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Dynamic Random Utility∗

Mira Frick Ryota Iijima Tomasz Strzalecki

Abstract

We provide an axiomatic analysis of dynamic random utility, characterizing the

stochastic choice behavior of agents who solve dynamic decision problems by maximizing

some stochastic process (Ut) of utilities. We show first that even when (Ut) is arbitrary,

dynamic random utility imposes new testable restrictions on how behavior across periods

is related, over and above period-by-period analogs of the static random utility axioms:

An important feature of dynamic random utility is that behavior may appear history

dependent, because past choices reveal information about agents’ past utilities and (Ut)

may be serially correlated; however, our key new axioms highlight that the model entails

specific limits on the form of history dependence that can arise. Second, we show that

when agents’ choices today influence their menu tomorrow (e.g., in consumption savings

or stopping problems), imposing natural Bayesian rationality axioms restricts the form

of randomness that (Ut) can display. By contrast, a specification of utility shocks that

is widely used in empirical work violates these restrictions, leading to behavior that may

display a negative option value and can produce biased parameter estimates. Finally,

dynamic stochastic choice data allows us to characterize important special cases of ran-

dom utility—in particular, learning and taste persistence—that on static domains are

indistinguishable from the general model.
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1 Introduction

1.1 Motivation

Random utility models are widely used throughout economics. In the static model, the agent

chooses from her choice set by maximizing a random utility function U . In the dynamic model,

the agent solves a dynamic decision problem, subject to a stochastic process (Ut) of utilities.

The key feature of the model is an informational asymmetry between the agent (who knows

her realized utility) and the analyst (who does not). In both the static and dynamic setting,

this asymmetry gives rise to choice behavior that appears stochastic to the analyst but is

deterministic from the point of view of the agent.1

A classic literature in decision theory axiomatically characterizes the stochastic choice be-

havior that is implied by any static random utility model, regardless of the details of the

agent’s random utility function (see Section 7.1). Axiomatic analysis helps shed light on which

behavior (e.g., the “attraction effect”) this model rules out, as well as which behavior (e.g.,

the restrictive “independence of irrelevant alternatives” assumption) is implied only by specific

parametric versions of random utility but not by the general model.2 Moreover, some axioms

have inspired empirical tests of the model (e.g., Hausman and McFadden, 1984; Kitamura and

Stoye, 2018).

This paper provides the first axiomatic characterization of the fully general and non-

parametric model of dynamic random utility. Our analysis yields the following main insights.

First, we show that even when the agent’s utility process is arbitrary, dynamic random utility

imposes new testable restrictions on how behavior across periods is related, over and above

period-by-period analogs of the static random utility axioms. An important feature of dynamic

random utility is that behavior generally appears history dependent to the analyst, because past

choices reveal some information about past utilities and (Ut) may display serial correlation: For

example, we expect an agent’s probability of voting Republican in 2020 to be different condi-

tional on voting Republican in 2016 than conditional on voting Democrat in 2016, as her past

voting behavior reflects her past political preferences, which are typically at least somewhat

persistent.3 However, our key new axioms highlight that any dynamic random utility model

imposes specific limits on the form of history dependence that can arise.

Second, in many dynamic decision problems, such as consumption-savings or optimal stop-

1We interpret this stochastic choice data as the analyst’s observation of a large population of individuals whose
heterogeneous (resp. stochastically evolving) utilities are realized according to U (resp. Ut). By convention, we
use “the agent” to refer to any one of these individuals whose identity is unknown to the analyst; see Section 2.2.3.

2See, e.g., Huber, Payne, and Puto (1982) and Block and Marschak (1960).
3Throughout the paper, we restrict attention to the case where utilities Ut evolve exogenously. Thus, from

the point of view of the agent, past choices have no effect on current utility. As we discuss in Section 7.2, our
characterization can be extended to allow for the latter effect (e.g., due to habit formation or active learning).
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ping problems, the agent’s choices today also influence her menu tomorrow. Our second main

result shows that imposing natural Bayesian rationality axioms on behavior in such settings

restricts the random evolution of the agent’s utility process. Specifically, randomness in Ut

must arise from shocks to the agent’s evaluation of instantaneous consumptions, and utilities

across periods are related by a Bellman equation that correctly anticipates future shocks. By

contrast, we show that a second form of utility shocks, shocks to actions, that are statistically

convenient and widely used in the empirical literature on dynamic discrete choice (DDC) can

give rise to behavior that violates basic features of Bayesian rationality.

Third, even when the agent only faces sequences of static choice problems and today’s

choices do not influence tomorrow’s menu, dynamic stochastic choice data makes it possible to

distinguish important models of utility shocks that are indistinguishable on static domains. In

particular, relative to the case of arbitrarily evolving utilities, we characterize the additional

behavioral content of an agent with a fixed but unknown utility about which she learns over

time and of an agent who displays taste persistence.

Our results are complementary to the DDC literature. The latter studies dynamic random

utility models, and associated phenomena such as history dependence and choice persistence,

with focus on identification and estimation. This paper provides decision-theoretic foundations

that focus on testable implications, comparative statics, and distinctions between key special

cases of dynamic random utility. We hope that the modeling tradeoff between shocks to con-

sumption and shocks to actions that we highlight will stimulate a conversation about desirable

properties of models and the ways to resolve this tradeoff.

1.2 Overview

Section 2 sets up our model of dynamic random expected utility (DREU). This generalizes the

static random expected utility framework of Gul and Pesendorfer (2006) to decision trees as

defined by Kreps and Porteus (1978). Each period t, the agent chooses from a menu At of

lotteries pt that determine both her current consumption zt and tomorrow’s menu At+1. Her

choices maximize a random vNM utility Ut whose realizations are governed by a probability

distribution µ over a state space Ω that allows for arbitrary serial correlation of utilities. From

the point of view of the analyst, this generates a history dependent stochastic choice rule: A

history ht−1 = (A0, p0, . . . , At−1, pt−1) summarizes that the agent chose lottery p0 from menu

A0, then faced A1 and chose p1, and so on. Following any history ht−1, the analyst observes the

conditional choice probability ρt(pt;At|ht−1) of pt from menu At. In particular, in period t = 0

there is no history to condition on, so ignoring ties, ρ0(p0;A0) = µ (U0(p0) = maxq0∈A0 U0(q0)),
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just as under static random utility. In period t = 1, we have

ρ1(p1;A1|A0, p0) = µ

(
U1(p1) = max

q1∈A1

U1(q1)
∣∣ U0(p0) = max

q0∈A0

U0(q0)

)
,

and analogously for any t > 1.

Section 3 characterizes DREU. Our key new axioms capture the following idea: As history

dependence under DREU results purely from the information that past choices reveal about

the agent’s utility, this entails certain forms of history independence. Specifically, we identify

two simple cases in which histories ht−1 and gt−1 reveal the same information about the agent’s

utilities, and we require that choice behavior ρt(·|ht−1) and ρt(·|gt−1) following two such histories

must coincide. Axiom 1, contraction history independence, considers the case where ht−1 can

be obtained from gt−1 by eliminating some options that are “irrelevant” to choices along the

history gt−1 (see Example 1 for an illustration). This rules out certain dynamically “irrational”

behavior such as the “mere exposure effect,” where the mere presence of some option that the

agent does not choose today might affect her behavior tomorrow.

Axiom 2, linear history independence, considers ht−1 and gt−1 that are “linear combinations”

of each other. As Example 2 illustrates, this axiom provides a conceptual justification for a

lottery-based extrapolation procedure we use to overcome the “limited observability” problem,

an important challenge specific to the dynamic setting: Whereas in the static domain the

analyst observes choices from all possible menus, in the dynamic setting any history of past

choices restricts the set of current and future choice problems, which over time, severely limits

the history-dependent choice data observable to the analyst. Theorem 1 shows that Axioms 1

and 2, along with a continuity condition and Gul and Pesendorfer’s (2006) axioms that ensure

static random utility maximization at each history, fully characterize DREU.

In DREU, the utility process (Ut) is unrestricted and in principle allows the agent to be

myopic or suffer from temptation problems. Section 4 studies the important special case of

Bayesian evolving utility (BEU), where the agent is dynamically sophisticated and forward-

looking with a correct assessment of option value. BEU is obtained by imposing Bayesian

rationality axioms on DREU; specifically, we adapt the preference for flexibility and dynamic

sophistication conditions from the menu preference literature to our stochastic choice setting.

Theorem 2 shows that these axioms yield a utility process (Ut) where the agent’s evaluation of

current consumption zt and continuation menu At+1 satisfies the Bellman equation

Ut(zt, At+1) = ut(zt) + δtE
[

max
pt+1∈At+1

Ut+1(pt+1)
∣∣Ft]

for some process (ut) of random felicities, (δt) of stochastic discount factors, and a filtration

(Ft) that represents the agent’s private information.
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Section 5 contrasts BEU with dynamic discrete choice (DDC) models. BEU is a special case

of the most general DDC model. However, for estimation purposes, most DDC models subject

the agent’s utility over continuation menus to additional randomness (shocks to actions) that

may be completely detached from their continuation value; Example 3 illustrates this in the

context of a simple stopping problem. Relative to BEU, we highlight the following modeling

tradeoff. On the one hand, shocks to actions are statistically more convenient, but unlike BEU,

they can lead to violations of a key feature of Bayesian rationality, positive option value: For

example, we show that more often than not, the agent chooses to make decisions as early as

possible, even when delay is costless and could provide her with better information about her

payoffs; moreover, greater uncertainty about her utilities may lead her to value delay less. In

settings such as Example 3, we also show that the conceptual differences between the two

models translate into systematically different parameter estimates.

Finally, Section 6 restricts to the simpler subdomain of atemporal consumption problems,

where each period agents choose only (lotteries over) today’s consumption and their current

choices do not affect tomorrow’s menu. Choice data on this domain is often featured in empir-

ical work (e.g., the literature on brand choice dynamics) and an important regularity is that

choices tend to display some “persistence.” As Example 1 illustrates, we show that two natural

forms of choice persistence capture the additional behavioral content of two important special

cases of BEU: Bayesian evolving beliefs (BEB), where current felicity ut represents the agent’s

expectation of her fixed but unknown tastes ũ about which she receives new information each

period; and the case where ut displays a non-parametric form of taste persistence. On our

original domain, Theorem 3 provides an alternative characterization of BEB in terms of a con-

sumption stationarity axiom that reflects the martingale property of beliefs. We also show that,

unlike BEU, under BEB the agent’s discount factor process is uniquely identified.

1.3 Illustrative Examples

Example 1 (Brand choice dynamics). A large marketing literature studies repeated consumer

choices between different brands.4 In this data, history-dependent choices are widely observed;

as an illustration, in Figure 1 (left), brand x is most popular at all nodes, but period 1 behavior

differs substantially across consumers who chose x in period 0 and those who chose y.

As discussed in the introduction, under dynamic random utility, history dependence can

result from the fact that agents’ tastes (ut) may be serially correlated. However, our axioms

in Section 3.1 show that even under arbitrary serial correlation of utilities, there are limits on

the forms of history dependence that can arise. For example, suppose an ex ante identical

population of consumers additionally face brand z in period 0 and choice frequencies are as in

4See the references in Section 6.
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Figure 1: Brand choice.

Figure 1 (right). As we will see, our Axiom 1 (contraction history independence) implies that

the period-1 choice frequencies among consumers who chose x in period 0 must be the same in

both decision trees in Figure 1. This is because z is an “irrelevant” alternative from the point

of view of x, as it does not affect x’s demand share.

In addition, we characterize precisely which non-parametric forms of serial correlation in

(ut) correspond to certain widely documented forms of history dependence. Specifically, the

data in Figure 1 (left) displays consumption inertia, where a sizable share of consumers who

chose y in period 0 chooses it again over x in period 1, and consumption persistence, where

the share of consumers choosing y in period 1 is higher among those who chose y in period

0 than among those who chose x in period 0. Section 6 shows that on simple domains such

as the one in Figure 1, consumption inertia characterizes consumers with fixed but unknown

utilities ũ about which they learn over time; i.e., ut represents their expectations of ũ given

period t information (as in our BEB model). By contrast, consumption persistence characterizes

consumers whose tastes ut display a particular form of positive serial correlation that we call

taste persistence. We also provide comparative statics of behavior with respect to the amount

of taste persistence. N

Example 2 (School choice). Unlike Example 1, in many economic settings agents’ choices today

also affect their menus tomorrow. Figure 2 (left) provides a stylized example in the context

of school choice. In period 0, parents decide to enroll their child in one of two elementary

schools, which differ along many decision-relevant dimensions. Upon enrolling, parents must

then choose between a number of after-school care options: H (stay at home/leave the child

with relatives); P (a high quality but high cost private after-school center); or S (a more basic

and lower cost after-school program offered only by school 1). Thus, choosing school 1 leads to

6
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Figure 2: School choice.

period-1 menu {H,P, S}, whereas school 2 leads to menu {H,P}.
In such settings, history-dependent choice behavior can result from dynamic selection effects:

Different types of parents select into each school, so the observed choices from {H,P, S} and

from {H,P} do not reflect the unconditional choice frequencies that would arise if all parents

made choices from either menu.5 Failure to account for this may lead to spurious violations

of random utility. For example, in Figure 2 (left), the share of parents choosing P is larger at

school 1 (30%) than school 2 (20%), despite the fact that more options are available at school 1.

Ignoring history dependence, this behavior appears to violate the Regularity axiom, which is

a well-known implication of static random utility (Block and Marschak, 1960). However, it is

entirely consistent with dynamic random utility maximization, because under serially correlated

private information the preferences of parents at each school will differ.6 In Section 3.3, we

show that under dynamic random utility, period-by-period versions of the static random utility

axioms are valid only if the analyst controls for past choices.

As discussed in the introduction, another important challenge implied by history dependence

is limited observability. For example, in the left-hand decision tree in Figure 2 we do not observe

the counterfactual frequencies with which parents at school 1 would choose between H and P

if S was not available to them; and given dynamic selection, we cannot simply infer these from

the corresponding choice frequencies of parents at school 2. However, in practice many schools

5This is a key difference between our setting and (i) Ahn and Sarver (2013) and (ii) Fudenberg and Strzalecki
(2015): (i) assume that period-0 choices between menus are deterministic; (ii) assume that the agent’s utility
process is i.i.d. In either case, there are no dynamic selection effects and period-1 choices from menus are
history-independent.

6E.g., a preference for other features of school 2 may happen to be strongly correlated with a preference for
H; or parents for whom H is more costly might select disproportionately into school 1 because it expands their
outside-the-home options.
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ration their seats via lotteries, a fact that is widely exploited in the empirical literature on

school choice to generate quasi-experimental variation.7 This is illustrated in the right-hand

tree in the figure, where each application to school 1 is successful with probability λ and the

parent must select school 2 otherwise. In Section 3.2, we show how in such settings, the analyst

can extrapolate the choices that school 1 parents in the left-hand tree would make from the

set {H,P} by looking at choices of parents in the right-hand tree who applied to school 1 but

were rejected by the lottery. Our Axiom 2 (linear history independence) provides a conceptual

justification for this extrapolation procedure, as it implies that the inference does not depend

on the randomization probability λ. N

Example 3 (Optimal stopping). Consider the following optimal stopping problem. The agent

can consume a in period 0 (and nothing in period 1) or defer consumption and then choose

between a or b in period 1, whichever she prefers at that point. For example, suppose b is a more

expensive substitute for a that the agent can only afford by foregoing consumption in period 0

and accumulating enough savings by period 1; or b is a new model with release date scheduled

for period 1. Figure 3 depicts the decision tree, where A1 := {a, b} and A0 := {a,A1}.

a

a

b

A0

A1

Figure 3: Optimal stopping.

How the agent resolves the tradeoff between immediate consumption and the option value

of delay depends on the underlying structural parameters: the distribution of utility shocks and

the discount factor δ. Section 5 contrasts two models of utility shocks: Shocks to consumption

apply only to instantaneous consumptions and affect the agent’s evaluation of tomorrow’s menu

only through her anticipation of future shocks to consumption; by contrast, shocks to actions

subject today’s evaluation of tomorrow’s menu to an additional shock that may be completely

detached from its continuation value. We show that this is the main difference between our BEU

model (shocks to consumption) and many widely used models in the DDC literature (shocks

to actions).

In the present example, compare the following specifications of BEU and DDC, where all

shocks are assumed i.i.d. for simplicity. BEU assigns shocks εa0, εa1, and εb1 to the instantaneous

7E.g., Abdulkadiroglu, Angrist, Narita, and Pathak (forthcoming); Angrist, Hull, Pathak, and Walters (forth-
coming); Deming (2011); Deming, Hastings, Kane, and Staiger (2014).
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consumptions in periods 0 and 1, and the latter two enter the continuation value to menu A1:

UBEU
0 (a) = v(a) + εa0 and UBEU

0 (A1) = δE
[
max{v(a) + εa1, v(b) + εb1}

]
.

By contrast, i.i.d. DDC assigns an additional shock εA1
0 to the period 0 action of delaying and

choosing menu A1, even though this entails no instantaneous consumption:

UDDC
0 (a) = v(a) + εa0 and UDDC

0 (A1) = δE
[
max{v(a) + εa1, v(b) + εb1}

]
+ εA1

0 .

Section 5 shows that shocks to actions can lead to counterintuitive behavior, such as a

negative option value. Additionally, they can result in biased parameter estimates: In the

present example, the maximum likelihood estimate of the discount factor under i.i.d. DDC is

exaggerated relative to BEU. N

2 Static vs. Dynamic Random Utility

For any set Y , denote by K(Y ) the set of all nonempty finite subsets of Y and by ∆(Y ) the set of

all simple (i.e., finite support) lotteries on Y ; henceforth, all references to lotteries are to simple

lotteries. Whenever Y is a separable metric space, we endow ∆(Y ) with the induced Prokhorov

metric and K(Y ) with the Hausdorff metric. Let RY denote the set of vNM utility indices

over Y , which is endowed with the product topology and its induced Borel sigma-algebra. For

any U,U ′ ∈ RY , write U ≈ U ′ if U and U ′ represent the same preference on ∆(Y ). For any

finite set of lotteries A ∈ K(∆(Y )), let M(A,U) := argmaxp∈A U(p) denote the set of lotteries

in A that maximize U , where U(p) :=
∑

y∈supp(p) U(y)p(y) denotes the expected utility of any

p ∈ ∆(Y ). For any A,B ∈ K(∆(Y )) and α ∈ [0, 1], define the α-mixture of A and B by

αA+ (1− α)B := {αp+ (1− α)q : p ∈ A, q ∈ B} ∈ K(∆(Y )).

2.1 Static Random Utility

We first briefly review the static model of random expected utility that will serve as the build-

ing block of our dynamic representation at each history. The model is based on Gul and

Pesendorfer (2006), but allows for an infinite outcome space; this extension is necessary for our

purposes, because in the dynamic setting the period-t outcome space Xt, consisting of all pairs

of current consumptions and continuation menus, will be infinite in all but the final period. In

Section 2.2.3, we interpret the stochastic choice data that this model gives rise to in terms of a

large population of heterogeneous individuals whose identities are unknown to the analyst, but

by convention, we express the model and axioms in terms of the behavior of any one of these

individuals, referred to as “the agent.”
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2.1.1 Agent’s problem

Let X be an arbitrary separable metric space of outcomes. The agent makes choices from

menus, which are finite sets of lotteries over X; the set of all menus is A := K(∆(X)). Denote

a typical menu by A and a typical lottery by p. Let (Ω,F∗, µ) be a finitely-additive probability

space. In each state of the world, the agent’s choices maximize her expected utility subject to

her private information. Her payoff-relevant private information is captured by a sigma-algebra

F ⊆ F∗ and an F -measurable random vNM utility index U : Ω→ RX . In case of indifference,

ties are broken by a random vNM index W : Ω→ RX , which is measurable with respect to F∗.
Thus, when faced with menu A, the agent chooses lottery p in state ω if and only if p maximizes

U(ω) in A and, in case of ties, additionally maximizes W (ω) among the U(ω)-maximizers. The

event in which the agent chooses p from A is C(p,A) := {ω ∈ Ω : p ∈M(M(A,U(ω)),W (ω))}.
For tractability, we follow Ahn and Sarver (2013) in assuming that the agent’s payoff-

relevant private information (F , U) is simple, i.e., (i) F is generated by a finite partition such

that µ(F(ω)) > 0 for every ω ∈ Ω, where F(ω) denotes the cell of the partition that contains

ω; and (ii) each U(ω) is nonconstant and U(ω) 6≈ U(ω′) whenever F(ω) 6= F(ω′). Moreover,

the tie-breaker W is proper,8 ensuring that under W ties occur with probability 0 in each menu;

that is, µ({ω ∈ Ω : |M(A,W (ω))| = 1}) = 1 for all A ∈ A.

2.1.2 Analyst’s problem

The analyst does not observe the agent’s private information and thus cannot condition on

events in F . Because of this informational asymmetry, the agent’s choices appear stochastic

to the analyst.9 His observations are summarized by a stochastic choice rule on A, i.e., a

map ρ : A → ∆(∆(X)) such that
∑

p∈A ρ(p,A) = 1 for all A ∈ A. Here ρ(p,A) denotes

the probability with which the agent chooses lottery p when faced with menu A. If the agent

behaves as in the previous section, then the event that the agent chooses p from A is C(p,A).

Thus, the analyst’s observations are consistent with the previous section if ρ(p,A) = µ(C(p,A))

for all p and A.

Definition 1. A static random expected utility (REU) representation of the stochastic choice

rule ρ is a tuple (Ω,F∗, µ,F , U,W ) such that (Ω,F∗, µ) is a finitely-additive probability space,

the sigma-algebra F ⊆ F∗ and the F -measurable utility U : Ω → RX are simple, the F∗-
measurable tiebreaker W : Ω→ RX is proper, and ρ(p,A) = µ(C(p,A)) for all p and A.

8This property is sometimes called “regular” in the literature; we use the term “proper” to avoid confusion
with the Regularity axiom (Axiom 0 (i)) below.

9If the analyst observed the true state, choices would appear deterministic and could be summarized by a
vNM preference %ω.
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2.1.3 Characterization

For finite outcome spaces X, static REU representations have been characterized by Gul and

Pesendorfer (2006) and Ahn and Sarver (2013). As a preliminary technical contribution, we

extend their characterization to simple lotteries over arbitrary separable metric spaces X. The

first four conditions of the following axiom are the same as in Gul and Pesendorfer (2006). The

fifth condition is a slight modification of the finiteness condition in Ahn and Sarver (2013).

Axiom 0. (Random Expected Utility)

(i). Regularity : If A ⊆ A′, then for all p ∈ A, ρ(p;A) ≥ ρ(p;A′).

(ii). Linearity : For any A, p ∈ A, λ ∈ (0, 1), and q, ρ(p;A) = ρ(λp+(1−λ)q;λA+(1−λ){q}).

(iii). Extremeness : For any A, ρ(extA;A) = 1.10

(iv). Mixture Continuity : ρ(·;αA+ (1− α)A′) is continuous in α for all A,A′.

(v). Finiteness : There is K > 0 such that for all A, there is B ⊆ A with |B| ≤ K such that for

every p ∈ Ar B, there are sequences pn →m p and Bn →m B with ρ(pn; {pn} ∪ Bn) = 0

for all n.

For condition (iv), α 7→ ρ(·;αA + (1 − α)A′) is viewed as a map from [0, 1] to ∆(∆(X)),

where ∆(∆(X)) is endowed with the topology of weak convergence induced by the Prokhorov

metric on ∆(X). For condition (v), convergence in mixture, denoted →m, on ∆(X) and A is

defined as follows: For any p ∈ ∆(X) and sequence {pn}n∈N ⊆ ∆(X), we write pn →m p if

there exists q ∈ ∆(X) and a sequence {αn}n∈N with αn → 0 such that pn = αnq+ (1−αn)p for

all n. Similarly, for any sequence {Bn}n∈N ⊆ A, we write Bn →m p if there exists B ∈ A and

a sequence {αn}n∈N with αn → 0 such that Bn = αnB + (1− αn){p} for all n. Finally, for any

A ∈ A and sequence (An)n∈N ⊆ A, we write An →m A if for each p ∈ A, there is a sequence

{Bn
p }n∈N ⊆ A such that Bn

p →m p and An = ∪p∈ABn
p for all n.

Theorem 0. The stochastic choice rule ρ on A satisfies Axiom 0 if and only if ρ admits an

REU representation.

Proof. See Supplementary Appendix F. �

2.2 Dynamic Random Utility

Motivated by the examples in Section 1.3, in what follows, we set up and characterize a general

model of dynamic random utility.

10Here extA denotes the set of extreme points of A.
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2.2.1 Agent’s Problem

The agent faces a decision tree, as defined by Kreps and Porteus (1978). There are finitely

many periods t = 0, 1, . . . , T . There is a finite set Z of instantaneous consumptions. Each

period t, the agent chooses from a period-t menu, which is a finite set of lotteries over the

period-t outcome space Xt. The spaces Xt are defined recursively. The final period outcome

space XT := Z is just the space of instantaneous consumptions; the set of all period-T menus

is AT := K(∆(XT )). In all earlier periods t ≤ T − 1, the outcome space Xt := Z × At+1

consists of all pairs of current period consumptions and next period continuation menus; the

set of period-t menus is At := K(∆(Xt)).
11 Denote a typical period-t lottery by pt ∈ ∆(Xt) and

a typical menu by At ∈ At. The agent’s choice of pt ∈ At determines both her instantaneous

consumption zt and the menu At+1 from which she will choose next period; let pZt ∈ ∆(Z) and

pAt ∈ ∆(At+1) denote the respective marginal distributions.

As in the static model, let (Ω,F∗, µ) be a finitely-additive probability space. Under dynamic

random expected utility (DREU), in each state of the world and in each period, the agent’s

choices maximize her expected utility subject to her dynamically evolving private information.

The agent’s payoff-relevant private information is captured by a filtration (Ft)0≤t≤T ⊆ F∗ and

an Ft-adapted process of random vNM utility indices Ut : Ω → RXt over Xt. This allows for

arbitrary serial correlation of utilities, but does not allow the utility process to depend on past

consumption; Section 7.2 discusses how to relax the latter restriction. In case of indifference,

ties at each t are broken by a random F∗-measurable vNM utility index Wt : Ω→ Xt, where we

impose dynamic analogs of simplicity and properness that we define at the end of this section.

Thus, as before, when faced with menu At in period t, the agent chooses lottery pt in the event

C(pt, At) := {ω ∈ Ω : pt ∈M(M(At, Ut(ω)),Wt(ω))}.
DREU is a very general model because it imposes no particular structure on the family (Ut).

This is the most parsimonious setting in which to isolate the behavioral implications of serially

correlated private information. DREU could also accommodate various behavioral effects, such

as temptation or certain forms of “mistakes” (e.g., Ke, 2018), which in the static setting are

indistinguishable from random utility maximization. However, the following important special

case rules out these possibilities.

Bayesian evolving utility (BEU) captures a dynamically sophisticated agent who correctly

takes into account the evolution of her future preferences. There is an Ft-adapted process of

random felicity functions ut : Ω → RZ over instantaneous consumptions and an Ft-adapted

process of discount factors δt : Ω → R++ such that UT = uT and Ut for t ≤ T − 1 is given by

11A small technical difference from Kreps and Porteus (1978) is that they use Borel instead of simple lotteries
and compact instead of finite menus, but as in their setting we can verify recursively that each Xt is a separable
metric space under the appropriate topologies (see Lemma E.1).
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the Bellman equation

Ut(zt, At+1) = ut(zt) + δtE
[

max
pt+1∈At+1

Ut+1(pt+1)|Ft
]
. (1)

In (1) the process of discount factors is not identified. An important special case of BEU

where the process δt is identified is Bayesian evolving beliefs (BEB).12 This captures the setting,

discussed in Example 1, where the agent has a fixed but unknown felicity about which she learns

over time. Formally, there is an F∗-measurable random felicity ũ : Ω→ RZ such that for all t13

ut = E[ũ|Ft]. (2)

For all three models, we impose the following dynamic analogs of simplicity and proper-

ness. The pair (Ft, Ut)0≤t≤T is simple, i.e., (i) each Ft is generated by a finite partition

such that µ(Ft(ω)) > 0 for every ω ∈ Ω, where Ft(ω) again denotes the cell of the par-

tition that contains ω; and (ii) each Ut(ω) is nonconstant, and Ut(ω) 6≈ Ut(ω
′) whenever

Ft(ω) 6= Ft(ω′) and Ft−1(ω) = Ft−1(ω′).14 The tiebreakers (Wt)0≤t≤T are proper, i.e., (i)

µ({ω ∈ Ω : |M(At,Wt(ω))| = 1}) = 1 for all At ∈ At; (ii) conditional on FT (ω), W0, . . . ,WT

are independent; and (iii) µ(Wt ∈ Bt|FT (ω)) = µ(Wt ∈ Bt|Ft(ω)) for all t and measurable Bt.
15

2.2.2 Analyst’s Problem

As in the static setting, the agent’s choices in each period t appear stochastic to the analyst,

because he does not have access to the agent’s private information. The novel feature of the

dynamic setting is that the analyst can observe the agent’s past choices. With serially correlated

utilities, these choices convey some information about the payoff-relevant private information

Ft, so that the agent’s behavior additionally appears history dependent to the analyst.

This is captured by a dynamic stochastic choice rule ρ, which for any period t and history

of past choices summarizes the observed choice frequencies from any menu At that can arise

after this history. We define choice frequencies and histories recursively. Choice frequencies

in period 0 are given by a (static) stochastic choice rule ρ0 : A0 → ∆(∆(X0)) on A0; thus,

ρ0(p0;A0) denotes the probability with which the agent chooses lottery p0 when faced with

12We allow for the possibility that discount factors are stochastic and/or evolving, but it is straightforward
to characterize the case of a fixed discount factor δ ∈ R++. See the discussion following Theorem 3.

13BEB is a model of passive learning, because the agent’s choices do not affect her filtration Ft. A
consumption-dependent extension of BEB (see Section 7.2) can accommodate active learning/experimentation,
where each period the agent obtains additional information from her consumption zt.

14For t = 0, we let Ft−1(ω) := Ω for all ω.
15(ii) rules out additional serial correlation of tiebreakers, over and above the serial correlation inherent in

the agent’s payoff-relevant private information FT (ω). (iii) ensures that to the extent that period-t tie breaking
relies on payoff-relevant private information, it can rely only on the information Ft(ω) available at t.
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menu A0. The choices that occur with strictly positive probability under ρ0 define the set of

all period 0 histories H0 := {(A0, p0) : ρ0(p0, A0) > 0}. For any history h0 = (A0, p0) ∈ H0, let

A1(h0) := supp pA0 denote the set of period 1 menus that follow h0 with positive probability.

For t ≥ 1 the objects Ht and At+1(ht) are defined recursively. For any history ht−1 ∈ Ht−1,

choice frequencies following ht−1 are given by a stochastic choice rule ρt(·|ht−1) : At(ht−1) →
∆(∆(Xt)) on the set At(ht−1) of period t menus that follow ht−1 with positive probability;

thus, ρt(pt;At | ht−1) denotes the probability with which the agent chooses pt when faced with

menu At after history ht−1. The set of period-t histories is Ht := {(ht−1, At, pt) : ht−1 ∈
Ht−1 and At ∈ At(ht−1) and ρt(pt;At|ht−1) > 0}; this contains all sequences (A0, p0, . . . , At, pt)

of choices up to time t that arise with positive probability. Finally, for each t ≤ T − 1, the

set of period t + 1 menus that follow history ht = (ht−1, At, pt) with positive probability is

At+1(ht) := supp pAt and the set of period-t histories that lead to At+1 with positive probability

is Ht(At+1) := {ht ∈ Ht : At+1 ∈ At+1(ht)}.
Two features of the primitive are worth noting: First, for each t ≥ 1 and history ht−1 ∈ Ht−1,

the stochastic choice rule ρt(·|ht−1) is defined only on the subsetAt(ht−1) ⊆ At of period t menus

that arise with positive probability after ht−1—typically very few menus. This reflects a key

property of the decision-tree formulation that we term limited observability, whereby histories of

choices also encode all possible future menus that the agent will face, as illustrated in Example 2.

Nevertheless, Section 3.2 will show that under DREU the analyst can extrapolate from ρt(·|ht−1)

to a well-defined stochastic choice rule on the whole of At. Second, histories only summarize the

agent’s past choices of pk from Ak and do not keep track of realized consumptions zk ∈ supp pZk .

This is without loss in the current model where utilities are not affected by past consumption,

but Section 7.2 discusses a generalization of our model that relaxes this assumption.

Under DREU, the private information revealed to the analyst by history ht−1 =

(A0, p0, . . . , At−1, pt−1) is given by the event C(ht−1) :=
⋂t−1
k=0C(pk, Ak).

16 Thus, the analyst’s

observations are consistent with DREU if the probability with which the agent chooses pt from

At following history ht−1 is equal to the conditional probability µ [C(pt, At)|C(ht−1)] of the

event C(pt, At) given C(ht−1).

The following definition summarizes the dynamic model:

Definition 2. A dynamic random expected utility (DREU) representation of the dynamic

stochastic choice rule ρ is a tuple (Ω,F∗, µ, (Ft, Ut,Wt)0≤t≤T ) such that (Ω,F∗, µ) is a finitely-

additive probability space, the filtration (Ft) ⊆ F∗ and the Ft-adapted utility process

Ut : Ω → RXt are simple, the F∗-measurable tiebreaking process Wt : Ω → RXt is proper,

16Note that C(ht−1) does not keep track of the random realizations of menus Ak ∈ supp pAk along the sequence
ht−1, as this exogenous randomness does not reveal any information about the agent’s private information.
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and for all pt ∈ At and ht−1 ∈ Ht−1(At),

ρt(pt;At|ht−1) = µ
[
C(pt, At)|C(ht−1)

]
, (3)

where for t = 0, we abuse notation by letting C(ht−1) := Ω and ρ0(p0;A0|h−1) := ρ0(p0;A0).

A Bayesian evolving utility (BEU) representation is a DREU representation along with Ft-
adapted processes of felicities ut : Ω → RZ and discount factors δt : Ω → R++ such that (1)

holds. A Bayesian evolving beliefs (BEB) representation is a BEU representation along with

an F∗-measurable felicity ũ : Ω→ RZ such that (2) holds.

2.2.3 Discussion

Lotteries as choice objects. In addition to allowing us to model choice behavior under

risk, including lotteries in the domain of choice simplifies our analysis, as it allows us to rely

on the static framework of Gul and Pesendorfer (2006) instead of the more complicated one

of Falmagne (1978). Lotteries play a similar technical role in the original work of Kreps and

Porteus (1978), by letting them rely on the vNM framework.17 From a conceptual point of

view, we will see in Section 3.2 that lotteries are crucial in overcoming the aforementioned

limited observability problem and we illustrate the availability of lotteries for this purpose with

examples from experimental and empirical work.

Interpretation of data. We interpret the dynamic stochastic choice data ρ as the analyst’s

observation of a large population of agents that solve each decision tree once; agents have

heterogeneous and evolving utilities that are realized independently according to the model in

Section 2.2 and the analyst does not observe agents’ identities (only their choice histories). This

interpretation resembles available data in empirical analysis. However, (analogous to the static

setting) the results do not rule out an alternative interpretation, whereby the analyst observes

a single agent solve each decision tree repeatedly.18 In either case, ρ captures the limiting choice

frequencies as the population size/number of observations tends to infinity. Abstracting from

the sampling error in this manner is also typical in the econometric analysis of identification.

In any application, the data set will of course be finite. However, studying behavior on the

full domain is an important step in uncovering all the assumptions that are behind the model;

moreover, statistical tests are often directly inspired by axioms.19

Dynamic stochastic choice vs. ex ante preference. In our framework, the analyst

17Likewise, the ambiguity aversion literature extensively relies on the Anscombe and Aumann (1963) frame-
work rather than the more complicated one of Savage (1972); the notable exceptions include Gilboa (1987) and
Epstein (1999). Similarly, the menu-preference literature uses lotteries (e.g. Dekel, Lipman, and Rustichini,
2001) to improve upon the uniqueness and comparative statics results of Kreps (1979).

18Here, the agent’s utilities are assumed to evolve according to the same process Ut at each observation.
19For example, Hausman and McFadden (1984) develop a test of the IIA axiom that characterizes the logit

model. Likewise, Kitamura and Stoye (2018) develop axiom-based tests of the static random utility model.
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observes the distribution of choices at each node of each decision tree; as we pointed out, the

randomness in choice comes from an informational asymmetry between agents and the analyst

in each period. By contrast, a widespread approach in the existing dynamic decision theory

literature (e.g., Gul and Pesendorfer, 2004; Krishna and Sadowski, 2014) is to only study a

deterministic preference over decision trees at a hypothetical ex ante stage that features no

informational asymmetry20 or abstracts away from other forces (e.g., temptation) that the

agent anticipates to affect her choices in actual decision trees.21 Compared with this literature,

our approach does not require such a hypothetical stage, and thus the primitive is closer to

actual data economists can observe. Moreover, considering choice behavior in each period, not

just at the beginning of time, allows us to study phenomena such as history dependence and

choice persistence and to test whether the agent’s expectations are correct.

Role of axioms. In addition to their usual positive and normative role, we view our axioms

as serving an equally important purpose as conceptual tools that elucidate key properties of

any dynamic random utility model and facilitate comparisons between different versions of the

model. For example, our axioms in Section 3.1 clarify the nature of history dependence that

can arise under any dynamic random expected utility model; our axioms in Sections 4.2 and

6.2 identify the additional behavioral content of Bayesian evolving beliefs relative to Bayesian

evolving utility; and our comparison of BEU and i.i.d. DDC in Section 5 draws on the axioms

to uncover that the two make opposite predictions about option value.

3 Characterization of DREU

DREU is characterized by four axioms, which we present in the following subsections. First, we

present two history independence axioms that capture the key new implications of the dynamic

model relative to the static one. Building on this, the next subsection shows how the analyst can

extrapolate from each ρt(·|ht−1) to an extended choice rule on the whole of At, thus overcoming

the limited observability problem. The final subsection then imposes the static REU conditions

as well as a technical history continuity axiom on this extended choice rule.

For simplicity of exposition, we present our characterization in the two-period setting

(T = 1); the generalization to an arbitrary finite horizon is straightforward and is provided

in Appendix B.1.

20Ahn and Sarver (2013) study a two-period model with a deterministic menu preference in the first period
and random choice from menus in the second period. Here too there is no informational asymmetry in the first
period.

21In the context of temptation, one exception is Noor (2011), but his is a stationary environment with no
informational asymmetry and the analyst observes deterministic choices at each node of the decision tree.
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3.1 History Independence Axioms

Our first two axioms identify two cases in which histories h0 and g0 reveal the same information

to the analyst. Capturing the fact that history dependence arises in DREU only through the

private information revealed by past choices, the axioms require that period-1 choice behavior

be the same after two such histories.

First, consider two histories h0 = (A0, p0) and g0 = (B0, p0) that differ solely in that

A0 ⊆ B0 is a contraction of B0, and suppose that both histories arise with the same probability

ρ0(p0;A0) = ρ0(p0;B0). Axiom 1 requires period-1 choice behavior to be the same after h0

and g0.

Axiom 1 (Contraction History Independence). If (A0, p0) ∈ H0(A1) and B0 ⊇ A0 with

ρ0(p0;A0) = ρ0(p0;B0), then ρ1(·;A1|A0, p0) = ρ1(·;A1|B0, p0).

To see the idea, note that in general, the event that p0 is the best element of menu B0 is a

subset of the event that p0 is the best element of the smaller menu A0 ⊆ B0; thus, observing

g0 = (B0, p0) may reveal more information about the agent’s possible period-0 preferences than

h0 = (A0, p0). However, since we additionally know that ρ0(p0;A0) = ρ0(p0;B0), the event

that p0 is best in A0 but not in B0 must have probability 0; in other words, we must put zero

probability on any preference that selects p0 from A0 but not from B0. Given this, h0 and g0

reveal the same information, and hence call for the same predictions for period-1 choices. The

following example illustrates Axiom 1 in a simple setting where agents only choose instantaneous

consumption in each period and today’s choice does not affect tomorrow’s menu.22

Example 4. Consider again the brand choice data from Example 1. Suppose the left and right

panel of Figure 1 respectively represent purchasing data at two stores, A and B. Both stores

typically carry two brands of milk, non-organic (x) and organic (y), but in week 0, store B

exceptionally offers an additional organic brand z. The week-0 purchasing shares at each store

are as in Figure 1. In particular, the share of customers purchasing the non-organic brand x

in week 0 is the same (80%) at both stores. Assume each store has a stable set of weekly

customers whose stochastic process of preferences is identical at both stores.23

If in week 1 both stores carry only x and y, then Contraction History Independence implies

that the week-1 choice frequencies among customers who bought x in week 0 must be the same

at both stores. Indeed, consider any customers Alice of store A and Barbara of store B who

both buy brand x in week 0. Then we have the same information about Alice and Barbara.

Since at store A only x and y were available in week 0, the possible week-0 preferences of Alice

are x � y � z or x � z � y or z � x � y. By contrast, since store B stocked all three brands,

22Section 6 studies this domain of “atemporal consumption problems” in more detail.
23For simplicity, we assume in the following that all preferences are strict.
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Barbara’s possible preferences are x � y � z or x � z � y. However, since we additionally

know that the week-0 demand share of brand x was the same at both stores, ρ0(x; {x, y, z}) =

ρ0(x; {x, y}) = 0.8, we can conclude that no customers had the ranking z � x � y in week 0.

Therefore, the analyst’s prediction is the same, since the stochastic process that governs the

transition from week-0 to week-1 preferences is the same for Barbara and Alice and in both

cases the analyst conditions on exactly the same week-0 event {x � y � z, x � z � y}. N

This is similar to the idea that in the static setting, Regularity (Axiom 0 (i)) rules out certain

“irrational” behavior such as the attraction effect (e.g., Huber, Payne, and Puto, 1982), where

the mere addition of some unchosen decoy option affects the agent’s choice probabilities over

existing options. Likewise, Contraction History Independence rules out certain dynamically

irrational choice patterns such as the “mere exposure effect” (e.g., Zajonc, 2001), where an

agent’s choices today are influenced by the mere availability of irrelevant options in the past.24

For instance, in Example 4, the axiom rules out the possibility that Barbara’s choices in week

1 are affected by merely seeing (but not buying) brand z in week 0.

Contraction History Independence only concerns histories h0 and g0 that share the same past

choice p0. Our second history independence axiom imposes discipline across certain histories

that feature different choices. This axiom takes into account the fact that the agent is an

expected utility maximizer. Under expected utility maximization, choosing p0 from A0 reveals

the same information about the agent’s utility as choosing λp0 + (1 − λ)q0 from λA0 + (1 −
λ){q0}. Thus, period-1 choice behavior following history h0 = (A0, p0) or history g0 = (λA0 +

(1 − λ){q0}, λp0 + (1 − λ)q0) should be the same. For instance, in the school choice example

(Example 2), parents who in Figure 2 (left) chose school 1 should make the same choices from

the resulting period-1 menu {H,P, S} as parents who in Figure 2 (right) chose the lottery

λ(school 1) + (1− λ)(school 2) and were allocated to school 1.

More generally, for any menu B0, if we know that the agent chose some option of the form

λp0+(1−λ)q0 from λA0+(1−λ)B0 but we do not know what q0 was, this again reveals the same

information as choosing p0 from A0. Thus, conditioning on history h0 or on the set of histories

G0 = {λh0 + (1 − λ)(B0, q0) : q0 ∈ B0} should again yield the same predictions for period-1

choice behavior, where λh0 +(1−λ)(B0, q0) is shorthand for (λA0 +(1−λ)B0, λp0 +(1−λ)q0).25

This is the content of Axiom 2. To state this formally, define the choice distribution from

A1 following any set of histories G0 ⊆ H0(A1),

ρ1(·;A1|G0) :=
∑
g0∈G0

ρ1(·;A1|g0)
ρ0(g0)∑

f0∈G0 ρ0(f 0)
,

24Cerigioni (2017) incorporates the exposure effect into a Luce-style model in a dynamic setting.
25The proof sketch of Theorem 1 in Section 3.4 illustrates the role played by allowing for sets of histories G0,

rather than only singleton histories g0 = λh0 + (1− λ)({q0}, q0) in Axiom 2.
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to be the weighted average of all choice distributions ρ1(·;A1|g0) following individual histories

in G0, where each history g0 = (Â0, p̂0) is weighted by the probability that it arises, ρ0(g0) :=

ρ0(p̂0; Â0).

Axiom 2 (Linear History Independence). If h0 ∈ H0(A1) and G0 = {λh0 + (1 − λ)(B0, q0) :

q0 ∈ B0} ⊆ H0 for some λ ∈ (0, 1], then ρ1(·;A1|h0) = ρ1(·;A1|G0).

A number of recent experimental studies feature the following type of setting that allows for

a simple test of Axiom 2: In period 0, subjects are presented with the choice between (i) some

period-1 menu B1 and (ii) a lottery that yields some other period-1 menu A1 with probability

λ and menu B1 with probability 1 − λ; in period 1, subjects make choices from their realized

menus.26 Here Linear History Independence implies that period-1 choices (from A1 or B1)

among subjects who choose (ii) in period 0 should be independent of the particular value of

λ ∈ (0, 1]; this can be tested by exogenously varying this randomization probability.

3.2 Limited Observability

Recall that unlike the static setting, where the analyst observes choices from all possible menus,

the dynamic setting presents a limited observability problem: At each history h0, ρ1(·|h0) is

only defined on the set A1(h0) of menus that occur with positive probability after h0—typically

very few menus. For the rest of the paper, it is key to overcome this problem: Otherwise we

do not have enough data to verify whether observed choices at history h0 are consistent with

random utility maximization or to identify whether the agent’s utility process belongs to the

Bayesian evolving utility class or the more specific evolving beliefs class.

The inclusion of lotteries among the agent’s choice objects allows us to do so. In particular,

Linear History Independence provides a formal justification for the “linear extrapolation” pro-

cedure illustrated in the school choice example (Example 2). Consider any menu A1 (e.g., the

two-option menu {H,P} in the example) and some history h0 = (A0, p0) that does not lead to

A1 (e.g., choosing school 1 from menu {school 1, school 2} in the left-hand tree in Figure 2). To

define the agent’s counterfactual choice distribution from A1 following h0, we extrapolate from

a situation where the agent knows that no matter which option in A0 she chooses, with some

fixed probability another option q0 that does lead to menu A1 will be implemented instead.

More precisely, we pick a lottery q0 such that A1 ∈ supp qA0 and replace menu A0 with λA0 +

(1−λ){q0}. This corresponds to the right-hand tree in Figure 2, where the choice between school

1 and school 2 is replaced with the choice between the lottery λ(school 1) + (1 − λ)(school 2)

26E.g., Toussaert’s (2018) recent experiment on temptation and self-control uses a similar design to dif-
ferentiate between so-called random Strotz agents and Gul and Pesendorfer (2001) agents. Related uses of
randomization over menus in lab experiments include Augenblick, Niederle, and Sprenger (2015); Dean and
McNeill (2016). To avoid certainty effects, these experiments typically do not feature any degenerate lotteries
as in (i), but we abstract away from this for expositional simplicity.
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and school 2.27 As discussed preceding Linear History Independence, under expected utility

maximization, choosing p0 from A0 reveals the same information about the agent as choosing

λp0+(1−λ)q0 from λA0+(1−λ){q0}. This motivates defining choice behavior from A1 following

history h0 = (A0, p0) by extrapolating from choices following history g0 = λh0+(1−λ)({q0}, q0):

Definition 3. For any A1 ∈ A1, and h0 ∈ H0, define

ρh
0

1 (·;A1) := ρ1(·;A1|λh0 + (1− λ)({q0}, q0)) (4)

for some λ ∈ (0, 1] and q0 with A1 ∈ supp qA0 .

Linear History Independence justifies Definition 3, as it ensures that the extended choice rule

ρh
0

1 (·;A1) is well-defined: Lemma E.4 shows that the RHS of (4) does not depend on the specific

choice of λ and q0; moreover, ρh
0

1 (·;A1) coincides with ρ1(·;A1|h0) whenever h0 ∈ H0(A1). In

the following, we do not distinguish between the extended and nonextended version of ρ1 and

use ρ1(·;A1|h0) to denote both.

As Example 2 illustrates in the context of school choice, random assignment is prevalent in

many real-world economic environments and is an important tool to obtain quasi-experimental

variation in the empirical literature. While this literature typically leverages such random vari-

ation to identify the causal effect of current choices on next-period outcomes (e.g., test scores in

the case of school choice), Definition 3 suggests exploiting it to make counterfactual inferences

about next-period choices. Even more readily, lotteries over next-period choice problems can

be generated in the laboratory; as discussed following Axiom 2, a growing literature in experi-

mental economics features this type of randomization, and one purpose is precisely to perform

extrapolation procedures akin to Definition 3.

3.3 History-Dependent REU and History Continuity Axioms

For each h0, the extended choice distribution ρ1(·|h0) from Definition 3 is a stochastic choice

rule on the whole of A1. The next axiom imposes the standard static REU conditions from

Axiom 0 on ρ0 as well as on each ρ1(·|h0).28 Note that conditioning ρ1 on period-0 histories is

essential; without controlling for past choices, period-1 choice behavior will in general violate

the REU axioms, as illustrated in Example 2.

27Note that by definition, menu {λ(school 1) + (1 − λ)(school 2), school 2} is the same as menu
λ{school 1, school 2}+ (1− λ){school 2}.

28For expositional simplicity, Axiom 3 imposes all static REU conditions on the extended stochastic choice
rule. However, it is worth noting that this is stronger than necessary: For each static REU condition except
Mixture Continuity and Finiteness, imposing the condition only on the non-extended choice rule is enough to
ensure (by Definition 3) that it is also satisfied by the extended choice rule.
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Axiom 3 (History-dependent REU). Both ρ0 and ρ1(·|h0) for each h0 satisfy Axiom 0.29

Our final axiom reflects the way in which tie-breaking can affect the observed choice distri-

bution. We first define menus and histories without ties directly from choice behavior. The idea

is that menus without ties are characterized by the fact that slightly perturbing their elements

has no effect on choice probabilities.30 We capture such perturbations using convergence in

mixture, as defined following Axiom 0.

Definition 4. The set of period-0 menus without ties, denoted A∗0, consists of all A0 ∈ A0 such

that for any p0 ∈ A0 and any sequences pn0 →m p0 and Bn
0 →m A0 r {p0}, we have

lim
n→∞

ρ0(pn0 ;Bn
0 ∪ {pn0}) = ρ0(p0;A0).

The set of period 0 histories without ties is H∗0 := {h0 = (A0, p0) ∈ H0 : A0 ∈ A∗0}.

The following axiom relates choice distributions after nearby histories. To state this formally,

we extend convergence in mixture to histories: We say h0,n →m h0 if h0,n = (An0 , p
n
0 ) and

h0 = (A0, p0) satisfy An0 →m A0 and pn0 →m p0.

Axiom 4 (History Continuity). For all A1, p1, and h0,

ρ1(p1;A1|h0) ∈ co{lim
n
ρ1(p1;A1|h0,n) : h0,n →m h0 and h0,n ∈ H∗0}.

In general, if period-0 histories are slightly altered, we expect subsequent period-1 choice

behavior to be adjusted continuously, except when there was tie-breaking in the past. If the

agent chose p0 from A0 as a result of tie-breaking, then slightly altering the choice problem

can change the set of states at which p0 would be chosen and hence lead to a discontinuous

change in the private information revealed by the choice of p0. The history continuity condition

restricts the types of discontinuities ρ1 can admit, ruling out situations in which choices after

some history are completely unrelated to choices after any nearby history. Specifically, the

fact that choice behavior after h0 can be expressed as a mixture of behavior after some nearby

histories without ties reflects the way in which the agent’s tie-breaking procedures may vary

with her payoff-relevant private information.

29Lemma E.1 verifies that each Xt (t = 0, 1) is a separable metric space. Then Mixture Continuity and
Finiteness make use of the same convergence notions as defined following Axiom 0.

30Lu (2016b) and Lu and Saito (2018a) use an alternative approach, directly incorporating into the primitive a
collection of measurable sets that capture the absence of ties and defining choice probabilities only on measurable
subsets of each menu. Their approach requires that ties occur with probability either zero or one, so is not
applicable to our setting. Our perturbation-based approach is similar in spirit to Ahn and Sarver (2013).
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3.4 Representation Theorem

Theorem 1. Suppose that T = 1. Then the dynamic stochastic choice rule ρ satisfies Axioms 1–

4 if and only if ρ admits a DREU representation.

The proof of Theorem 1 appears in Appendix B. We now sketch the argument for sufficiency.

Readers wishing to proceed directly to the analysis of Bayesian evolving utility and evolving

beliefs may skip ahead to Section 4.

First, Axiom 3 together with Theorem 0 yields a static REU representation R0 =

(Ω0,F∗0 , µ0,F0, U0,W0) of ρ0. For each h0 ∈ H0, Axiom 3 and Theorem 0 also imply that

ρ1(·|h0) admits a static REU representation, but without ensuring any relationship between

the period-0 and period-1 representations. By contrast, DREU requires that R0 be extended to

a representation on a single probability space Ω, µ such that ρ1(p1;A1|A0, p0) is the conditional

probability of the event C(p1, A1) given the event C(p0, A0).

To obtain such a representation, we only construct static REU representations of ρ1 following

specific histories that uniquely reveal the agent’s period-0 utility. Concretely, by simplicity of

(U0,F0), there are finitely many possible realizations U1
0 , . . . , U

n
0 of the agent’s period-0 utility,

where all U i
0 are nonconstant and ordinally distinct. Thus, standard arguments (Lemma E.2)

yield a menu D0 = {qi0 : i = 1, . . . , n} that strictly separates period-0 utilities, in the sense that

each qi0 is chosen from D0 precisely when the agent’s utility is U i
0; that is, the event C0(qi0, D0)

in Ω0 equals the event {U0 = U i
0}. Figure 4 illustrates. Let Ri

1 = (Ωi
1,F∗i1 , µ

i
1,F i1, U i

1,W
i
1) be a

static REU representation of ρ1(·|D0, q
i
0).

The key step is to combineR0 andRi
1 into a representation of ρ1 following arbitrary histories

(A0, p0). Specifically, we show that for any p1 and A1,

ρ1(p1;A1|A0, p0) =
n∑
i=1

µi1
(
Ci

1(p1, A1)
)
µ0

(
{U0 = U i

0}|C0(p0, A0)
)
, (5)

where Ci
1(p1, A1) is the event in Ωi

1 that p1 is chosen from A1 and C0(p0, A0) is the event in Ω0

that p0 is chosen from A0. Given (5), it is then straightforward to combine R0 and Ri
1 into a

DREU representation of ρ.31

The argument for (5) proceeds in two steps. First, Lemma B.3 establishes (5) for

histories (A0, p0) that are only consistent with a single period-0 utility U i
0; that is,

µ0 ({U0 = U i
0}|C0(p0, A0)) = 1 for some i. To see the idea, note that when (A0, p0) is a history

without ties, (A0, p0) and (D0, q
i
0) reveal exactly the same information about period-0 private

information. Given this, Lemma B.3 applies the two history independence conditions, Axioms 1

31Specifically, let Ω :=
⋃n

i=1{ω0 ∈ Ω0 : U0(ω0) = U i
0}×Ωi

1 and define µ on Ω by µ(E0×E1) = µ0(E0)×µi
1(E1)

for any events E0 ⊆ {U0 = U i
0} and E1 ⊆ Ω1

i . If filtrations, utilities, and tie-breakers on Ω are induced from R0

and Ri
1 in the natural way, then (5) implies (3), as required.
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Figure 4: Suppose the possible period-0 utilities are U1
0 , U2

0 , U3
0 . Menu D0 is a separating menu from

which qi0 is chosen precisely if U0 = U i0. In menu A0 = {p0, r0}, p0 is chosen with probability 1 if
U0 = U1

0 ; tied with r0 if U0 = U2
0 ; and never chosen if U0 = U3

0 . In Â0 = 1
2A0 + 1

2D0, p0 is replaced

with three copies pi0 = 1
2p0 + 1

2q
i
0 with the property that C0(pi0, Â0) = C0(p0, A0) ∩ {U0 = U i0}.

and 2, to show that ρ1(·|D0, q
i
0) = ρ1(·|A0, p0) coincide. Moreover, using History Continuity,

the argument extends even when (A0, p0) features ties.

Second, Lemma B.4 establishes (5) for arbitrary histories (A0, p0). The key idea is to consider

the mixture Â0 := 1
2
A0 + 1

2
D0 of A0 with the separating menu D0. In Â0, p0 is replaced with

n “copies,” pi0 := 1
2
p0 + 1

2
qi0 for i = 1, . . . , n; see Figure 4. By Linear History Independence and

the definition of ρ1 following a set of histories, we have

ρ1(p1;A1|A0, p0) = ρ1(p1;A1|Â0,
1

2
{p0}+

1

2
D0) =

n∑
i=1

ρ1(p1;A1|Â0, p
i
0)

ρ0(pi0; Â0)∑n
j=1 ρ0(pj0; Â0)

. (6)

But note that, as illustrated in Figure 4, pi0 = 1
2
p0 + 1

2
qi0 is chosen from Â0 = 1

2
A0 + 1

2
D0 in

precisely those states of the world where p0 is chosen from A0 and qi0 is chosen from D0; that

is, C0(pi0, Â0) = C0(p0, A0) ∩ C0(qi0, D0). Since by construction of the separating menu D0, we

have C0(qi0, D0) = {U0 = U i
0}, this implies ρ0(pi0; Â0) = µ0 (C0(p0, A0) ∩ {U0 = U i

0}). Moreover,

when ρ0(pi0; Â0) > 0, then the previous paragraph (Lemma B.3) yields ρ1(p1;A1|Â0, p
i
0) =

µi1(Ci
1(p1, A1). Combining these observations with (6) and applying Bayes’ rule yields (5), as

required.

4 Characterization of BEU and BEB

DREU imposes no discipline on how the agent evaluates continuation problems. We now build

on the characterization of DREU by introducing axioms that capture the dynamic sophistication

of Bayesian rational agents: Section 4.1 characterizes Bayesian evolving utility (BEU), and

Section 4.2 captures the additional behavioral content of its special case, Bayesian evolving

beliefs (BEB). These characterizations serve as a basis for Section 5, where we contrast BEU
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with dynamic discrete choice models. For simplicity of exposition, we again present our axioms

in the two-period setting (T = 1); generalizations to an arbitrary finite horizon are provided in

Appendices C–D.

4.1 Bayesian Evolving Utility

BEU is characterized by the following three axioms. First, Separability ensures that period-0

utility in every state has an additively separable form U0(z0, A1) = u0(z0) + V0(A1):

Axiom 5 (Separability). For any A0 and p0, q0 6∈ A0 with pZ0 = qZ0 , pA0 = qA0 , and A0∪{p0}, A0∪
{q0} ∈ A∗0, we have ρ0(p0;A0 ∪ {p0}) = ρ0(q0;A0 ∪ {q0}).

Axiom 5 is a stochastic-choice analog of the standard separability axiom for deterministic

preferences (e.g., Fishburn, 1970), which requires that the agent does not care about how

today’s consumption and tomorrow’s menu are correlated. That is, they do not distinguish

between lotteries p0 and q0 that share the same marginals over both today’s consumption and

tomorrow’s menu.32

The next axiom adapts conditions from Dekel, Lipman, and Rustichini (2001) to a

stochastic-choice setting, to ensure that V0(A1) captures the option value contained in menu A1,

i.e., that V0(A1) = E[maxp1∈A1 Û1(p1) | F0] for some random utility function Û1. For part (ii),

we let m1,m
′
1 ∈ ∆(A1) denote typical distributions over period-1 menus, and for each such m1,

we let Ā(m1) denote the average menu induced by m1; that is, Ā(m1) :=
∑

A1∈A1
m1(A1)A1.

Axiom 6 (Stochastic DLR).

(i). Preference for Flexibility : For any A1, B1 such that A1 ⊆ B1 and {(z, A1), (z,B1)} ∈ A∗0,

ρ0((z,B1); {(z, A1), (z,B1)}) = 1.

(ii). Reduction of Mixed Menus : For any A0 and (z,m1), (z,m′1) 6∈ A0 such that Ā(m1) =

Ā(m′1) and A0 ∪ {(z,m1)}, A0 ∪ {(z,m′1)} ∈ A∗0, we have

ρ0((z,m1);A0 ∪ {(z,m1)}) = ρ0((z,m′1);A0 ∪ {(z,m′1)}).

(iii). Continuity : ρ0 : A∗0 → ∆(∆(X0)) is continuous.

(iv). Menu Nondegeneracy : {(z, A1), (z,B1)} ∈ A∗0 for some z, A1, B1.

32Lu and Saito (2018b) study a random utility model where separability is violated, as in Epstein and Zin
(1989). They show that even on simple domains where the continuation menu is fixed the analyst’s estimates
of the function u are biased because they are contaminated by the nonlinear continuation utility.
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Part (i) corresponds to Kreps’s (1979) “preference for flexibility” axiom, which says that the

agent always (weakly) prefers bigger menus. This captures a key property of Bayesian-rational

agents in a dynamic setting, viz., a positive option value. The axiom is violated in Ke’s (2018)

model, where the agent has a deterministic utility but anticipates making random execution

mistakes. This agent’s choices over menus exhibit a form of preference for commitment, because

eliminating inferior options from a menu benefits the agent by reducing the scope for mistakes.

Preference for flexibility is also violated by dynamic logit (Fudenberg and Strzalecki, 2015)

and more general dynamic discrete choice models, as we will discuss in more detail in Section

5. Part (ii) requires that the agent reduces mixtures over menus; this is analogous to Menu

Independence in Dekel, Lipman, and Rustichini (2001) and implies that the agent cannot affect

tomorrow’s utility distribution. Parts (iii) and (iv) ensure that the agent has continuous and

nontrivial preferences over continuation menus.

The final axiom adapts the sophistication axiom due to Ahn and Sarver (2013). Fix any

history h0 = (A0, p0) and menus B1 ⊃ A1. We require that if the agent sometimes chooses an

option in B1 r A1 following history h0, then in some states of the world in which she chooses

p0 from from A0, she must value menu B1 strictly more than A1 (and vice versa). This axiom

ensures that the agent correctly anticipates her future utility distribution; that is, Û1 = U1.

To formalize this, we must express in terms of stochastic choices the fact that in some

states of the world in which the agent chooses p0 from from A0, she values menu B1 strictly

more than A1. This goes beyond Ahn and Sarver (2013), whose setting in period 0 features no

consumption and no randomness in the agent’s preference over period-1 menus.33 To see the

idea, suppose that for some lotteries q0 and r0, we have

ρ0

(
1

2
p0 +

1

2
q0;

1

2
A0 +

1

2
{q0, r0}

)
> 0. (7)

Then we can conclude that in some states of the world in which the agent chooses p0 from A0,

she weakly prefers q0 to r0: Indeed, for an expected-utility maximizer, it is optimal to choose
1
2
p0 + 1

2
r0 from menu 1

2
A0 + 1

2
{q0, r0} if and only if it is optimal to choose p0 from A0 and to

choose r0 from {q0, r0}.34 To be able to infer that in some states where the agent chooses p0

from A0 she strictly prefers q0 to r0, we must additionally ensure that in some such states the

menu {q0, r0} does not feature a tie. Similar to Ahn and Sarver (2013), this is achieved by

33Likewise, no such challenge arises in Fudenberg and Strzalecki’s (2015) dynamic logit model. Because of
their i.i.d. shocks assumption, the agent’s preference over continuation menus does not vary with her period-0
consumption choices.

34This observation is related to the random incentive mechanism used in experimental work. To elicit a
subject’s ranking over a number of options in an incentive compatible manner, the subject is asked to indicate
choices from multiple menus; a lottery then determines which menu (and corresponding choice) is implemented.
See e.g., Becker, DeGroot, and Marschak (1964) and Chambers and Lambert (2017).
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requiring (7) to hold for all small enough perturbations qn0 →m q0 and rn0 →m r0.35

Point (ii) of the following axiom applies this idea with q0 = (z,B1) and r0 = (z, A1) for an

arbitrary consumption z.

Axiom 7 (Sophistication). For any h0 = (A0, p0) ∈ H∗0, z, and A1 ⊆ B1 ∈ A∗1(h0), the following

are equivalent:

(i). ρ1(p1;B1|h0) > 0 for some p1 ∈ B1 r A1

(ii). lim infn ρ0(1
2
p0 + 1

2
(z,Bn

1 ); 1
2
A0 + 1

2
{(z,Bn

1 ), (z, An1 )}) > 0 for all An1 →m A1, B
n
1 →m B1.

Axiom 7 applies only to menus B1 that do not feature ties conditional on history h0. Anal-

ogous to Definition 4, for any h0 ∈ H0, the set of period-1 menus without ties conditional on

history h0 is denoted A∗1(h0)36 and consists of all A1 ∈ A1 such that for any p1 ∈ A1 and any se-

quences pn1 →m p1 and Bn
1 →m A1 r{p1}, we have limn→∞ ρ1(pn1 ;Bn

1 ∪{pn1}|h0) = ρ1(p1;A1|h0).

Theorem 2. Suppose T = 1 and ρ admits a DREU representation. Then ρ satisfies Axioms 5–7

if and only if ρ admits a BEU representation.

Proof. See Appendix C. �

4.2 Bayesian Evolving Beliefs

Bayesian evolving beliefs is a specialization of BEU where the agent has a time-invariant but

unknown felicity about which she learns over time. In this section, we characterize the additional

behavioral content of this assumption by a simple axiom on the agent’s choices over streams of

consumption lotteries. Section 6.2 provides an alternative characterization on the subdomain

where in each period the agent chooses only today’s consumption.

Given consumption lotteries `0, `1 ∈ ∆(Z), let the stream (`0, `1) ∈ ∆(X0) be the period-0

lottery that in period 1 yields consumption lottery `1 for sure and in period 0 yields consumption

according to `0; formally, (`0, `1) = p0 where pZ0 = `0 and pA0 = δ{`1}.

Axiom 8 (Stationary Consumption Preference). If (`, `), (`′, `′) ∈ A0 ∈ A∗0, then

ρ0((`, `′);A0) = 0.

35In an earlier working paper version, we apply this idea more generally to define an incomplete and history-
dependent revealed preference relation %ht that captures that one lottery is preferred to another in any state of
the world ω that gives rise to history ht; see Section 4.1 of Frick, Iijima, and Strzalecki (2017). This preference
relation can be used to provide alternative versions of Axioms 5–8.

36Note that A∗1(h0) 6⊆ A1(h0) because the first set contains all menus without ties (we use history h0 here
only to determine where ties could occur) while the second set contains only menus that occur with positive
probability after history h0—typically very few menus.
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Axiom 8 requires that the agent never chooses to commit to a time-varying consumption

stream (`, `′) if her choice set also contains the corresponding stationary consumption streams

(`, `) and (`′, `′). This reflects Bayesian learning about fixed but unknown tastes: Indeed, if

the agent currently believes ` to be better than `′, then by the martingale property of beliefs

she should expect her information next period to still favor ` on average and will hence prefer

(`, `) to (`, `′) (and analogously in the opposite case).

To characterize BEB, we postulate the existence of a pair `, ` of consumption lotteries

such that the agent always strictly prefers ` to ` at all times and histories. This condition is

innocuous if, for example, the outcome space includes a monetary dimension.

Condition 1 (Uniformly Ranked Pair). There exist `, ` ∈ ∆(Z) such that for all ` ∈ ∆(Z)

and h0, we have A0 := {(`, `), (`, `)} ∈ A∗0, A1 := {`, `} ∈ A∗1(h0), and ρ0((`, `);A0) =

ρ1(`;A1|h0) = 1.

Theorem 3. Suppose that T = 1 and ρ admits a BEU representation and satisfies Condition 1.

Then ρ satisfies Axiom 8 if and only if ρ admits a BEB representation.

The proof is in Appendix D. The key idea is to show that Axiom 8 is equivalent to the re-

quirement that u0(ω) and E[u1|F0(ω)] represent the same preference over consumption lotteries

in all states, which after appropriate normalization yields (2).

We note that while BEB allows for a stochastic process δt : Ω → R++ of discount factors,

an earlier working paper version of this article includes an additional axiom that ensures a

deterministic discount factor δ > 0; moreover, a standard impatience axiom corresponds to

δ < 1.37

Remark 1 (Identification). Proposition I.1 in Appendix I.1 establishes identification results

for DREU, BEU, and BEB. To summarize, the identification result for DREU is a period-by-

period analog of the known result for static REU (Proposition 4 in Ahn and Sarver (2013));

that is, ρ uniquely determines the underlying stochastic process of ordinal payoff-relevant pri-

vate information and the (ordinal) distribution of tie-breakers for choices featuring ties. The

result for BEU generalizes Theorem 2 of Ahn and Sarver (2013), implying strictly sharper iden-

tification than DREU of the agent’s cardinal private information. In particular, BEU allows

for meaningful intertemporal comparisons of utility in each state and for limited cross-state

comparisons of utility within states that correspond to the same period-0 private information.

Finally, BEB, unlike BEU, allows for unique identification of the discount factor process and

entails even sharper identification of cardinal private information.38 N
37See Frick, Iijima, and Strzalecki (2017) Axiom 9 for the former and p. 26 for the latter.
38The discount factor process is unique in other special cases of BEU as well; for example if each alternative

z consists of wealth and a consumption bundle and the utility of wealth is separable and state-independent.
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5 Comparison with Dynamic Discrete Choice

In this section, we compare Bayesian evolving utility to dynamic discrete choice (DDC) models

that are widely used in empirical work. The key distinction we highlight concerns the way

in which random utility shocks are modeled: BEU is a special case of the most general DDC

model, but while BEU features only shocks to consumption, most DDC models introduce more

general shocks to actions. We show that under certain widely used assumptions, the latter form

of shocks leads to violations of a key feature of Bayesian rationality, namely positive option

value. We also illustrate how this can lead to biased parameter estimates.

5.1 DDC Models

For simplicity, we restrict the domain to deterministic decision trees, where each period-t out-

come space Yt consists of pairs yt = (zt, At+1) of instantaneous consumptions zt and continuation

menus At+1. We refer to each yt as an action.

The following special case of DREU encompasses many models in the dynamic discrete

choice literature (for surveys, see Aguirregabiria and Mira, 2010; Rust, 1994):39

Definition 5. The DDC model is a restriction of DREU to deterministic decision trees that

additionally satisfies the Bellman equation

Ut(zt, At+1) = vt(zt) + δE
[

max
yt+1∈At+1

Ut+1(yt+1)|Ft
]

+ ε
(zt,At+1)
t , (8)

with deterministic felicities vt : Z → R, Ft-adapted zero-mean shocks to actions εt : Ω→ RYt ,

and a discount factor δ ∈ (0, 1).40

Observe that BEU corresponds precisely to the special case of DDC where the ε shocks do

not apply to general actions yt = (zt, At+1), but only to instantaneous consumptions zt; formally,

in all periods t, any actions (zt, At+1) and (zt, Bt+1) that feature the same consumption zt receive

39For ease of comparison with BEU, we impose the following three restrictions, which are extraneous to the
distinction between shocks to consumption and shocks to actions that we highlight in this section. First, we
impose Rust’s (1994) assumption AS, viz. that ε shocks enter into (8) in an additively separable manner; this is
widely, but not universally imposed in the DDC literature. Violations of AS can be accommodated by DREU,
but are incompatible with BEU in ways that are orthogonal to the focus of this section. Second, whereas
filtration Ft is exogenous, DDC models often allow the agent’s choices to affect transitions from the current
state to tomorrow’s state; this can be accommodated by a consumption-dependent extension of DREU (see
Section 7.2). Finally, ε can capture any state variables that are privately observed by the agent, but in contrast
with many DDC models (e.g., Hotz and Miller, 1993), all representations in this paper abstract away from state
variables that are jointly observed by the analyst and agent (save for menus); Duraj (2018) extends DREU to
incorporate the latter.

40We assume a deterministic δ ∈ (0, 1) for simplicity. As under BEU, δ is not identified under general DDC,
but this poses no problems in the specific examples we consider. See also footnote 52.
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the same shock

ε
(zt,At+1)
t = ε

(zt,Bt+1)
t =: εztt . (9)

Indeed, given (9), setting ut(zt) = vt(zt) + εztt yields an Ft-adapted process of felicities that

satisfies (1); and conversely, given any Ft-adapted felicity process ut satisfying (1), we can let

vt(zt) := E[ut(zt)] and εztt := ut(zt)− vt(zt).
Thus, Theorem 2 provides an axiomatic foundation for this shocks to consumption version

of DDC, while Proposition I.1 is an identification result.41 Shocks to consumption alone are

sufficient to capture phenomena such as permanent unobserved heterogeneity and serially cor-

related unobserved state variables that are studied in the DDC literature; indeed, Pakes (1986)

can be viewed as an early special case of BEU. Under shocks to consumption, all randomness in

the agent’s evaluation of continuation menus At+1 is captured by the Ft-adapted continuation

value E
[
maxyt+1∈At+1 Ut+1(yt+1)|Ft

]
that reflects the agent’s private information about future

shocks to consumption.

However, for estimation purposes, many central models in the DDC literature introduce

shocks to actions that violate (9) by applying additional shocks to continuation menus that

may be completely detached from their continuation value. The main purpose of introducing

such general shocks to actions is that under suitable assumptions they can ensure nondegenerate

likelihoods : This denotes the property that in any menu At, all actions yt ∈ At are chosen with

positive probability at all histories, which is central for statistical estimation. One of the most

widely used models with this property is the following i.i.d. version of DDC:42

Definition 6. The i.i.d. DDC model is a restriction of DDC such that

Ut(zt, At+1) = vt(zt) + δE
[

max
yt+1∈At+1

Ut+1(yt+1)

]
+ ε

(zt,At+1)
t ,

where for all periods t and τ and all actions (zt, At+1) and (xτ , Bτ+1), ε
(zt,At+1)
t and ε

(xτ ,Bτ+1)
τ

are independently and identically distributed random variables with a full support density.43

Under i.i.d. DDC, both felicities vt and continuation values E
[
maxyt+1∈At+1 Ut+1(yt+1)

]
are

deterministic, and all randomness in the agent’s evaluation of zt and At+1 is fully captured by

ε
(zt,At+1)
t . Since these shocks are i.i.d. across any pairs of actions, including actions (zt, At+1)

and (zt, Bt+1) that differ only in their continuation menus, they violate (9). The following

41Our identification result is complementary to those in econometrics (Hu and Shum, 2012; Kasahara and
Shimotsu, 2009; Magnac and Thesmar, 2002; Norets and Tang, 2013), because we allow for menu variation but
abstract from jointly observable state variables.

42See e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006), Kennan and Walker (2011), Sweeting (2013),
and Gowrisankaran and Rysman (2012).

43While DREU assumes finitely generated distributions, a full support density distribution is observationally
equivalent to one with a sufficiently large finite support given the finiteness of the deterministic decision tree
domain.
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section shows that this leads to behavior that is incompatible with any BEU model, including

the i.i.d. version of BEU where ε shocks satisfy (9) and εztt and εxττ are i.i.d. across all pairs of

consumptions.

5.2 Option Value in BEU vs. i.i.d. DDC

We now show that, in contrast with BEU, shocks to actions that violate (9) can lead to behavior

that displays a negative option value. To make this point most clearly, we focus predominantly

on i.i.d. DDC, before briefly turning to more general models. Given that i.i.d. DDC is a

workhorse model for structural estimation, understanding its properties is also important in its

own right.

The first manifestation of a negative option value is that the i.i.d. DDC agent sometimes

chooses to commit to strictly smaller menus. Suppose there are two periods, t = 0, 1. Let

A0 := {(z0, A
small
1 ), (z0, A

big
1 )} where Asmall

1 = {z1} and Abig
1 = {z1, z

′
1}. From Axiom 6 it

follows that under BEU, ρ0

(
(z0, A

small
1 ), A0

)
= 0 absent ties. By contrast, under i.i.d. DDC this

probability is strictly positive.

Proposition 1. Under i.i.d. DDC, we have 0 < ρ0

(
(z0, A

small
1 );A0

)
< 0.5. Moreover, if the

ε shocks are scaled by λ > 0, then ρ0

(
(z0, A

small
1 );A0

)
is strictly increasing in λ whenever

v1(z′1) > v1(z1).

All proofs for this section appear in Supplementary Appendix G. The first part follows from

the fact that by design, i.i.d. DDC features nondegenerate likelihoods. Specifically, the agent

chooses (z0, A
small
1 ) from A0 whenever the realization of ε

(z0,Asmall
1 )

0 exceeds ε
(z0,A

big
1 )

0 by more than

the expected utility difference of the two menus, and since the two shocks are i.i.d. with full

support, this happens with strictly positive probability. Nevertheless, since E[U0(z0, A
big
1 )] >

E[U0(z0, A
small
1 )], this probability is less than 0.5. The second part of Proposition 1 further

highlights the negative effect of i.i.d. shocks to actions on option value by showing that greater

variance in ε can increase the probability of choosing the small menu, even though this increases

the continuation value of the larger menu.44

More strikingly, there are decision problems for which behavior under i.i.d. DDC displays

a negative option value with probability greater than 0.5. Specifically, consider the following

decision timing problem, illustrated in Figure 5. There are three periods t = 0, 1, 2. The

consumption in period 2 is either y or z, depending on the agent’s choice. The agent can make

her decision early, committing in period 1 to receiving y or z the following period; or she can

make the decision late, maintaining full flexibility about choosing y or z until the final period.

The decision when to choose is made in period 0, and the consumption in periods 0 and 1

44We thank Jay Lu for suggesting that we investigate this comparative static.
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Figure 5: Decision timing.

is x irrespective of the agent’s decision; for simplicity assume that the utility of x is always

zero. To fix ideas, assume that a student was admitted to two PhD programs (y and z) and is

considering whether to make her decision before the visit days (t = 1) or after (t = 2); assume

that she plans to attend the visit days regardless. Formally, in period 0 the agent faces the menu

A0 = {(x,Aearly
1 ), (x,Alate

1 )}, and in period 1 she faces either menu Aearly
1 = {(x, {y}), (x, {z})}

or menu Alate
1 = {(x, {y, z})}, depending on her period-0 choice.

Proposition 2. Under BEU, ρ0((x,Aearly
1 );A0) = 0 absent ties. Under i.i.d. DDC,

ρ0((x,Aearly
1 );A0) > 0.5; moreover, if ε is scaled by λ > 0, then ρ0((x,Aearly

1 );A0) is strictly

increasing in λ whenever v2(y) 6= v2(z).

In this decision problem there is no penalty to deciding late, as the timing of the decision

does not affect the timing of the consumptions y or z. Thus, reflecting a positive option value,

the BEU agent chooses to make decisions late because waiting until the final period enables

her to better tailor her choice to her realized felicity. This prediction does not rely on serially

correlated private information; indeed, it remains true under i.i.d. BEU.

By contrast, Proposition 2 shows that the i.i.d. DDC agent chooses to decide early with

probability greater than 0.5. To see why, consider the simplest case when v2(y) = v2(z). In

this case, the choice boils down to comparing δE[max{ε(x,{y})
1 , ε

(x,{z})
1 }] and δ2E[max{εy2, εz2}].

Since the ε shocks are i.i.d. and mean zero and δ ∈ (0, 1), the former dominates the latter, so

that the agent chooses to decide early with probability greater than 0.5. Intuitively, choosing

early is attractive because it allows the agent to obtain a positive payoff, namely the maximum

of two i.i.d. mean zero shocks, early while deferring the choice delays those payoffs. Again,

the negative effect of the ε shocks on option value is further reflected by the fact that the

agent’s preference for deciding early is increasing in their variance, even though this increases

uncertainty about future payoffs.

A special case of the preference for early decisions under i.i.d. logit ε shocks was proved
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by Fudenberg and Strzalecki (2015), by examining the closed-form expressions for continuation

values in this setting.45 Proposition 2 shows that this result does not rely on those specific

expressions. Rather, it is a consequence of the mechanical nature of shocks to actions in

any i.i.d. DDC model: As we discussed above, unlike shocks to consumption, these shocks

apply directly to continuation menus in a way that is completely detached from their expected

continuation value.46

Finally, we note that the findings in this section are not limited to i.i.d. DDC. Indeed,

the following two widely studied DDC models depart, respectively, from the assumption that

shocks are i.i.d. over time or i.i.d. across actions, but continue to display a preference for

early decisions.47 First, under DDC with permanent unobserved heterogeneity, ε displays the

following form of serial correlation: Each shock ε
(zt,At+1)
t = πztt + θ

(zt,At+1)
t is decomposed into a

“permanent” shock πztt that is measurable with respect to F0 and a “transitory” shock θ
(zt,At+1)
t

that conditional on F0 is i.i.d. across all periods and actions. Thus, utility in each period

depends on the agent’s “type” (which she learns in period 0), but each type of agent is also

subject to i.i.d. shocks to actions. In this model, behavior ρ is a mixture of i.i.d. DDC choice

rules. Thus, since Proposition 2 applies to each of these choice rules, their mixture ρ continues

to satisfy ρ0((x,Aearly
1 );A0) > 0.5. Second, some models feature transitory but correlated shocks

to actions: Here ε
(zt,At+1)
t and ε

(xτ ,Bτ+1)
τ are i.i.d. whenever t 6= τ , but might be correlated within

any fixed period t = τ ; e.g., due to transitory health shocks that affect the agent’s evaluation

of all actions in a given period. As long as within-period shocks are not perfectly correlated,

we again have ρ0((x,Aearly
1 ), A0) > 0.5; intuitively, E[max{ε(x,{y})

1 , ε
(x,{z})
1 }] = E[max{εy2, εz2}]

remains strictly positive, so the agent again prefers to receive this shock early.48

5.3 Parameter Estimates in a Stopping Problem

Unlike the previous decision timing problem, many economic decisions, such as stopping prob-

lems, feature a tradeoff between an immediate payoff today and the option value of delay. We

45Fudenberg and Strzalecki (2015) also introduced a choice-aversion parameter that scales the desire for
flexibility and for early decisions. However, in this model the parameter values that imply choice of late
decisions with probability greater than 0.5 also imply choice of smaller menus with probability greater than 0.5,
thus making violations of positive option value particularly stark in the latter dimension.

46Our critique of the mechanical nature of shocks to actions is complementary to Apesteguia and Ballester’s
(2018) critique of i.i.d. ε in static settings, but the logic of our results is quite different, both formally and
conceptually. In particular, in Propositions 1 and 2 these shocks lead to counterintuitive predictions at an
absolute level, rather than only at a comparative level as in their results. Moreover, our comparative results are
also quite different, as we vary the variance of ε, whereas they vary the curvature of the utility function.

47Both permanent unobserved heterogeneity and transitory shocks that are correlated across actions are
central ingredients of what Aguirregabiria and Mira (2010) (p. 42 ff.) term Eckstein-Keane-Wolpin models.

48Predictions under even more general models are ambiguous. E.g., suppose ε
(zt,At+1)
t = πzt

t + θ
(zt,At+1)
t is

decomposed into Ft-adapted shocks to consumption πzt
t and i.i.d. shocks to actions θ

(zt,At+1)
t , but πzt

t need not
be F0-measurable. This yields a hybrid of BEU and i.i.d. DDC, which may display a preference for early or late
decisions depending on the relative magnitudes of πt and θt and the amount of serial correlation in πt.
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now illustrate how in such settings DDC models with additional mechanical shocks to continu-

ation menus lead to systematically different parameter estimates relative to the pure shocks to

consumption model of BEU. In particular, we highlight the qualitative biases that arise if the

analyst uses the former type of DDC model but the true model is BEU.49

Consider again Example 3 from Section 1.3. In period 0, the agent chooses between two

actions, consuming a today (and nothing tomorrow) or delaying consumption until period 1

where she will face menu A1 := {a, b}. Slightly abusing notation, we denote these two period-0

actions by a and A1 and let A0 := {a,A1}.50 Let D be the set of all possible choice sequences

(consume a in period 0; delay and consume a in period 1; delay and consume b in period 1).

In the following, we think of the agent’s stochastic choice rule ρ as a data generating process

over D; that is, the analyst observes strings of data d = (d1, . . . dn) ∈ Dn, where each di results

from an independent draw according to ρ.

For concreteness, we compare parameter estimates under the following versions of i.i.d. DDC

and BEU. Under i.i.d. DDC, let v0(a) = v1(a) = wa and v1(b) = wb with discount factor δ. Thus,

UDDC
1 (x) = wx + εx1 for x = a, b, UDDC

0 (a) = wa + εa0 and UDDC
0 (A1) = δE0[max{U1(a), U1(b)}] +

εA1
0 , where all ε shocks are i.i.d. according to some full support distribution F with mean zero.

For BEU, we consider a minimal departure from i.i.d. DDC that features the same i.i.d. shocks to

instantaneous consumptions a and b: UBEU
1 (x) = UDDC

1 (x) for x = a, b and UBEU
0 (a) = UDDC

0 (a).

The only difference is that UBEU
0 (A1) = δE0[max{UBEU

1 (a), UBEU
1 (b)}]; i.e., there is no ε shock

to the period-0 action “delay,” reflecting that this involves no instantaneous consumption.51

Let ρDDC and ρBEU denote the induced stochastic choice rules in this stopping problem.

The analyst seeks to estimate the discount factor δ and average utility difference w := wa−wb
between the two consumptions given any distribution F of i.i.d. ε shocks.52 To simplify notation,

we normalize wb = 0. Let Θ ⊆ R2 denote the compact space of parameters (w, δ) that is

considered by the analyst. We assume that Θ is large enough so that the data ρ is compatible

with both models, i.e., for each M ∈ {DDC,BEU}, there exists (wM, δM) ∈ Θ such that ρM = ρ

holds under parameters (wM, δM). Let (ŵM
n , δ̂

M
n ) ∈ Θ denote the corresponding maximum

likelihood estimates under observation size n.

The following proposition shows that i.i.d. DDC tends to “exaggerate” the estimate of the

discount factor relative to BEU. The result assumes that distribution F is symmetric with a

49The quantitative importance of such biases is an empirical question, which is beyond the scope of this paper.
50To be more precise, period-0 actions a and A1 should be written as (a, {z∅}) and (z∅, A1) respectively,

where z∅ denotes a dummy variable that corresponds to “no consumption.”
51There is another BEU specification that is observationally equivalent to i.i.d. DDC in this particular stopping

problem; specifically, this version applies a shock ε
z∅
0 to the period-0 dummy consumption z∅ (see footnote 50)

despite the fact that z∅ is only a notational stand-in for the decision to delay consumption. However, since any
specification of BEU is incompatible with i.i.d. DDC in some decision trees (see Section 5.2), this model again
yields different parameter estimates from i.i.d. DDC in settings other than the present stopping problem.

52Unlike in general, here δ is identified for both DDC and BEU, as the average felicity of a is assumed constant
across periods; this approach is also used in other stopping problems, cf. Martinez, Meier, and Sprenger (2017).
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unimodal density (e.g., probit); Appendix G.3 shows how it generalizes to a broader class of

distributions.

Proposition 3. Suppose that the data generating process ρ is compatible with both models.

If F has a symmetric and unimodal density, then almost surely

(i). limn ŵ
DDC
n = limn ŵ

BEU
n

(ii). limn δ̂
DDC
n < limn δ̂

BEU
n if ρ0(a;A0) > 0.5 and limn δ̂

DDC
n > limn δ̂

BEU
n if ρ0(a;A0) < 0.5.

Both models yield the same estimate of w because they predict the same period-1 choice

probabilities. To understand the result for δ, suppose first that ρ0(a,A0) > 0.5, i.e., the agent

is more likely to choose immediate consumption than delay. Intuitively this occurs when the

agent is impatient, and in this case DDC underestimates δ relative to BEU. Conversely, when

the agent is patient (i.e., ρ0(a,A0) < 0.5), DDC overestimates δ relative to BEU. Thus, DDC

always exaggerates the estimate of δ. The reason is precisely that DDC includes an additional

mechanical shock εA1
0 to the action of delaying. This creates more choice variance around modal

choices in period 0; to compensate, the model must exaggerate the value difference between

choices in period 0, thereby producing more extreme estimates of the discount factor.

An immediate corollary of Proposition 3 is that if the true data is in fact generated by BEU

with parameters (w, δ) but the analyst uses i.i.d. DDC, then the resulting estimates almost

surely satisfy (i) limn ŵ
DDC
n = w and (ii) limn δ̂

DDC
n > δ if ρ0(a;A0) > 0.5 and limn δ̂

DDC
n < δ if

ρ0(a;A0) < 0.5. Finally, we note that the same logic as above can be applied to characterize

the difference in estimates in other classic stopping problems, such as task completion or patent

renewal.

5.4 Discussion

Our findings highlight the following modeling tradeoff. On the one hand, general shocks to

actions are statistically convenient, ensuring nondegenerate likelihoods under formulations such

as i.i.d. DDC, whereas BEU agents necessarily choose some options with probability 0. On

the other hand, Section 5.2 shows that this convenience comes at a cost, namely significant

violations of positive option value, both at an absolute and comparative level. Such violations

cast doubt on the typical interpretation of ε as “unobserved utility shocks” and seem particularly

problematic in applications where the modeled agents are profit-maximizing firms.53

While this may seem to imply having to choose between statistical nondegeneracy and

Bayesian rationality, we note that in many specific decision problems, e.g., the stopping problem

53Another interpretation of ε in the DDC literature is that they capture “mistakes” or some small deviations
from perfect rationality. However, Proposition 2 shows that the implied deviations are not small as they occur
with probability greater than a half; moreover, this interpretation is at odds with the fact that in (8) the ε
shocks enter into the agent’s expected continuation value.
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in Section 5.3, versions of BEU feature nondegenerate likelihoods and can be used for parameter

inference. This is also true in more concrete applications, such as in Pakes’s (1986) study of

patent renewal where a BEU model is estimated. Thus, in such settings, the analyst can

refrain from imposing shocks to actions and can estimate a BEU model that respects Bayesian

rationality. In settings where BEU is statistically degenerate, any statistically nondegenerate

model will sometimes violate Bayesian rationality, but suitable hybrid models of BEU and i.i.d.

DDC (see footnote 48) may help limit the severity of the violations.

6 Atemporal Choice Domain and Choice Persistence

In this section, we restrict to the simple subdomain of atemporal consumption problems, where

the agent chooses only (lotteries over) today’s consumption in each period and her current

choices do not affect tomorrow’s menu. As illustrated in Example 1, stochastic choice data on

this domain is often studied in empirical work, notably the large literature on brand choice

dynamics in marketing and economics.54 An important empirical regularity is that choice data

tends to display some “persistence.” Sections 6.1 and 6.2 axiomatically characterize two notions

of choice persistence, showing that they correspond precisely to two important special cases of

BEU: taste persistence and learning.55

Focusing on two periods for simplicity, our atemporal domain is formalized as follows. Given

any consumption lottery `0 ∈ ∆(Z) and menu of consumption lotteries L1 ∈ A1 = K(∆(Z)),56

let (`0, L1) denote the lottery p0 that in period 0 yields consumption according to `0 and in period

1 yields menu L1 for sure; that is, pZ0 = `0 and pA0 = δL1 . Likewise, for any menu L0 ∈ K(∆(Z))

of consumption lotteries and L1 ∈ A1, define (L0, L1) := {(`0, L1) : `0 ∈ L0} ∈ A0 to be the

menu consisting of all lotteries that yield period-0 consumption according to some `0 ∈ L0 and

in period 1 yield menu L1 for sure. Let L∗0 ⊆ K(∆(Z)) denote the set of consumption menus

without ties, which consists of all L0 such that (L0, L1) ∈ A∗0 for all L1 ∈ A1.

We assume throughout that ρ admits a BEU representation. On our atemporal domain,

this has especially simple testable implications: ρ must satisfy the restrictions to this domain

of the DREU axioms (Axioms 1–4) and of Separability (Axiom 5).57

54E.g., Dubé, Hitsch, and Rossi (2010); Jeuland (1979); Keane (1997); Seetharaman (2004) and references
therein.

55Our characterization of the implications of choice persistence for the general BEU model is complementary to
the empirical brand choice literature, which tests to what extent particular parametric or semi-parametric forms
of serially correlated felicities can capture choice persistence in specific data sets. One goal of this literature
is to disentangle (what we term) history dependence (e.g., persistent taste heterogeneity) and consumption
dependence (e.g., habit formation) as sources of choice persistence. While the model in this section rules out
consumption dependence, Section 7.2 briefly discusses how to incorporate it.

56Throughout this section, we denote menus by Lt to emphasize that they consist of consumption lotteries.
57Note that Axioms 6 and 7 have no bite on the atemporal domain.

35



Given this, we can define the restriction ρZ of ρ to atemporal consumption problems without

ties : For any L0 ∈ L∗0 and `0 ∈ L0, define ρZ0 (`0;L0) := ρ0((`0, L1); (L0, L1)) for an arbi-

trary choice of L1; and for any `0 ∈ L0 ∈ L∗0 and `1 ∈ L1 ∈ A∗1 with ρ0(`0;L0) > 0, define

ρZ1 (`1;L1|L0, `0) := ρ1(`1;L1|(L0, L1), (`0, L1)). Note that ρZ is well-defined given the assump-

tion that ρ admits a BEU representation.

6.1 Consumption Persistence and Taste Persistence

One natural notion of choice persistence (e.g., Keane, 1997) is that the agent is more likely to

choose a particular consumption option today if she chose this option yesterday compared with

the scenario in which she chose some other option yesterday. To formalize this notion in our

framework, we additionally impose the restriction that today’s menu does not contain any new

consumption options relative to yesterday’s menu.

Axiom 9 (Consumption persistence). For any L0 ∈ L∗0 and L1 ∈ A∗1 with L1 ⊆ L0,

ρZ0 (`;L0), ρZ0 (`′;L0) > 0 =⇒ ρZ1 (`;L1|L0, `) ≥ ρZ1 (`;L1|L0, `
′).

Proposition 4 shows that consumption persistence is equivalent to the following notion

of taste persistence: If yesterday’s felicity was (ordinally equivalent to) u, today’s felicity is

more likely to remain in any convex neighborhood D of u compared with the scenario where

yesterday’s felicity was some other u′. To state this formally, given any set D ⊆ RZ of felicities,

let [D] := {w ∈ RZ : w ≈ v for some v ∈ D}.

Proposition 4. Suppose ρ admits a BEU representation (Ω,F∗, µ, (Ft, Ut,Wt, ut)) and Con-

dition 1 holds. Then ρZ satisfies Axiom 9 if and only if for any u, u′ ∈ RZ with µ(u0 ≈ u),

µ(u0 ≈ u′) > 0 and any convex D ⊆ RZ with u ∈ D, we have µ(u1 ∈ [D] | u0 ≈ u) ≥ µ(u1 ∈
[D] | u0 ≈ u′).

All proofs for Section 6 appear in Supplementary Appendix H. In addition to absolute

consumption persistence, we can also compare two choice rules ρ and ρ̂ in terms of their con-

sumption persistence:

Definition 7. ρZ features more consumption persistence than ρ̂Z if ρZ0 = ρ̂Z0 and for any L0 ∈ L∗0
and L1 ∈ A∗1 with L1 ⊆ L0,

ρZ0 (`;L0) > 0 =⇒ ρZ1 (`;L1|L0, `) ≥ ρ̂Z1 (`;L1|L0, `).

Proposition 5 shows that more consumption persistence corresponds to more taste persis-

tence, in the sense that today’s felicity is always more likely to remain in a convex neighborhood
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of yesterday’s felicity. For this to be the case, we require that there exists a joint uniformly

ranked pair of consumption lotteries `, ` ∈ ∆(Z) that satisfy Condition 1 for both ρ and ρ̂.

Proposition 5. Suppose that ρ and ρ̂ admit BEU representations (Ω,F∗, µ, (Ft, Ut,Wt, ut)),

(Ω̂, F̂∗, µ̂, (F̂t, Ût, Ŵt, ût)) and there exists a joint uniformly ranked pair. Then ρZ features more

consumption persistence than ρ̂Z if and only if for any u ∈ RZ and convex D ⊆ RZ with u ∈ D
and µ(u0 ≈ u) > 0, we have µ(u0 ≈ u) = µ̂(û0 ≈ u) and µ(u1 ∈ [D] | u0 ≈ u) ≥ µ̂(û1 ∈ [D] |
û0 ≈ u).

The following example applies Propositions 4 and 5 to the special case of BEU in which

felicities ut follow a finite stationary Markov chain. We show that in this setting our general

notion of consumption persistence entails sharp restrictions on the agent’s felicity process:

Axiom 9 holds if and only if the Markov chain is a renewal process, where a single parameter α

captures the extent of the agent’s taste persistence. Moreover, behavior in this case is equivalent

to Jeuland’s (1979) classical notion of “brand loyalty,” whereby repeated choices from any fixed

menu follow a renewal process.

Example 5 (Markov evolving utility). Let U = {u1, ..., um} denote a finite set of possible

felicities, where ui 6≈ uj for any i 6= j and there exist `, ` ∈ ∆(Z) such that ui(`) > ui(`)

for all i. Let M be an irreducible transition matrix, where Mij denotes the probability that

period t + 1 felicity is uj conditional on period t felicity being ui. Assume that the initial

distribution ν ∈ ∆(U) has full support and equals the stationary distribution. Any such

Markov chain (U ,M, ν) generates a (stationary) Markov evolving utility representation.58 We

impose a regularity condition, non-collinearity, on felicities in U , whereby for any i, j, k, l with

i /∈ {j, k, l}, we have ui 6∈ [co{uj, uk, ul}]; this is generically satisfied if the outcome space is

rich enough relative to the number of felicities.

Corollary 1. Suppose that ρ has a Markov evolving utility representation (U ,M, ν) satisfying

non-collinearity. Then the following are equivalent:

(i). ρZ satisfies Axiom 9;

(ii). (U ,M, ν) is a renewal process: there exists α ∈ [0, 1) such that Mii = α + (1 − α)ν(ui)

and Mij = (1− α)ν(uj) for all i 6= j;

(iii). choices from fixed menus follow a renewal process: for any L = {`1, . . . , `n} ∈ L∗0, there

exists β ∈ [0, 1) such that ρZ1 (`i;L | L, `i) = β + (1 − β)ρZ0 (`i;L) and ρZ1 (`j;L | L, `i) =

(1− β)ρZ0 (`j;L) for any i 6= j.

58Of course, in the two-period setting any BEU representation is Markov (though not necessarily stationary
and full support). In Supplementary Appendix I.2, we characterize stationary Markov evolving utility for
arbitrary horizon T . Moreover, as evident from the proof, Corollary 1 remains valid for arbitrary T .
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In addition, if ρ and ρ̂ admit renewal process representations as in Corollary 1, more con-

sumption persistence corresponds to a higher taste persistence parameter α and the same

stationary felicity distribution ν:

Corollary 2. Suppose that ρ and ρ̂ have stationary renewal process representations induced by

(U , ν, α) and (Û , ν̂, α̂) respectively. Then ρZ features more consumption persistence than ρ̂Z if

and only if α ≥ α̂ and there exists a bijection φ : U → Û such that u ≈ φ(u) and ν(u) = ν̂(φ(u))

for each u ∈ U . N

6.2 Consumption Inertia and Learning

Another setting where one should expect to observe some form of choice persistence is Bayesian

evolving beliefs. Indeed, in this case the agent’s choices in both periods 0 and 1 reflect her

expectation of the same fixed but unknown tastes. However, consumption persistence in the

sense of Axiom 9 is neither implied by nor implies BEB. Instead, Proposition 6 shows that BEB

entails the following form of consumption inertia: If the agent chose ` yesterday from a menu

that also contained `′ and today faces the binary choice between ` and `′, then she continues

to choose ` with positive probability. Moreover, on the domain of atemporal consumption

problems, this testable implication fully captures the additional behavioral content of BEB

relative to BEU, thus providing an alternative characterization to Theorem 3 on this domain.

Axiom 10 (Consumption inertia). For any L0 ∈ L∗0 and `, `′ ∈ L0 with {`, `′} ∈ A∗1,

ρZ0 (`;L0) > 0 =⇒ ρZ1 (`; {`, `′}|L0, `) > 0.

Proposition 6. Suppose that ρ admits a BEU representation and Condition 1 holds. Then ρZ

satisfies Axiom 10 if and only if ρZ admits a BEB representation.59

Similar to Axiom 8, the intuition is based on the martingale property of beliefs. This implies

that an agent who expects ` to be better than `′ in period 0 must with positive probability

continue to expect this in period 1. The restriction to binary period-1 menus in Axiom 10 is

crucial: For instance, an agent who in period 0 is unsure whether her ranking is `′ � ` � `′′ or

`′′ � ` � `′ might choose ` over both of the other two options, but upon learning her preferences

in period 1 would never choose ` from {`, `′, `′′}.60

59That is, there exists (Ω, µ,F∗, (Ft)) and an F∗-measurable felicity ũ such that ρZ0 (`0;L0) = µ(`0 =
argmaxL0

u0) and ρZ1 (`1;L1 | L0, `0) = µ(`1 = argmaxL1
u1 | `0 = argmaxL0

u0), where ut = E[ũ | Ft] for
t = 0, 1.

60In an earlier working paper version, we analyzed a stronger form of consumption inertia, whereby ρZ0 (`;L0) >
0 implies ρZ1 (`;L1|L0, `) > 0 for all L1 ⊆ L0. We showed that this is equivalent to the requirement that
µ(u1 ≈ u | u0 ≈ u) > 0 for all u with µ(u0 ≈ u) > 0. See Section 5.2 of Frick, Iijima, and Strzalecki (2017).
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7 Discussion

7.1 Related Literature

An extensive literature studies axiomatic characterizations of random utility models in the static

setting (Barberá and Pattanaik, 1986; Block and Marschak, 1960; Falmagne, 1978; Luce, 1959;

McFadden and Richter, 1990). Our approach incorporates as its static building block the elegant

axiomatization of Gul and Pesendorfer (2006) and Ahn and Sarver (2013). As a preliminary

step, we extend their result to an infinite outcome space, which is needed since the space of

continuation problems in the dynamic model is infinite. This contribution is complementary

to Ma (2018) who also provides an infinite-outcome generalization of Gul and Pesendorfer

(2006). In contrast to our result, he relies on a stronger regularity condition that rules out the

possibility of ties (whereas ties necessarily arise when evaluating continuation problems under

BEU) and focuses on the case with continuous vNM utilities. Lu (2016b) studies a model with

an objective state space where choice is between Anscombe-Aumann acts; by focusing on state-

independent utilities, he traces all randomness of choice to random arrival of signals.61 While

this is similar in spirit to our BEB representation, our state space is subjective and utility can

be state-dependent. A recent paper by Lu and Saito (2018a) studies period-0 random choice

between consumption lottery streams and attributes the randomness in choices to a stochastic

discount factor.62

The axiomatic literature on dynamic random utility, and more generally dynamic stochastic

choice, is relatively sparse. Our choice domain is as in Kreps and Porteus (1978); however, while

they study deterministic choice in each period, we focus on random choice in each period. To

the best of our knowledge, Fudenberg and Strzalecki (2015) is the first axiomatic study of

stochastic choice in general decision trees, but they study only the special case of i.i.d. DDC

with logit shocks to actions.63 As we discuss in Section 5, the latter model is a special case

of DREU, but is incompatible with BEU because it features very different attitudes toward

option value. In addition, because of the i.i.d. assumption, their representation does not give

rise to history dependent choice behavior and cannot accommodate phenomena such as learning

and choice persistence; likewise, challenges such as limited observability do not arise in their

setting. A recent paper by Ke (2018) characterizes a dynamic version of the Luce model, where

61Lu (2016a) studies an analogous model with state-dependent utilities in an objective state-space setting.
62Other recent contributions by Apesteguia, Ballester, and Lu (2017) and Manzini and Mariotti (2018) re-

spectively study random utility models with linearly ordered choice options and binary support.
63On more limited domains, Gul, Natenzon, and Pesendorfer (2014) study an agent who receives an outcome

only once at the end of a decision tree and characterize a generalization of the Luce model. Pennesi (2017),
Cerigioni (2017), and Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2017) characterize versions of
the Luce model where the analyst observes a sequence of stochastic choices over consumptions. There is also
non-axiomatic work studying special cases of our representation where the agent makes a one-time consumption
choice at a stopping time, e.g., Fudenberg, Strack, and Strzalecki (2016).
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randomness of choices is caused by execution mistakes and there is no serially correlated private

information. In contrast to BEU, his model again does not feature positive option value, as

larger menus might induce more mistakes. Duraj (2018) builds on our paper and characterizes

general dynamic random (expected) utility in an objective state-space setting.

The literature on menu choice (Dekel, Lipman, and Rustichini, 2001; Dekel, Lipman, Rus-

tichini, and Sarver, 2007; Dillenberger, Lleras, Sadowski, and Takeoka, 2014; Kreps, 1979)

considers an agent’s deterministic preference over menus (or decision trees) at a hypothetical

ex-ante stage where the agent does not receive any information but anticipates receiving infor-

mation later. An important difference of our approach is that we study the agent’s behavior

in actual decision trees, allowing information to arrive in each period and therefore focusing on

stochastic choice. We discuss the comparison in more detail in Section 2.2.3. Related papers are

Krishna and Sadowski (2014, 2016) who study ex-ante preferences over infinite-horizon decision

trees and characterize stationary versions of our BEU representation. Another related paper by

Ahn and Sarver (2013) studies both ex-ante deterministic preference over menus and ex-post

stochastic choice from menus; they show how to connect the analysis of Gul and Pesendorfer

(2006) and of Dekel, Lipman, and Rustichini (2001) to obtain better identification properties.

An adaptation of their sophistication axiom plays a key role in our characterization of BEU.

Finally, an extensive empirical literature uses specifications of discrete choice models in

dynamic contexts.64 As we discuss in Section 5, our DREU representation nests the most

general DDC model, which in turn nests our Bayesian rational BEU model. However, while BEU

features only shocks to consumption, most DDC models (in particular, i.i.d. DDC) introduce

more general shocks to actions. We show that the latter form of shocks can lead to violations

of Bayesian rationality due to the fact that they mechanically apply to continuation menus

in a way that is detached from their continuation value. As we discuss, this observation is

complementary to Wilcox (2011) and Apesteguia and Ballester (2018), who highlight modeling

issues in static discrete choice models. In particular, they show that when i.i.d. utility shocks

are added to expected utilities, then the probability of choosing a risky option over a safe option

can decrease with respect to a risk aversion parameter in the vNM utility.

7.2 Conclusion

This paper provides the first axiomatic analysis of the general model of dynamic random utility

and several of its key special cases. Our central axioms restrict how choices across periods are

related, capturing the key new testable implications of the dynamic relative to the static model

and facilitating comparisons between different versions of dynamic random utility.

In a “backward-looking” direction, we show that while observed choices under dynamic ran-

64For surveys, see Rust (1994) and Aguirregabiria and Mira (2010).
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dom utility are typically history-dependent, even the most general version of the model entails

two history independence conditions: Contraction history dependence rules out certain dynami-

cally “irrational” behavior such as the “mere exposure effect,” while linear history independence

provides a conceptual justification for a lottery-based procedure to extrapolate behavior across

different decision trees. In addition, special cases such as learning or persistent taste shocks

impose further testable restrictions on the nature of history dependence that correspond to

well-documented forms of choice persistence. In a “forward-looking” direction, we show that

Bayesian rationality restricts utility shocks to apply to instantaneous consumptions (as under

BEU), creating a tension with desirable statistical properties such as non-degenerate likelihoods

that require additional mechanical shocks to continuation menus (as under general DDC).

Our analysis addresses some technical challenges that may be relevant to other work on

stochastic choice: In particular, we propose a solution to the limited observability problem that

arises from the fact that in dynamic settings past choices typically restrict future opportunity

sets; and we extend Gul and Pesendorfer’s (2006) and Ahn and Sarver’s (2013) characterization

of static random expected utility to infinite outcome spaces.

Finally, throughout the paper we have restricted attention to stochastic processes (Ut) of

utilities that evolve exogenously. Here choice behavior appears history-dependent to the analyst

due to the fact that past choices partly reveal the agent’s private information. But from the

point of view of the agent, past choices have no effect on today’s behavior. However, in many

settings it is natural to allow (Ut) to evolve endogenously, as a function of the agent’s past

consumption: Two prominent examples are habit formation (e.g., Becker and Murphy, 1988),

where consuming a certain good in the past may make the agent like it more in the present;

and active learning/experimentation, where the agent’s consumption provides information to

her about some payoff-relevant state of the world, as modeled for instance by the multi-armed

bandit literature (e.g., Gittins and Jones, 1972; Robbins, 1952). This gives rise to an additional

form of history dependence, which we term consumption dependence, where past consumption

directly shapes the agent’s choices today. Nevertheless, as we showed in the previous working

paper version, our main insights extend to settings with consumption dependence.65 The key

idea is to study an enriched primitive, where a history h
t−1 = (A0, p0, z0, . . . , At−1, pt−1, zt−1)

now summarizes not only that in each period k ≤ t− 1 the agent faced menu Ak and chose pk,

but also that the agent’s realized consumption was zk ∈ supp pZk . Natural adaptations of our

axioms to this setting then characterize generalizations of DREU, BEU, and BEB that allow

the evolution of the agent’s utility process Ut to be influenced by her past consumption.

65See Section 7 of Frick, Iijima, and Strzalecki (2017). The distinction between (what we term) history
dependence and consumption dependence goes back to at least Heckman (1981), who highlights the importance
of distinguishing these two phenomena, so as to avoid spuriously attributing a causal role to past consumption
when observed behavior could instead be explained through serially correlated exogenous utilities (e.g., persistent
taste heterogeneity).
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Appendix: Main Proofs

The appendix is structured as follows:

• Section A defines equivalent versions of DREU, BEU, and BEB.

• Sections B–D prove (T -period generalizations of) Theorems 1–3.

• Section E collects together several lemmas that are used throughout Sections B–D.

The supplementary appendix contains the following additional material and is available at https:
//drive.google.com/open?id=1JIrSyzkpi1-OyNfDYoQ_dc3Se6qLBeDM:

• Section F proves Theorem 0.

• Sections G and H collect together proofs for Sections 5 and 6.

• Section I provides additional results on identification and axioms for Markov evolving utility.

• Section J provides all omitted proofs for Sections A, E, and I.

A Equivalent Representations

Instead of working with probabilities over the grand state space Ω, our proofs of Theorems 1–3 will
employ equivalent versions of our representations, called S-based representations, that look at one-
step-ahead conditionals.66 Section A.1 defines S-based representations. Section A.2 establishes the
equivalence between DREU, BEU, and BEB representations and their respective S-based analogs.

A.1 S-based Representations

For any X ∈ {X0, . . . , XT }, A ∈ K(∆(X)), p ∈ ∆(X), let N(A, p) := {U ∈ RX : p ∈ M(A,U)} and
N+(A, p) := {U ∈ RX : {p} = M(A,U)}.

Definition 8. A random expected utility (REU) form on X ∈ {X0, . . . , XT } is a tuple
(S, µ, {Us, τs}s∈S) where

(i). S is a finite state space and µ is a probability measure on S

(ii). for each s ∈ S, Us ∈ RX is a nonconstant utility over X.

(iii). for each s ∈ S, the tie-breaking rule τs is a finitely-additive probability measure on the Borel
σ-algebra on RX and is proper, i.e., τs(N

+(A, p)) = τs(N(A, p)) for all A, p.

Given any REU form (S, µ, {Us, τs}s∈S) on Xi and any s ∈ S, Ai ∈ Ai, and pi ∈ ∆(Xi), define

τs(pi, Ai) := τs({w ∈ RXi : pi ∈M(M(Ai, Us), w)}).

Definition 9. An S-based DREU representation of ρ consists of tuples (S0, µ0, {Us0 , τs0}s0∈S0),
(St, {µst−1

t }st−1∈St−1 , {Ust , τst}st∈St)1≤t≤T such that for all t = 0, . . . , T , we have:
DREU1: For all st−1 ∈ St−1, (St, µ

st−1

t , {Ust , τst}st∈St) is an REU form on Xt such that67

66These are dynamic analogs of the static GP representations in Ahn and Sarver (2013).
67For t = 0, we abuse notation by letting µ

st−1

t denote µ0 for all st−1.
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(a) Ust 6≈ Us′t for any distinct pair st, s
′
t ∈ supp(µ

st−1

t );

(b) supp(µ
st−1

t ) ∩ supp(µ
s′t−1

t ) = ∅ for any distinct pair st−1, s
′
t−1 at t ≥ 1;

(c)
⋃
st−1∈St−1

suppµ
st−1

t = St.

DREU2: For all pt, At, and ht−1 = (A0, p0, A1, p1, . . . , At−1, pt−1) ∈ Ht−1(At),
68

ρt(pt, At|ht−1) =

∑
(s0,...,st)∈S0×...×St

∏t
k=0 µ

sk−1

k (sk)τsk(pk, Ak)∑
(s0,...,st−1)∈S0×...×St−1

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)
.

An S-based BEU representation of ρ is an S-based DREU representation such that for all t =
0, . . . , T , we additionally have:

BEU: For all st ∈ St, there exists ust ∈ RZ such that for all zt ∈ Z,At+1 ∈ At+1, we have

Ust(zt, At+1) = ust(zt) + Vst(At+1),

where Vst(At+1) :=
∑

st+1
µstt+1(st+1) maxpt+1∈At+1 Ust+1(pt+1) for t ≤ T − 1 and VsT ≡ 0.

An S-based BEB representation is an S-based BEU representation such that additionally:
BEB: For all t = 0, . . . , T − 1 and st ∈ St, there exists δst > 0 such that

ust =
1

δst

∑
st+1

µstt+1(st+1)ust+1 .

A.2 Equivalence Result

Proposition A.1. Let ρ be a dynamic stochastic choice rule.

(i). ρ admits a DREU representation if and only if ρ admits an S-based DREU representation.

(ii). ρ admits a BEU representation if and only if ρ admits an S-based BEU representation.

(iii). ρ admits a BEB representation if and only if ρ admits an S-based BEB representation.

Proof. See Supplementary Appendix J.1. �

B Proof of Theorem 1

Instead of establishing the two-period characterization in Theorem 1, this section establishes the
characterization of DREU under an arbitrary horizon T . Section B.1 presents T -period generalizations
of the axioms from Section 3. Section B.2 introduces important terminology regarding the relationship
between states and histories that is used throughout the proofs of Theorems 1–3. Sections B.3 and
B.4 then establish sufficiency and necessity directions of the DREU characterization.

68For t = 0, we again abuse notation by letting ρt(·|ht−1) denote ρ0(·) for all ht−1.
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B.1 Characterization of DREU for Arbitrary T

For general T , DREU is characterized by straightforward generalizations of Axioms 1–4 from Section 3.
We first present the T -period generalizations of Contraction History Independence and Linear History
Independence.

Given ht−1 = (A0, p0, ..., At−1, pt−1) ∈ Ht−1, let (ht−1
−k , (A

′
k, p
′
k)) denote the sequence of the form

(A0, p0, ..., A
′
k, p
′
k, ..., At−1, pt−1).69 We say that gt−1 ∈ Ht−1 is contraction equivalent to ht−1 if for

some k, we have gt−1 = (ht−1
−k , (Bk, pk)), where Ak ⊆ Bk and ρk(pk, Ak|hk−1) = ρk(pk, Bk|hk−1).70

That is, gt−1 and ht−1 differ only in period k, where under gt−1, the agent chooses lottery pk from
menu Bk, while under ht−1, she chooses the same lottery pk from the contraction Ak ⊆ Bk; moreover,
conditional on hk−1, the choice of pk from Ak and the choice of pk from Bk occur with the same
probability. Generalizing Axiom 1, Axiom B.1 requires that choice behavior be the same after ht−1

and gt−1:

Axiom B.1 (Contraction History Independence). For all t ≤ T , if gt−1 ∈ Ht−1(At) is contraction
equivalent to ht−1 ∈ Ht−1(At), then ρt(·, At|ht−1) = ρt(·, At|gt−1).

We say that a finite set of histories Gt−1 ⊆ Ht−1 is linearly equivalent to ht−1 =
(A0, p0, ..., At−1, pt−1) ∈ Ht−1 if

Gt−1 = {(ht−1
−k , (λAk + (1− λ)Bk, λpk + (1− λ)qk)) : qk ∈ Bk}

for some k, Bk, and λ ∈ (0, 1]. That is, Gt−1 is the collection of histories that differ from ht−1 only at
period k: Under ht−1, the agent chooses pk from menu Ak, while Gt−1 summarizes all possible choices
of the form λpk+(1−λ)qk from the menu λAk+(1−λ)Bk. Generalizing Axiom 2, Axiom B.2 requires
period-t choice behavior following the set of histories Gt−1 to be the same as conditional on ht−1. To
state this formally, define the choice distribution from At following Gt−1 ⊆ Ht−1(At),

ρt(·, At|Gt−1) :=
∑

gt−1∈Gt−1

ρt(·, At|gt−1)
ρ(gt−1)∑

f t−1∈Gt−1 ρ(f t−1)
,

to be the weighted average of all choice distributions ρt(·, At|gt−1) following histories in Gt−1, where
for each gt−1 = (Â0, p̂0, . . . , Ât−1, p̂t−1) its weight ρ(gt−1) :=

∏t−1
k=0 ρk(p̂k, Âk|gk−1) corresponds to the

probability of the sequence of choices summarized by gt−1.71

Axiom B.2 (Linear History Independence). For all t ≤ T , if Gt−1 ⊆ Ht−1(At) is linearly equivalent
to ht−1 ∈ Ht−1(At), then ρt(·, At|ht−1) = ρt(·, At|Gt−1).

Next, we generalize the procedure for overcoming the limited observability problem following
arbitrary histories ht−1. To do so, given any menu At and history ht−1, consider a degenerate
choice sequence dt−1 = ({q0}, q0, . . . , {qt−1}, qt−1) such that At ∈ supp qAt−1 and replace ht−1 =
(A0, p0, . . . , At−1, pt−1) with gt−1 := λht−1 + (1 − λ)dt−1 where72 at every period k ≤ t − 1, the
agent faces menu λAk + (1 − λ){qk} and chooses lottery λpk + (1 − λ)qk. Under expected utility

69In general this is not a history, but it is if A′k ∈ supp pAk−1 and Ak+1 ∈ supp p′Ak and ρk(p′k, A
′
k|hk−1) > 0.

70This induces an equivalence relation on Ht−1 by taking the symmetric and transitive closure.
71Note that ρ(gt−1) does not keep track of the probabilities p̂Ak (Âk+1), since these pertain to exogenous

randomization and do not reveal any private information.
72In order for λht−1 + (1 − λ)dt−1 := (λAk + (1 − λ){qk}, λpk + (1 − λ)qk)t−1k=0 to be a well-defined history,

it suffices that λAk + (1 − λ){qk} ∈ supp qAk−1 for all k = 1, . . . , t − 1. This can be ensured by appropriately
choosing each qk, working backwards from period t− 1.
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maximization, gt−1 reveals the same information about the agent as ht−1. Thus, we define choices
from At following ht−1 by extrapolating from choices following gt−1.

Define the set of degenerate period-(t − 1) histories by Dt−1 := {dt−1 ∈ Ht−1 : dt−1 =
({qk}, qk)t−1

k=0 where qk ∈ ∆(Xk)∀k ≤ t− 1}.

Definition 10. For any t ≥ 1, At ∈ At, and ht−1 ∈ Ht−1, define

ρh
t−1

t (·;At) := ρt(·;At|λht−1 + (1− λ)dt−1). (10)

for some λ ∈ (0, 1] and dt−1 ∈ Dt−1 such that λht−1 + (1− λ)dt−1 ∈ Ht−1(At).

It follows from Axiom B.2 (Linear History Independence) that ρh
t−1

t (·;At) is well-defined:
Lemma E.4 shows that the RHS of (10) does not depend on the specific choice of λ and dt−1. More-
over, ρh

t−1

t (·;At) coincides with ρt(·;At|ht−1) whenever ht−1 ∈ Ht−1(At). In the following, we do not
distinguish between the extended and nonextended version of ρt and use ρt(·;At|ht−1) to denote both.

Generalizing Axiom 3, we now impose the static REU conditions on each extended choice distri-
bution ρt(·|ht−1):

Axiom B.3 (History-dependent REU). For all t ≤ T and ht−1, ρt(·|ht−1) satisfies Axiom 0.73

Finally, we state the T -period generalization of Axiom 4 (History Continuity). For this, we first
define T -period analogs of menus and histories without ties:

Definition 11. For any 0 ≤ t ≤ T and ht−1 ∈ Ht−1, the set of period-t menus without ties conditional
on history ht−1 is denoted A∗t (ht−1)74 and consists of all At ∈ At such that for any pt ∈ At and any
sequences pnt →m pt and Bn

t →m At r {pt}, we have

lim
n→∞

ρt(p
n
t , B

n
t ∪ {pnt }|ht−1) = ρt(pt, At|ht−1).

For t = 0, we write A∗0 := A∗0(ht−1). The set of period t histories without ties is H∗t := {ht =
(A0, p0, . . . , At−1, pt−1) ∈ Ht : Ak ∈ A∗k(hk−1) for all k ≤ t}.

We say that ht,n →m ht if ht,n = (An0 , p
n
0 , ..., A

n
t , p

n
t ) and ht = (A0, p0, ..., At, pt) satisfy Ank →m Ak

and pnk →m pk for each k.

Axiom B.4 (History Continuity). For all t ≤ T − 1, At+1, pt+1, and ht,

ρt+1(pt+1;At+1|ht) ∈ co{lim
n
ρt+1(pt+1;At+1|ht,n) : ht,n →m ht, ht,n ∈ H∗t }.

Generalizing Theorem 1, we have the following representation theorem:

Theorem B.1. The dynamic stochastic choice rule ρ satisfies Axioms B.1–B.4 if and only if ρ admits
a DREU representation.

73Lemma E.1 verifies that Xt is a separable metric space. Then Mixture Continuity and Finiteness make use
of the same convergence notions as defined following Axiom 0.

74Note that A∗t (ht−1) 6⊆ At(h
t−1) because the first set contains all menus without ties (we use history ht−1

here only to determine where ties could occur) while the second set contains only menus that occur with positive
probability after history ht−1—typically very few menus.
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B.2 Relationship between Histories and States

Throughout the proofs of Theorems B.1–D.1 we will make use of the following terminology con-
cerning the relationship between histories and states. Fix any t ∈ {0, . . . , T}. Suppose that
(St′ , {µ

st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfy DREU1 and DREU2 from Definition 9 for each t′ ≤ t.

Fix any state s∗t ∈ St. We let pred(s∗t ) denote the unique predecessor sequence (s∗0, . . . , s
∗
t−1) ∈

S0 × . . . × St−1, given by assumptions DREU1 (b) and (c), such that s∗k+1 ∈ supp(µ
s∗k
k+1) for each

k = 0, ..., t − 1. Given any history ht = (A0, p0, . . . , At, pt), we say that s∗t is consistent with ht if∏t
k=0 τs∗k(pk, Ak) > 0.

For any k = 0, . . . , t, sk ∈ Sk, p0 ∈ A0 ∈ A0, and pk+1 ∈ Ak+1 ∈ Ak+1, let

Usk(Ak+1, pk+1) := {Usk+1
: sk+1 ∈ suppµskk+1 and pk+1 ∈M(Ak+1, Usk+1

)};
U0(A0, p0) := {Us0 : s0 ∈ S0 and p0 ∈M(A0, Us0)}.

A separating history for s∗t is a history ht = (B0, q0, ..., Bt, qt) such that Us∗k−1
(Bk, qk) = {Us∗k} for

all k = 0, . . . , t and ht ∈ H∗t , where we abuse notation by letting Us∗−1
(B0, q0) denote U0(B0, q0). Note

that separating histories are required to be histories without ties.
We record the following properties:

Lemma B.1. Fix any s∗t ∈ St with pred(s∗t ) = (s∗0, . . . , s
∗
t−1). Suppose ht = (B0, q0, . . . , Bt, qt) satisfies

Us∗k−1
(Bk, qk) = {Us∗k} for all k = 0, . . . , t. Then for all k = 0, . . . , t, s∗k is the only state in Sk that is

consistent with hk.

Proof. Fix any ` = 0, . . . , t. First, consider s′` ∈ S` r {s∗`}, with pred(s′`) = (s′0, . . . , s
′
`−1). Let

k ≤ ` be smallest such that s′k 6= s∗k. Then s′k ∈ suppµ
s∗k−1

k , so Us∗k−1
(Bk, qk) = {Us∗k} implies that

qk /∈M(Bk, Us′k). Thus, τs′k(qk, Bk) = 0, whence s′` is not consistent with h`.

Next, to show that s∗` is consistent with h`, note that ρ`(q`, B`|h`−1) > 0, so DREU2 implies

∑
(s0,...,s`)∈S0×...×S`

∏̀
k=0

µ
sk−1

k (sk)τsk(qk, Bk) > 0. (11)

Now, if (s0, . . . , s`−1) 6= pred(s`), then
∏`
k=0 µ

sk−1

k (sk) = 0. And if (s0, . . . , s`−1) = pred(s`)

but s` 6= s∗` , then the first paragraph shows
∏`
k=0 τsk(qk, Bk) = 0. Hence, (11) reduces to∏`

k=0 µ
s∗k−1

k (s∗k)τs∗k(qk, Bk) > 0, whence s∗` is consistent with h`. �

Lemma B.2. Every s∗t ∈ St admits a separating history.

Proof. Fix any s∗t ∈ St with pred(s∗t ) = (s∗0, . . . , s
∗
t−1). By Lemma E.2 and DREU1 (a), there exist

menus B0 = {q0(s0) : s0 ∈ S0} ∈ A0 and Bk(sk−1) = {pk(sk) : sk ∈ suppµ
sk−1

k } ∈ Ak for each
k = 1, . . . , t and sk ∈ Sk such that U0(B0, q0(s0)) = {Us0} for all s0 ∈ S0 and Usk−1

(Bk(sk−1), qk(sk)) =
{Usk} for all sk ∈ suppµ

sk−1

k . Moreover, we can assume that Bk+1(sk) ∈ supp qk(sk)
A for all k =

0, . . . , t − 1 and sk ∈ Sk, by letting each qk(sk) put small enough weight on (z,Bk+1(sk)) for some
z ∈ Z. Then ht := (B0, q0(s∗0), . . . , Bt(s

∗
t ), qt(s

∗(t))) ∈ Ht. Moreover, since Us∗k−1
(Bk, qk(s

∗
k)) = {Us∗k},

Lemma B.1 implies that or all for all k = 0, . . . , t, s∗k is the only state consistent with hk. Additionally,

for all k = 0, . . . , t and sk ∈ suppµ
s∗k−1

k , we have M(Bk(s
∗
k−1), Usk) = {qk(sk)} by construction. Hence,

by Lemma E.3, we have Bk(s
∗
k−1) ∈ A∗k(hk−1). Thus ht ∈ H∗t , so ht is a separating history for s∗t . �
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B.3 Proof of Theorem B.1: Sufficiency

Suppose ρ satisfies Axioms B.1–B.4. To show that ρ admits a DREU representation, it suffices, by
Proposition A.1, to construct an S-based DREU representation for ρ.

We proceed by induction on t ≤ T . First consider t = 0. Since ρ0 satisfies Axiom B.3 and X0 is
a separable metric space by Lemma E.1, the existence of (S0, µ0, {Us0 , τs0}s0∈S0) satisfying DREU1
and DREU2 from Definition 9 is immediate from Theorem F.1, which extends Gul and Pesendorfer’s
(2006) and Ahn and Sarver’s (2013) characterization result for static S-based REU representations to
separable metric spaces and which we prove in Supplementary Appendix F.

Suppose next that 0 ≤ t < T and that we have constructed
(St′ , {µ

st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfying DREU1 and DREU2 for each t′ ≤ t. We

now construct (St+1, {µstt+1}st∈St , {Ust+1 , τst+1}st+1∈St+1) satisfying DREU1 and DREU2.

B.3.1 Defining ρstt+1 and (St+1, {µstt+1}st∈St , {Ust+1 , τst+1}st+1∈St+1):

To this end, we first pick an arbitrary separating history ht(st) for each st ∈ St (this exists by
Lemma B.2) and define

ρstt+1(·, At+1) := ρt+1(·, At+1|ht(st))

for all At+1 ∈ At+1. Note that here ρt+1(·, |ht(st)) is the extended version of ρt+1(·|ht(st)) given in
Definition 10; by Axiom B.2 and Lemma E.4, the specific choice of λ ∈ (0, 1] and dt−1 ∈ Dt−1 used in
the extension procedure does not matter.

By Axiom B.3 and the fact that Xt+1 is separable metric (Lemma E.1), Theorem F.1 applied to
ρstt+1 yields an REU form (Sstt+1, µ

st
t+1, {Ust+1 , τst+1}st+1∈S

st
t+1

) on Xt+1 such that Ust+1 6≈ Us′t+1
for any

distinct pair st+1, s
′
t+1 ∈ S

st
t+1 and such that

ρstt+1(pt+1, At+1) =
∑

st+1∈S
st
t+1

µstt+1(st+1)τst+1(pt+1, At+1)

for all pt+1 and At+1. Without loss, we can assume that Sstt+1 and S
s′t
t+1 are disjoint whenever st 6= s′t.

Set St+1 :=
⋃
st∈St S

st
t+1 and extend µstt+1 to a probability measure on St+1 by setting µstt+1(st+1) = 0

for all st+1 ∈ St+1 r Sstt+1.
By construction, it is immediate that (St+1, {µstt+1}st∈St , {Ust+1 , τst+1}st+1∈St+1) thus defined satis-

fies DREU1 and that

ρstt+1(pt+1, At+1) =
∑

st+1∈St+1

µstt+1(st+1)τst+1(pt+1, At+1) (12)

for all pt+1 and At+1. It remains to show that DREU2 is also satisfied.

B.3.2 ρstt+1 is Well-Behaved

To this end, Lemma B.3 below first shows that the definition of ρstt+1 is well-behaved, in the sense that
for any history ht that can only arise in state st, ρ

st
t+1 = ρt+1(·|ht).

Lemma B.3. Fix any s∗t ∈ St with pred(s∗t ) = (s∗0, ..., s
∗
t−1). Suppose ht = (A0, p0, ..., At, pt) ∈ Ht

satisfies Us∗k−1
(Ak, pk) = {Us∗k} for all k = 0, 1, . . . , t. Then for any At+1 ∈ At+1, ρt+1(·, At+1|ht) =

ρ
s∗t
t+1(·, At+1).

47



Proof. Step 1: Let h̃t = (Ã0, p̃0, . . . , Ãt, p̃t) denote the separating history for s∗t used to define ρ
s∗t
t+1.

We first prove the Lemma under the assumption that ht ∈ H∗t , i.e, that ht is itself a separating history
for s∗t .

75

Pick (r0, ..., rt) ∈ ∆(X0)× . . .×∆(Xt) such that At+1 ∈ supp rAt and for all k = 0, . . . , t− 1,

supp(rAk ) ⊇ {Bk+1, B̃k+1, Bk+1 ∪ B̃k+1},

where B` := 1
3A` + 1

3{p̃`} + 1
3{r`} and B̃` := 1

3Ã` + 1
3{p`} + 1

3{r`} for ` = 0, . . . , t. Define q` :=
1
3p` + 1

3 p̃` + 1
3r`.

Note that since ht, h̃t ∈ H∗t and Us∗k−1
(Ak, pk) = Us∗k−1

(Ãk, p̃k) = {Us∗k}, Lemma E.3 implies that

M(Ak, Us∗k) = {pk} and M(Ãk, Us∗k) = {p̃k} for all k = 0, 1, . . . , t. By linearity of the Us, we then also
have

Us∗k−1
(Bk, qk) = Us∗k−1

(B̃k, qk) = Us∗k−1
(Bk ∪ B̃k, qk) = {Us∗k} and

M(Bk, Us∗k) = M(B̃k, Us∗k) = M(Bk ∪ B̃k, Us∗k) = {qk}.

This implies that for all k = 0, . . . , t and sk ∈ suppµ
s∗k−1

k−1 ,

τsk(qk, Bk) = τsk(qk, B̃k) = τsk(qk, Bk ∪ B̃k) =

{
1 if sk = s∗k
0 otherwise

By DREU2 of the inductive hypothesis, it follows that for all k = 0, . . . , t− 1,

µ
s∗t−1

t (s∗t ) = ρt(qt, Bt|B0, q0, . . . , Bt−1, qt−1) = ρt(qt, B̃t|B̃0, q0, . . . , B̃t−1, qt−1)

= ρt(qt, Bt ∪ B̃t|B0, q0, . . . , Bk−1, qk−1, Bk ∪ B̃k, qk, . . . , Bt−1 ∪ B̃t−1, qt−1)

= ρt(qt, Bt ∪ B̃t|B̃0, q0, . . . , B̃k−1, qk−1, Bk ∪ B̃k, qk, . . . , Bt−1 ∪ B̃t−1, qt−1),

whence repeated application of Axiom B.1 (Contraction History Independence) yields

ρt+1(·, At+1|B0, q0, . . . , Bt, qt) = ρt+1(·, At+1|B0 ∪ B̃0, q0, . . . , Bt ∪ B̃t, qt) =

ρt+1(·, At+1|B̃0, q0, . . . , B̃t, qt).
(13)

Moreover, by Axiom B.2 (Linear History Independence) and Lemma E.4, we have

ρt+1(·, At+1|ht) = ρt+1(·, At+1|B0, q0, . . . , Bt, qt) and

ρt+1(·, At+1|h̃t) = ρt+1(·, At+1|B̃0, q0, . . . , B̃t, qt).
(14)

Combining (13) and (14) we obtain that ρt+1(·, At+1|ht) = ρt+1(·, At+1|h̃t) := ρ
s∗t
t+1(·, At+1). This

proves the Lemma for histories ht ∈ H∗t .
Step 2: Now suppose that ht /∈ H∗t . Take any sequence of histories ht,n →m ht with

ht,n = (An0 , p
n
0 , ..., A

n
t , p

n
t ) ∈ H∗t for each n. Note that such a sequence exists by Axiom B.4 (His-

tory Continuity).
We claim that for all large enough n, Us∗k−1

(Ank , p
n
k) = {Us∗k} for all k = 0, . . . , t. Suppose for a

contradiction that we can find a subsequence (ht,n`)∞`=1 for which this claim is violated. Note that

75Note that Us∗k−1
(Ak, pk) = {Us∗k

} for all k = 0, 1, . . . , t does not by itself imply that ht is a history without
ties.
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for all `, ρk(p
n`
k , A

n`
k |h

k−1,n`) > 0 for all k = 0, . . . , t (by the fact that ht,n` is a well-defined history).
Hence, DREU2 for k ≤ t implies that we can find s′t,n` ∈ St with pred(s′t,n`) = (s′0,n` , . . . , s

′
t−1,n`

)
and (s′0,n` , . . . , s

′
t,n`

) 6= (s∗0, . . . , s
∗
t ) such that Us′k,n`

∈ Us′k−1,n`
(An`k , p

n`
k ) for all k = 0, . . . , t. Moreover,

since S0 × . . . × St is finite, by choosing the subsequence (ht,n`) appropriately, we can assume that
(s′0,n` , . . . , s

′
t,n`

) = (s′0, . . . , s
′
t) 6= (s∗0, . . . , s

∗
t ) for all `. Pick the smallest k such that s′k 6= s∗k and

pick any qk ∈ Ak. Since An`k →
m Ak we can find qn`k ∈ An`k with qn`k →

m qk. For all ` we have
Us′k ∈ Us′k−1

(An`k , p
n`
k ), so Us′k(pn`k ) ≥ Us′k(qn`k ), whence Us′k(pk) ≥ Us′k(qk) by linearity of Us′k . Moreover,

by choice of k, s′k ∈ suppµ
s′k−1

k−1 = suppµ
s∗k−1

k−1 . Thus, Us′k ∈ Us∗k−1
(Ak, pk) = {Us∗k}. But s′k 6= s∗k, so by

DREU1 (a) of the inductive hypothesis Us′k 6≈ Us∗k , a contradiction.

By the previous paragraph, for large enough n, ht,n satisfies the assumption of the Lemma. Since

ht,n ∈ H∗t , Step 1 then shows that ρt+1(pt+1, At+1|ht,n) = ρ
s∗t
t+1(pt+1, At+1) for all large enough n and

all pt+1. By Axiom B.4 (History Continuity), this implies that for all pt+1

ρt+1(pt+1, At+1|ht) ∈ co{lim
n
ρt+1(pt+1, At+1|ht,n) : ht,n →m ht, ht,n ∈ H∗t } = {ρs

∗
t
t+1(pt+1, At+1)},

which completes the proof. �

B.3.3 ρt+1(·|ht) is a Weighted Average of ρstt+1

The next lemma shows that ρt+1(·|ht) can be expressed as a weighted average of the state-dependent
choice distributions ρstt+1, where the weight on each ρstt+1 corresponds to the probability of st conditional
on history ht.

Lemma B.4. For any pt+1 ∈ At+1 and ht = (A0, p0, ..., At, pt) ∈ Ht(At+1), we have

ρt+1(pt+1, At+1|ht) =

∑
(s0,...,st)∈S0×···×St

∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)ρ
st
t+1(pt+1, At+1)∑

(s0,...,st)∈S0×···×St
∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)
.

Proof. Let {s1
t , ..., s

m
t } denote the set of states in St that are consistent with history ht (as defined

in Section B.2). For each j, let ĥt(j) = (Bj
0, q

j
0, . . . , B

j
t , q

j
t ) be a separating history for state sjt . We

can assume that for each k = 1, . . . , t, qjk−1 puts small weight on (z, 1
2Ak + 1

2B
j
k) for some z, so that

ht(j) := 1
2h

t + 1
2 ĥ

t(j) ∈ Ht(At+1) for all j.
Note first that for all j = 1, . . . ,m, we have

ρ(ht(j)) =

t∏
k=0

µ
sjk−1

k (sjk)τsjk
(pk, Ak). (15)

Indeed, observe that

ρ(ht(j)) =

t∏
k=0

ρk(
1

2
pk +

1

2
qjk,

1

2
Ak +

1

2
Bj
k|

1

2
hk−1 +

1

2
ĥk−1(j))

=
∑

(s0,...,st)

t∏
k=0

µ
sk−1

k (sk)τsk(
1

2
pk +

1

2
qk,

1

2
Ak +

1

2
Bj
k)

=
t∏

k=0

µ
sjk−1

k (sjk)τsjk
(
1

2
pk +

1

2
qjk,

1

2
Ak +

1

2
Bj
k) =

t∏
k=0

µ
sjk−1

k (sjk)τsjk
(pk, Ak).
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The first equality holds by definition. The second equality follows from DREU2 of the inductive
hypothesis. For the final two equalities, note that since ĥt(j) is a separating history for sjt , we
have for all k = 0, . . . , t that U

sjk−1
(Bj

k, q
j
k) = {U

sjk
} with {qjk} = M(Bj

k, Usjk
) (by Lemma E.3).

Also, since sjt is consistent with ht, τ
sjk

(pk, Ak) > 0 for all k = 0, . . . , t. This implies that for every

sk ∈ suppµ
sjk−1

k , τsk(1
2pk + 1

2q
j
k,

1
2Ak + 1

2Bk) > 0 if and only if sk = sjk, yielding the third equality. It

also implies that M(1
2Ak + 1

2B
j
k, Usjk

) = M(1
2Ak + 1

2{q
j
k}, Usjk), so that τ

sjk
(1

2pk + 1
2q
j
k,

1
2Ak + 1

2B
j
k) =

τ
sjk

(1
2pk + 1

2q
j
k,

1
2Ak + 1

2{q
j
k}) = τ

sjk
(pk, Ak), yielding the fourth equality.

Now let Ht := {ht(j) : j = 1, . . . ,m} ⊆ Ht(At+1). Note that by repeated application of Axiom B.2,
we have that

ρt+1(pt+1, , At+1|ht) = ρt+1(pt+1, At+1|Ht). (16)

Moreover, we have that

ρt+1(pt+1, At+1|Ht) =

∑m
j=1 ρ(ht(j))ρt+1(pt+1, At+1|ht(j))∑m

j=1 ρ(ht(j))

=

∑m
j=1

∏t
k=0 µ

sjk−1

k (sjk)τsjk
(pk, Ak)ρt+1(pt+1, At+1|ht(j))∑m

j=1

∏t
k=0 µ

sjk−1

k (sjk)τsjk
(pk, Ak)

=

∑
j

∏t
k=0 µ

sjk−1

k (sjk)τsjk
(pk, Ak)ρ

sjt
t+1(pt+1|At+1)∑

j

∏t
k=0 µ

sjk−1

k (sjk)τsjk
(pk, Ak)

=

∑
(s0,...,st)∈S0×···×St

∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)ρ
st
t+1(pt+1|At+1)∑

(s0,...,st)∈S0×···×St
∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)
.

(17)

Indeed, the first equality holds by definition of choice conditional on a set of histories. The second
equality follows from Equation (15). Note next that since ĥt(j) is a separating history for sjt and sjt is
consistent with ht, we have that U

sjk
(1

2pk + 1
2q
j
k,

1
2Ak + 1

2B
j
k) = {U

sjk
} for each k. Hence, Lemma B.3

implies that ρt+1(pt+1, At+1|ht(j)) = ρ
sjt
t+1(pt+1, At+1), yielding the third equality. Finally, note that

if (s0, . . . , st) ∈ S0 × . . . St with (s0, . . . , st) 6= (sj0, . . . , s
j
t ) for all j, then either st /∈ {s1

t , . . . , s
m
t },

or st = stj for some j but (s0, . . . , st−1) 6= pred(sjt ). In either case,
∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk) = 0,
yielding the final equality. Combining (16) and (17), we obtain the desired conclusion. �

B.3.4 Completing the Proof

Finally, combining Lemma B.4 with the representation of ρstt+1 in (12) yields that for any ht =
(A0, p0, ..., At, pt) ∈ Ht(At+1)

ρt+1(pt+1, At+1|ht)

=

∑
(s0,...,st)∈S0×···×St

∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)
∑

st+1∈St+1
µstt+1(st+1)τst+1(pt+1, At+1)∑

(s0,...,st)∈S0×···×St
∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)

=

∑
(s0,...,st,st+1)∈S0×···×St×St+1

∏t+1
k=0 µ

sk−1

k (sk)τsk(Ak, pk)∑
(s0,...,st)∈S0×···×St

∏t
k=0 µ

sk−1

k (sk)τsk(Ak, pk)
.
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Thus, (St+1, {µstt+1}st∈St , {Ust+1 , τst+1}st+1∈St+1) also satisfies requirement DREU2, completing the
proof.

B.4 Proof of Theorem B.1: Necessity

Suppose ρ admits a DREU representation. By Proposition A.1, ρ admits an S-based DREU repre-
sentation. By Lemma E.5, for each t and ht ∈ Ht, the (static) stochastic choice rule ρt(·|ht) : At →
∆(∆(Xt)) given by the extended version of ρ from Definition 10 also satisfies DREU2. In other words,
ρt(·|ht) admits an S-based REU representation (see Definition 12). Thus, Theorem F.1 implies that
Axiom B.3 holds. It remains to verify that Axioms B.1, B.2, and B.4 are satisfied.

Claim 1. ρ satisfies Axiom B.1 (Contraction History Independence).

Proof. Take any ht−1 = (ht−1
−k , (Ak, pk)), ĥ

t−1 = (ht−1
−k , (Bk, pk)) ∈ Ht−1(At) such that Bk ⊇ Ak and

ρk(pk;Ak|hk−1) = ρk(pk;Bk|hk−1). From DREU2 for ρk, ρk(pk;Ak|hk−1) = ρk(pk;Bk|hk−1) implies
that

∑
(s0,...,sk)

k−1∏
l=0

µ
sl−1

l (sl)τsl(pl, Al)µ
sk−1

k (sk)τsk(pk, Ak) =
∑

(s0,...,sk)

k−1∏
l=0

µ
sl−1

l (sl)τsl(pl, Al)µ
sk−1

k (sk)τsk(pk, Bk).

(18)
Since Bk ⊇ Ak implies τsk(pk, Ak) ≥ τsk(pk, Bk) for all sk, the only way for (18) to hold is if
τsk(pk, Ak) = τsk(pk, Bk) for all sk consistent with hk. Thus,

ρt(pt;At|ht−1) =

∑
(s0,...,st)∈S0×...×St

∏t
l=0 µ

sl−1

l (sl)τsl(pl, Al)∑
(s0,...,st−1)∈S0×...×St−1

∏t−1
l=0 µ

sl−1

l (sl)τsl(pl, Al)
= ρt(pt;At|ĥt−1),

as required. �

Claim 2. ρ satisfies Axiom B.2 (Linear History Independence).

Proof. Take any At, h
t−1 = (A0, p0, . . . , At−1, pt−1) ∈ Ht−1(At), and Ht−1 ⊆ Ht−1(At) of the form

Ht−1 = {(ht−1
−k , (λAk + (1 − λ)Bk, λpk + (1 − λ)qk)) : qk ∈ Bk} for some k < t, λ ∈ (0, 1), and

Bk = {qjk : j = 1, . . . ,m} ∈ Ak. Let Ãk := λAk + (1 − λ)Bk, and for each j = 1, . . . ,m, let

p̃jk := λpk + (1− λ)qjk and h̃t−1(j) := (ht−1
−k , (Ãk, p̃

j
k)).

By DREU2, for all pt, we have

ρt(pt;At|ht−1) =

∑
(s0,...,st)

∏t
`=0 µ

s`−1

` (s`)τs`(p`, A`)∑
(s0,...,st−1)

∏t−1
`=0 µ

s`−1

` (s`)τs`(p`, A`)
. (19)

Moreover, by definition

ρt(pt;At|Ht−1) =

∑m
j=1 ρ(h̃t−1(j))ρt(pt;At|h̃t−1(j))∑m

j=1 ρ(h̃t−1(j))
,

where for each j = 1, . . . ,m, DREU2 yields

ρt(pt;At|h̃t−1(j)) =

∑
(s0,...,st)

(∏
`=0,...,t;`6=k µ

s`−1

` (s`)τs`(p`, A`)
)
µ
sk−1

k (sk)τsk(p̃jk, Ãk)∑
(s0,...,st−1)

(∏
`=0,...,t−1;`6=k µ

s`−1

` (s`)τs`(p`, A`)
)
µ
sk−1

k (sk)τsk(p̃jk, Ãk)
.
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and

ρ(h̃t−1(j)) :=
∏

`=0,...,t−1;` 6=k
ρ`(p`;A`|h̃`−1)ρk(p̃

j
k; Ãk|h̃

k−1)

=
∑

(s0,...,st−1)

 ∏
`=0,...,t−1; 6̀=k

µ
s`−1

` (s`)τs`(p`, A`)

µ
sk−1

k (sk)τsk((p̃jk, Ãk)).

Combining and rearranging, we obtain

ρt(pt;At|Ht−1) =

∑
(s0,...,st)

(∏
`=0,...,t;`6=k µ

s`−1

` (s`)τs`(A`, p`)
)
µ
sk−1

k (sk)
∑m

j=1 τsk(p̃jk, Ãk)∑
(s0,...,st−1)

(∏
`=0,...,t−1;` 6=k µ

s`−1

` (s`)τs`(A`, p`)
)
µ
sk−1

k (sk)
∑m

j=1 τsk(p̃jk, Ãk)
. (20)

But observe that for all sk,

m∑
j=1

τsk(p̃jk, Ãk) =
m∑
j=1

τsk({w ∈ RXk : p̃jk ∈M(M(Ãk, Usk), w)})

=
∑
qk∈Bk

τsk({w ∈ RXk : pk ∈M(M(Ak, Usk), w) and qk ∈M(M(Bk, Usk), w)})

= τsk({w ∈ RXk : pk ∈M(M(Ak, Usk), w)})
= τsk(pk, Ak),

(21)

where the second equality follows from linearity of the representation, the third equality from the
fact that τsk is a proper finitely-additive probability measure on RXk , and the remaining equalities
hold by definition. Combining (19), (20), and (21), we obtain ρt(pt;At|ht−1) = ρt(pt;At|Ht−1), as
required. �

Claim 3. ρ satisfies Axiom B.4 (History Continuity).

Proof. Fix any At, pt ∈ At, and ht−1 = (A0, p0, ..., At−1, pt−1) ∈ Ht−1. Let St−1(ht−1) ⊆ St−1

denote the set of period-(t − 1) states that are consistent with ht−1. Define ρ
st−1

t (pt;At) :=∑
st
µ
st−1

t (st)τst(pt, At) for each st−1. By Lemma E.5,

ρt(pt;At|ht−1) =

∑
(s0,...,st)∈S0×···×St

∏t
k=0 µ

sk−1

k (sk)τsk(pk, Ak)∑
(s0,...,st−1)∈S0×···×St−1

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)

=

∑
(s0,...,st−1)∈S0×···×St−1

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)
∑

st∈St µ
st−1

t (st)τst(pt, At)∑
(s0,...,st−1)∈S0×···×St−1

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)
.

Hence, ρt(pt;At|ht−1) ∈ co{ρst−1

t (pt;At) : st−1 ∈ St−1(ht−1)}. Fix any s∗t−1 ∈ St−1(ht−1). To prove
the claim, it is sufficient to show that

ρ
s∗t−1

t (pt;At) ∈ {lim
n
ρt(pt;At|ht−1

n ) : ht−1
n →m ht−1, ht−1

n ∈ H∗t−1}.

To this end, let pred(s∗t−1) = (s∗0, . . . , s
∗
t−2) and let h̄t−1 = (B0, q0, ..., Bt−1, qt−1) ∈ H∗t−1 be

a separating history for s∗t−1. By Lemma E.6, for each k = 0, . . . , t − 1, we can find sequences
Ank ∈ A∗k(h̄k−1) and pnk ∈ Ank such that Ank →m Ak, p

n
k →m pk and Us∗k−1

(Ank , p
n
k) = {Us∗k} for all n
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and all k = 0, . . . , t − 1. Working backwards from k = t − 2, we can inductively replace Ank and pnk
with a mixture putting small weight on (z,Ank+1) for some z to ensure that Ank+1 ∈ supp pn,Ak for all
k ≤ t − 2 while maintaining the properties in the previous sentence. Then by construction ht−1

n :=
(An0 , p

n
0 , . . . , A

n
t−1, p

n
t−1) ∈ H∗t−1(At) and ht−1

n is a separating history for s∗t−1, which by Lemma E.5
implies

ρt(pt;At|ht−1
n ) =

∑
st∈St

(∏t−1
k=0 µ

s∗k−1

k (s∗k)τs∗k(pk, Ak)
)
µ
s∗t−1

t (st)τst(pt, At)∏t−1
k=0 µ

s∗k−1

k (s∗k)τs∗k(pk, Ak)

=
∑
st

µ
s∗t−1

t (st)τst(pt, At) =: ρ
s∗t−1

t (pt;At)

for each n. Since ht−1
n →m ht−1, this verifies the desired claim. �

C Proof of Theorem 2

Instead of proving the two-period characterization of BEU in Theorem 2, this section establishes a
generalization of Theorem 2 for arbitrary horizon T . Section C.1 presents the T -period axioms for
BEU. Sections C.2 and C.3 establish sufficiency and necessity of these axioms.

C.1 Characterization of BEU for Arbitrary T

The following three axioms are straightforward T -period generalizations of Axioms 5–7 from Sec-
tion 4.1:

Axiom C.1 (Separability). For any history ht−1, At and pt, qt 6∈ At such that pZt = qZt , pAt = qAt , and
At ∪ {pt}, At ∪ {qt} ∈ A∗t (ht−1), we have

ρt(pt;At ∪ {pt}|ht−1) = ρt(qt;At ∪ {qt}|ht−1).

For each t, let mt,m
′
t denote typical elements of ∆(At), and for each mt, we let Ā(mt) denote the

average menu induced by mt, i.e., Ā(mt) =
∑

At∈Atmt(At)At.

Axiom C.2 (Stochastic DLR). The following hold for all t ≤ T and ht−1:

(i). Preference for Flexibility: For any At+1, Bt+1 such that At+1 ⊆ Bt+1 and {(z,At+1), (z,Bt+1)} ∈
A∗t (ht−1),

ρt((z,Bt+1); {(z,At+1), (z,Bt+1)}|ht−1) = 1.

(ii). Reduction of Mixed Menus: For any At and (z,mt+1), (z,m′t+1) 6∈ At such that Ā(mt+1) =
Ā(m′t+1) and At ∪ {(z,mt+1)}, At ∪ {(z,m′t+1)} ∈ A∗t (ht−1), we have

ρt((z,mt+1);At ∪ {(z,mt+1)}|ht−1) = ρt((z,m
′
t+1);At ∪ {(z,m′t+1)}|ht−1).

(iii). Continuity: ρt(·|ht−1) : A∗t (ht−1)→ ∆(∆(Xt)) is continuous.

(iv). Menu Nondegeneracy: {(z,At+1), (z,Bt+1)} ∈ A∗t (ht−1) for some z, At+1, Bt+1.

Axiom C.3 (Sophistication). For any t ≤ T − 1, ht = (ht−1, At, pt) ∈ H∗t , z, and At+1 ⊆ Bt+1 ∈
A∗t+1(ht), the following are equivalent:
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(i). ρt+1(pt+1;Bt+1|ht) > 0 for some pt+1 ∈ Bt+1 rAt+1

(ii). lim infn ρt(
1
2pt + 1

2(z,Bn
t+1); 1

2At + 1
2{(z,A

n
t+1), (z,Bn

t+1)}|ht−1) > 0 for all Ant+1 →m At+1,
Bn
t+1 →m Bt+1.

We have the following T -period generalization of Theorem 2:

Theorem C.1. Suppose that ρ admits a DREU representation. Then ρ satisfies Axioms C.1–C.3 if
and only if ρ admits a BEU representation.

C.2 Proof of Theorem C.1: Sufficiency

Throughout this section, we assume that ρ admits a DREU representation and satisfies Axioms C.1–
C.3. We will show that ρ admits a BEU representation. By Proposition A.1, it is sufficient to construct
an S-based BEU representation. Sections C.2.1–C.2.5 accomplish this.

C.2.1 Recursive Construction up to t

The construction proceeds recursively. Suppose that t ≤ T − 1. Assume that we have obtained
(St′ , {µ

st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) for each t′ ≤ t such that DREU1 and DREU2 hold for all

t′ ≤ t and BEU holds for all t′ ≤ t− 1 (see Definition 9 for the statements of these conditions). Note
that the base case t = 0 is true because of the fact that ρ admits a DREU representation and by
Proposition A.1 (the requirement that BEU holds for t′ ≤ t − 1 is vacuous here). To complete the
proof, we will construct (St+1, {µstt+1}st∈St , {Ust+1 , τst+1}st+1∈St+1) such that DREU1 and DREU2 hold
for t′ ≤ t+ 1 and BEU holds for t′ ≤ t.

C.2.2 Properties of Ust

The following lemma translates Axioms C.1 (Separability) and C.2 (Stochastic DLR) into properties
of Ust .

Lemma C.1. For any st ∈ St, there exist functions ust : Z → R and Vst : At+1 → R with Vst
non-constant such that

(i). Ust(zt, At+1) = ust(zt) + Vst(At+1) for all (zt, At+1)

(ii). Vst is continuous

(iii). Vst is linear, i.e., Vst(αAt+1 + (1 − α)Bt+1) = αVst(At+1) + (1 − α)Vs(Bt+1) for all At+1, Bt+1

and α ∈ (0, 1)

(iv). Vst is monotone, i.e., Vst(At+1) ≤ Vst(Bt+1) for all At+1 ⊆ Bt+1.

Proof. Fix any st ∈ St and its predecessor st−1 ∈ St−1 (which is uniquely given by µ
st−1

t (st) > 0).
Take a separating history ht−1 for st−1, the existence of which is guaranteed by Lemma B.2. Let S
denote the support of µ

st−1

t .
For (i), it suffices, by standard arguments, to show that Ust(

1
2(x,At+1) + 1

2(y,Bt+1)) =
Ust(

1
2(x,Bt+1) + 1

2(y,At+1)) for all x, y,At+1, Bt+1. To see this, suppose for a contradiction that
Ust(

1
2(x,At+1)+ 1

2(y,Bt+1)) 6= Ust(
1
2(x,Bt+1)+ 1

2(y,At+1)). We only consider the case Ust(
1
2(x,At+1)+

1
2(y,Bt+1)) > Ust(

1
2(x,Bt+1) + 1

2(y,At+1)) as the other case is analogous. By applying Lemma E.2
to {Us : s ∈ S}, there exists a menu At = {rst : s ∈ S} such that for each s ∈ S, rst is the
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unique maximizer of Us in At. By Lemma E.3, At ∈ A∗t (ht−1). Moreover, we can assume that
each rst assigns positive probability to (x,At+1), (y,Bt+1), and (x,Bt+1), (y,At+1), as otherwise we
can mix these three options with all lotteries in At (using the same weights for each rts) with-
out affecting the construction. Let rt := rstt denote the maximizer in state st. By choosing ε
small enough, we can ensure that pt := rt + ε(x,At+1) + ε(y,Bt+1) − ε(x,Bt+1) − ε(y,At+1) and
qt := rt−ε(x,At+1)−ε(y,Bt+1)+ε(x,Bt+1)+ε(y,At+1) are well-defined lotteries. Note that pAt = qAt
and pZt = qZt . Moreover, for small enough ε, we can also ensure that

Ust(pt) > Ust(rt) > Ust(qt) > max
r′t∈Atr{rt}

Us(r
′
t)

and
Us′(r

s′
t ) > Us′(pt), Us′(rt), Us′(qt)

for all s′ ∈ S with st 6= s′. Hence, ρt(pt;At ∪ {pt}|ht−1) = µ
st−1

t (st) > 0 = ρt(qt, At ∪ {qt}|ht−1) and,
by Lemma E.3, At ∪ {pt}, At ∪ {qt} ∈ A∗t (ht−1). But this contradicts Axiom C.1 (Separability).

Thus, there exist functions ust : Z → R and Vst : At+1 → R such that Ust(zt, At+1) = ust(zt) +
Vst(At+1) for all zt and At+1. Moreover, by Axiom C.2-(iv) (Menu Nondegeneracy) and Lemma E.3,
there exist At+1, Bt+1 and zt such that Ust(zt, At+1) 6= Ust(zt, Bt+1). Hence, Vst(At+1) 6= Vst(Bt+1),
so that Vst is non-constant.

For (ii), Axiom C.2-(iii) (Continuity) together with Proposition F.2 ensures that Ust is continuous.
By part (i), this implies that Vst is continuous.

For (iii), suppose to the contrary that Vst(αAt+1 +(1−α)Bt+1) 6= αVst(At+1)+(1−α)Vst(Bt+1) for
some α,At+1, Bt+1. We only consider the case Vst(αAt+1+(1−α)Bt+1) > αVst(At+1)+(1−α)Vst(Bt+1),
as the other case is analogous. Note that the collection {Vs : s ∈ S} induces a finite collection of
ordinally distinct vNM utilities V 1, . . . , V k (with k ≤ |S|) over At+1, all of which are non-constant by
part (i). Hence, by Lemma E.2, there exists a finite set Mt+1 = {mi

t+1 : i = 1, . . . , k} ⊂ ∆(At+1) of
lotteries over At+1 such that each mi

t+1 is the unique maximizer of V i in Mt+1. We can assume that
each mi

t+1 assigns positive probability to menus αAt+1 + (1 − α)Bt+1, At+1, and Bt+1, as otherwise
we can mix these three options to all lotteries in Mt+1 (using the same weights for all mi

t+1) without
affecting the construction. Let m∗t+1 ∈Mt+1 denote the maximizer of Vst in Mt+1.

By choosing ε small enough, we can ensure thatmt+1 := m∗t+1+ε (αAt+1 + (1− α)Bt+1)−εαAt+1−
ε(1− α)Bt+1 and m′t+1 := m∗t+1 − ε (αAt+1 + (1− α)Bt+1) + εαAt+1 + ε(1− α)Bt+1 are well-defined
lotteries in ∆(At+1). Note that Ā(mt+1) = Ā(m′t+1). Moreover, for small enough ε > 0, we can also
ensure that

Vst(mt+1) > Vst(m
∗
t+1) > Vst(m

′
t+1) > max

m̃t+1∈Mt+1r{m∗t+1}
Vst(m̃t+1)

and
max

m̃t+1∈Mt+1

Vs′t(m̃t+1) > Vs′t(mt+1), Vs′t(m
∗
t+1), Vs′t(m

′
t+1)

for all s′t 6= st in S with Vs′t 6≈ Vst . Fix any z ∈ Z and let At := {(z, m̃t+1) : m̃t+1 ∈ Mt+1}. Then
Lemma E.3 along with the separability of Us established in part (i) implies that ρt((z,mt+1);At ∪
{(z,mt+1)}|ht−1) = µ

st−1

t ({s : Vs ≈ Vst}) > 0 = ρt((z,m
′
t+1);At ∪ {(z,m′t+1)}|ht−1). Also At ∪

{(z,mt+1)}, At ∪ {(z,m′t+1)} ∈ A∗t (ht−1). But this contradicts Axiom C.2-(ii) (Reduction of Mixed
Menus).

For (iv), suppose to the contrary that Vst(Bt+1) < Vst(At+1) for some At+1 ⊆ Bt+1. Let S+ :=
{s ∈ S : Vs(Bt+1) > Vs(At+1)} and S− := {s ∈ S : Vs(Bt+1) < Vs(At+1)}. Note that S− is nonempty
as st ∈ S−. For each s ∈ S r (S+ ∪ S−) we take a pair of menus Ast+1, B

s
t+1 such that Ast+1 ⊆ Bs

t+1
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and Vs(A
s
t+1) 6= Vs(B

s
t+1).76 Define A∗t+1 :=

∑
s∈Sr(S+∪S−) εsA

s
t+1 + (1 −

∑
s∈Sr(S+∪S−) εs)At+1 and

B∗t+1 :=
∑

s∈Sr(S+∪S−) εsB
s
t+1 + (1 −

∑
s∈Sr(S+∪S−) εs)Bt+1, where (εs) ∈ (0, 1)Sr(S+∪S−) is a vector

such that
∑

s∈Sr(S+∪S−) εs < 1. Note that A∗t+1 ⊆ B∗t+1 by construction. Moreover, since each Vs
is linear by part (iii), we can choose (εs) sufficiently small so that Vs(A

∗
t+1) > Vs(B

∗
t+1) for every

s ∈ S− and Vs(A
∗
t+1) < Vs(B

∗
t+1) for every s ∈ S+. In addition, we can pick (εs) to ensure that

Vs(A
∗
t+1) 6= Vs(B

∗
t+1) for all s ∈ Sr(S+∪S−). Then {(z,A∗t+1), (z,B∗t+1)} ∈ A∗t (ht−1), by Lemma E.3.

Moreover, ρt((z,A
∗
t+1); {(z,A∗t+1), (z,B∗t+1)}|ht−1) ≥ µ

st−1

t (S−) > 0. This contradicts Axiom C.2-(i)
(Preference for Flexibility). �

C.2.3 Construction of Random Utility in Period t+ 1

Since ρ admits a DREU representation, it admits an S-based DREU representation by Proposition A.1,
so in particular we can obtain (St+1, {µstt+1}st∈St , {Ũst+1 , τst+1}st+1∈St+1) satisfying DREU1 and DREU2
at t + 1. For any st ∈ St, define ρstt+1 by ρstt+1(pt+1, At+1) :=

∑
st+1

µstt+1(st+1)τst+1(pt+1, At+1) for all
pt+1, At+1.

C.2.4 Sophistication and Finiteness of Menu Preference

Before completing the representation, we establish two more lemmas. Using Axiom C.3 (Sophistica-
tion), the first lemma ensures that for each st, ρ

st
t+1 and the preference over At+1 induced by Vst satisfy

Axioms 1 and 2 in Ahn and Sarver (2013).

Lemma C.2. For any st ∈ St, separating history ht for st, and At+1 ⊆ Bt+1 ∈ A∗t+1(ht), the following
are equivalent:

(i). ρstt+1(Bt+1 rAt+1;Bt+1) > 0.

(ii). Vst(Bt+1) > Vst(At+1).

Proof. Pick any separating history ht = (A0, p0, ..., At, pt) for st. Note that ht ∈ H∗t by definition. By
DREU2 at t+1 and Lemma E.5, we have ρt+1(Bt+1rAt+1;Bt+1|ht) = ρstt+1(Bt+1rAt+1;Bt+1). Thus
by Axiom C.3 (Sophistication), it suffices to show that Vst(Bt+1) > Vst(At+1) if and only if point (ii)
in Axiom C.3 holds.

To show the “only if” direction, suppose Vst(Bt+1) > Vst(At+1) and take any sequences Ant+1 →m

At+1 and Bn
t+1 →m Bt+1. Since convergence in mixture implies convergence under the Hausdorff

metric, we have limn Vst(A
n
t+1) = Vst(At+1) and limn Vst(B

n
t+1) = Vst(Bt+1) by continuity of Vst

(Lemma C.1-(ii)). Hence, there is N such that Vst(B
n
t+1) > Vst(A

n
t+1) for all n ≥ N . Then for all

n ≥ N , the fact that ht is a separating history for st and M(At, Ust) = {pt} (as ht ∈ H∗t ) implies
that M(1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}, Ust) = {1

2pt + 1
2(z,Bn

t+1)} for all z. Thus, by DREU2 at t and
Lemma E.5, we have ρt(

1
2pt + 1

2(z,Bn
t+1); 1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}|ht−1) = ρt(pt;At|ht−1) > 0 for

all n ≥ N . That is, point (ii) in Axiom C.3 holds.
For the “if” direction, we prove the contrapositive. Suppose that Vst(Bt+1) ≤ Vst(At+1). Note that

since Vst is monotone and non-constant by Lemma C.1, we have Vst(Bt+1) = Vst(At+1) 6= Vst(Ct+1)
for some Ct+1. If Vst(At+1) > Vst(Ct+1) take Ant+1 = At+1 and Bn

t+1 = n−1
n Bt+1 + 1

nCt+1 for each n,
and if Vst(At+1) < Vst(Ct+1) take Bn

t+1 = Bt+1 and Ant+1 = n−1
n At+1 + 1

nAt+1 for each n. In either
case, we have Ant+1 →m At+1, B

n
t+1 →m Bt+1 and Vst(B

n
t+1) < Vst(A

n
t+1) for every n by the linearity

of Vst (Lemma C.1). Combining this with the fact that M(At, Ust) = {pt} (since ht is a separating

76Such a pair exists since each Vs is non-constant. Indeed, if such a pair does not exist for some s, then for
any pair of menus Ãt+1 6= B̃t+1, we have Vs(Ãt+1) = Vs(Ãt+1 ∪ B̃t+1) = Vs(B̃t+1), a contradiction.
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history for st), we have M(1
2At + 1

2{(z,B
n
t+1), (z,Ant+1)}, Ust) = {1

2pt + 1
2(z,Ant+1)} for each n. Given

this, DREU2 at t and Lemma E.5 yields ρt(
1
2pt + 1

2(z,Bn
t+1); 1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}|ht−1) = 0

for all n. That is, point (ii) in Axiom C.3 does not hold. �

The next lemma shows that because of Lemma C.2, the finiteness of each suppµstt+1 is enough to
ensure that the preference overAt+1 induced by each Vst satisfies Axiom DLR 6 (Finiteness) introduced
by Ahn and Sarver (2013):

Lemma C.3. For each st ∈ St, there is Kst > 0 such that for any At+1, there is Bt+1 ⊆ At+1 such
that |Bt+1| ≤ Kst and Vst(At+1) = Vst(Bt+1).

Proof. Fix any st ∈ St and a separating history ht for st. Let St+1(st) := suppµstt+1. We will show
that Kst := |St+1(st)| is as required.

Step 1: First consider any Bt+1 ∈ A∗t+1(ht). Then by Lemma E.3, for each st+1 ∈ St+1(st) we have

|M(Bt+1, Ũst+1)| = 1. Letting At+1 :=
⋃
st+1∈St+1(st)

M(Bt+1, Ũst+1), we then have that |At+1| ≤ Kst

and ρstt+1(Bt+1rAt+1, Bt+1) = 0. By Lemma C.2, this implies that Vst(At+1) = Vst(Bt+1), as required.
Step 2: Next take any Bt+1 6∈ A∗t+1(ht). By Lemma E.6, we can find a sequence Bn

t+1 →m Bt+1

with Bn
t+1 ∈ A∗t+1(ht) for all n. Then by Step 1, we can find Ant+1 ⊆ Bn

t+1 for all n such that
|Ant+1| ≤ Kst and Vst(A

n
t+1) = Vst(B

n
t+1). By definition of →m, for each qt+1 ∈ Bt+1, there exists

Dt+1(qt+1) ∈ At+1 and a sequence αn(qt+1) → 0 such that Ant+1 ⊆
⋃
qt+1∈Bt+1

αn(qt+1)Dt+1(qt+1) +
(1 − αn(qt+1)){qt+1} for all n. Hence, since |Ant+1| ≤ Kst for all n, restricting to a subsequence if
necessary, there is At+1 ⊆ Bt+1 such that Ant+1 →m At+1 and such that |At+1| ≤ Kst . Finally, by
continuity of Vst (Lemma C.1 (ii)), we have Vst(Bt+1) = Vst(At+1), as required. �

C.2.5 Completing the Representation

Recall that in Section C.2.3, we have obtained (St+1, {µstt+1}st∈St , {Ũst+1 , τst+1}st+1∈St+1) satisfying
DREU1 and DREU2 at t + 1. We now show that for each st+1 ∈ St+1 there exist αst+1 > 0 and

βst+1 ∈ R such that after replacing Ũst+1 with Ust+1 := αst+1Ũst+1 + βst+1 , we additionally have that
BEU holds at time t.

Fix any st and let St+1(st) := suppµstt+1. Note that by DREU1 at t + 1 and since we have
defined ρstt+1 by ρstt+1(pt+1, At+1) :=

∑
st+1∈St+1(st)

µstt+1(st+1)τst+1(pt+1, At+1) for all pt+1 and At+1, it

follows that (St+1(st), µ
st
t+1, {Ũst+1 , τst+1}st+1∈St+1(st)) is an S-based REU representation of ρstt+1 (see

Definition 12).
Since all the Ust+1 are non-constant and induce different preferences over ∆(Xt+1) for distinct

st+1, s
′
t+1 ∈ St+1(st) and since Vst is nonconstant by Lemma C.1, we can find a finite set Y ⊆ Xt+1

such that (i) Vst is non-constant on At+1(Y ) := {Bt+1 ∈ At+1 : ∪pt+1∈Bt+1supp(pt+1) ⊆ Y }; (ii) for

each st+1 ∈ St+1(st), Ũst+1 is non-constant on Y ; and (iii) for each distinct pair st+1, s
′
t+1 ∈ St+1(st),

Ũst+1 6≈ Ũs′t+1
on Y .

Observe that by Lemmas C.1 and C.3, the preference %st on At+1(Y ) induced by Vst satisfies
Axioms DLR 1–6 (Weak Order, Continuity, Independence, Monotonicity, Nontriviality, Finiteness) in
Ahn and Sarver (2013) (henceforth AS), so by Corollary S1 in AS,%st admits a DLR representation (see
Definition S1 in AS). Moreover, since ρstt+1 admits an S-based REU representation (what AS call a GP
representation), so does its restriction to At+1(Y ). Finally, by Lemma C.2, the pair (%st , ρ

st
t+1) satisfies

AS’s Axioms 1 and 2 on At+1(Y ). Thus, by Theorem 1 in AS, we can find a DLR-GP representation of
(%st , ρ

st
t+1) on At+1(Y ), i.e., an S-based REU representation (Ŝt+1(st), µ̂

st
t+1, {Ûst+1 , τ̂st+1}st+1∈Ŝt+1(st)

)

of ρstt+1 on At+1(Y ) such that %st restricted to At+1(Y ) is represented by V̂st , where V̂st(At+1) :=∑
st+1∈Ŝt+1(st)

µ̂stt+1(st+1) maxpt+1∈At+1 Ûst+1(pt+1). Since Vst also represents %st restricted to At+1(Y ),
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standard arguments yield α̂st > 0 and β̂st ∈ R such that for all At+1 ∈ At+1(Y ), we have Vst(At+1) =
α̂st V̂st(At+1) + β̂st , whence

Vst(At+1) =
∑

st+1∈Ŝt+1(st)

µ̂stt+1(st+1) max
pt+1∈At+1

Ust+1(pt+1), (22)

where Ust+1 = α̂stÛst+1 + β̂st . By the uniqueness properties of S-based REU represen-

tations (Proposition 4 in AS), (Ŝt+1(st), µ̂
st
t+1, {Ust+1 , τ̂st+1}st+1∈Ŝt+1(st)

) still constitutes an S-

based REU representation of ρstt+1 on At+1(Y ). Applying Proposition 4 in AS again, since

(St+1(st), µ
st
t+1, {Ũst+1 , τst+1}st+1∈St+1(st)) also represents ρstt+1 on At+1(Y ), we can assume after re-

labeling that St+1(st) = Ŝt+1(st), µ̂
st
t+1 = µstt+1 and that for each st+1 ∈ St+1(st), there exist constants

αst+1 > 0 and βst+1 ∈ R such that

Ust+1(xt+1) = αst+1Ũst+1(xt+1) + βst+1 (23)

for each xt+1 ∈ Y ⊆ Xt+1. Since Ũst+1 is defined on Xt+1, we can extend Ust+1 to

the whole space Xt+1 by (23). Then Ust+1 and Ũst+1 represent the same preference over

∆(Xt+1), so since (St+1(st), µ
st
t+1, {Ũst+1 , τst+1}st+1∈St+1(st)) satisfies DREU1 and DREU2, so does

(St+1(st), µ
st
t+1, {Ust+1 , τst+1}st+1∈St+1(st)).

It remains to show that (22) holds for all At+1 ∈ At+1, so that BEU is satisfied at st. To see this,
consider any At+1 ∈ At+1 and choose a finite set Y ′ ⊆ Xt+1 such that Y ∪

⋃
pt+1∈At+1

supp(pt+1) ⊆
Y ′. As above, we can again apply Theorem 1 in AS to obtain a DLR-GP representation

(S̄t+1(st), µ̄
s′t
t+1, {Ūst+1 , τ̄st+1}st+1∈S̄t+1(st)) of the pair (%st , ρ

st
t+1) restricted to At+1(Y ′). But since this

also yields a DLR-GP representation of (%st , ρ
st
t+1) restricted to At+1(Y ), by the uniqueness property of

DLR-GP representations (Theorem 2 in AS), we can assume that S̄t+1(st) = St+1(st), µ̄
st
t+1 = µstt+1 and

that there exists ᾱst > 0 and β̄st+1 ∈ R such that Ūst+1 = ᾱstUst+1+β̄st+1 for each st+1 ∈ St+1(st). Since
%st is represented on At+1(Y ′) by V̄st(Bt+1) :=

∑
st+1∈St+1(st)

µstt+1(st+1) maxpt+1∈Bt+1 Ūst+1(pt+1) and

since ᾱst depends only on st (and not on st+1), it follows that %st is also represented on At+1(Y ′)
by V ′st(Bt+1) :=

∑
st+1∈St+1(st)

µstt+1(st+1) maxpt+1∈Bt+1 Ust+1(pt+1). Thus, the linear functions Vst and

V ′st represent the same preference on At+1(Y ′) and coincide on At+1(Y ), so they must also coincide
on At+1(Y ′). Thus, (22) holds at At+1.

This shows that BEU holds at t. Combining this with the inductive hypothesis, it follows that
(St′ , {µ

st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfies DREU1 and DREU2 for all t′ ≤ t + 1 and BEU for

all t′ ≤ t, as required.

C.3 Proof of Theorem C.1: Necessity

Suppose that ρ admits a BEU representation. Then by Proposition A.1, ρ admits an S-based BEU
representation (St, {µst−1

t }st−1∈St−1 , {Ust , ust , τst}st∈St).
To show Axiom C.1 (Separability), take any history ht−1, At and pt, qt 6∈ At such that pAt = qAt ,

pZt = qZt , and At ∪ {pt}, At ∪ {qt} ∈ A∗t (ht−1). Note that by the representation Ust(pt) = Ust(qt)
for any st. Thus M(A ∪ {pt}, Ust) = M(A ∪ {qt}, Ust) for each st. Since At ∪ {pt}, At ∪ {qt} ∈
A∗t (ht−1), this implies ρt(pt;At∪{pt}|ht−1) = ρt(qt;At∪{qt}|ht−1). Axiom C.2-(ii) (Reduction of Mixed
Menus) is verified in the same manner, because when Ā(mt+1) = Ā(m′t+1), then by the representation
Ust(z,mt+1) = Ust(z,m

′
t+1) for all z and st.

To verify Axiom C.2-(i) (Preference for Flexibility), note that when At+1 ⊆ Bt+1 , then by the
representation, we have Ust(z,At+1) ≤ Ust(z,Bt+1) for all z and st. Moreover, {(z,At+1), (z,Bt+1)} ∈
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A∗t (ht−1) guarantees that the inequality is strict for all st with the property that µ
st−1

t (st) > 0 for some
st−1 that is consistent with history ht−1. This implies ρt((z,At+1); {(z,At+1), (z,Bt+1)}|ht−1) = 1.

Axiom C.2-(iii) (Continuity) holds by Proposition F.2, because for each st the function Ust : Xt →
R is continuous by the representation.

To verify Axiom C.2-(iv) (Menu Nondegeneracy), note that by the representation, UsT is non-
constant for every sT . Then an inductive argument implies that for any z, t ≤ T − 1 and st,
Ust(z, ·) : At+1 → R is also non-constant. Thus, for each st, there is a pair of menus such that
Ust(z,A

st
t+1) 6= Ust(z,B

st
t+1). Define At+1 :=

∑
st∈St αstA

st
t+1 and Bt+1 :=

∑
st∈St αstB

st
t+1 for some

vector (αst) ∈ (0, 1)St with
∑

st∈St αst = 1. Since Ust is linear in continuation menus by the repre-
sentation, we can choose (αst) such that Ust(z,At+1) 6= Ust(z,Bt+1) for all st. By Lemma E.3, this
implies {(z,At+1), (z,Bt+1)} ∈ A∗t (ht−1).

Finally, to show Axiom C.3 (Sophistication), take any history ht = (A0, p0, ..., At, pt) ∈ H∗t , z, and
At+1 ⊆ Bt+1 ∈ A∗t+1(ht). Let S∗t ⊆ St denote the set of states that are consistent with ht. First note
that based on Lemmas E.3 and E.5 and the fact that Bt+1 ∈ A∗t+1(ht), condition (i) in Axiom C.3 is
equivalent to the following condition:

(i’) : ∃s∗t ∈ S∗t , ∃s∗t+1 ∈ suppµ
s∗t
t+1 such that max

Bt+1

Us∗t+1
> max

At+1

Us∗t+1
.

Thus, it suffices to show that condition (i’) is equivalent to condition (ii) in Axiom C.3.
Suppose first that condition (i’) holds. Then by the representation, we have Us∗t (z,Bt+1) >

Us∗t (z,At+1). Take any sequences Ant+1 →m At+1 and Bn
t+1 →m Bt+1. Since convergence in mix-

ture implies convergence under the Hausdorff metric and Us∗t is continuous by the representation,
this yields some N such that Us∗t (z,B

n
t+1) > Us∗t (z,A

n
t+1) for all n ≥ N . Hence, the fact that pt

is the unique maximizer of Us∗t in At (which follows from ht ∈ H∗t ) implies that for all n ≥ N ,
1
2pt + 1

2(z,Bn
t+1) is the unique maximizer of Us∗t in 1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}. This ensures that for

all n ≥ N , ρt(
1
2pt + 1

2(z,Bn
t+1); 1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}|ht−1) is strictly positive, as it is greater

than

∑
(s0,...,s

∗
t )∈S0×...×St

∏t
k=0 µ

sk−1
k (sk)τsk (pk,Ak)∑

(s0,...,st−1)∈S0×...×St−1

∏t−1
k=0 µ

sk−1
k (sk)τsk (pk,Ak)

> 0, i.e., the conditional probability that s∗t realizes

after history ht−1 (see Lemma E.5). Thus, condition (ii) in Axiom C.3 is satisfied.
For the converse, we prove the contrapositive. If (i’) does not hold, then by the representation,

we have Ust(z,At+1) = Ust(z,Bt+1) for all st ∈ S∗t . Take menus C ′t+1, Ct+1 such that Ust(z, C
′
t+1) >

Ust(z, Ct+1) for all st.
77 Then define Ant+1 := 1

nC
′
t+1 + n−1

n At+1 and Bn
t+1 := 1

nC
′
t+1 + n−1

n Bt+1 for
each n. By construction, Ant+1 →m At+1 and Bn

t+1 →m Bt+1. For each st, by linearity of Ust(z, ·), it
follows that Ust(z,A

n
t+1) > Ust(z,B

n
t+1) for every n. Thus for any st ∈ S∗t , 1

2pt+
1
2(z,Bn

t+1) 6∈M(1
2At+

1
2{(z,A

n
t+1), (z,Bn

t+1)}, Ust). But then ρt(
1
2pt + 1

2(z,Bn
t+1); 1

2At + 1
2{(z,B

n
t+1), (z,Ant+1)}|ht−1) = 0 for

every n, so that condition (ii) is violated. This completes the proof of necessity.

D Proof of Theorem 3

Instead of proving the two-period characterization of BEB in Theorem 3, this section establishes a
generalization of Theorem 3 for arbitrary horizon T . Section D.1 presents the T -period axiom for

77Such menus exist by the following argument. Note first that for any st+1 ∈ St+1, since Ust+1 is nonconstant,
we can find gt+1(st+1), bt+1(st+1) ∈ ∆(Xt+1) such that Ust+1

(gt+1(st+1)) > Ust+1
(bt+1(st+1)). Let C ′t+1 :=

{gt+1(st+1), bt+1(st+1) : st+1 ∈ St+1}, and for every st, let At+1(st) := {bt+1(st+1)} for some st+1 ∈ suppµst
t+1.

Then Ust(z, C
′
t+1) ≥ Ust(z,At+1(s′t)) for all st, s

′
t, with strict inequality for st = s′t. Hence, letting Ct+1 :=∑

st∈St

1
|St|At+1(st), linearity implies Ust(z, C

′
t+1) > Ust(z, Ct+1) for all st, as required.
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BEB. Sections D.2 and D.3 establish sufficiency and necessity of this axiom.

D.1 Characterization of BEB for Arbitrary T

For any consumption lottery ` ∈ ∆(Z) and menu At+1 ∈ At+1, define (`, At+1) ∈ ∆(Xt) to be the
period-t lottery that yields current consumption according to ` and yields continuation menu At+1 for
sure; i.e., (`, At+1) :=

∑
zt∈Z `(zt)δ(zt,At+1). Then for each t ≤ T −1, `t, `t+1 ∈ ∆(Z), and At+2 ∈ At+2,

we define (`t, `t+1, At+2) := (`t, {pt+1}) such that pt+1 = (`t+1, At+2).78

We generalize Axiom 8 and Condition 1 as follows:

Axiom D.1 (Stationary Consumption Preference). For each history ht−1, if (`, `, At+2), (`′, `′, At+2) ∈
At ∈ A∗t (ht−1), then

ρt((`, `
′, At+2);At|ht−1) = 0.

Condition D.1 (Uniformly Ranked Pair). There exist `, ` ∈ ∆(Z) such that At :=
{(`, At+1), (`, At+1)} ∈ A∗t (ht−1) and ρt((`, At+1);At|ht−1) = 1 for all t, At+1, and ht−1.

We have the following T -period generalization of Theorem 3:

Theorem D.1. Suppose that ρ admits a BEU representation and Condition D.1 is satisfied. Then ρ
satisfies Axioms D.1 if and only if ρ admits a BEB representation.

D.2 Proof of Theorem D.1: Sufficiency

Suppose that ρ admits a BEU representation and that Condition D.1 and Axiom D.1 hold. By Propo-
sition A.1, ρ admits an S-based BEU representation (St, {µst−1

t }st−1∈St−1 , {Ust , ust , τst}st∈St)t=0,...,T .
Up to adding appropriate constants to each utility ust and Ust , we can ensure that

∑
z∈Z ust(z) = 0

for all t = 0, ..., T and st ∈ St without affecting that (St, {µst−1

t }st−1∈St−1 , {Ust , ust , τst}st∈St)t=0,...,T

is an S-based BEU representation of ρ. We will show that this representation is in fact an S-
based BEB representation, i.e., for each t ≤ T − 1 and st, there exists δst > 0 such that we have
ust = 1

δst

∑
st+1

µstt+1(st+1)ust+1 . By Proposition A.1, this implies that ρ admits a BEB representation.

Condition D.1 ensures that all felicities ust agree on the ranking between ` and `:

Lemma D.1. ust(`) > ust(`) holds for all t and st.

Proof. Consider any t and st ∈ St and the state st−1 such that µ
st−1

t (st) > 0. Take a separating
history ht−1 for st−1 and any At+1. Let At := {(`, At+1), (`, At+1)}. Then Condition D.1 ensures
At ∈ A∗t (ht−1) and ρt((`, At+1);At|ht−1) = 1, which by Lemma E.3 implies Ust(`, At+1) > Ust(`, At+1).
By the separability of the representation, it follows that ust(`) > ust(`). �

For any t = 0, . . . , T − 1 and st ∈ St, let u+
st :=

∑
st+1

µstt+1(st+1)ust+1 denote the expected period

t + 1 felicity at state st. Note that Lemma D.1 ensures that each u+
st is non-constant. We show that

Axiom D.1 (Stationary Consumption Preference) implies that ust and u+
st induce the same preference

over ∆(Z):

Lemma D.2. ust ≈ u+
st holds for all t ≤ T − 1 and st ∈ St.

78In the case of t = T − 1 by abusing notation we are using (`t, `t+1, At+2) to denote the lottery that yields
`t in period T − 1 and `t+1 in period T .
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Proof. Suppose to the contrary that us∗t 6≈ u+
s∗t

for some s∗t ∈ St. Since us∗t and u+
s∗t

are nonconstant,

there exist `, `′ ∈ ∆(Z) such that us∗t (`) > us∗t (`
′) and u+

s∗t
(`) < u+

s∗t
(`′). By slightly perturbing ` and

`′ if needed, we can assume that ust(`) 6= ust(`
′) and u+

st(`) 6= u+
st(`
′) for all st ∈ St, since all ust and

u+
st are nonconstant.

Fix any At+2 and let At := {(`, `, At+2), (`′, `′, At+2), (`, `′, At+2)}. Then, by the separability of
the representation, we have that |M(At, Ust)| = 1 for all st ∈ St, with unique element given by(

argmax(`t,`t+1)∈{`,`′}2 ust(`t) + u+
st(`t+1), At+2

)
. In particular, M(At, Us∗t ) = {(`, `′, At+2)}. Let st−1

be the unique state such that µ
st−1

t (s∗t ) > 0 and take a separating history ht−1 for st−1. Then
Lemma E.3 implies that At ∈ A∗t (ht−1) and ρt((`, `

′, At+2), At|ht−1) ≥ µ
st−1

t (s∗t ) > 0, contradicting
Axiom D.1. �

Since each ust is nonconstant by Lemma D.1, Lemma D.2 implies that for each t ≤ T − 1 and st
there exist constants δst > 0, γst ∈ R such that u+

st = δstust + γst . Since we have normalized felicities
such that

∑
z∈Z ust′ (z) = 0 for any t′ and st′ , we must have γst = 0. This completes the proof that ρ

admits an S-based BEB representation.

D.3 Proof of Theorem D.1: Necessity

Suppose that ρ admits a BEB representation. By Proposition A.1, ρ admits an S-based BEB repre-
sentation (St, {µst−1

t }st−1∈St−1 , {Ust , ust , δst , τst}st∈St)t=0,...,T .
To verify Axiom D.1, take any history ht−1 and consider (`, `, At+2), (`′, `′, At+2) ∈ At ∈

A∗t (ht−1). If ρt((`, `
′, At+2), At|ht−1) > 0, then by Lemma E.3, we have Ust((`, `

′, At+2)) >
Ust((`, `, At+2)), Ust((`

′, `′, At+2)) for some st. By the representation, this implies that ust(`) > ust(`
′)

and
∑

st+1
µstt (st+1)ust+1(`) <

∑
st+1

µstt (st+1)ust+1(`′). But this contradicts the fact that ust =
1
δst

∑
st+1

µstt (st+1)ust+1 and δst > 0.

E Additional Lemmas

This section collects together several lemmas that are used throughout Sections B–D. The proofs are
provided in Supplementary Appendix J.2.

Lemma E.1. For all t = 0, . . . , T , Xt is a separable metric space, where XT := Z is endowed with
the discrete metric and for all t ≤ T − 1, we recursively endow ∆(Xt+1) with the induced topology
of weak convergence, At+1 := K(∆(Xt+1)) with the induced Hausdorff topology, and Xt := Z ×At+1

with the induced product topology.

Lemma E.2. Let Y be any set (possibly infinite) and let {Us : s ∈ S} ⊆ RY be a collection of
nonconstant vNM utility functions indexed by a finite set S such that Us 6≈ Us′ for any distinct
s, s′ ∈ S. Then there is a collection of lotteries {ps : s ∈ S} ⊆ ∆(Y ) such that Us(p

s) > Us(p
s′) for

any distinct s, s′ ∈ S.

Lemma E.3. Fix t = 0, . . . , T . Suppose (St′ , {µ
st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfy DREU1 and

DREU2 for all t′ ≤ t. Take any ht−1 ∈ Ht−1 and let S(ht−1) ⊆ St−1 denote the set of states consistent
with ht−1. Then for any At ∈ At, the following are equivalent:

(i). At ∈ A∗t (ht−1)

(ii). For each st−1 ∈ S(ht−1) and st ∈ suppµ
st−1

t , |M(At, Ust)| = 1.
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Lemma E.4. Suppose that ρ satisfies Axiom B.2. Fix t ≥ 1, At ∈ At, ht−1 = (A0, p0, . . . , At−1, pt−1) ∈
Ht−1, and λ = (λn)t−1

n=0, λ̂ = (λ̂n)t−1
n=0 ∈ (0, 1]t. Suppose dt−1 = ({qn}, qn)t−1

n=0, d̂t−1 = ({q̂n}, q̂n)t−1
n=0 ∈

Dt−1 satisfy λht−1 + (1 − λ)dt−1, λ̂ht−1 + (1 − λ̂)d̂t−1 ∈ Ht−1(At), where λht−1 + (1 − λ)dt−1 :=
(λnAn + (1− λn){qn}, λnpn + (1− λn)qn)t−1

n=0 and λ̂ht−1 + (1− λ̂)d̂t−1 is defined analogously. Then

ρt(·;At|λht−1 + (1− λ)dt−1) = ρt(·;At|λ̂ht−1 + (1− λ̂)d̂t−1),

and hence, ρh
t−1

t (·;At) = ρt(·;At|λht−1 + (1− λ)dt−1).

Lemma E.5. Fix t = 0, . . . , T . Suppose (St′ , {µ
st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfy DREU1 and

DREU2 for all t′ ≤ t. Then the extended version of ρ from Definition 10 also satisfies DREU2 for all
t′ ≤ t, i.e., for all pt′ , At′ , and ht

′−1 = (A0, p0, . . . , At′−1, pt′−1) ∈ Ht′−1,79 we have

ρt′(pt′ , At′ |ht
′−1) =

∑
(s0,...,st′ )∈S0×...×St′

∏t′

k=0 µ
sk−1

k (sk)τsk(pk, Ak)∑
(s0,...,st′−1)∈S0×...×St′−1

∏t−1
k=0 µ

sk−1

k (sk)τsk(pk, Ak)
.

Lemma E.6. Fix t = 0, . . . , T . Suppose (St′ , {µ
st′−1

t′ }st′−1∈St′−1
, {Ust′ , τst′}st′∈St′ ) satisfy DREU1 and

DREU2 for all t′ ≤ t. Fix any st−1 ∈ St−1, separating history ht−1 for st−1, and At ∈ At. Then there
exists a sequence Ant →m At such that Ant ∈ A∗t+1(ht) for all n. Moreover, given any s∗t ∈ suppµ

st−1

t

and p∗t ∈M(At, Us∗t ), we can ensure in this construction that there is pnt (s∗t ) ∈ Ant with pnt (s∗t )→m p∗t
such that Ust(Ant , pnt (s∗t )) = {Us∗t } for all n.

79For t′ = 0, we abuse notation by letting ρt′(·|ht
′−1) denote ρ0(·) for all ht

′−1.
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Barberá, S., and P. Pattanaik (1986): “Falmagne and the rationalizability of stochastic choices
in terms of random orderings,” Econometrica, pp. 707–715.

Becker, G. M., M. H. DeGroot, and J. Marschak (1964): “Measuring utility by a single-
response sequential method,” Behavioral science, 9(3), 226–232.

Becker, G. S., and K. M. Murphy (1988): “A theory of rational addiction,” Journal of political
Economy, 96(4), 675–700.

Block, D., and J. Marschak (1960): “Random Orderings And Stochastic Theories of Responses,”
in Contributions To Probability And Statistics, ed. by I. O. et al. Stanford: Stanford University
Press.

Cerigioni, F. (2017): “Stochastic Choice and Familiarity: Inertia and The Mere Exposure Effect,”
working paper.

Cerreia-Vioglio, S., F. Maccheroni, M. Marinacci, and Rustichini (2017): “Multinomial
logit processes and preference discovery: inside and outside the black box,” working paper.

Chambers, C., and N. Lambert (2017): “Dynamically Eliciting Unobservable Information,” .

Dean, M., and J. McNeill (2016): “Preference for Flexibility and Random Choice: an Experimental
Analysis,” working paper.

Dekel, E., B. Lipman, and A. Rustichini (2001): “Representing preferences with a unique sub-
jective state space,” Econometrica, 69(4), 891–934.

Dekel, E., B. L. Lipman, A. Rustichini, and T. Sarver (2007): “Representing Preferences with
a Unique Subjective State Space: A Corrigendum,” Econometrica, 75(2), 591–600.

Deming, D. J. (2011): “Better schools, less crime?,” The Quarterly Journal of Economics, p. qjr036.

63



Deming, D. J., J. S. Hastings, T. J. Kane, and D. O. Staiger (2014): “School choice, school
quality, and postsecondary attainment,” The American economic review, 104(3), 991–1013.

Dillenberger, D., J. S. Lleras, P. Sadowski, and N. Takeoka (2014): “A theory of subjective
learning,” Journal of Economic Theory, 153, 287–312.
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