0.30)††† (-1.08, 0.11)††† (-0.01, 0.23)††† (-0.44, 0.14)†††
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.41*** 1.23*** 0.53*** 1.57*** 0.45*** 1.34***
(0.14, 0.76)††† (0.76, 1.67) (0.20, 0.86)††† (0.82, 2.54) (0.16, 0.79)††† (0.77, 1.96)

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.59*** -0.23 0.47*** -0.57 0.55*** -0.34
(0.24, 0.86)††† (-0.67, 0.24)††† (0.14, 0.80)††† (-1.54, 0.18)††† (0.21, 0.84)††† (-0.96, 0.23)†††
BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

0.71*** 1.15** 0.77*** 1.53 0.75*** 1.22** 0.82*** 1.02***
(0.55, 0.93)††† (0.63, 3.22) (0.62, 0.99)†† (-15.13, 14.18) (0.60, 0.96)†† (0.61, 5.15) (0.66, 1.07) (0.66, 1.92)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.29*** -0.15 0.23** -0.53 0.25** -0.22 0.18 -0.02
(0.07, 0.45)††† (-2.22, 0.37)†† (0.01, 0.38)††† (-13.18, 16.13) (0.04, 0.40)††† (-4.15, 0.39)†† (-0.07, 0.34)††† (-0.92, 0.34)†††
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.43*** 1.13*** 0.52*** 1.38*** 0.46*** 1.21***
(0.11, 0.85)††† (0.37, 1.71) (0.16, 0.98)†† (0.36, 2.63) (0.13, 0.90)†† (0.35, 2.06)

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.57*** -0.13 0.48** -0.38 0.54** -0.21
(0.15, 0.89)††† (-0.71, 0.63)††† (0.02, 0.84)††† (-1.63, 0.64)††† (0.10, 0.87)††† (-1.06, 0.65)†††
BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

0.43*** -1.03 0.63*** -0.48** 0.53*** -0.80 0.89*** -2.64
(0.24, 0.70)††† (-14.04, 5.94) (0.39, 0.93)††† (-3.27, -0.20)†† (0.31, 0.80)††† (-5.61, 5.08) (0.55, 1.50) (-27.00, 20.16)
BTUO/BTTO BUUO/BUTO ITUO/ITTO IUUO/IUTO RISTUO/RISTTO RISUUO/RISUTO LAUO/LATO AUO/ATO

0.57*** 2.03 0.37*** 1.48** 0.47*** 1.80 0.11 3.64
(0.30, 0.76)††† (-4.94, 15.04) (0.07, 0.61)††† (1.20, 4.27)†† (0.20, 0.69)††† (-4.08, 6.61) (-0.50, 0.45)††† (-19.16, 28.00)
BTTE/BTTO BUTE/BUTO ITTE/ITTO IUTE/IUTO RISTTE/RISTTO RISUTE/RISUTO LATE/LATO ATE/ATO

0.12 2.08*** 0.25 4.21*** 0.16 2.75***
(-0.16, 0.49)††† (1.31, 2.66)††† (-0.38, 0.87)††† (1.89, 7.68)††† (-0.21, 0.63)††† (1.48, 3.99)†††

(BOLS -
 BTTE)/BOLS

(BOLS -
 BUTE)/BOLS

(IOLS - 
ITTE)/IOLS

(IOLS -
 IUTE)/IOLS

(RISOLS - 
RISTTE)/RISOLS

(RISOLS -
 RISUTE)/RISOLS

0.88*** -1.08*** 0.75*** -3.21*** 0.84*** -1.75***
(0.51, 1.16) (-1.66, -0.31)††† (0.13, 1.38) (-6.68, -0.89)††† (0.37, 1.21) (-2.99, -0.48)†††

BTTE/BOLS BUTE/BOLS ITTE/IOLS IUTE/IOLS RISTTE/RISOLS RISUTE/RISOLS

Calculation of the bold quantities does not rely on linearity of MTO(p) or MUO(p).

*** p<0.01, ** p<0.05, * p<0.1. Bootstrapped 95% confidence intervals in parentheses. Statistical significance (difference from the LATE): ††† p<0.01,  †† p<0.05,  † p<0.1 (only 
indicated for the treatment effects).

(0.78, 1.07)

- -
Treatment Effect
TE/OLS

BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO

Selection
UO/TO

Treatment Effect
TE/TO

- -

($3,182, $4,623)

-
Treatment Effect
TE/OLS

Any ER Visits

- -(0.19, 0.23) (0.15, 0.19) (0.16, 0.20)
BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO

0.18***OLS = 
TTO - UUO

0.21*** 0.17***

Selection
UO/TO

Treatment Effect
TE/TO

-
Treatment Effect
TE/OLS

Selection
(OLS - TE)/OLS

Selection
UO/TO

Treatment Effect
TE/TO

-

Number of ER Visits

$2,803*** $3,935***
-

BOLS = BTTO - BUUO IOLS = ITTO - IUUO RISOLS = RISTTO - RISUUO
Selection
(OLS - TE)/OLS

-

ER Total Charges

0.94***
(0.62, 0.90) (0.68, 0.89)

0.77*** 0.81***

Selection
(OLS - TE)/OLS

OLS = 
TTO - UUO

-($4,475, $6,868) ($2,021, $3,602)
OLS = 
TTO - UUO

$5,685***
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6.8 OLS Decomposition Results

As shown in Table 5, the BOLS, IOLS, RISOLS estimates are positive for all measures of ER

utilization, indicating that insured individuals have higher ER utilization than uninsured individuals

whether they won the lottery or not. For all three measures of ER utilization, BOLS exceeds IOLS,

indicating that the treatment effect decreases with the potential treated fraction, as previously

formalized with the difference-in-difference test. If, as in standard practice, we were to assume

that the LATE is globally externally valid and divide LATE by RISOLS, then we would conclude

that the treatment effect is responsible for only 27% (0.05/0.18) of RISOLS for any visits, 33% of

RISOLS for number of visits, and 11% of RISOLS for total charges.

If we allow for a heterogeneous treatment effect by dividing RISTTE by RISOLS, we see that the

treatment effect actually has a greater role. The treatment effect is responsible for 55% (0.10/0.18)

of RISOLS for any visits, 54% of RISOLS for number of visits, and 83% of RISOLS for total charges.

The comparison of LATE to RISOLS understates the role of the treatment effect and overstates

the role of the selection effect because it does not acknowledge that treatment effects for always

takers (which is included in the RISTTE but not the LATE) are larger than the treatment effects

for compliers.

6.9 Subgroup Analysis Results from LATE and MTE(p)

Given the large differences in pre-period ER utilization observed between always takers, compliers,

and never takers in Table 3, Table 6 divides the sample into subgroups according to pre-period

ER utilization. Tables OA3-OA8 divide the sample according to the other covariates. The first

row reports the LATE in each subgroup. Across all tables, almost all of the LATEs are positive.

Therefore, is unlikely that traditional LATE re-weighting methods that rely only on observed

heterogeneity can explain why some health insurance expansions could decrease ER utilization.

However, it can be misleading to compare or re-weight LATEs across subgroups when those

LATEs are not globally externally valid. The slope of MTE(p) is often statistically different from

zero, indicating that there is often unexplained treatment effect heterogeneity within a subgroup.

Furthermore, as shown in the second row, the baseline and intervention treatment probabilities pB

and pI vary across subgroups, so the LATEs will not be comparable.

Comparison of Columns 1 and 2 show that though there is substantial treatment effect hetero-

geneity in the full sample, there is very little treatment effect heterogeneity among individuals that

visited the ER in the pre-period. In this subgroup, the LATE indicates that insurance increases the

probability of a visit by 7 percentage points, and the RMSD estimate indicates that the standard

deviation of the unexplained variance in the treatment effect is only 0.3 percentage points. In

contrast, in the full sample, the RMSD is 10 percentage points.

When MTE(p) slopes downward, p∗ gives the share of the sample with a positive treatment

effect. In most subgroups reported in Tables OA3-OA8, MTE(p) predicts that less than half of

share of utilization for always takers than it is for compliers. Furthermore, differences in moral hazard between two
groups explain 62% ((0.54-0.26)/(1.89-1.45)) of the difference in visits between the two groups.
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Table 6: LATE and MTE(p) Subgroup Analysis

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Full sample
Any ER visits in 
the pre-period

No ER visits in 
the pre-period

Full sample
>1 ER visits in 
the pre-period

≤ 1 ER visit in 
the pre-period

Full sample
Top 10% of ER total 
charges in the pre-

period

Bottom 90% of ER 
total charges in the 

pre-period

0.05* 0.07* 0.04 0.27 0.29 0.32*** $428 $5,778 $27
(0.00, 0.10) (0.00, 0.16) (-0.02, 0.10) (-0.09, 0.54) (-0.92, 1.43) (0.08, 0.49) (-$1,436, $2,142) (-$9,128, $18,514) (-$1,294, $1,302)

vs. full sample - - -
vs. complementary sample - - -

0.15*** 0.20*** 0.13*** 0.15*** 0.22*** 0.14*** 0.15*** 0.23*** 0.14***
(0.15, 0.16) (0.19, 0.21) (0.12, 0.13) (0.15, 0.16) (0.21, 0.24) (0.13, 0.14) (0.15, 0.16) (0.21, 0.26) (0.14, 0.15)

vs. full sample - *** *** - *** *** - *** ***
vs. complementary sample - - -
pI 0.41*** 0.47*** 0.38*** 0.41*** 0.49*** 0.39*** 0.41*** 0.51*** 0.40***

(0.40, 0.42) (0.45, 0.49) (0.36, 0.39) (0.40, 0.42) (0.47, 0.52) (0.38, 0.41) (0.40, 0.42) (0.47, 0.55) (0.39, 0.41)
vs. full sample - *** *** - *** *** - *** ***
vs. complementary sample - - -
MTE(p) intercept 0.15*** 0.07 0.13*** 0.64*** 0.11 0.45*** $6,677*** $25,628*** $3,353***

(0.06, 0.23) (-0.11, 0.21) (0.04, 0.23) (0.14, 1.07) (-1.90, 2.33) (0.15, 0.76) ($3,555, $9,326) ($3,776, $47,466) ($1,121, $5,175)
vs. full sample - - - * ***
vs. complementary sample - - -
MTE(p) slope -0.35*** 0.01 -0.38*** -1.32 0.51 -0.49 -$22,218*** -$53,606* -$12,262***

(-0.62, -0.11) (-0.34, 0.42) (-0.68, -0.08) (-2.94, 0.44) (-5.38, 5.76) (-1.51, 0.63) (-$33,486, -$11,076) (-$105,584, $6,817) (-$19,281, -$3,406)
vs. full sample - *** - - ***
vs. complementary sample - - -
p* 0.43*** -6.13 0.35*** 0.48 -0.21 0.92 0.30*** 0.48* 0.27***

(0.27, 0.97) (-11.83, 5.97) (0.19, 1.01) (-0.92, 2.26) (-4.10, 5.77) (-5.09, 7.27) (0.22, 0.45) (-0.77, 1.71) (0.16, 0.49)
vs. full sample - - -
vs. complementary sample - - -
RMSD 0.10*** 0.003*** 0.11*** 0.38*** 0.15*** 0.14*** $6,414*** $15,475*** $3,540***

(0.03, 0.18) (0.001, 0.13) (0.02, 0.19) (0.03, 0.85) (0.02, 1.81) (0.01, 0.44) ($3,197, $9,667) ($1,359, $30,479) ($983, $5,566)
N 19,643 6,709 12,934 19,622 3,405 16,210 19,628 1,962 17,657
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.

Number of ER Visits ER Total Charges

LATE

pB

Any ER Visits

***

***

*

***

***

***

***

*
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individuals have a positive treatment effect. However, pre-period utilization is a strong predictor of

positive treatment effects. The MTE(p) reported in Column 2 indicates that all individuals with

ER visits in the pre-period have positive treatment effects, but the MTE(p) reported in Column 2

indicates that only 35% of the remaining individuals have positive treatment effects.

The traditional instrumental variable regression model with covariates imposes that the treat-

ment effect is the same regardless of observed heterogeneity. As reported in Table OA2, the in-

strumental variable estimates that incorporate covariates yield treatment effect estimates that are

the same for all subgroups. The instrumental variable regression model can allow the treatment

effect to vary with observed heterogeneity if it includes interactions between the covariates and the

endogenous variable. MTE(x, p) allows the treatment effect to vary with observed and unobserved

heterogeneity.

6.10 Estimates of MTE(x,p)

Figure 4 depicts the linear30 SMTE(p) estimated with all covariates.31 For all three measures of

ER utilization, the SMTE(p) estimated with all covariates is less steep than the MTE(p) reported

with a solid line, indicating that covariates have a role in explaining why the treatment effect varies

with the quantile of the sample that selects into treatment.32 The SMTE(p) for the number of

ER visits is almost horizontal, indicating that almost all unobserved heterogeneity is explained.

Table 7 shows that when ER utilization is measured in terms of the number of ER visits,

the inclusion of all covariates decreases the standard deviation of unexplained heterogeneity from

RMSD(X0) = 0.38 visits to RMSD(X4) = 0.07 visits, so 83% of RMSD(X0) is explained. For

the other measures of ER utilization, covariates have less predictive power, as demonstrated by

the comparison of MTE(p) and SMTE(p). The inclusion of all covariates explains 28% of the

variation in the treatment effect in terms of any visits but only 8% in terms of total charges.

Next, I attempt to understand which covariates are most important for explaining heterogeneity

in the treatment effect. Using a dotted line, in the right panel of Figure 4, I report SMTE(p)

obtained from only the “common covariates” that are also available in the Behavioral Risk Factor

Surveillance System (BRFSS), on the grounds that these covariates are most likely to be available

30In Figure OA3, I report robustness of MTE(x, p) to the order of the global polynomial by plotting the estimated
quadratic and cubic SMTE(p) using all covariates. The linear, quadratic, and cubic polynomials all depict meaningful
treatment effect heterogeneity. All three polynomials generally decrease as the fraction treated increases, but cubic
and higher order polynomials vary widely, especially at high ranges of UD, because extrapolations rapidly approach
positive or negative infinity in regions where there is no data.

31“All covariates” include: “common covariates:” female, English, binary variables for each year of age, as well
as all two-way interaction terms; “pre-period utilization:” a binary variable for any ER visits in the pre-period and
a continuous variable for ER total charges in the pre-period (included in all specifications, regardless of outcome);
binary variables for SNAP and TANF enrollment in the pre-period, and a binary variable for whether the individual
signed up for the lottery on the first day. Section OA.3 discusses the propensity scores predicted with these covariates.

32It is readily apparent from these results that MTE methods provide an alternative approach to conditional
quantile IV estimation. Victor Chernozhukov, Ivan Fernandez-Val, and I developed a censored quantile instrumental
variable (CQIV) estimator (Chernozhukov et al. [2015]) to examine variation in moral hazard across individuals.
The results showed limited variation in moral hazard across the conditional quantiles of the expenditure distribution
(Kowalski [2016]), which is consistent with the results from SMTE(p). However, unlike the results from MTE(p),
they offered limited information about variation across the unconditional quantiles of the expenditure distribution,
especially since the CQIV algorithm requires covariates.
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Figure 4: MTE(x, p)
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Table 7: Explained and Unexplained Treatment Effect Heterogeneity

Explained Unexplained
Common 
covariates

Pre-period 
ER utilization

All covariates

0.10*** 0.00 1.00***
(0.03, 0.18) (0.00, 0.00)††† (1.00, 1.00)

0.15*** -0.49*** 1.49***
(0.07, 0.23) (-1.76, -0.06)††† (1.06, 2.76)†††

0.09*** 0.06 0.94***
(0.02, 0.17) (-0.52, 0.53)††† (0.47, 1.52)

0.07*** 0.28 0.72***
(0.01, 0.15) (-0.18, 0.77)††† (0.23, 1.18)

0.38*** 0.00 1.00***
(0.03, 0.85) (0.00, 0.00)††† (1.00, 1.00)

0.59*** -0.54 1.54***
(0.08, 1.00) (-7.79, 0.49)††† (0.51, 8.79)

0.02*** 0.94 0.06***
(0.01, 0.49) (-8.99, 0.98)††† (0.02, 9.99)

0.07*** 0.83 0.17***
(0.01, 0.43) (-6.96, 0.99)††† (0.01, 7.96)

$6,414*** 0.00 1.00***
($3,197, $9,667) (0.00, 0.00)††† (1.00, 1.00)

$9,351*** -0.46*** 1.46***
($5,325, $12,821) (-0.87, -0.12)††† (1.12, 1.87)†††

$6,884*** -0.07 1.07***
($3,045, $9,784) (-0.42, 0.36)††† (0.64, 1.42)

$5,930*** 0.08 0.92***
($2,676, $8,805) (-0.26, 0.42)††† (0.58, 1.26)

RMSD(Xc)
Xc

X

Any ER Visits

X0

X1

X2

X

X X

X XX3

X

Number of ER Visits

X0

X3

X1 X

X2 X

Statistical significance (difference from 0): *** p<0.01, ** p<0.05, * p<0.1. Statistical significance (difference from 1): ††† 
p<0.01,  †† p<0.05,  † p<0.1 (only indicated for the decompositions).

X X

X3 X

X2

X X

ER Total Charges

X0

X1 X

X X X

RMSD X0 −RMSD(Xc)
RMSD(X0)

RMSD(Xc)
RMSD(X0)
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for other samples of interest. For all three measures of ER utilization, the inclusion of these

covariates increases unexplained variation in the treatment effect, making SMTE(p) steeper, and

increasing RMSD(X1) by 50% relative to RMSD(X0), as reported in Table 7.33

The inclusion of measures of pre-period utilization substantially decreases the unexplained vari-

ation in the treatment effect, as shown in Figure 4 and quantified with RMSD(X2). The inclusion

of other covariates less likely to be available in other contexts, SNAP enrollment, TANF enrollment,

and whether the individual signed up on the first day, explain only slightly more variation in the

treatment effect for any visits and total charges, and they reduce the explained variation for the

number of ER visits.

I next explore which observable groups have the smallest and largest treatment effects. As

shown in the left of Figure 4, for the number of visits, minMTE(x, p) represents MTE(x, p) for

54 year-old males who do not request materials in English, had no ER visits in the pre-period,

were not on SNAP or TANF, and did not sign up on the first day of the lottery. For this group,

MTE(x, p) is negative for all 0 ≤ p ≤ 1, indicating negative treatment effects for all individuals in

this group that entered the lottery. The corresponding maxMTE(x, p) indicates positive treatment

effects for 42 year-old males who requested materials in English, had 17 ER visits and $15,759 in

charges in the pre-period, were on SNAP but not on TANF, and did not sign up on the first day

of the lottery. The predicted visit difference between individuals with the two covariate vectors is

almost six visits, which is very large relative to the predicted visit difference from the individual

with the lowest to the individual with the highest unobserved net cost of treatment UD within any

covariate vector.

The estimated MTE(x, p) can be thought of as a calculator that produces an estimate of the

treatment effect for an individual with covariate vector x who signs up for treatment when the

fraction treated within the group is p. In practice, it might be difficult to determine what value of

p to input into the calculator for a given individual, so it might be preferable to develop a calculator

from ATE(x), which integrates over all p, to provide general guidelines on the impact of treatment

across different demographic groups. If covariates explain all of the unobserved heterogeneity, then

MTE(x, p)=ATE(x), so no information is lost by integrating over p.

Figure 5 presents statistics on ATE(x) predicted for every individual in the sample. The

horizontal axis groups individuals into 20 bins with the same number of individuals in them, so

that the bins represent the ventiles of ATE(x). The vertical line indicates where ATE(x) goes from

negative to positive. The other lines give average covariate values for individuals at each ventile of

ATE(x). The thickest solid line shows that individuals with ages below the median age are more

prevalent among the groups with higher values of ATE(x). The solid line of medium thickness

shows that individuals with a pre-period visit to the ER in increase their ER utilization more than

other individuals when they gain insurance.

Table OA9 reports the SATE, the sample average of ATE(x), as well as all of the other sam-

33To understand why the inclusion of covariates can increase unexplained variation, consider a simple example in
which the young have larger treatment effects than the old and always takers have larger treatment effects than never
takers. However, always takers are more likely to be old. In this example, inclusion of a covariate for age can increase
unexplained variation in the treatment effect.
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Figure 5: Average Observables Across Ventiles of ATE(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ple treatment effects. SgTE need not equal the corresponding gTE. For example, SLATE is an

estimate of the treatment effect for compliers that incorporates observables, and LATE is an esti-

mate of the treatment effect for compliers that does not incorporate observables. If compliers are

observably different from other groups, then the SLATE need not equal the LATE, even if there is

no remaining unobserved heterogeneity.34

6.11 Extrapolating to the Natural Experiment

Before validating MTE(p) using the natural experiment that took place from the pre-period to the

experimental period, I perform a Monte Carlo exercise to benchmark how well it should perform

in absolute terms and relative to the LATE and the RISOLS in my application. I discuss the

implementation of the Monte Carlo exercise in Section OA.4. The first two columns of Table 8

report how well each estimator performs in the Monte Carlo designed to simulate the randomized

experiment. In Column 1, the true treatment effect θ is equal to the estimated LATE from the

OHIE. The LATE estimator generally has the smallest mean bias and RMSE, but the MTE(p)

estimator performs very similarly, especially as compared to the RISOLS estimator, which always

performs the worst. For example, the LATE estimator under-predicts total charges by $1.10, the

MTE(p) estimator under-predicts total charges by $1.30, and the RISOLS estimator over-predicts

total charges by $634. In contrast, in Column 2, when the MTE(p) from the OHIE is the true θ,

34Even the gTO and gUO that are observed and reported in bold in Table 1 need not be equal to the corresponding
SgTO and SgUO. As discussed in Section OA.1, the global polynomial estimation algorithm for MTE(x, p) esti-
mates two separate regressions: one for the randomized intervention sample treated and another for the randomized
intervention sample untreated. Therefore, the observed BTTO can be different from the predicted SBTTO because
the prediction includes all always takers, including those that win the lottery, but the observed BTTO includes only
the always takers that lose the lottery.
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the MTE(p) estimator substantially out-performs the other estimators on both dimensions.

Table 8: Validation Exercises

Any ER Visits
MTE(p) -0.00016 [1] 0.003 [2] -0.00039 [1] 0.072 [1] -0.00004 [2] 0.001 [2] -0.00004 [1] 0.016 [1] 0.00214 [1] 0.274 [1]
LATE -0.00016 [2] 0.002 [1] 0.07611 [2] 0.126 [2] -0.00004 [1] 0.001 [1] -0.01096 [2] 0.03 [2] -0.00878 [2] 0.274 [2]
RISOLS 0.08122 [3] 0.081 [3] 0.20282 [3] 0.227 [3] 0.01958 [3] 0.04 [3] 0.01958 [3] 0.044 [3] 0.02172 [3] 0.277 [3]

Number of ER Visits
MTE(p) -0.00051 [2] 0.012 [2] -0.00131 [1] 0.271 [1] -0.00003 [1] 0.006 [2] -0.00003 [1] 0.062 [1] -0.02925 [1] 1.29 [1]
LATE -0.00029 [1] 0.011 [1] 0.28857 [2] 0.479 [2] -0.00006 [2] 0.005 [1] -0.04135 [2] 0.112 [2] -0.07185 [3] 1.296 [3]
RISOLS 0.36696 [3] 0.367 [3] 0.82727 [3] 0.911 [3] 0.08837 [3] 0.18 [3] 0.08837 [3] 0.195 [3] 0.05499 [2] 1.293 [2]

ER Total Charges
MTE(p) -$1.3 [2] $20.7 [2] -$17.9 [1] $4,534.7 [1] -$0.2 [1] $10.6 [2] -$0.2 [1] $1,037.4 [1] -$34.6 [1] $10,984.8 [1]
LATE -$1.1 [1] $18.8 [1] $4,853.8 [2] $8,042.9 [2] -$0.2 [2] $9.2 [1] -$692.9 [3] $1,886.1 [3] -$725.8 [3] $11,091.9 [3]
RISOLS $634.0 [3] $634.0 [3] $8,366.0 [3] $10,540.9 [3] $152.6 [3] $311.0 [3] $152.6 [2] $1,287.8 [2] $99.5 [2] $10,994.6 [2]

Rankings for bias, in brackets, are based on absolute value.

RMSE Bias RMSE Bias RMSEBias RMSE Bias RMSE Bias

(5)

D*θ = D*(Y-Ypre)
Natural experiment

(3)

D*θ = D*LATE
Natural experiment

D*θ = D*MTE(p)
Natural experiment

(4)
Simulated data Observed data

(1)

θ = LATE
Randomized experiment

θ = MTE(p)
Randomized experiment

(2)

Columns 3 and 4 report how well each estimator performs in the Monte Carlo designed to

simulate the natural experiment. In the natural experiment, the observed change in outcomes,

Y −Ypre, should only reflect the treatment effect for individuals who gain coverage (the always takers

and compliers); it should be zero otherwise. Therefore, I examine the ability of each estimator to

recover the average observed treatment effect across all observations, E[Dθ]. The performance of

the estimators is similar. On the whole, the Monte Carlo results suggest that extrapolating based

on MTE(p) sacrifices a small amount of efficiency when the true treatment effect is equal to the

LATE, but it has huge gains when the true treatment effect is equal to MTE(p).

Next, I turn to validating the MTE results using the observed data from the natural experiment.

Unfortunately, the pre-period outcome Ypre is not directly comparable to the experimental outcome

Y . Individuals had to be uninsured for 6 months to enter the lottery, but the pre-period data

aggregate ER utilization over a longer time period, and they do not include any information on

pre-period insurance coverage.35. Therefore, I continue with the validation exercise to demonstrate

its application, but I interpret the findings with caution.

In Column 5, the bias and RMSE should be directly comparable to the bias and RMSE from

the Monte Carlo exercises in Columns 3 or 4 if either LATE or MTE(p) give the true treatment

effect. In practice, the bias and RMSE in the observed data are much larger.36 While I interpret

the results with caution because of measurement of Ypre, the MTE(p) estimator out-performs the

35The pre-period took place from January 1, 2007 to March 9, 2008, and the post-period took place from March
10, 2008 through September 30, 2009.

36One explanation is that Ypre is not directly comparable to Y for the reasons discussed above; another is that the
true treatment effect is not equal to the LATE or MTE(p); a third is that something changed from before to after
the experiment such that even individuals who did not gain coverage changed their ER utilization.
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other estimators.

6.12 Extrapolating to Massachusetts

Before extrapolating from the Oregon Health Insurance Experiment to the Massachusetts health

reform, I acknowledge that there are several factors that could have differed between the empirical

contexts that MTE methods will not address directly. At a fundamental level, the Oregon expansion

was a randomized experiment open to a relatively small group of individuals and the Massachusetts

reform was a state-wide policy. Therefore, Oregon impacts likely occurred through the demand-side,

but Massachusetts impacts could also have occurred through the supply-side.

Furthermore, institutional features of the health care environment could have differed across

states. As discussed by Miller [2012], Massachusetts had an uncompensated care pool that might

have encouraged excess emergency care before its dissolution and replacement under the Mas-

sachusetts reform. Also, both states could have had different social norms regarding emergency

room vs. primary care utilization.37 Health insurance terms could also have differed, especially

since Oregon expanded Medicaid alone and Massachusetts also expanded other types of coverage.

For extrapolation, I make the important assumption that D, which represents Medicaid in

Oregon, can be extrapolated to all types of health insurance in Massachusetts. I define the Mas-

sachusetts instrument Z to indicate individuals in Massachusetts after the reform. The resulting

Massachusetts baseline and intervention treatment probabilities, pB = 0.905 and pI = 0.956, are

both very high relative to the Oregon pB = 0.152 and pI = 0.411.38 However, the relevant treatment

probabilities for extrapolation to Massachusetts could be even higher.

It is likely that individuals who entered the Oregon lottery for health insurance had a stronger

desire to obtain coverage than individuals who obtained coverage after the Massachusetts health

reform to avoid paying a penalty. Therefore, the relevant pB and pI for extrapolation to Mas-

sachusetts from Oregon could exceed 1. I proceed under the conservative assumption that the

distribution of unobserved heterogeneity UD is the same in the Oregon and Massachusetts samples

so that pB and pI from Oregon and Massachusetts are comparable.

In Column 1 of the first row of the left panels of Table 9, I report the Oregon LATE for each

measure of ER utilization for reference. All LATEs are positive. Applying Massachusetts weights to

MTE(p) from Oregon in Column 2, I find negative LATEs for all three measures of ER utilization.

These extrapolations to Massachusetts imply that insurance should decrease the visit probability

by 0.17, the number of visits by 0.58, and charges by $13,797.39 The Miller [2012] examination

of the Massachusetts reform finds that insurance decreases the number of visits by 0.5 visits per

year, which is squarely in the range of my extrapolations. Therefore, my extrapolations potentially

reconcile the Oregon and Massachusetts results using only variation in unobservables.

37Those social norms could have differed between urban and rural areas. Though Massachusetts is more urban
than Oregon, the Oregon administrative data on ER utilization are only from the Portland area.

38I obtain these probabilities from the BRFSS, as summarized in Table OA1.
39The Massachusetts LATEs for any visits and total charges are statistically different from zero and from the

Oregon LATEs at the 10% level or better. The Massachusetts LATE for the number of visits is not statistically
significant, but neither is the underlying Oregon LATE.
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Table 9: Extrapolation from Oregon to Massachusetts

(1) - (2)
SLATE(· , OR) Unexplained

LATE( · ) 0.05* -0.17* 0.22*** SLATE(OR, · ) 0.05 1.04***
(0.00, 0.10) (-0.36, 0.00) (0.07, 0.40) (-0.01, 0.11) (0.99, 1.09)

(OR) (MA) (OR) - (MA) (OR, OR)

SLATE(· , · ) 0.05 -0.28*** 0.33*** SLATE(MA, · ) 0.05 1.00***
(-0.01, 0.11) (-0.47, -0.09) (0.16, 0.50) (-0.01, 0.12) (0.94, 1.06)
(OR, OR) (MA, MA) (OR, OR) - (MA, MA) (MA, OR)

-0.005
(-0.06, 0.06)†††

LATE( · ) 0.27 -0.58 0.85 SLATE(OR, · ) 0.26 1.04***
(-0.09, 0.54) (-1.71, 0.66) (-0.28, 1.88) (-0.08, 0.54) (0.90, 1.23)

(OR) (MA) (OR) - (MA) (OR, OR)

SLATE(· , · ) 0.26 -1.03 1.28** SLATE(MA, · ) 0.25 0.99***
(-0.08, 0.54) (-2.03, 0.27) (0.09, 2.24) (-0.09, 0.55) (0.76, 1.11)
(OR, OR) (MA, MA) (OR, OR) - (MA, MA) (MA, OR)

0.01
(-0.11, 0.24)†††

LATE( · ) $428 -$13,797*** $14,225*** SLATE(OR, · ) $40 1.02***
(-$1,436, $2,142) (-$22,256, -$5,843) ($7,070, $21,525) (-$2,506, $2,612) (1.00, 1.06)

(OR) (MA) (OR) - (MA) (OR, OR)

SLATE(· , · ) $40 -$20,832*** $20,872*** SLATE(MA, · ) -$193 0.99***
(-$2,506, $2,612) (-$29,948, -$10,359) ($11,537, $28,828) (-$2,770, $2,143) (0.95, 1.01)

(OR, OR) (MA, MA) (OR, OR) - (MA, MA) (MA, OR)

0.01
(-0.01, 0.05)†††

Sources: Oregon Administrative Data, 1 lottery entrant in household and Behavioral Risk Factor Surveillance System 2004-2009, Massachusetts data

A. Comparison of LATE and SLATE
(1) (2)

Statistical significance (difference from 0): *** p<0.01, ** p<0.05, * p<0.1. Statistical significance (difference from 1): ††† p<0.01,  †† p<0.05,  † p<0.1 (only indicated for the 
decompositions).

-$20,832***
(-$29,948, -$10,359)

-$21,324***
(-$30,698, -$10,789)

(MA, MA)

Explained -0.02**
(-0.06, -0.0001)†††

(OR, MA)

-1.03
(-2.03, 0.27)

ER Total Charges

(OR, MA)

B. SLATE Decompositions

(OR, MA)

-0.28***

(5)(3) (4)
SLATE(· , MA)

-0.29***
(-0.48, -0.09)

Any ER Visits

Number of ER Visits

-0.04*
(-0.09, 0.01)†††

-1.07
(-2.13, 0.26)

Any ER Visits

Number of ER Visits

ER Total Charges

Explained

(-0.47, -0.09)
(MA, MA)

(MA, MA)

Explained -0.04
(-0.23, 0.10)†††

OR, OR − (MA, OR)
OR, OR − (MA, MA)

OR, OR − (MA, MA)
OR, OR − (MA, MA)

OR, OR − (MA, OR)
OR, OR − (MA, MA)

OR, OR − (MA, MA)
OR, OR − (MA, MA)

OR, OR − (OR, MA)
OR, OR − (MA, MA)

MA, OR − (MA, MA)
OR, OR − (MA, MA)

OR, OR − (OR, MA)
OR, OR − (MA, MA)

MA, OR − (MA, MA)
OR, OR − (MA, MA)

OR, OR − (MA, OR)
OR, OR − (MA, MA)

OR, OR − (MA, MA)
OR, OR − (MA, MA)

OR, OR − (OR, MA)
OR, OR − (MA, MA)

MA, OR − (MA, MA)
OR, OR − (MA, MA)

Next, I examine the impact of observables on the extrapolations. I obtain observable character-

istics of the Massachusetts population with and without insurance before and after the reform using

the BRFSS data that I used in Kolstad and Kowalski [2012].40 The only three covariates that are

defined consistently in the Massachusetts and Oregon data are gender, age, and whether written

materials were requested in English. I compare common covariates from the Massachusetts and

Oregon data in Table OA1. The Oregon never takers and the Massachusetts compliers do not nec-

essarily have similar observables, even though the extrapolation of the LATE suggested that their

unobservables should be similar. However, as discussed in Section 6.10, these covariates increase

40Data from the other published studies that examine the impact of the Massachusetts health reform are not
available at the individual level, or they only include individuals who visit a hospital or emergency room, making
them unsuitable for this exercise. The BRFSS data do not include any measures of emergency room utilization, so I
cannot estimate a separate MTE(p) or MTE(x, p) in Massachusetts.
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unexplained treatment effect heterogeneity in Oregon, so it is not surprising that these covariates

do not explain differences between the Massachusetts and Oregon samples. Indeed, quantitative

evidence in Table 9 confirms that these observables do not explain the differences between the

samples.41

My methods allow for extrapolation based on unobservables, which is empirically important

in extrapolations from Oregon to Massachusetts. The SLATEs that extrapolate using only Mas-

sachusetts observables, reported in Column 3, are almost always positive. Therefore, existing sample

re-weighting methods that incorporate only available observables would not likely yield negative

treatment effects in Massachusetts. However, the SLATEs that extrapolate using Massachusetts

unobservables, reported in Column 4, are all negative, regardless of whether they also extrapolate

using Massachusetts observables. Though based on many restrictive assumptions, my extrapola-

tions can potentially reconcile the positive effect of insurance on ER utilization estimated using

the Oregon Health Insurance Experiment with the positive effect of insurance on ER utilization

estimated using the Massachusetts health reform.

7 Conclusion

7.1 Considerations for Experimental Design

The exercise of applying MTE methods to the OHIE brings to light several issues that should

be considered in the design of future experiments. The first issue is that it is easier to compare

interventions, outcomes, treatments, covariates, and samples that are consistently defined within

and across experiments. To facilitate comparison, data must be collected on all of these dimensions.

It is especially important to collect data on treatment. “Intent to treat” estimates produced without

treatment data reflect selection and treatment effect heterogeneity, and the two cannot be separated

without data on treatment. It is also important to collect data on always takers and never takers.

Many experiments only collect data only on individuals that remain in the experiment, potentially

excluding always takers and never takers.

A subtler issue is that if a proposed policy would have always takers and never takers, then

experiments to study the proposed policy should allow for always takers and never takers. Without

them, the MTE cannot be identified. In the absence of always and never takers, the LATE will

recover the ATE, but there will be no way to recover other policy-relevant LATEs of interest. For

example, suppose that researchers want to know the impact of a policy that would make free health

insurance available but not require eligibles to gain coverage. By forcing all lottery winners to gain

coverage and forcing all lottery losers to go uninsured, experimenters recover an ATE that could

41The second row of each left panel in Table 9 compares the SLATE estimated using Oregon observables and
unobservables in Column 1 to the SLATE estimated using Massachusetts observables and unobservables in Column
2. All of the Oregon SLATEs are positive, and all of the Massachusetts SLATEs are negative. As shown in the
next column, the difference between the Oregon and Massachusetts SLATEs is larger than the difference between the
Oregon and Massachusetts LATEs. The decompositions reported in the right panels of Table 9 show that covariates
explain from negative 4% to 1% of the difference in the SLATEs, depending on the decomposition and the measure
of ER utilization.
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differ from the policy-relevant LATE, and they hinder their ability to learn about selection. In

clinical trials, if the patients with the most to gain select into treatment first, then designing a trial

that employs strong encouragement techniques to entice all patients who win the lottery to select

into treatment could inadvertently dilute the policy-relevant treatment effect that would occur in

the absence of strong incentives to select into treatment.

Given these issues, perhaps the most productive way to improve the ability of experiments to

recover treatment effect heterogeneity with MTE methods is to run experiments with continuous

instruments. “Selective trials” proposed by Chassang et al. [2012] have promise. With a continuous

intervention, or even several different discrete interventions, the assumptions required to identify

treatment effect heterogeneity are weaker.

7.2 Summary

Meta-analysis investigates external validity by examining treatment effect heterogeneity across

experiments. I investigate external validity by examining treatment effect heterogeneity within an

experiment. The understanding of treatment effect heterogeneity within an experiment also informs

the optimal targeting of treatment based on observables and unobservables.

I examine treatment effect heterogeneity within the Oregon Health Insurance Experiment. I

find that the treatment effect and the selection effect of insurance on ER utilization decreases

from always takers to compliers to never takers. This finding informs a long-standing question by

showing that insurance increased ER utilization the most for the highest users. It also informs

a current policy-relevant question by showing that the impact of an insurance expansion on ER

utilization depends on the individuals covered by the expansion.
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OA Online Appendix

OA.1 Global Polynomial MTE Estimation of an MTE with Covariates

After choosing the order of the global polynomial, I estimate propensity scores and the aver-

age treated and untreated outcome functions ATO(x, p) and AUO(x, p). From those estimates,

I construct estimates of the marginal treated and untreated outcome functions MTO(x, p) and

MUO(x, p) and the marginal treatment effect.

Step 1: Specify the order M of the global polynomial

I specify the order M ≥ 1 of the global polynomial for the unobservable components of the average

treated and untreated outcome functions ATO(x, p) and ATO(x, p) as follows:

ATO(x, p) = E(YT |X = x, UD ≤ p)=β′Tx+ATO(p)=β′Tx+
M∑

m=0

γTmp
m (33)

AUO(x, p) = E(YU |X = x, UD > p)=β′Ux+AUO(p)=β′Ux+
M∑

m=0

γUmp
m. (34)

These specifications imply that MTE(x, p), MTO(x, p)42 and MUO(x, p)43 have the functional

forms specified in (18)-(20) with M th order global polynomials for mto(p), muo(p), and mte(p):

MTO(x, p) = β′Tx+ γT0 +

M∑
m=1

(m+ 1)γTmp
m (35)

MUO(x, p) = β′Ux+

M∑
m=0

γUmp
m +

M∑
m=1

mγUm(pm − pm−1). (36)

Step 2: Estimate the propensity score p

After dropping individuals with missing values for the outcome Y , I regress treatment D on the

instrument Z and covariates X. I interact Z with X to harness variation in pBx and pIx across

subgroups. I predict a propensity score px ≡ P (D = 1|Z,X) for each individual. The predicted

propensity scores can sometimes be less than zero or greater than one.

Step 3: Estimate ATO(x,p) and AUO(x,p)

I estimate the average treated outcome function ATO(x, p) using only the treated observations (the

observations with D = 1). I regress the outcome Y on the covariates X and a global polynomial

in the predicted propensity score as specified in (33). I save the predicted coefficients. Similarly, I

estimate the average untreated outcome function ATO(x, p) using only the untreated observations

(the observations with D = 0).

42MTO(x, p) = d[pATO(x,p)]
dp

= p dATO(x,p)
dp

+ ATO(x, p)
43MUO(x, p) = d[(1−p)AUO(x,p)]

d(1−p)
= − d[(1−p)AUO(x,p)]

dp
= −(1− p) dAUO(x,p)

dp
+ AUO(x, p).
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Step 4: Construct estimates of MTO(x,p), MUO(x,p), and MTE(x,p)

Using the predicted coefficients saved from Step 1, I construct estimates of the marginal treated

and untreated outcome functions MTO(x, p) following (35) and (36). I construct MTE(x, p) as

the difference between MTO(x, p) and MUO(x, p).

Step 5: Construct estimates of SgTO, SgUO, and SgTE

The predicted propensity scores estimated in Step 2 are censored such that all negative propensity

scores are censored at 0 and all propensity scores greater than 1 are censored at 1. For each

individual i in the sample, we obtain a value of pBx and pIx. Using the MTO(x, p), MUO(x, p),

and MTE(x, p) estimated in Step 4, we calculate the treated outcomes, untreated outcomes, and

treatment effects for each individual, which we average across all individuals by incorporating the

indicator function P (i ∈ g). P (i ∈ g) ensures that each SgTO, SgUO, and SgTE average only

incorporates the observable characteristics of the respective group g.

OA.2 Estimates Excluding Medicaid Ineligibles

Eligibility information is not available for all individuals who lost the lottery, so it is not possible

to restrict the sample to exclude ineligibles and estimate a LATE via an instrumental variable

regression just on the remaining individuals. However, given available eligibility information, it is

possible to estimate an MTE(p) restricted to exclude ineligibles. The Oregon administrative data

contain information on whether each individual who won the lottery had an approved application

for the lotteried program. The only way to enroll in Medicaid without an approved application was

to be eligible for the main program.

Among the intervention untreated (never takers who won the lottery), 40% submitted an appli-

cation that was not approved, so we know that at least 40% of never takers were ineligible for the

lotteried program, and we can identify those individuals in the data. Ineligibility dictates that these

individuals have the highest unobserved net costs of treatment UD in the full sample. Therefore,

the support that excludes the ineligibles excludes the 40% of never takers with the highest values

of UD. The exclusion of ineligible never takers does not guarantee that the remaining never takers

are eligible, but it gives an upper bound on the fraction of never takers that could be eligible.

Figure OA1 plots the IUUO of the remaining never takers over the remaining support. The

MUO(p) in sample that excludes the inelgibles is very similar to the IUUO from the full sample,

as depicted by the lighter dashed line. Therefore, MTE(p) and MUO(p) are also similar. The

ATE that excludes ineligibles is -0.005 for any ER visits, 0.0405 for the number of ER visits, and

-$4,498 for total charges. These ATEs are all very similar to the ATEs that include inelgibiles.44

44The ATEs that include ineligibles are -0.02 for any ER visits, -0.02 for the number of ER visits, and -$4,432 for
total charges.
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Figure OA1: Bounds and Estimates of MTE(p), Excluding Medicaid Ineligibles
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OA.3 Distribution of Estimated Propensity Scores

As part of the global polynomial estimation algorithm for MTE(x, p), I estimate a propensity score

that gives the predicted probability that each individual has insurance given observed character-

istics X and lottery winning status Z. I report a histogram of the estimated propensity scores

in increments of 0.05 in Figure OA2. I shade the histogram to reflect the shares of baseline and

intervention treated and untreated individuals in each bin. Because MTE(x, p) is the difference be-

tween the marginal treated outcome MTO(x, p) and the marginal untreated outcome MUO(x, p),

MTE(x, p) it is only nonparametrically identified in the common support of the treated and un-

treated. With this motivation, [Brinch et al., forthcoming] follow Carneiro et al. [2011] and identify

a common support using the estimated propensity scores for the treated and untreated to estimate

MTE(x, p) via a local polynomial.

However, I estimate MTE(x, p) via a global polynomial for extrapolation, so in the interest of

using all the data, I do not define a common support for the treated and untreated. Furthermore,

the estimated propensity scores reported in Figure OA2a give the support for the average treated

and untreated outcome functions ATO(x) and AUO(x). However, the support for the marginal

treated and untreated outcome functions MTO(p) and MUO(p), reported in Figure OA2b is wider.

The average treated outcome function is estimated on a mix of baseline and intervention treated.

Baseline treated have support from 0 ≤ UD ≤ pBx, and intervention treated have support from

0 ≤ UD ≤ pIx. Similarly, the average untreated outcome function is estimated on a mix of baseline

untreated (pBx < UD ≤ 1) and intervention untreated (pBx < UD ≤ 1). In Figure OA2b, I draw

uniformly from the relevant support for each individual to illustrate the support for the marginal

functions.45

The support for the marginal functions is very different from the support for the average func-

tions. Although there appears to be a common support for the treated and untreated at low values

of UD, there are almost no treated observations at values of UD above 0.7. Per the discussion in

Section OA.2, most never takers in that range were not eligible for Medicaid. Therefore, estimates

of MTE(x, p) are extrapolations for high values of UD, but they are generally within the common

support for low values of UD.

45Because I estimate the propensity scores with a linear probability model, some estimated propensity scores can
be less than zero or greater than one. In practice, when I incorporate all covariates, 964 observations have negative
estimated propensity scores, and no observations have estimated propensity scores greater than 1. I use all of the
estimated propensity scores for estimation of MTE(x, p). However, to calculate treatment effects from MTE(x, p)
following the discussion in Section 4.4, I censor the estimated propensity scores so that they fall between 0 and 1.
I report the censored propensity scores in Figure OA2. I draw from the support estimated for each individual with
covariate vector x using the censored propensity scores.
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Figure OA2: Distribution of Estimated Propensity Scores
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OA.4 Implementation of the Monte Carlo Exercise

Each Monte Carlo sample has the same number of observations N as my OHIE replication sample.

I generate the binary instrument Z such that s(pB)N individuals have Z = 1, where s(pB) is the

share of lottery winners in the OHIE. I draw UD so that it is uniformly distributed from 0 to 1

across all observations. (This is equivalent to drawing ν from any distribution and setting UD equal

to the quantiles of ν.) I generate the binary treatment D such that

D =


1 if 0 ≤ UD ≤ pB & Z = 0

1 if 0 ≤ UD ≤ pI & Z = 1

0 otherwise.
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I generate YU = MUO(UD) using the MUO(p) that I estimate in the OHIE for each measure of ER

utilization so that there is some selection. Next, I simulate two different versions of the outcome

Y . The first version reflects a homogenous treatment effect (θ = LATE) and the second version

reflects a heterogeneous treatment effect (θ = MTE). I generate

YT (θ) =

YU + LATE if θ = LATE

YU +MTE(UD) if θ = MTE

using the LATE and the MTE(p) that I estimate in the OHIE. I generate the observed outcome

for each θ: Y (θ) = (1−D)YU +DYT (θ). I retain the simulated Y (θ), D, Z, and the true treatment

effect θ for each observation.

In each Monte Carlo sample, for Y (LATE) and Y (MTE), I obtain an estimate of the treatment

effect θ̂ using three estimators: MTE(p), LATE, and RISOLS.46 I calculate the bias and RMSE as

follows:

Bias(θ̂) = E[θ̂ − θ]

RMSE(θ̂) =

√
E[(θ̂ − θ)2]

I repeat for 1,000 Monte Carlo samples, and I report the mean bias and RMSE across all samples.

This exercise validates how well each estimator performs in the simulated randomized experiment.

In the natural experiment, the observed change in outcomes from before to after the experiment

should only reflect the treatment effect for individuals who gain coverage (the always takers and

compliers); it should be zero otherwise. Therefore, in the natural experiment, we are interested in

how well each estimator recovers the observed treatment effect Dθ = Y −Ypre for each observation.

I construct Dθ̂ and Dθ for each observation, I calculate E[Dθ̂] and E[Dθ] across all observations,

and I report the bias and RMSE.

OA.5 Additional Figures and Tables

46I do not use the MTE(x, p) estimator because that estimator would require data on covariates. The most
important covariates seem to be those that measure pre-period utilization, and those covariates are not available for
the natural experiment (pre-period data are not available in the pre-period).
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Figure OA3: MTE(x, p) Robustness to Global Polynomial Order

 

  

61



Table OA1: Average Characteristics of Always Takers, Never Takers, and Compliers: Oregon vs.
Massachusetts

(1) (2) (3) (4) (5) (6) (7) (8)

Sample 
Average

Always 
Takers

Never 
Takers Compliers

Sample 
Average

Always 
Takers

Never 
Takers Compliers

Age in 2009 40.7 39.4 40.3 42.4 42.0 42.2 39.0 42.4
Female 0.56 0.72 0.53 0.53 0.51 0.52 0.38 0.43
English 0.91 0.90 0.91 0.92 0.96 0.98 0.81 0.86
Number of Observations 19,643 2,986 11,565 5,092 62,456 56,548 2,733 3,175

The number of observations reflects the sample counts for all always takers, never takers, and compliers.

Oregon Health Insurance Experiment Massachusetts Health Reform

Summary statistics in the Massachusetts sample were calculated using frequency weights.

Sources: Oregon Administrative Data, 1 lottery entrant in household and Behavioral Risk Factor Surveillance System 2004-
2009, Massachusetts data
Note that for the Massachusetts sample, there are more people in the treatment group than in the control group because there 
are more years of data in the post-reform period than in the pre-reform period. The pre-reform period spans 2004 through March 
2006. The post-reform period spans July 2007 through 2009. The during-reform period, which spans April 2006 through June 
2007, has been excluded from the analysis. 
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Table OA2: OHIE Replication and Extension

(1) (2) (3) (4)

Medicaid 0.0531 0.0551 0.0512 0.0456
(0.0286)* (0.0278)** (0.0262)** (0.0264)*
[0.0279]* [0.0274]** [0.0254]** [0.0256]*

Covariates No covariates
Common 
covariates

Common covariates 
and pre-period ER 

utilization
All covariates

Regression sample 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant

Observations 19,643 19,643 19,624 19,624

E[Y|Z=0] 0.37 0.37 0.37 0.37

(1) (2) (3) (4)

Medicaid 0.267 0.276 0.326 0.310
(0.175) (0.171)* (0.132)** (0.133)**
[0.151]* [0.149]* [0.123]*** [0.124]**

Covariates No covariates
Common 
covariates

Common covariates 
and pre-period ER 

utilization
All covariates

Regression sample 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant

Observations 19,622 19,622 19,624 19,624

E[Y|Z=0] 1.09 1.09 1.09 1.09

(1) (2) (3) (4)

Medicaid $428 $458 $539 $530
($927) ($944) ($877) ($886)
[$935] [$931] [$865] [$875]

Covariates No covariates
Common 
covariates

Common covariates 
and pre-period ER 

utilization
All covariates

Regression sample 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant 1 Lottery Entrant

Observations 19,628 19,628 19,624 19,624

E[Y|Z=0] $3,971 $3,971 $3,930 $3,930

Any ER Visits

Number of ER Visits

ER Total Charges

*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped standard errors in parentheses, 
asymptotic standard errors in square brackets. Standard errors are clustered at the 
household level.
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Table OA3: LATE and MTE(p) Subgroup Analysis: Any ER visits, 1 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English Non-English Age ≥ median Age < median

0.05* 0.01 0.10*** 0.06** -0.11 0.05 0.06
(0.00, 0.10) (-0.08, 0.08) (0.03, 0.18) (0.00, 0.12) (-0.28, 0.05) (-0.01, 0.12) (-0.04, 0.14)

vs. full sample - **
vs. complementary sample -

0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***
(0.15, 0.16) (0.19, 0.21) (0.09, 0.10) (0.14, 0.16) (0.14, 0.19) (0.12, 0.14) (0.16, 0.18)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.44*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.45) (0.36, 0.40) (0.40, 0.43) (0.34, 0.42) (0.41, 0.44) (0.38, 0.41)
vs. full sample - *** *** *** ***
vs. complementary sample -
MTE(p) intercept 0.15*** 0.12* 0.21*** 0.18*** -0.07 0.25*** 0.07

(0.06, 0.23) (-0.04, 0.25) (0.08, 0.32) (0.08, 0.27) (-0.35, 0.20) (0.15, 0.36) (-0.08, 0.20)
vs. full sample - ** *** *
vs. complementary sample -
MTE(p) slope -0.35*** -0.35* -0.45** -0.41*** -0.12 -0.71*** -0.03

(-0.62, -0.11) (-0.71, 0.03) (-0.85, -0.02) (-0.69, -0.18) (-1.07, 0.83) (-1.05, -0.41) (-0.48, 0.38)
vs. full sample - *** **
vs. complementary sample -
p* 0.43*** 0.34* 0.46** 0.44*** -0.63 0.35*** 2.54

(0.27, 0.97) (-0.02, 1.34) (0.23, 1.67) (0.29, 0.81) (-3.09, 7.03) (0.27, 0.47) (-7.66, 8.82)
vs. full sample -
vs. complementary sample -
RMSD 0.10*** 0.10*** 0.13*** 0.12*** 0.03*** 0.21*** 0.01***

(0.03, 0.18) (0.01, 0.21) (0.02, 0.24) (0.05, 0.20) (0.00, 0.35) (0.12, 0.30) (0.00, 0.14)
N 19,643 10,943 8,700 17,892 1,751 9,827 9,816
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.

***

***

**

**

LATE

pB

**

*

***

***
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Table OA4: LATE and MTE(p) Subgroup Analysis: Any ER visits, 2 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample
On SNAP in 
the pre-period

Not on SNAP in 
the pre-period

On TANF in 
the pre-period

Not on TANF in 
the pre-period

Signed up for 
lottery on first day

Did not sign up for 
lottery on first day

0.05* 0.06** 0.00 0.07 0.05* 0.03 0.06*
(0.00, 0.10) (0.00, 0.12) (-0.11, 0.11) (-1.68, 1.12) (0.00, 0.10) (-0.09, 0.15) (-0.01, 0.11)

vs. full sample -
vs. complementary sample -

0.15*** 0.21*** 0.08*** 0.63*** 0.14*** 0.16*** 0.15***
(0.15, 0.16) (0.20, 0.21) (0.07, 0.09) (0.58, 0.69) (0.13, 0.15) (0.14, 0.18) (0.14, 0.16)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.52*** 0.26*** 0.75*** 0.40*** 0.55*** 0.40***

(0.40, 0.42) (0.51, 0.54) (0.24, 0.27) (0.68, 0.81) (0.39, 0.41) (0.52, 0.59) (0.38, 0.41)
vs. full sample - *** *** *** *** *** ***
vs. complementary sample -
MTE(p) intercept 0.15*** 0.15*** 0.14* -0.69 0.14*** 0.16 0.15***

(0.06, 0.23) (0.04, 0.26) (0.00, 0.29) (-5.48, 2.58) (0.05, 0.23) (-0.05, 0.42) (0.05, 0.25)
vs. full sample -
vs. complementary sample -
MTE(p) slope -0.35*** -0.23* -0.81** 1.10 -0.35*** -0.38 -0.35***

(-0.62, -0.11) (-0.50, 0.02) (-1.44, -0.19) (-3.89, 7.88) (-0.62, -0.10) (-0.96, 0.18) (-0.63, -0.10)
vs. full sample -
vs. complementary sample -
p* 0.43*** 0.63* 0.17* 0.63 0.42*** 0.43 0.43***

(0.27, 0.97) (-0.34, 2.01) (-0.09, 0.41) (-2.93, 2.16) (0.27, 0.98) (-0.62, 1.56) (0.25, 1.03)
vs. full sample - * **
vs. complementary sample -
RMSD 0.10*** 0.07*** 0.23*** 0.32*** 0.10*** 0.11*** 0.10***

(0.03, 0.18) (0.01, 0.14) (0.05, 0.41) (0.02, 2.27) (0.03, 0.18) (0.01, 0.28) (0.03, 0.18)
N 19,643 11,181 8,462 464 19,179 1,827 17,816
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.

LATE

pB

*** ***

*** *** ***

*
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Table OA5: LATE and MTE(p) Subgroup Analysis: Number of ER Visits 1 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English Non-English Age ≥ median Age < median

0.27 0.14 0.39* 0.30 -0.15 0.14 0.44
(-0.09, 0.54) (-0.40, 0.61) (-0.08, 0.79) (-0.09, 0.58) (-0.70, 0.40) (-0.20, 0.51) (-0.10, 0.91)

vs. full sample -
vs. complementary sample -

0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***
(0.15, 0.16) (0.19, 0.20) (0.09, 0.10) (0.14, 0.16) (0.14, 0.18) (0.12, 0.14) (0.16, 0.18)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.43*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.45) (0.36, 0.40) (0.40, 0.43) (0.34, 0.42) (0.41, 0.45) (0.38, 0.41)
vs. full sample - *** *** ** **
vs. complementary sample -
MTE(p) intercept 0.64*** 0.48 0.92*** 0.72*** 0.14 0.98*** 0.31

(0.14, 1.07) (-0.40, 1.10) (0.22, 1.55) (0.17, 1.21) (-0.81, 0.81) (0.34, 1.60) (-0.57, 1.08)
vs. full sample - * *
vs. complementary sample -
MTE(p) slope -1.32 -1.06 -2.20 -1.51 -1.07 -3.01*** 0.48

(-2.94, 0.44) (-3.17, 1.25) (-4.96, 0.93) (-3.24, 0.35) (-4.46, 2.78) (-4.94, -0.91) (-2.18, 3.75)
vs. full sample - ** *
vs. complementary sample -
p* 0.48 0.45 0.42 0.48 0.13 0.33*** -0.63

(-0.92, 2.26) (-3.32, 3.83) (-0.60, 1.36) (-2.92, 1.43) (-1.25, 2.73) (0.20, 0.63) (-3.13, 3.83)
vs. full sample -
vs. complementary sample -
RMSD 0.38*** 0.31*** 0.63*** 0.44*** 0.31*** 0.87*** 0.14***

(0.03, 0.85) (0.02, 0.92) (0.06, 1.43) (0.03, 0.93) (0.02, 1.29) (0.26, 1.43) (0.02, 1.08)
N 19,622 10,932 8,690 17,871 1,751 9,816 9,806
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.

LATE

pB

***

***

***

**

**

66



Table OA6: LATE and MTE(p) Subgroup Analysis: Number of ER Visits, 2 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample
On SNAP in 
the pre-period

Not on SNAP in 
the pre-period

On TANF in 
the pre-period

Not on TANF in 
the pre-period

Signed up for 
lottery on first day

Did not sign up for 
lottery on first day

0.27 0.25 0.17 2.03 0.24 0.13 0.29
(-0.09, 0.54) (-0.22, 0.63) (-0.24, 0.63) (-3.46, 11.46) (-0.14, 0.50) (-0.54, 0.80) (-0.10, 0.59)

vs. full sample -
vs. complementary sample -

0.15*** 0.21*** 0.08*** 0.63*** 0.14*** 0.16*** 0.15***
(0.15, 0.16) (0.20, 0.21) (0.07, 0.09) (0.58, 0.69) (0.13, 0.15) (0.14, 0.18) (0.14, 0.16)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.52*** 0.26*** 0.75*** 0.40*** 0.55*** 0.40***

(0.40, 0.42) (0.51, 0.54) (0.24, 0.27) (0.68, 0.81) (0.39, 0.41) (0.51, 0.59) (0.38, 0.41)
vs. full sample - *** *** *** *** *** ***
vs. complementary sample -
MTE(p) intercept 0.64*** 0.68* 0.31 -15.69** 0.67*** 0.30 0.69***

(0.14, 1.07) (-0.06, 1.27) (-0.36, 0.88) (-64.75, -2.78) (0.15, 1.10) (-0.95, 1.45) (0.13, 1.18)
vs. full sample - **
vs. complementary sample -
MTE(p) slope -1.32 -1.16 -0.81 25.71** -1.58* -0.47 -1.48

(-2.94, 0.44) (-2.64, 0.74) (-3.67, 2.06) (4.07, 97.03) (-3.14, 0.34) (-3.79, 2.99) (-3.35, 0.39)
vs. full sample - **
vs. complementary sample -
p* 0.48 0.58 0.38 0.61*** 0.42* 0.63 0.47

(-0.92, 2.26) (-1.59, 3.82) (-0.84, 3.39) (0.39, 0.92) (-0.60, 1.48) (-3.67, 11.37) (-1.56, 2.09)
vs. full sample -
vs. complementary sample -
RMSD 0.38*** 0.34*** 0.23*** 7.42*** 0.46*** 0.14*** 0.43***

(0.03, 0.85) (0.01, 0.76) (0.02, 1.06) (1.66, 33.17) (0.04, 0.91) (0.00, 1.13) (0.04, 0.97)
N 19,622 11,163 8,459 464 19,158 1,825 17,797
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.
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Table OA7: LATE and MTE(p) Subgroup Analysis: ER Total Charges, 1 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample Female Male English Non-English Age ≥ median Age < median

$428 $358 $458 $579 -$1,698 -$845 $2,447*
(-$1,436, $2,142) (-$1,786, $3,052) (-$2,279, $2,486) (-$1,498, $2,543) (-$5,325, $2,757) (-$3,285, $1,376) (-$256, $5,163)

vs. full sample - *
vs. complementary sample -

0.15*** 0.20*** 0.10*** 0.15*** 0.16*** 0.13*** 0.17***
(0.15, 0.16) (0.19, 0.20) (0.09, 0.10) (0.14, 0.16) (0.14, 0.19) (0.12, 0.14) (0.16, 0.18)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.44*** 0.38*** 0.41*** 0.38*** 0.43*** 0.39***

(0.40, 0.42) (0.42, 0.45) (0.36, 0.40) (0.40, 0.42) (0.34, 0.42) (0.41, 0.45) (0.38, 0.41)
vs. full sample - *** *** *** ***
vs. complementary sample -
MTE(p) intercept $6,677*** $3,526* $12,621*** $7,141*** $3,273 $12,978*** $1,043

($3,555, $9,326) (-$536, $6,938) ($7,705, $17,980) ($3,848, $9,828) (-$2,518, $12,965) ($7,299, $17,478) (-$2,109, $5,619)
vs. full sample - ** *** *** ***
vs. complementary sample -
MTE(p) slope -$22,218*** -$10,050 -$51,011*** -$23,270*** -$18,170* -$49,187*** $4,986

(-$33,486, -$11,076) (-$22,997, $2,825) (-$76,451, -$30,594) (-$35,548, -$10,572) (-$45,109, $1,932) (-$66,927, -$31,935) (-$13,008, $15,926)
vs. full sample - *** *** *** ***
vs. complementary sample -
p* 0.30*** 0.35 0.25*** 0.31*** 0.18 0.26*** -0.21

(0.22, 0.45) (-1.08, 1.24) (0.20, 0.30) (0.23, 0.46) (-0.76, 0.46) (0.21, 0.31) (-3.40, 8.82)
vs. full sample - **
vs. complementary sample -
RMSD $6,414*** $2,901*** $14,726*** $6,717*** $5,245*** $14,199*** $1,439***

($3,197, $9,667) ($317, $6,639) ($8,832, $22,070) ($3,052, $10,262) ($620, $13,022) ($9,219, $19,320) ($52, $4,933)
N 19,628 10,939 8,689 17,877 1,751 10,309 9,319
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.
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Table OA8: LATE and MTE(p) Subgroup Analysis: Total Charges, 2 of 2

(1) (2) (3) (4) (5) (6) (7)

Full sample
On SNAP in 
the pre-period

Not on SNAP in 
the pre-period

On TANF in 
the pre-period

Not on TANF in 
the pre-period

Signed up for 
lottery on first day

Did not sign up for 
lottery on first day

$428 $838 -$964 $6,696 $359 $135 $460
(-$1,436, $2,142) (-$1,040, $2,744) (-$4,415, $2,853) (-$22,902, $61,820) (-$1,490, $2,030) (-$4,420, $4,184) (-$1,646, $2,320)

vs. full sample -
vs. complementary sample -

0.15*** 0.21*** 0.08*** 0.63*** 0.14*** 0.16*** 0.15***
(0.15, 0.16) (0.20, 0.21) (0.07, 0.09) (0.58, 0.69) (0.13, 0.15) (0.14, 0.18) (0.14, 0.16)

vs. full sample - *** *** *** ***
vs. complementary sample -
pI 0.41*** 0.52*** 0.26*** 0.75*** 0.40*** 0.55*** 0.40***

(0.40, 0.42) (0.51, 0.54) (0.24, 0.27) (0.68, 0.81) (0.39, 0.41) (0.51, 0.59) (0.38, 0.41)
vs. full sample - *** *** *** *** *** ***
vs. complementary sample -
MTE(p) intercept $6,677*** $7,535*** $5,134** -$2,132 $7,285*** $6,455 $6,742***

($3,555, $9,326) ($3,795, $11,332) ($879, $10,134) (-$116,349, $155,529) ($4,153, $9,843) (-$1,474, $14,257) ($3,555, $9,629)
vs. full sample - ***
vs. complementary sample -
MTE(p) slope -$22,218*** -$18,369*** -$36,019** $12,824 -$25,522*** -$17,821* -$22,977***

(-$33,486, -$11,076) (-$28,906, -$8,015) (-$67,999, -$3,445) (-$170,457, $141,769) (-$37,015, -$13,320) (-$39,988, $2,145) (-$36,598, -$9,550)
vs. full sample - ***
vs. complementary sample -
p* 0.30*** 0.41*** 0.14* 0.17 0.29*** 0.36 0.29***

(0.22, 0.45) (0.31, 0.59) (0.00, 0.30) (-3.51, 5.41) (0.22, 0.40) (-0.68, 0.74) (0.20, 0.50)
vs. full sample - ** ** **
vs. complementary sample -
RMSD $6,414*** $5,303*** $10,398*** $3,702*** $7,368*** $5,145*** $6,633***

($3,197, $9,667) ($2,314, $8,344) ($1,360, $19,630) ($546, $62,713) ($3,845, $10,685) ($507, $11,544) ($2,757, $10,565)
N 19,628 11,171 8,457 463 19,165 1,825 17,803
*** p<0.01, ** p<0.05, * p<0.1; Bootstrapped 95% confidence interval in parentheses.
Individuals with missing values for the corresponding pre-utilization measure were not included in the subgroups.
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Table OA9: Treated Outcomes, Untreated Outcomes, and Treatment Effects in Oregon: MTE(x, p)

(1) (2) (3) (4) (5) (6) (7) (8)
Baseline Treated 
(Always Takers)

Baseline Untreated 
(Never Takers and 

Untreated Compliers)

Intervention Treated 
(Always Takers and 
Treated Compliers)

Intervention 
Untreated 

(Never Takers)

Randomized 
Intervention Sample 

Treated

Randomized 
Intervention Sample 

Untreated

Local Average 
(Treated and 

Untreated Compliers)

Average

1(Z=0, D=1) 1(Z=0, D=0) 1(Z=1, D=1) 1(Z=1, D=0) 1(D=1) 1(D=0) 1

SBT SBU SIT SIU SRIST SRISU SLA SA
0.54*** 0.30*** 0.48*** 0.24*** 0.49*** 0.26*** 0.41*** 0.34***

(0.52, 0.56) (0.22, 0.38) (0.46, 0.50) (0.14, 0.35) (0.48, 0.56) (0.18, 0.37) (0.37, 0.45) (0.27, 0.41)
SBTTO SBUTO SITTO SIUTO SRISTTO SRISUTO SLATO SATO
0.45*** 0.33*** 0.41*** 0.31*** 0.42*** 0.32*** 0.37*** 0.35***

(0.38, 0.51) (0.33, 0.34) (0.37, 0.46) (0.30, 0.33) (0.38, 0.49) (0.31, 0.34) (0.33, 0.42) (0.34, 0.37)
SBTUO SBUUO SITUO SIUUO SRISTUO SRISUUO SLAUO SAUO
0.09*** -0.03 0.07*** -0.07 0.07*** -0.06 0.04* -0.01

(0.02, 0.17) (-0.12, 0.05) (0.02, 0.12) (-0.17, 0.04) (0.02, 0.15) (-0.15, 0.05) (-0.01, 0.09) (-0.08, 0.06)
SBTTE SBUTE SITTE SIUTE SRISTTE SRISUTE SLATE SATE

1.91*** 1.09*** 1.58*** 0.95*** 1.69*** 1.01*** 1.34*** 1.21***
(1.74, 2.06) (0.59, 1.64) (1.45, 1.70) (0.32, 1.63) (1.58, 1.88) (0.47, 1.67) (1.14, 1.57) (0.80, 1.67)

SBTTO SBUTO SITTO SIUTO SRISTTO SRISUTO SLATO SATO
1.53*** 0.94*** 1.27*** 0.85*** 1.36*** 0.89*** 1.11*** 1.03***

(1.20, 1.88) (0.91, 0.99) (1.01, 1.54) (0.79, 0.93) (1.10, 1.69) (0.84, 0.97) (0.89, 1.34) (0.96, 1.12)
SBTUO SBUUO SITUO SIUUO SRISTUO SRISUUO SLAUO SAUO
0.38** 0.15 0.31** 0.09 0.33** 0.11 0.24* 0.18

(0.02, 0.72) (-0.37, 0.69) (0.04, 0.56) (-0.56, 0.80) (0.03, 0.60) (-0.46, 0.75) (-0.04, 0.49) (-0.24, 0.61)
SBTTE SBUTE SITTE SIUTE SRISTTE SRISUTE SLATE SATE

$8,787*** -$2,331 $5,700*** -$5,015* $6,043*** -$4,690 $3,312*** -$626
($7,726, $9,774) (-$6,677, $1,605) ($4,950, $6,421) (-$10,371, $145) ($5,333, $9,195) (-$9,183, $1,145) ($1,407, $4,870) (-$4,136, $2,625)

SBTTO SBUTO SITTO SIUTO SRISTTO SRISUTO SLATO SATO
$3,901*** $3,053*** $3,491*** $2,922*** $3,690*** $3,068*** $3,053*** $3,173***

($2,204, $5,814) ($2,860, $3,290) ($2,122, $4,880) ($2,532, $3,287) ($2,309, $5,474) ($2,771, $3,315) ($1,926, $4,294) ($2,787, $3,579)
SBTUO SBUUO SITUO SIUUO SRISTUO SRISUUO SLAUO SAUO

$4,886*** -$5,385*** $2,208*** -$7,937*** $2,354*** -$7,758*** $1,012 -$3,798**
($2,396, $6,791) (-$9,704, -$1,461) ($727, $3,823) (-$13,341, -$2,757) ($956, $6,056) (-$12,181, -$1,814) (-$573, $2,986) (-$7,323, -$466)

SBTTE SBUTE SITTE SIUTE SRISTTE SRISUTE SLATE SATE
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*** p<0.01, ** p<0.05, * p<0.1. Bootstrapped 95% confidence intervals in parentheses.
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