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Abstract

We provide an introduction into the recent developments of dynamic mechanism design

with a primary focus on the quasilinear case. First, we describe socially optimal (or effi cient)

dynamic mechanisms. These mechanisms extend the well known Vickrey-Clark-Groves and

D’Aspremont-Gérard-Varet mechanisms to a dynamic environment. Second, we discuss re-

sults on revenue optimal mechanism. We cover models of sequential screening and revenue

maximizing auctions with dynamically changing bidder types. We also discuss models of

information management where the mechanism designer can control (at least partially) the

stochastic process governing the agent’s types. Third, we consider models with changing pop-

ulations of agents over time. This allows us to address new issues relating to the properties of

payment rules. After discussing related models with risk-averse agents, limited liability, and

different performance criteria for the mechanisms, we conclude by discussing a number of open

questions and challenges that remain for the theory of dynamic mechanism design.
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1 Introduction

In the analysis of economic environments in which information is dispersed amongst agents, the

paradigm of mechanism design has been developed to analyze questions of optimal information

collection and resource allocation. The aim of these models is to come up with a framework that

is suffi ciently flexible to treat applications in various fields of economics and precise enough to

yield concrete insights and predictions for the models. Over the last decade, the mechanism design

approach has been applied to a variety of dynamic settings. In this survey, we overview the basic

questions and modeling issues that arise when trying to extend the static paradigm to the dynamic

one. We do not aim at maximal generality of the results that we present but we try to bring about

the main ideas in the most natural settings where they arise.

By far the best understood setting for mechanism design is the one with independent private

values and quasilinear payoffs. Applications of this model cover models of negotiations, auctions,

regulation of public utilities, public goods provision, nonlinear pricing, and labor market contracting,

to name just a few. In this survey, we concentrate for the most part on this simplest setting. This

will in particular imply that we will not include a comprehensive review of the recent work on

dynamic taxation and dynamic public finance which has a strong focus on strictly concave rather

than quasilinear payoffs. However in Section 5, we shall provide connections between the two

classes of payoff environments and comment on the similarities and differences in the analysis and

the results.

It is well-known that in dynamic principal-agent models, private information held by the agent

leads to optimal long-term contracts that cannot be replicated by a sequence of short-term contracts.

We follow the literature on static mechanism design by allowing the principal to commit at the

beginning of the game to a contract that covers the entire length of the relationship. In our main

model with quasilinear utilities, private information and the desire to control the information rent

accruing to the agent is the only reason preventing the principal from ‘selling the project’to the

agent in the initial period.

Since we insist on full commitment power on part of the mechanism designer throughout this

survey, we will largely bypass the vast literature on Coasian bargaining that has the lack of com-

mitment at its heart. We will also not discuss in any detail the closely related literature on dynamic

games where the players may engage in interactions while their payoff relevant types are subject

to stochastic changes.1 The models that we cover sometimes feature a single allocation, and some-

1In repeated and dynamic games, the vector of continuation payoffs plays the role of monetary transfers in
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times repeated allocations over time. In all our applications, the types of some agents change in a

non-trivial manner across periods. For us, this is the distinguishing feature of dynamic mechanism

design.

The leading example for this survey is the problem of selling a given supply of goods over time

when the demand for the goods is realized over time. Special cases of problems within this class of

models include: (i) repeated sales when the buyer is uncertain about her future valuation for the

good or service; (ii) leasing a resource to a number of competing bidders that learn over time their

private value of the resource and (iii) selling (once and for all) an indivisible (durable) good to a

set of potential bidders whose types change over time.

For concreteness, let us describe the first of these settings in more detail and describe some of the

economic questions they pose. Leading examples here might be such common situations as member-

ships to clubs, such as fitness, or long-term contracts, such as mobile phone contracts or equipment

service contracts. At any given point in time the buyer knows how much she values the service, but

is uncertain about how future valuations for the service may evolve. From the point of view of the

service provider, the question then arises how to attract (and sort) the buyers with different current

and future valuations for his services. The menu of possible contract presumably has to allow the

buyers to express their private current willingness-to-pay as well as their expectation over future

willingness-to-pay. A variety of dynamic contracts are empirically documented, for example in gym

memberships and mobile phone contracts, as described in DellaVigna and Malmendier (2006) and

Grubb and Osborne (2015), respectively. These include (i) flat rates, in which the buyer only pays

a fixed fee regardless of her consumption; (ii) two-part-tariffs in which the buyer selects from a

menu of fixed fees and variable price per unit of consumption; and (iii) leasing contracts where

the length of the lease term is the object of choice for the consumer. In the subsequent survey we

will highlight how these and other features of empirically documented contract varieties may arise

as solutions to dynamic mechanism design problems.

The first section in this survey develops mechanisms that achieve a socially effi cient allocation

in these and many other models. For dynamic versions of the pivot mechanism, it is important

to keep track of the agents’marginal contributions to social welfare over time. In terms of the

examples above, the key is to compute the dynamic externalities imposed on other bidders when

the good is allocated to a given bidder.

For budget balanced mechanisms, the key is to find a way of balancing the payments of different

mechanism design problems.
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agents when their information over the distribution of future payments arrives at different times.

Balancing the budget in bilateral trading problems is more subtle than in the static case if the

parties learn their types at different points in the allocation game.

For the case of revenue maximizing mechanisms, one might guess that the part of private infor-

mation held by the bidders at the moment of contracting is the only source of information rent: the

rest of the stochastic process is uncertain to both the seller and the buyer, and after the initial report

the two parties share a common probability distribution on future types. This intuition has been

formalized by describing the additional information through a process of orthogonal information

and this insight forms a key part of the analysis of revenue maximizing dynamic mechanisms.

The key implications for the revenue maximizing allocation stem from this intuition. For most

stochastic processes (e.g. ergodic and strongly mixing processes), knowing the value of the process in

period t tells little about the value of the process in t+k for k large. Hence one might conjecture that

the private information θ0 held by the agent at the moment of signing the contract provides little

private information on the valuation θt for large t. Hence the reasons to distort the allocation for

large t in order to extract information rent from the agent at t = 0 vanish as t becomes large. Along

the revenue maximizing sales mechanism, allocations and trades converge to effi cient allocation

over time. The key to the analysis lies in finding an appropriate dynamic envelope formula to

express the necessary conditions of incentive compatibility for the agent. These conditions result

in dynamic virtual surplus formulas where the static Myersonian virtual surplus is modified by an

impulse response that measures the impact of first period private information on the future types.

With risk aversion and with limited liability, we add different reasons beyond private information

for continued contracting between the parties. Much less is known about the optimal solutions in

these cases. We outline the dynamic model under these alternative assumptions and discuss some

observations that follow from the Myersonian model. Incentives for local deviations, i.e. incentives

for reporting private information near the true type in our dynamic direct mechanism can still

be computed using a dynamic envelope theorem. The step of solving the relaxed program that

reflects these necessary incentive compatibility conditions is a lot more involved due to the lack of

quasilinearity. Unfortunately, the step of verifying full incentive compatibility is also a lot harder.

We divide the survey into three parts. The first part covers effi cient dynamic mechanisms.

This is the dynamic counterpart of the Vickrey-Clark-Groves (VCG) mechanisms and budget bal-

anced d’Aspremont-Gérard-Varet (AGV) mechanisms. We view this setting as the natural first

benchmark case for dynamic allocation models in the same way as the VCG mechanisms provide a
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natural benchmark for static problems. Examples of potential applications include effi cient dynamic

auctions, effi cient dynamic bilateral trade or bargaining, and dynamic public goods problems.

The second part deals with optimal dynamic mechanisms. The corresponding static models

here are the optimal screening models in a principal-agent setting and different models of selling

procedures such as auctions. Here we cover sequential screening and revenue maximizing auctions

with dynamically changing bidder types. We also discuss nonlinear pricing over time when the type

of the buyer changes stochastically. We also comment on the model of information management

where the mechanism designer can control (at least partially) the stochastic process governing the

agent’s types.

The third part considers models with changing populations of agents over time. Obviously

this part has no counterpart on the static side. It allows us to ask new questions relating to the

properties of the payment rules. For example with changing populations, it makes sense to require

that agents receive or make transfers only in the periods when they are alive. These restrictions

lead to interesting new findings about the models where effi cient outcomes can be achieved. We

discuss also some work on dynamic revenue management in this setting.

In the last substantive section of this survey, we consider briefly related models from public

finance and financial economics. The key departure in these models is the lack of quasi-linearity.

The models in dynamic public finance have concerns of consumption smoothing over risky outcomes

at their heart. Hence the models feature agents with strictly concave utilities in consumption and

leisure. In addition to the possibility of having risk-averse decision makers, the models in financial

economics often feature a limited liability constraint on the transfer rules: owners can pay the

managers but managers cannot be asked to make (arbitrarily large) payments to the owners. We

discuss the similarities in the analysis and contrast the results of these models with the models

under quasilinear utility. Finally, we make some connections to the rapidly growing literature on

mechanism design in computer science. Rather than concentrating on the properties of the optimal

mechanism for a fixed stochastic model, this literature takes as its objective the task of finding

mechanisms that guarantee a good payoff across a variety of different stochastic models.

While the target reader of this survey is an applied economist interested in learning about

the applicability of the mechanism design approach to dynamic incentive problems, we develop the

analytical arguments to some extent here and also comment on some theoretically subtle issues. The

interested reader will find complementary material and more technical detail in the recent textbooks

by Börgers (2015) and Gershkov and Moldovanu (2014), and earlier surveys focusing on dynamic
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auctions by Bergemann and Said (2011), and more recently by Pavan (2017). Bergemann and

Pavan (2015) provide an introduction into recent research in dynamic mechanism design collected

in a symposium issue of the Journal of Economic Theory.

2 Effi cient Dynamic Mechanisms

In this section, our aim is to extend the familiar Vickrey-Clark-Groves (VCG) mechanisms of static

mechanism design to a dynamic model. In line with the static model, we insist on private values,

independent types and quasilinear utilities. With these assumptions, effi cient (in the sense of

maximizing the gross social surplus) dynamic VCG mechanisms exist and they are the only ex post

incentive compatible effi cient mechanisms. With additional assumptions on the type sets, we can

demonstrate revenue equivalence results similar to those in the static model.

We start by setting up the general dynamic allocation problem that will be used throughout

this survey. We derive the dynamic counterpart to the static pivot mechanism and explain how the

dynamic mechanism succeeds in allocating each agent in the model her marginal contribution to

social welfare. We discuss then the dynamic version of the budget balanced dynamic d’Aspremont-

Gérard-Varet (AGV) mechanism of Athey and Segal (2013). Finally, we discuss extensions to

correlated and interdependent values respectively.

2.1 The Dynamic Allocation Problem

We consider an environment with private and independent values in a discrete-time, infinite-horizon

model. Agent i ∈ {1, 2, ..., I} gets flow utility in period t ∈ N that depends on the current physical
allocation xt ∈ Xt, the current monetary transfer pi,t ∈ R, and the type θi,t ∈ Θi. The Bernoulli

utility function ui of agent i is quasi-linear in the monetary transfer:

ui (xt, pi,t, θi,t) , vi (xt, θi,t)− pi,t.

We assume that the type θi,t of agent i follows a controlled Markov process on the state space Θi.

The type vector in period t is given by θt = (θ1,t, ..., θI,t) ∈ Θ, with Θ = ×Ii=1Θi. The set of feasible

allocations in t may depend on the vector of past allocations xt := (x0, ..., xt) as in a dynamic

auction of a single indivisible object.2

2In order to keep the notation manageable, we do not index Xt by xt.
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There is a common prior Fi (θi,0) regarding the initial type θi,0 of each agent i. The current type

θi,t and the current action xt define a probability distribution for the state variables θi,t+1 on Θi in

the next period. We assume that this distribution can be represented by a transition function (or

stochastic kernel)

Fi (θi,t+1 |θi,t, xt ) .

The utility functions ui (·) and the transition functions Fi are all common knowledge at t = 0.

The common prior Fi (θi,0) and the functions Fi (θi,t+1 |θi,t, xt ) are assumed to be independent across
agents. At the beginning of each period t, each agent i observes θi,t privately. At the end of each

period, an action xt ∈ X is chosen and payoffs for period t are realized. The asymmetric information

is therefore generated by the private observation of θi,t in each period t. We observe that by the

independence of the priors and the transition functions across i, the information of agent i, θi,t+1,

does not depend on θj,t for j 6= i. We assume that

|vi (x, θi)| < K,

for some K <∞ for all i, x and θi.

Since we do not want to introduce gains from trade through differences in intertemporal marginal

rates of substitution between the players, we assume that all agents discount the future with a

common discount factor δ, 0 < δ < 1. When discussing welfare, we adopt the point of view that

the mechanism designer has in period t a flow payoff given by

u0 (xt, pt, θt) = v0 (xt) +
I∑
i=1

pi,t.

The socially effi cient policy is obtained by maximizing the expected discounted sum of valuations.

Notice that if the mechanism designer is not an actual player in the game, this definition of effi ciency

does not take into account budget deficits and surpluses.

Given the Markovian structure of the type processes, the socially optimal program starting in

period t at type vector θt can be written as:

W (θt) , max
{xs}∞s=t

E

{ ∞∑
s=t

δs−t
I∑
i=0

vi (xs, θi,s)

}

, max
{xs}∞s=t

E

{ ∞∑
s=t

δs−tw (xs, θs)

}
,
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where we have defined

w (xs, θs) ,
I∑
i=0

vi (xs, θi,s) .

Notice that the dynamic dependence across the periods is now buried in the expectations operator.

Since the distribution of θi,t+1 depends on xt, the expectation over future types depends on the

current choice of x.

Alternatively, we can represent the social program in its recursive form:

W (θt) = max
xt
E {w (xt, θt) + δEW (θt+1)} .

s.t. θt+1 ∼ F (· |θt, xt )

The socially effi cient policy is denoted by x∗ = {x∗t}
∞
t=0 . The social externality cost of agent i is

determined by the social value in the absence of agent i:

W−i (θt) , max
{xs}∞s=t

E

{ ∞∑
s=t

δs−t
∑
j 6=i

vj (xs, θj,s)

}
, max
{xs}∞s=t

E

{ ∞∑
s=t

δs−tw−i,s (xs, θs)

}
,

where the effi cient policy when agent i is excluded is denoted by x∗−i =
{
x∗−i,t

}∞
t=0
, and w−i,t (xt, θt)

denotes the flow social welfare to the society where i has been excluded. The marginal contribution

Mi (θt) of agent i at signal θt is defined by:

Mi (θt) , W (θt)−W−i (θt) . (1)

The marginal contribution of agent i is the change in the social value due to the addition of agent

i. To fix ideas, we give a canonical example of a dynamic auction with uncertainty about future

values.

Example: Option Value and Irrevocable Allocation We consider the assignment of a single

indivisible object between two bidders i ∈ {1, 2} at a unique, and then irrevocable, time period
t. Thus the object can only be assigned once and only has value in a single period. The question

though is to whom should the object be allocated and in which time period. The allocation xt in

period t is a vector (x1,t, x2,t) with xi,t ∈ {0, 1}, where xi,t = 1 denotes allocating the object to i in

period t. The set of feasible allocations in period t is Xt = {(0, 1) , (1, 0), (0, 0)} if xs = (0, 0) for all

s < t. Otherwise xt = {(0, 0)}.
Bidder 1 has a constant value θ1,t = θ1 ∈ [0, 1] for the object for all t. By contrast, bidder 2

learns her value in period 1, and θ2,t ∈ {0, 1} for t > 0. Thus, there might be value of postponing
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the assignment decision until period 1, rather than assigning and consuming the object in period

0. The information that arrives in period 1 thus suggest that there might be an option value from

postponing the assignment until period 1. The private information of bidder 2 in period t = 0 is

the probability of having value 1 from period 1 onwards: θ2,0 = Pr{θ2,t = 1 for t > 0 |θ2,0}.
The payoff to bidder i from a feasible allocation is

∑
t δ

txi,tθi,t. In words, bidder i gets her

(expected) payoff of θi,t if she is allocated the good in t. We see immediately that

W−1 (θ1, θ2,t) = Pr{θ2,t = 1for t > 0 |θ2,t} = θ2,t

and

W−2 (θ1, θ2,t) = θ1.

To compute the effi cient, policy, we compare the payoff from immediate allocation to waiting until

t = 1 before allocating. Waiting yields social welfare

δEmax{θ1, θ2,0} = δ(θ2,0 + (1− θ2,0) θ1).

Immediate allocation yields max{θ1,0, θ2,0}. Hence the optimal decision is to allocate immediately
to 1 if

θ1 ≥
δθ2,0

1− δ + δθ2,0

,

and to allocate immediately to 2 if

θ2,0 ≥
δθ1

1− δ + δθ1

.

If x∗i,0 = 1, then Mi (θ0) = θi,0 − θ−i,0 and M−i (θ0) = 0. If x∗1,0 = x∗2,0 = 0, then M1 (θ0) =

δ(θ2,0+(1− θ2,0) θ1)−θ2,0 andM2 (θ0) = δ(θ2,0+(1− θ2,0) θ1)−θ1. In this case, we can also compute

M1 (θ1) = max{θ1, θ2,1} − θ1, and M2 (θ1) = max{θ1, θ2,1} − θ2,1. The marginal contributions

beginning with period 1 coincide with the static marginal contributions.

2.1.1 Mechanism and Equilibrium

We focus attention on direct mechanisms which implement the socially effi cient policy x∗. In other

words, we seek a transfer rule that induces all the agents to report their type truthfully when the

physical allocation is given by the effi cient allocation rule given the reported types.

In the static case, the task is transparent. By the taxation principle, we can view the reporting

problem as an equivalent problem of letting each agent choose her most preferred allocation given

the reports of other agents. By promising each agent the entire social surplus from the effi cient
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choice given the reported types of other agents and her own true type, she has always the right

incentives to choose the effi cient allocation. In other words, she has a dominant strategy to report

her type truthfully in the direct mechanism. We shall see that some of the nice properties of

the static VCG mechanisms fail. Dynamic effi cient mechanisms will not in general be in dominant

strategies. Furthermore they are not detail free in the sense that details of the transition probabilities

Fi (θi,t |θi,t−1 , xt) matter for the effi cient choice of allocation in each t.

In a dynamic direct mechanism every agent i is asked to report her type θi,t in every period t.

We say that the dynamic direct mechanism is truthful if the reported type ri,t ∈ Θi coincides with

the true type for all i, t, θi,t. The dynamic revelation principle as stated in Myerson (1986) shows

that there is no loss of generality in restricting attention to direct mechanisms where the agents

report their information truthfully on the equilibrium path.

The mechanism designer chooses how much of the information in the reports and allocations

to disclose to the players. If xt = (x1,t, ..., xI,t) and vi (xt, θi,t) = vi (xi,t, θi,t) , for all i, t, then the

minimal information to disclose to player i would be xi,t. It is clear that restricting the information

available to agent i makes it easier to satisfy the incentive compatibility constraints for that player.

In the current section, we can find effi cient mechanisms that satisfy very strong notions of incentive

compatibility and as a result, we assume that the entire vector of reports and allocations is disclosed

at each t.

With this assumption in place, the public history in period t is a sequence of reports and

allocations until period t − 1, or ht = (r0, x0, r1, x1, ...rt−1, xt−1), where each rs = (r1,s, ..., rI,s) is

a report profile of the I agents. The set of possible public histories in period t is denoted by

Ht. The sequence of reports by the agents is part of the public history and we assume that the

past reports of each agent are observable to all the agents. The private history of agent i in

period t consists of the public history and the sequence of private observations until period t, or

hi,t = (θi,0, r0, x0, θi,1, r1, x1, ..., θi,t−1, rt−1, xt−1, θi,t) . The set of possible private histories in period

t is denoted by Hi,t. An (effi cient) dynamic direct mechanism is given by a family of allocations

and monetary transfers, {x∗t , pt}
∞
t=0: x

∗
t : Θ → ∆ (Xt), and pt : Ht × Θ → RI . With the focus

on effi cient mechanisms, the allocation x∗t depends only on the current (reported) type rt ∈ Θ. In

contrast, the transfer pt may depend on the entire history of reports and actions.

A (pure) reporting strategy for agent i in period t is a mapping from the private history into the

type space: ri,t : Hi,t → Θi. For a given mechanism, the expected payoff of agent i from reporting
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strategy ri = {ri,t}∞t=0 given the strategies r−i = {r−i,t}∞t=0 is:

E
∞∑
t=0

δt [vi (x
∗ (rt) , θi,t)− pi (ht, rt)] .

Given the mechanism {x∗t , pt}
∞
t=0 and the reporting strategies r−i, the optimal strategy of bidder i

can be stated recursively:

Vi(hi,t) = max
ri,t∈Θi

E {vi (x∗t (ri,t, r−i,t) , θi,t)− pi (ht, ri,t, r−i,t) + δVi (hi,t+1)} .

The value function Vi (hi,t) expresses the continuation value of agent i given the current private

history hi,t. We say that a dynamic direct mechanism is interim incentive compatible, if for every

agent and every history, truthtelling is a best response given that all other agents report truthfully.

We say that the dynamic direct mechanism is periodic ex-post incentive compatible if truthtelling is

a best response regardless of the history and the current type of the other agents.

In the dynamic context, the notion of ex-post incentive compatibility is qualified by periodic

as it is ex-post with respect to all signals received until and including period t, but not ex-post

with respect to signals arriving after period t. The periodic qualification arises in the dynamic

environment as agent i may receive information at some later time s > t such that in retrospect

she would wish to change the allocation choice in t and hence her report in t.

2.1.2 Types, Allocations and Time Horizon

We have not said much about the interpretation of the types θi,t. Some authors separate two classes

of models: models with exogenous and endogenous types depending on whether the allocation

decisions have an impact on the distribution of future types. An example of exogenous types could

be a model of procuring goods from firms subject to autocorrelated privately observed cost shocks.

In this case, we could take θi,t ∈ R, with

θi,t+1 = γθi,t + εi,t+1,

where the εi,t are i.i.d. shocks.

An example of the second class of models, consider an employer who learns privately about the

(firm-specific) productivity ωi of a worker in periods when she employs the worker. In this case

it would be natural to take θi,t to be the probability distribution of the true productivity ωi. The

worker produces a output yi,t that is privately observed by the employee and distributed according
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to a c.d.f. G (· |ωi ) . The transition for the types, θi,t+1 is obtained from θi,t and yi,t by Bayes’rule.

For example in a normal learning model, the prior on ωi would be a normal random variable and

each yi,t is normally distributed with mean ωi and a known variance σ2. For the periods where the

worker is not employed, we have simply θi,t+1 = θi,t.

At the cost of some notational inconvenience, we could have allowed the payoffs and the tran-

sitions to depend on the full history of allocations: xt = (x0, ..., xt) . It will become clear that

none of the results would change as a result of this more general formulation. Hence we can easily

accommodate models of learning by doing, change for variety etc.

We can also accommodate the finite-horizon version of the model . This entails simply speci-

fying a certain transition at some T to an absorbing type vector θT with the understanding that

vi (x, θi,T+s) = 0 for all i, all s > 0 and all x ∈ X.
For the remainder of this section, we concentrate on particular effi cient mechanisms that have

further desirable properties. In the next subsection, we describe the dynamic pivot mechanism,

introduced in Bergemann and Välimäki (2010), that ensures that each agent’s payoff in the mech-

anism corresponds to her marginal contribution to the societal welfare as defined above after all

histories. In the dynamic pivot mechanism, all agents have the correct societal incentives to engage

in private investments in e.g. increasing their own payoffs through cost reducing investments. We

also consider the dynamic counterpart of the AGVmechanism where the focus shifts towards budget

balance. For dynamic bargaining processes and dynamic problems of public goods provision, these

considerations are of obvious importance just as they are in the static case.

2.2 The Dynamic Pivot Mechanism

We now construct the dynamic pivot mechanism for the general model described in Subsection 2.1.

The marginal contribution of agent i is her contribution to the social value. In the dynamic pivot

mechanism, we show that the marginal contribution will also be equal to the equilibrium payoff that

agent i can secure for herself along the socially effi cient allocation. If agent i receives her marginal

contribution in every continuation game of the mechanism, then she should receive theflow marginal

contribution mi (θt) in each period. The flow marginal contribution accrues incrementally over time

and is defined recursively:

Mi (θt) = mi (θt) + δEMi (θt+1) .

The flow marginal contribution can be expressed directly in terms of the social value functions,
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using the definition of the marginal contribution given in (1), as:

mi (θt) , W (θt)−W−i (θt)− δE [W (θt+1)−W−i (θt+1)] . (2)

The continuation payoffs of the social programs with and without i, respectively, may be governed

by different transition probabilities as the respective social decisions in period t, x∗t , x∗ (θt) and

x∗−i,t , x∗−i (θ−i,t), may differ. The expected continuation value of the socially optimal program,

conditional on current allocation xt and current state θt is:

W (θt+1 |xt, θt ) , EF (θt+1;xt,θt)W (θt+1) ,

where the transition from state θt to state θt+1 is controlled by the allocation xt. For notational

ease we omit the expectations operator E from the conditional expectation. We adopt the same

notation for the marginal contributions Mi (·) and the individual value functions Vi (·). The flow
marginal contribution mi (θt) is expressed as:

mi (θt) = w (x∗t , θt)− w−i
(
x∗−i,t, θt

)
+ δ

[
W−i (θt+1 |x∗t , θt )−W−i

(
θt+1

∣∣x∗−i,t, θt )] .
A monetary transfer p∗i (θt) such that the resulting flow net utility matches the flow marginal

contribution leads agent i to internalize her social externalities:

p∗i (θt) , vi (x
∗
t , θi,t)−mi (θt) . (3)

We refer to p∗i (θt) as the transfer of the dynamic pivot mechanism. The transfer p∗i (θt) depends

only on the current report θt and not on the entire public history ht. We can express p∗i (θt) in

terms of the flow utilities and the social continuation values:

p∗i (θt)=w−i
(
x∗−i,t, θt

)
−w−i (x∗t , θt) + δ

[
W−i

(
θt+1

∣∣x∗−i,t, θt )−W−i (θt+1 |x∗t , θt )
]
.

Notice that in contrast to the static transfer payment, the reported type of agent i has also an

indirect effect through δW−i (θt+1 |x∗t , θt ) . This reflects the intertemporal internalization of future
externalities that is necessary for aligning the incentives with the planner’s dynamic optimum. Given

that we started our construction from the requirement that each agent receives her full marginal

contribution W (θt)−W−i (θt) , we are obviously in the realm of (dynamic) VCG mechanisms.

Theorem 1 (Dynamic Pivot Mechanism)

The dynamic pivot mechanism {x∗t , p∗t}
∞
t=0 is ex-post incentive compatible and individually rational.
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In Bergemann and Välimäki (2010), we give conditions for the uniqueness of the above payment

rule. The dynamic pivot mechanism has properties that other VCG schemes do not necessarily

have. All payments are online in the sense that once an agent is irrelevant for future allocations,

she is not asked to make any payments. Furthermore the property of equating equilibrium payoffs

with marginal contributions gives the individual agents the socially correct incentives to engage in

privately costly investments in θi. For a class of dynamic auctions, Mierendorff (2013) develops a

dynamic Vickrey auction that satisfies a strong ex post individual rationality requirement.

We continue with the example from the previous subsection to illustrate how the payments in

the dynamic pivot mechanism are computed.

Example (Continued) For x∗i,0 = 1, we havemi (θ0) = θi,0−θ−i,0, and p∗i (θ0) = θ−i,0, p−i,0 (θ0) =

0. For x∗0 = (0, 0) we have mi (θ0) = − (1− δ) θ−i,0 and pi (θ0) = (1− δ) θ−i,0.
Hence we see that the dynamic pivot mechanism asks both bidders to make a positive payment

in period 0 if the good is not sold immediately. This reflects the delay externality that their inclusion

in the model imposes on the other party.

Since we have assumed independent types, additional assumptions on the connectedness of the

type spaces and payoff functions guarantee a dynamic revenue equivalence result. By imposing

an individual rationality or participation constraint for the agents, it is often possible to show as

in the static setting that the dynamic pivot mechanism results in the maximal monetary surplus

among all effi cient mechanisms. A negative surplus in the dynamic pivot mechanism then implies an

impossibility result mirroring the static Myerson-Satterthwaite theorem on budget balanced effi cient

dynamic mechanisms that satisfy incentive compatibility and individually rationality.

2.3 An Effi cient Dynamic Mechanism

One problem with the dynamic pivot mechanism is that just like its static counterpart, it does not

satisfy budget balance. To remedy this, Athey and Segal (2013) develop a dynamic version of the

AGV mechanism. The starting point for this construction is the dynamic team mechanism where

each agent’s individual payoff is augmented by a transfer that makes her total payoff equal to the

maximal social surplus in the model. This part of the construction follows along the familiar lines of

the static setting where the type vector θ is drawn for a single period. The static VCG mechanisms

take the form (x∗ (θ) , p (θ)) , where for all i and all θ, we have

pi (r) = −w−i (x∗ (ri, r−i) , r−i) + πi (r−i) ,
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where the second component of the transfer function, πi (r−i) is a term that for agent i only depends

on the reports of the other agents, r−i. In other words, the transfer of agent i depends on her own

announcement only through its impact on the other players’payoffs via the effi cient allocation rule.

By a simple application of the one-shot deviation principle, one sees that by setting

pi,t (ri,t, r−i,t) = −w−i (x∗ (ri,t, r−i,t) , r−i,t) ,

each agent responds optimally by announcing her type truthfully. This is not surprising: if future

announcements are truthful, each agent internalizes the social planners payoffs at all stages in the

game. Notice that since all players are receiving the entire social surplus here, this mechanism

provides the right answers for truthful reports even in the case of correlated types.

Obviously this mechanism does not satisfy budget balance. The AGV mechanism in the sta-

tic setting is constructed using the idea that by taking expectations over r−i in the expression

w−i (x
∗ (ri, r−i) , r−i) , we can take (with the understanding that I + 1 = 1):

πi+1

(
r−(i+1)

)
= Er−iw−i (x∗ (ri, r−i) , r−i) .

With this specification, the budget is clearly balanced and incentive compatibility holds in the sense

of Bayesian incentive compatibility.

For the dynamic mechanism, the construction is not quite as simple. Supposing that the incentive

payments are made as above based on the expectations over other players’types, but the realizations

of the other types become available before one’s own announcement, the simple AGV -mechanism

is no longer incentive compatible. In order to secure incentive compatibility, Athey and Segal (2013)

proceed as follows. Define

γi (θi,t+1, θt) = −
{
Eθ̃−i,t+1

[
W−i

(
θi,t+1, θ̃−i,t+1 |θt,x∗

)]
− Eθ̃t+1

[
W−i

(
θ̃t+1 |θt,x∗

)]}
.

By specifying

pi,t (ri,t, r−i,t) = γi (ri,t+1, rt)− γi+1 (ri,t+1, rt) ,

the mechanism is obviously budget balanced.

The incentive payment γi (θi,t+1, θt) now reflects the expected change in W−i (conditional on

past announcements rt) that arises from the announcement θi,t+1. This cannot be manipulated by

players different from i in equilibrium. It should be noted that these mechanisms will not satisfy

individual rationality in general (since otherwise they would yield a contradiction to the Myerson-

Satterthwaite theorem). Dynamic AGV-like mechanisms have been used in e.g. the analysis of
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optimal allocation of sharing of the capacity in a joint project when information regarding future

profits arrives over time in Kurikbo, Lewis, Liu, and Song (2017).3

2.4 Interdependent Values and Correlation

Dynamic VCG mechanisms have been generalized to cover the case of correlated and interdepen-

dent values in Liu (2013). Correlation across agents allows for the use of dynamic versions of

mechanisms in the style of Cremer and McLean (1985), (1988). In a dynamic setting, it is possible

to use the intertemporal correlation of the reports of the agents and this allows for new types of

implementations of the effi cient allocation path.4 The paper also covers the case of interdependent

but independent values. For that case, it is well-known that effi cient mechanisms fail to exist in the

static setting (see e.g. Dasgupta and Maskin (2000), Jehiel and Moldovanu (2001)). For the case

of single dimensional types and appropriate single crossing conditions for the agents’payoffs, Liu

(2013) develops a dynamic version of the generalized VCG mechanism.5

3 Optimal Dynamic Mechanisms

The analysis of the revenue-maximizing contract in an environment where the agent’s private in-

formation may change over time appears first in Baron and Besanko (1984). They consider a

two-period model of a regulator facing a monopolist with unknown, but in every period, constant

marginal cost. Besanko (1985) offers an extension to a finite horizon environment with a general

cost function, where the unknown parameter is either i.i.d. over time or follows a first-order autore-

gressive process. Since these early contributions, the literature has developed considerably in recent

years. Courty and Li (2000) consider the revenue-maximizing contract in a sequential screening

problem where the preferences of the buyer change over time but the allocation decision takes place

3In their particular problem, Kurikbo, Lewis, Liu, and Song (2017) find a version of the mechanism that can also

handle individual rationality constraints and incentives incentives for effi cent investments that affect other agents’

payoffs.
4The idea that we can strengthen the incentive constraints of current announcements by using future realizations

of correlated signals is reminiscent of the use of multiple signals in Deb and Mishra (2014) and Mezzetti (2004),

(2007).
5See Bergemann and Välimäki (2002) for the definition of the static generalized VCG mechanism for allocation

problems with single-dimensional types.
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only at a single point in time.6 Battaglini (2005) considers a quantity discriminating monopolist

who provides a menu of choices in each period to a consumer whose valuation can change over time

according to a commonly known Markov process with two states. In contrast to the earlier work, he

explicitly considers an infinite time horizon and shows that the distortion due to the initial private

information vanishes over time.

Pavan, Segal, and Toikka (2014) consider a general environment in an infinite horizon setting

and allowing for general allocation problems, encompassing the earlier literature (with continuous

type spaces). They obtain necessary conditions for incentive compatibility and present a variety

of suffi cient conditions for revenue-maximizing contracts for specific classes of environments. They

also observe the beneficial implications of time separable environments for a tighter characterization

of the optimal contract. Eső and Szentes (2017) and Li and Shi (2017) discuss the amount of

information rent that the optimal contract leaves to the agent. In particular, Eső and Szentes

(2017) show that under suitable restrictions on the implementability of the optimal allocation, the

agent gains no additional information rent from the new information that she gets after signing the

contract.

We start by recalling some notions from static optimal mechanisms. Our first dynamic model

deals with the simplest model of sequential screening as developed in Courty and Li (2000). We

review this material rather quickly since Chapter 11 by Krähmer and Strausz in Börgers (2015)

contains an excellent textbook overview of the material. Nevertheless, this material serves as a

useful preview of the issues that arise also in more complicated models. In order to make any

progress, we have to get some characterizations for incentive compatibility in the dynamic setting.

3.1 Preliminaries from Static Mechanism Design

Not surprisingly, we need to rely on tools that make the static mechanism design problem tractable:

the revenue equivalence theorem and single crossing properties of the objective function. Hence we

follow in the tradition that begun with the early contribution to the dynamic regulation problem

in Baron and Besanko (1984), Besanko (1985) and Riordan and Sappington (1987). In the static

principal-agent setting, a direct mechanism (x (θ) , p (θ)) is incentive compatible if for all types θ ∈ Θ

and all reports r ∈ Θ, we have

U (θ; θ) , v (x (θ) , θ)− p (θ) ≥ v (x (r) , θ)− p (r) , U (θ; r) ,

6Eső and Szentes (2007) rephrased the two period sequential screening problem by showing that the additional

signal arriving in period two can always be represented by a signal that is orthogonal to the signal in period one.
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and let

V (θ) , U (θ; θ) .

The envelope theorem by Milgrom and Segal (2002) gives the following necessary condition for

incentive compatibility in the case where the set of possible types is an interval of the real line:

Θ = [θ, θ].

Theorem 2 (Revenue Equivalence Theorem)

Assume that v (x, ·) is differentiable for all x ∈ X and that there exists a K < ∞ such that for all

x ∈ X and all θ,

|vθ (x, θ)| ≤ K.

Then V (θ) is absolutely continuous, V ′ (θ) = vθ (x(θ), θ) for almost every θ, and therefore

V (θ) = V (θ) +

∫ θ

θ

vθ (x(s), s) ds. (4)

This result is called revenue equivalence theorem because we can now pin down the transfers by

just determining the physical allocation x (θ) and the additive constant V (θ) :

p (θ) = v (x (θ) , θ)− V (θ)−
∫ θ

θ

vθ (x(s), s) ds. (5)

With the help of this necessary condition for implementability, we can rewrite the full incentive

compatibility requirement as the following integral monotonicity condition:∫ θ

r

(vθ (x (s) , s)− vθ (x (r) , s)) ds ≥ 0. (6)

Notice that this characterization of implementable allocations remains essentially unchanged even

if we allow for multidimensional allocations (these could correspond to the physical allocations of a

single-dimensional variable at different points in time).

In the static setting, with single dimensional types and single-dimensional allocations with payoff

functions satisfying strictly increasing differences, a full characterization of incentive compatibility

is immediate: A mechanism is incentive compatible if and only if the physical allocation is monotone

and the transfers are pinned down by the revenue equivalence theorem.7

7If v is twice differentiable, single crossing differences is equivalent to vxθ (x, θ) > 0 for all x, θ. Since∫ θ
r
(vθ (x (s) , s)− vθ (x (r) , s)) ds =

∫ x(θ)
x(r)

∫ θ
r
(vxθ (y, s)− vθ (y, s)) dsdy,the claim follows.
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Unfortunately it is not possible to find an equally attractive characterization for incentive com-

patibility in the dynamic model. In some sense, this is not too surprising. After all, it is well-known

that characterizing incentive compatibility for models with multidimensional types (in this case,

consider the types across different periods) is very diffi cult. At the same time, the fact that only

the first period type is known to the agent at the moment of contracting lends additional structure

to the model and it is possible to make progress even in the absence of tight necessary and suffi cient

conditions for the set of implementable allocations..

A very rough protocol for solving dynamic mechanism design problems can be given as follows.

First, find the dynamic equivalent of the envelope formula (4) in the revenue equivalence theorem

to compute the transfers as a function of the allocation process. Second, consider the relaxed

principal’s problem where her payoff is maximized subject to the constraint that the transfer is

computed from (5). Third verify that the obtained solution satisfies the dynamic equivalent of the

full incentive compatibility requirement (6).

3.2 Sequential Screening

We illustrate the general procedure now with a version of the sequential screening problem first

investigated by Courty and Li (2000). An uninformed seller contracts with a privately informed

buyer for two periods t ∈ {0, 1} over the sale of a single indivisible good. At the beginning of the
game, i.e. in t = 0, the buyer has some preliminary information about the value of the product.

Let θ0 ∈ Θ0 = [θ0, θ0] be her type representing this information. Let F0 (θ0) denote the c.d.f. of the

prior information on θ0 and the corresponding density is denoted by f0 (θ0) . The buyer observes

additional information on her true valuation as time proceeds. To capture this, we let the private

information in period 1, θ1 ∈ Θ1 = [θ1, θ1], denote the buyers’true willingness to pay for the object.

This is without loss of generality since all information that can be considered in the allocation

decision arrives in periods. Hence we just denote by θ1 this total information available at the end

of the game.

A key part of the model is the assumed dependence of θ1 on θ0. If θ0 is interpreted as the initial

best estimate of the final θ1 then it is reasonable to assume that θ1 is increasing (in some sense)

in θ0. We assume here that this dependence is in the sense of first order stochastic dominance

(FOSD). To formalize this, we let F (θ1 |θ0 ) denote the conditional distribution of θ1 given θ0. Thus

we assume:
∂F (θ1 |θ0 )

∂θ0

≤ 0 for all θ0.
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Observe that
∂F (θ1 |θ0 )

∂θ0

=
∂F
(
θ1 |θ0

)
∂θ0

= 0,

since Θ1 is the maximal support for θ1.

In order to apply the envelope theorem, we assume also that the conditional density f (θ1 |θ0 ) is

well defined, has full support, and that |∂f (θ1 |θ0 ) /∂θ0| is uniformly bounded on Θ0 ×Θ1. Notice

that F0 (θ0) and F (θ1 |θ0 ) induce jointly a distribution F1 (θ1) on Θ1.

It is crucial to keep in mind that the moment of contracting in this model is t = 0, and hence at

this stage θ1 is not known to the buyer or the seller. The seller could always use static mechanisms

based on either F0 (θ0) or F1 (θ1) . The point of the sequential screening model is to show how

the seller can do better than either of these alternatives. The idea is that the seller must leave

information rent from the initial θ0 to the buyer. The allocation can be made more effi cient by

using the information contained in θ1. If this effi ciency gain can be realized without increasing the

information rent to the buyer, then the seller gains relative to the two static alternatives. The model

of sequential screening shows how this can be accomplished through a menu of option contracts.

Since we have defined θ1 to be the true value of the object to the buyer, the simplest model of

sales induces preferences over the probability of sales x and transfers p from the buyer to the seller

as follows:

uS (θ1, x, p) = p,

uB (θ1, x, p) = θ1x− p.

Dynamic Direct Mechanisms and Incentive Compatibility

For this two period model we can then define a direct dynamic mechanisms as follows.

Definition 1 (Direct Dynamic Mechanism)

A direct dynamic mechanism is a pair of functions,

x : Θ0 ×Θ1 → [0, 1],

p : Θ0 ×Θ1 → R+.

As in the example in the previous section, the buyer reports her type in each of the two periods.

In the first, her report depends on her type θ0 and in the second, it can depend on θ0, r0 and on θ1.

The dynamic revelation principle by Myerson (1986) can be invoked to show that there is no loss
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of generality in concentrating on direct mechanisms where truthtelling is optimal on equilibrium

path.8

We write

u (θ0, θ1) = θ1x (θ0, θ1)− p (θ0, θ1)

for the final realized utility (or ex post utility), and

U (θ0; r0) =

∫
Θ1

u (r0, θ1) f (θ1 |θ0 ) dθ1

for the expected utility evaluated at the interim stage after period 0 reports. As in the static case,

we let

V (θ0) = U (θ0; θ0) .

Ex-post incentive compatibility then requires that for all reports r1 in period t = 1,

u (θ0, θ1) ≥ θ1x (θ0, r1)− p (θ0, r1) .

Interim incentive compatibility requires that for all r0,

V (θ0) ≥ U (θ0; r0) .

We say that the mechanism is interim individually rational if for all θ0,

V (θ0) ≥ 0.

3.2.1 Characterizing Incentive Compatible Mechanisms

We first present a useful characterization of incentive compatible mechanisms. The best case sce-

nario would obviously be a result that gives an if and only if characterization for incentive compatible

direct dynamic mechanisms. In the static case, with single dimensional types, such a characteriza-

tion could be obtained under the additional assumption of payoffs that satisfy the Spence-Mirrlees

single crossing condition. Recall that in this case, global incentive compatibility is equivalent to

local incentive compatibility (or envelope formula) together with the monotonicity of the allocation

rule in type.

In the current sales model, single crossing is clearly satisfied. We have also assumed that the

types across the two periods are linked in the FOSD ordering. Hence there is a lot more structure

8In the current setting, it is also relatively easy to show that whenever truthful revelation of types is optimal on

equilibrium path, it is also optimal off equilibrium path.
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in place than for the static two-dimensional screening problem where little is known about the

characterization of incentive compatibility. One should also bear in mind the simplifications that

come from the sequential reporting structure.

We start with the easy part. For period t = 1, the first period report θ0 is fixed and hence the

incentive compatibility for reporting θ1 reduces to the static incentive compatibility conditions.

Proposition 1 (Ex Post Incentive Compatibility)

A direct dynamic mechanism is incentive compatible with respect to the ex post type θ1 if and only

if:

1. (Envelope Theorem)
∂u(θ0, θ1)

∂θ1

= x(θ0, θ1).

2. Transfers are pinned down by the allocation and the payoff of the lowest type.

3. (Monotonicity) x(θ0, θ1) is non-decreasing in θ1 for all θ0, θ1.

One might hope that a similar proposition would hold for reporting the type θ0. Unfortunately

this is not the case. Since the interim reports induce lotteries of payoffs (depending on the realization

of θ1), the static proof where incentive compatibility implies monotonicity fails (since now a similar

monotonicity only needs to hold in expectation).9 While we will not get an if and only if statement

for incentive compatibility, the envelope formula remains valid. Furthermore, monotonicity of the

allocation rule is suffi cient for full incentive compatibility. This means that the solution to the

relaxed problem is the optimal mechanism if the allocation rule is monotone in both components.

Proposition 2 (Interim Revenue Equivalence)

In any incentive compatible direct dynamic mechanism:

1. (Envelope Theorem) For almost all θ0, we have:

V ′(θ0) = −
∫

Θ1

x(θ0, θ1)
∂F (θ1 |θ0 )

∂θ0

dθ1. (7)

2. Transfers are pinned down by the allocation and the payoff of the lowest type.

9Krähmer and Strausz (2017) construct an equivalent static problem to each sequential screening problem of the

above type.



Dynamic Mechanism Design August 22, 2017 23

3. Suppose that x(θ0, θ1) is increasing in both components. Then there exists a transfer scheme

p(θ0, θ1) such that the direct dynamic mechanism (x, p) is incentive compatible.

Notice the factor ∂F (θ1 |θ0 ) /∂θ0 in the first part of the proposition. It measures the impact of

the first period type on the distribution of the second period type. Understanding how the initial

type effects the information rents of the subsequent types is the key for all revenue maximizing

dynamic mechanism design models. The second part in this proposition is just housekeeping. It is

a result of the fact that the interim utilities can be evaluated by the envelope formula and directly

through expected values from getting the object net of expected payment. Notice also that the first

part implies immediately that any incentive compatible mechanism is individually rational if and

only if V (θ0) ≥ 0.

3.2.2 Determining the Optimal Selling Mechanism

The next step is to determine the optimal mechanism. As in the static case, we express the payoff

to the seller as the difference between the total surplus and the payoff to the buyer:∫
Θ0

∫
Θ1

θ1x(θ0, θ1)f(θ1|θ0)f0(θ0)dθ1dθ0 −
∫

Θ0

V (θ0)f0(θ0)dθ0.

Integrating by parts and using the envelope formulas allows us to write this as:∫
Θ0

∫
Θ1

[θ1 +
1− F0(θ0)

f0(θ0)

∂F (θ1|θ0 )
∂θ0

f(θ1|θ0)
]x(θ0, θ1)f(θ1|θ0)f(θ0)dθ1dθ0 − V (θ0).

But now the solution of the relaxed problem where we ignore the global incentive compatibility

constraints is close. Since we are using the Envelope formulas in computing the buyers’equilibrium

payoff, we are making sure that the local incentive compatibility constraints hold. Clearly it is

optimal to make the individual rationality constraint binding and set

V (θ0) = 0.

Define a modified virtual value ψ(θ0, θ1) by

ψ(θ0, θ1) , θ1 +
1− F0(θ0)

f0(θ0)

∂F (θ1|θ0 )
∂θ0

f(θ1|θ0)
.

This modifies the classic Myersonian virtual value by multiplying the information rent component

(1− F0(θ0)) /f0(θ0) by the factor
∂F (θ1|θ0 )

∂θ0

f(θ1|θ0)
,
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measuring the impact of θ0 on the distribution of θ1.

Since the value of the integral is linear in x, it is clearly optimal to set x(θ0, θ1) = 1 whenever

ψ(θ0, θ1) ≥ 0 in the relaxed program. If ψ(θ0, θ1) is strictly increasing in both components, then

this solution solves the revenue maximization problem. Hence we assume from now on that ψ is

increasing in both arguments. To complete the description of the optimal mechanism, define the

following function

q(θ0) = min{θ1 ∈ Θ1|ψ(θ0, θ1) ≥ 0}.

Since ψ is increasing, q (·) is well defined. With the help of this function, we can characterize the
optimal selling mechanisms.

Theorem 3 (Optimal Screening Mechanism)

If ψ(θ0, θ1) is increasing in both arguments, then a direct dynamic mechanism (x, t) maximizes the

seller’s expected profit in the class of incentive compatible mechanisms if and only if

x(θ0, θ1) = I{θ1≥q(θ0)},

and the transfer is computed from the envelope formula.

Can we think of a nice indirect mechanism that implements this mechanism? We can consider

option contracts for selling the good. In such a contract, the buyer buys for an up-front fee p(θ0)

the option of purchasing the good at strike price q(θ0). Hence the mechanism seems to bear some

relation to contracts that are actually observed in situations where uncertainty is gradually resolved

and revealed about the value of the alternatives. Let {p (θ0) , q (θ0)}θ0∈Θ0 denote the implementation

of the optimal trading mechanism by these option contracts.

3.2.3 Information Rent and Orthogonalization

Eső and Szentes (2007) propose the following alternative way of approaching the problem. Rather

than observing θ1, they let the buyer observe the percentile:

γ , F (θ1|θ0).

Notice that γ is uniformly distributed on [0, 1] for all θ0 and thus γ is independent of θ0.This allows

us to think of γ as the new information relative to θ0 that is contained in θ1 and the new variable

γ is called the orthogonalized signal.10

10The use of orthogonalized signals also makes the analysis of the more complicated models of Pavan, Segal, and

Toikka (2014) and Eső and Szentes (2017) more tractable.
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The orthogonalized model allows for an easy comparison to the case where the seller also observes

the orthogonalized signal. This is a useful benchmark that separates the initial private information

from future realizations of symmetrically observed uncertainty. If the optimal allocation rule in

the benchmark model satisfies monotonicity with respect to the orthogonal signal, the two models

result in the same optimal mechanism. It should be noted though that the transfers implementing

the optimal allocation can be quite different in the two models.

The orthogonalization procedure can also be used to see that the seller is always better off

releasing the new information θ1 rather than not releasing it. Li and Shi (2017) adds a word of

caution regarding the use of this observation for general information management by the seller.

They construct an example where the seller can achieve a higher expected revenue by showing a

garbled version of θ1. Bergemann and Wambach (2015) extend the model of information design to

consider sequential information release by the seller.

An important aspect in the argument of Eső and Szentes (2007) is that the choice of information

disclosure is given directly in terms of the orthogonal information itself. Li and Shi (2017) show

that if the information disclosure can be made contingent upon the realization of the initial private

information, then the principal can frequently strictly improve his payoff by disclosing information

only partially, and through a policy that is contingent upon the initial information θ0.

3.2.4 Multiple Buyers: Handicap Auctions

An early extension of the sequential screening model to cover multiple agents is the handicap auction

in Eső and Szentes (2007). The model still has a single allocation stage and two reporting stages,

but it allows for the presence of multiple bidders. Letting θ0 ∈ Θ0 and θ1 ∈ Θ1 denote the vectors

of independent private value types θit ∈ Θi
t of bidder i in t, we can then write a dynamic direct

mechanism (x, p) as:

x : Θ0 ×Θ1 → ∆N ,

p : Θ0 ×Θ1 → RN ,

where ∆N = {
(
x1, ..., xN

)
∈ RN+ |Σix

i ≤ 1} is the set of possible allocations The interpretation is
that xi (θ0, θ1) gives the probability that i is assigned the object if the reported types are (θ0, θ1).

Let

X i
(
θi0, θ

i
1

)
= Eθ−ixi

(
θi, θ−i

)
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and

P i
(
θi0, θ

i
1

)
= Eθ−ipi

(
θi, θ−i

)
stand for the expected allocations and transfers of agent i. Thus, it is assumed that players other

than player i report truthful their type when computing X i (·) and P i (·).
Similar to the static case, the analysis of incentive compatibility and revenue equivalence that

we did in the case of a single buyer carries over to the case of many bidders with functions(
X i
(
θi0, θ

i
1

)
, P i

(
θi0, θ

i
1

))
. Hence we do not repeat the steps but go directly to the formula for

expected revenue from bidder i in any incentive compatible mechanism:

EθiP i
(
θi0, θ

i
1

)
=

∫
Θi0

∫
Θi1

ψi
(
θi0, θ

i
1

)
X i
(
θi0, θ

i
1

)
f i
(
θi1
∣∣θi0 ) dθi1f i (θi0) dθi0 − U i

(
θi0
)
,

where ψi
(
θi0, θ

i
1

)
is defined as before. Hence the total expected revenue is

∫
Θ0

∫
Θ1

N∑
i=1

ψi
(
θi0, θ

i
1

)
xi (θ0, θ1)

∏
j

f j
(
θj1
∣∣θj0 ) dθ1

∏
j

f j
(
θj0
)
dθ0 −

N∑
i=1

U i
(
θi0
)

To maximize this expected revenue without violating the interim individual rationality con-

straints, it is clearly optimal to set U i
(
θi0
)

= 0 for all i, and to use the allocation rule:

xi (θ0, θ1) =

{
1, if ψi

(
θi0, θ

i
1

)
≥ max{0, ψj

(
θj0, θ

j
1

)
}, for all j;

0, if otherwise.

The associated transfers can be computed from the envelope formula and binding participation

constraint of the lowest type bidder.

3.3 Optimal Dynamic Mechanism

We now describe how the insights from the sequential screening environment can be extended to

many periods and many allocations. We will be skipping a large number of details and for those

we often refer the reader to Pavan, Segal, and Toikka (2014). We focus again mainly on the single

agent case and consider a general discrete time horizon, t ∈ {0, 1, ..., T} with T ≤ ∞.
We use the general dynamic model outlined in Section 2.1 with regularity assumptions that allow

us to use the envelope theorem. The private information of the agent in period t is θt ∈ Θt =
[
θt, θt

]
.

At the moment of contracting in t = 0, the agent knows θ0, and the stochastic process Ft (θt+1 |θt, xt )
governing {θt}t>0 but not the realizations θt for t > 0. The prior distribution on Θ0 is given by
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F (θ0) . We continue to assume that all distributions have full support and well defined conditional

densities that are continuously differentiable with uniformly bounded derivatives (in t, xt and θt).

A classic example of a stochastic process that satisfies these properties is the following AR(1)

process for t ≥ 1:

θt = γθt−1 + εt, (8)

where each εt is an i.i.d. draw from a single distribution H (·) . This process has a moving average
representation as:

θt = γtθ0 +
t−1∑
s=0

γsεt−s. (9)

This example is useful to keep in mind since it shows the general stochastic decay of the influence

of the initial type θ0 on subsequent types θt.

As in the previous section, we denote the agent’s payoff from getting the allocation xt in t is

δtut (θt, xt, pt) = δt (v (xt, θt)− pt) .

We assume that ut (·) is continuously differentiable and bounded in both arguments with uniformly
bounded derivatives (in t, θt, xt).

In a dynamic direct mechanism the buyer reports her type θt at each t. Letting θ
t = (θ0, ..., θt) ∈

Θt, we define a dynamic direct mechanism as {xt, pt}t≥0:

xt : Θt → Xt, pt : Θt → R.

We say that the allocation rule is Markovian if xt
(
θt
)

= xt (θt, x
t−1). Any Markovian allocation

rule x induces a Markov process whose transitions are given by

θt+1 ∼ Ft+1

(
·
∣∣θt, xt (θt)) ,

and we denote this process by λ[x]. By the dynamic revelation principle in Myerson (1986), it is

without loss of generality to consider a dynamic direct mechanism where the buyer reports her type

θi,t truthfully in each t, and any such mechanism is said to be incentive compatible.

Canonical State Representation Similar to Section 3.2.3, it is possible to represent the process

λ[x] by a sequence of i.i.d. uniform random variables εt and a sequence of functions Zt such that

Zt(θt−1, x
t−1, εt) ∼ Ft

(
·
∣∣θt−1, x

t−1
)
. (10)
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In this sense, we can view the process as being generated by θ0 and the increments (εt)
T
t=1 . The

advantage of this new formulation is that now the stochastic increments εt are independent of θ0 by

construction. Pavan, Segal, and Toikka (2014) call this the canonical representation of the Markov

process (θt)
T
t=1. The reason for using this canonical representation of the Markov process, is that

by the independence of εt relative to θ0, we can now vary θ0 while keeping the future information

structure fixed.

The impulse response at history
(
θt, xt−1

)
relative to θ0 is defined by:

It
(
θt, xt−1

)
, ∂Zt (θ0, x

t−1, εt)

∂θ0

, (11)

where εt satisfies for all 0 ≤ s ≤ t:

θs = Zs
(
θ0, x

s−1, εs
)
.

Similarly, we can define the intermediate impulse response function to previous shocks θs as:

Is,t
(
θt, xt−1

)
, ∂Zs,t (θs, x

t−1, εt)

∂θs
, (12)

and by the chain rule we have:
∂Zt
∂θ0

=
t∏

s=1

∂Z(s−1),s

∂θs−1

.

Using the canonical representation (10), we can evaluate the impulse response function (12) in terms

of the original transition function:

It
(
θt, xt−1

)
=

t∏
τ=0

− ∂Ft(θτ |θτ−1,xτ−1 )
∂θiτ−1

fτ (θτ |θτ−1, xτ−1 )

 .

In order to make sure that the envelope theorem can be applied, we require that the canonical

representation be differentiable and∣∣It−1,t

(
θt, xt−1

)∣∣ ≤ B for some B <∞.11

The impulse response function isolates the effects of the true type at t on the future evolution of θ̃s
for s > t. The other channel, i.e. through the dependence on xt and therefore indirectly on θt depends

only on the announced types in the mechanism and not the true types. The construction then

proceeds by showing that the information rents are determined by the direct effects of payoffs. As

in static allocation problem, the effects through announcements vanish by the first order condition

for optimal announcements.
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PayoffEquivalence We can then consider the equilibrium payoff to agent with type history θs :

Vs (θs) = E

[
T∑
t=s

δt
(
vt(xt

(
θt
)
, θt)− pt

(
θt
))]

,

where the expectation is taken with respect to the continuation of the process λ[x] from history

(θs, xs (θs)) onwards.

Theorem 4 (Local Incentive Compatibility)

If (x, p) is incentive compatible, then for all s, θs, Vs (θs) is Lipschitz continuous with derivative

V ′s (θs) = E

[
T∑
t=s

Is,t
(
θt, xt−1

(
θt−1

))
δt
∂vt(xt

(
θt
)
, θt)

∂θt

]
. (13)

The allocation rule thus pins down the incentive compatible payoff up to a constant as in the

static case. To interpret the result, let

U (x, θ) ,
T∑
t=0

δtvt(xt, θt)

so that
∂U

∂θt
= δt

∂vt
∂θt

.

The derivative of the indirect utility (13) then becomes:

V ′s (θs) = E
T∑
t=s

Is,t
∂U

∂θt
.

The impulse response function measures the effect of a small change in θs on θt and ∂U
∂θt
measures

the induced change in period t utility. The transfers that support the indirect utility of the agent

can then be derived just as in static model.

As discussed earlier, suffi cient conditions for the optimality of the candidate mechanism given

by the local incentive conditions are much more diffi cult to obtain in the dynamic setting than in

the static setting. Even though θt is one-dimensional at each t, the resulting allocation is multi-

dimensional since reports in period t affect the allocation in all future periods. Pavan, Segal, and

Toikka (2014) offer a necessary and suffi cient condition for the implementability of the allocation

process that corresponds almost exactly to the full incentive compatibility condition 6 of Section

3.1. While the condition itself is not easy to verify, it suggests stronger notions that are easier to

verify. Their condition of strong monotonicity that holds whenever the type evolution is independent

of past allocations and all future allocations are increasing in all reported types turns out to be

particularly useful in applications.
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Relaxed solution Consider next the optimization problem of a principal that has her own dy-

namic payoffs given by
T∑
t=0

δt (pt − ct (xt)) .

She designs a mechanism to maximize her own payoff. As always, we can write the principal’s payoff

as the difference between the social surplus and the agent’s information rent. Hence the problem is

equivalent to

max
(x,p)

Ex
T∑
t=0

δt
(
vt(xt

(
θt
)
, θt)− ct

(
xt
(
θt
)))

(14)

−Ex1−G (θ0)

g (θ0)

[
T∑
t=0

δtIt
(
θt, xt−1

(
θt−1

)) ∂vt(xt (θt) , θt)
∂θt

]
− V0 (θ0) .

subject to the incentive compatibility conditions and the period 0 participation constraints:

V0 (θ0) ≥ 0.

We denote the first line in the objective function by Ex [S (x, θ)] to represent the social surplus.

We have built the local incentive compatibility conditions into the objective function by using the

envelope formula to represent the buyer’s information rent. Typically, the individual participation

constraint will bind at the optimum for the lowest type and thus V0 (θ0) = 0. Solving

max
x
Ex
[
S (x, θ)− 1−G (θ0)

g (θ0)

T∑
t=0

δtIt
∂vt
∂θt

]

involves dynamic programming and is not easy in general. If the process of (θt)
T
t=1 does not depend

on the allocation xt and there are no intertemporal restrictions on xt, then a pointwise solution is

often possible. If the relaxed problem allows for an explicit solution, one can check if the suffi cient

conditions for full incentive compatibility are satisfied. For the examples that we describe below,

the solution of the relaxed problem can be characterized in suffi cient detail to allow us to verify

suffi cient conditions for full incentive compatibility.

If the solution of the relaxed problem is not fully incentive compatible, little is known about the

methods for solving the problem. Even if a full solution is not possible, the necessary local incentive

compatibility conditions as expressed in the envelope formula may give some qualitative insights

about the properties of the optimal dynamic contract.
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3.4 Implications and Applications of Optimal Mechanisms

We now discuss two notable application of the optimal mechanism to specific auction and contracting

environments: (i) intertemporal licensing and (ii) irreversible sale of durable good.

3.4.1 Bandit Auctions

A single indivisible object is allocated in each period amongst n possible bidders that learn about

their true valuation for the good. The type of bidder i changes only in periods t where she is

allocated the good: if xit = 0, then θit+1 = θit, if x
i
t = 1,then

θit+1 = θit + εi
(
ni (t)

)
(15)

where εi is a random variable whose distribution depends on the number of periods up to t, ni (t) ,

in which the good has been allocated to i. For some stochastic processes such as the normal learning

process outlined in Section 2.1.2, the number of observations from the process (here ni (t)) and the

current posterior mean (here θit ) form a suffi cient statistic. We can interpret the allocation process

as intertemporal licensing where the current use of the object is determined on the past and current

reports of the bidders. Notably, the assignment of the object can move back and forth between

the bidders as a function of their reports. Pavan, Segal, and Toikka (2014) and Bergemann and

Strack (2015) consider a revenue maximizing auction for the special case of the multi-armed bandit

model in discrete or continuous time, respectively. The effi cient allocation policy under private

information was analyzed earlier in Bergemann and Välimäki (2010).

A useful aspect of the bandit model with the additive noise model is the easily verified property

that:
s∏
τ=t

− ∂F it (θiτ+1|θiτ )
∂θiτ

f iτ
(
θτ+1

∣∣θiτ )
 = 1. (16)

Hence the revenue maximization problem is now turned (again using the usual steps) into a modified

bandit problem where the seller maximizes

max
x∈X

E
T∑
t=0

N∑
i=1

δt

[
θit −

1− F i
(
θi0
)

F i
(
θi0
) ]

xit (θ) ,

where X = {
(
x1, ..., xN

)
∈ RN+ |Σix

i = 1}. Stated in this form, the problem can be solved using

the dynamic allocation index, the Gittins index. Pavan, Segal, and Toikka (2014) verify that
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the solution satisfies the average monotonicity condition and is hence implementable. Thus, the

resulting dynamic optimal auction proceeds by finding the bidder with the highest valuation after

taking into account the handicap that is determined exclusively by the initial private information

θi0. Moreover, by (16), the impulse response function, and hence the handicap is constant in time

and determined only through the initial shock.

Kakade, Lobel, and Nazerzadeh (2013) consider a class of dynamic allocation problems that

includes the above Bandit problem. By imposing a separability condition (additive or multiplicative)

on the interaction of the initial private information and all subsequent signals, they obtain an explicit

characterization of the revenue-maximizing contract and derive transparent suffi cient conditions for

the optimal contract.

Bergemann and Strack (2015) consider general time-separable allocation problems in continuous

time. By restricting attention to problems where (i) the set of feasible allocations at time t is

independent of the history of the allocations, and (ii) the flow utility functions depends only on the

initial and current private information, they can leverage the structure of the problem to frequently

obtain closed-form solutions of the optimal contract. In the leading example of repeat sales of a

good or service, they establish that the commonly observed contract features such as flat rates, free

consumption units and two-part tariffs emerge as part of the optimal contract.

3.4.2 Selling Options

The second illustrative example is a stopping problem rather than a recurrent allocation problem.

Suppose we would like to allocate a single object among N bidders, but we can allocate it only once

and for all. Thus, the seller faces a stopping problem, and at the moment of stopping, he needs to

make a decision to whom to allocate the object. Suppose the evolution of the willingness to pay by

bidder i is given by:

θit = γθit−1 + εit,

with θi0 ∼ Gi
(
θi0
)
, εit ∼ H i (·) , i.i.d. If we set γ = 1, we are essentially dealing with the model of

Board (2007).

We can now compute the indirect utility function in the familiar way,

V i
0

(
θi0
)

= E
T∑
t+0

δt
1−Gi

(
θi0
)

gi
(
θi0
) γtxit (θ) ,
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and find that the expected revenue to the seller is

E
T∑
t=0

N∑
i=1

δt

[
θit −

1−Gi
(
θi0
)

gi
(
θi0
) γt

]
xit (θ) ,

The seller’s problem is thus an optimal stopping problem, and her decision in period t is whether

to stop the process and collect

max
i

{
θit −

1−Gi
(
θi0
)

gi
(
θi0
) γt

}
,

or to continue until t + 1 and draw a new valuation vector θt+1 = γθt + εt for the bidders. As

time progresses and t increases, the distortion relative to the planner’s solution in the allocation

diminishes.

3.5 The Role of the Markovian Environment

A feature common to almost all of the above contributions is that the private information of the

agent is represented by the current state of a one-dimensional Markov process, and that the new

information that the agent receives is controlled by the current state, and in turn, leads to a new

state of the Markov process. Now, in any model where the initial state is the current state of a

recurrent Markov process, such as in Battaglini (2005), the informativeness of the initial state about

future states is vanishing over time. With the impulse response of the initial state vanishing over

time this then implies that the allocative distortion vanishes in the long-run.

By contrast, a number of recent contributions considered the possibility that the initial private

information is about a parameter of the stochastic process itself, such as the drift or the variance

of the process. For example, Boleslavsky and Said (2013) let the initial private information of the

agent be the mean of a multiplicative random walk. This changes the impact that the initial private

information has on the future allocations. The distortions in the future allocation may now increase

over time rather than decline as in much of the earlier literature. The reason is that the influence

of the parameter of the stochastic process on the valuation may increase over time. Pavan, Segal,

and Toikka (2014) and Skrzypacz and Toikka (2015) report similar findings.12

The impulse response function in Boleslavsky and Said (2013) involves the number of past

realized upticks and downticks of the binary random walk. Bergemann and Strack (2015) consider

12This is equivalent to assuming that the private information of the agent corresponds to the state of a two-

dimensional Markov process, whose first component is constant after time zero, but influences the transitions of the

second component.
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the continuous time version of the multiplicative random walk, the geometric Brownian motion.

Interestingly, in the continuous time version, the impulse response function is simply the expected

number of upticks or downticks, which is a deterministic function of time and the initial state.

Correspondingly, the handicap factor is increasing linearly over time, and the optimal contract

prescribes a deterministic time at which the trade ends, thus suggesting a leasing contract with

fixed term length. More generally, Bergemann and Strack (2015) allow the valuation process of

the buyer to be either the arithmetic, geometric, or mean-reverting Brownian motion. Across these

classes of models, they show the allocative distortion of the revenue-maximizing contract can be

constant, decreasing, increasing or even random over time depending on the precise nature of the

private information.

4 Dynamic Populations

In this section, we consider mechanism design problems where the population of privately informed

agents changes over time. To fix ideas, we still assume that the mechanism designer is a seller

who has a fixed capacity of objects for sale. Her problem is now to find an incentive compati-

ble mechanism that maximizes her expected revenue. The model presented below can be viewed

as a generalization of the revenue management model in operations research to cover incomplete

information.

It is possible to distinguish two types of problems within this setting. In the first, the process

of arrivals for potential buyers is known at the outset. With independent private types, this model

is quite close to the applications surveyed in the last section. The dynamic pivot mechanism then

offers an individually rational and incentive compatible implementation of the effi cient allocation

rule. For the dynamic revenue maximization problems, dynamic stopping problems based on virtual

valuations of the buyers provide optimal solutions.

In the second class of models, the distribution of valuations or the process of arrivals of potential

buyers is itself unknown at the outset. The mechanism designer (and the agents in the mechanism)

learn more about the distribution of future demand from past realizations of arrivals and valuations

for the buyers. An early example of a model of this type with unknown value distributions in the

static case is Segal (2003). Gershkov and Moldovanu (2009b) points out problems that arise for

models of this type when agents arrive over time and when payments have to be made at the time

of allocation decision. We illustrate the problems that arise with a slight modification of the initial
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example that allows for correlated types.

Example: Continued with Correlation We continue to consider an auction of a single indi-

visible object between two bidders i ∈ {0, 1}. But now bidder i is present in the mechanism only in
period t = i. Hence the possible social allocation decisions are given by x ∈ {0, 1}, where the first
choice indicates allocating the object to bidder 0 in period 0 and the second indicates allocating to

bidder 1 in period 1.

The valuation of bidder 0 is θ0 ∈ [0, 1]. Bidder 1 learns her value in period 1, and θ1 ∈ {0, 1}.
The prior probability on the high type is p and we further assume that the types of the two agents

are correlated as follows:

Pr{θ1 = 1 |θ0} =
1

3
, if θ0 <

1

2
,

and

Pr{θ1 = 1 |θ0} =
2

3
, if θ0 ≥

1

2
.

Since agent 0 is present in t = 0 only, the optimal allocation is determined solely by type θ0 of

bidder 0 and it is given by:

x∗ (θ0) = 0⇔ θ0 ∈ [
1

3
,
1

2
) ∪ [

2

3
, 1].13

Notice that this allocation rule is not monotone in θ0 and hence not incentive compatible for any

possible transfer rule p (θ0) . Hence we conclude that incentive compatibility and effi ciency are not

mutually possible. If we allowed agent 0 to receive and make transfers in t = 1, effi ciency would be

restored by reverting to the usual second price auction allocation and transfer rules:

p0 (θ0, θ1) = (1− x∗ (θ0)) θ1, p1 (θ0, θ1) = x∗ (θ0) θ0.

Importantly, this example also illustrates why achieving dominant strategies is not possible to

achieve in dynamic mechanisms even with unrestricted transfers. If agent 1 always reported θ1 = 1,

then the above mechanism would not be incentive compatible for agent 0. Since agent 1 has no

private information in t = 0, the requirement of periodically ex post incentive compatibility is

trivially satisfied.

Finally notice that the notion of marginal contribution of agent 0 is ambiguous in this case.

When computing the contribution of agent 0 to the social welfare, it is not clear if we should

use the expected value if allocating to 1 with the private information of agent 0 or without that

information (i.e. if only the allocational possibilities or also the information should be removed

when considering the social welfare when 0 is not present).



Dynamic Mechanism Design August 22, 2017 36

Short vs. Long Lived Bidders; Observable vs. Unobservable Arrival Further distinctions

between the models are possible along several dimensions. The agents may be long-lived or short

lived as in many revenue management models. Gershkov and Moldovanu (2009a) extend the classic

revenue management models a la Gallego and van Ryzin (1994) to cover more general allocation

models with short-lived buyers. If they are long-lived, models may distinguish between that case

where their arrival is observable to the mechanism designer and where it is not. In the latter case,

the agents also maximize over the time at which they report their arrival (and type). Board and

Skrzypacz (2015) cover the case of stochastically arriving buyers that can time their purchases.

Gershkov, Moldovanu, and Strack (2017) develops a revenue maximizing model where the arrival

rates of the buyers over time are initially uncertain and must be learned over time.

The key to solving this type of revenue maximization problems is to find the appropriate ex-

ternality payment mechanism for the problem at hand where virtual valuations are used instead of

the true valuations. Hence the exercises are closely related in the spirit to the classical Myerson

auctions and the techniques are familiar from the previous section of this survey. The key first

step is to express the payoff to the agents using an envelope formula and then make sure that the

model has enough monotonicity to ensure full incentive compatibility of the solution of the relaxed

problem. In the case where the agents time their reporting to the mechanism designer strategically,

an additional constraint of monotonicity with respect to reporting time must also be verified. It

is interesting to note that strategic timing by the agents ends up enhancing the revenue accruing

to the seller in the optimal mechanisms in Board and Skrzypacz (2015) and Gershkov, Moldovanu,

and Strack (2017).

Finally, Garrett (2016) considers a model where the type of the agent changes stochastically,

providing an additional reason for the strategic timing of reporting one’s arrival. By analyzing the

optimal commitment paths for prices, Garrett (2016) provides a new rationale for fluctuating prices

even in otherwise completely stationary models.

5 Connections to Nearby Models

In this section, we discuss briefly two classes of dynamic contracting models that do not assume

quasi-linear payoffs. Since Rogerson (1985), models of dynamic moral hazard have discussed the

smoothing of dynamic risks in models with incentive problems. In dynamic settings, the distinction

between dynamic moral hazard and adverse selection is almost impossible to make and many models
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that share the informational structure with our general dynamic model have been discussed under

the name of dynamic moral hazard (see for example the early formulations in Thomas and Worrall

(1988), and Phelan and Townsend (1991)). The key difference between these models and those

discussed in the previous sections is that with risk averse preferences, the trade-off between effi cient

physical allocation and effi cient risk allocation emerges. In the first subsection, we discuss briefly

the models employed in new public finance from this viewpoint.

In models of financial economics, a key assumption is that the privately informed managers

do not have suffi cient funds to buy the entire enterprise. This is typically formalized through a

limited liability constraint stating that managers (the agent) cannot make payoffs to owners (the

principal). Recent work starting with Clementi and Hopenhayn (2006), DeMarzo and Sannikov

(2006), DeMarzo and Fishman (2007), and Biais, Mariotti, Plantin, and Rochet (2007) has analyzed

the problem of incentivizing a manager that observes privately the cash flow of a firm. In the second

subsection, we describe how the model and the results in this model compare to the results from

the general dynamic model in this survey.

5.1 New Public Finance: Risk-Averse Agent

In most mechanism design problems, the key problem for the designer can be formulated as follows:

what is the most advantageous way of providing the agent with a fixed level of utility v. With risk-

averse agents and a risk-neutral principal, optimal contracts provide some amount of insurance, but

incentive compatibility precludes the possibility of full insurance.

In dynamic problems, the principle of dynamic programming suggests that this question should

be decomposed into current incentives and future incentives: conditional on each report θt, the

current allocation
(
x
(
θt
)
, p
(
θt
))
is decided and a continuation payoff w

(
θt
)
is induced for the

future. The idea is to give relatively high consumption to the agent in the periods where marginal

utility from consumption is high, but to preserve incentive compatibility, this must come at the

cost of lower continuation payoffs. Spear and Srivastava (1987) were the first to use this recursive

formulation for dynamic incentive provision: all the agent needs to know about the consequences

of her reports at each point in time are their payoff consequences and by the principle of dynamic

programming, these are summarized in
(
x
(
θt
)
, p
(
θt
)
, w
(
θt
))
. Of course for the dynamic contract

to be incentive compatible and consistent, two conditions are needed:

u
(
x
(
θt, θ

t−1
)
, p
(
θt, θ

t−1
)
, θt
)

+ δw
(
θt, θ

t−1
)
≥ u

(
x
(
θ′t, θ

t−1
)
, p
(
θ′t, θ

t−1
)
, θt
)

+ δw
(
θ′t, θ

t−1
)
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for all t, θt, θ
′
t; and

w
(
θt−1

)
= Eθt [u

(
x
(
θt, θ

t−1
)
, p
(
θt, θ

t−1
)
, θt
)

+ δw
(
θt, θ

t−1
) ∣∣θt−1, xt−1 ],

for all t, θt−1.

The first of these constraints is the usual incentive compatibility constraint that we encountered

earlier in sequence form with the quasi-linear utilities and the second one is called the promise

keeping constraint that makes sure that the promised utilities are realized through the allocation

decisions for truthful reports.

The literature on optimal risk allocation over time has focused on two types of results. The

first is a quite striking and initially counterintuitive finding. Consider a risk-neutral principal with

a linear cost of providing consumption xt ≥ 0 to a privately informed agent. The objective of the

principal is to minimize the cost of providing an initial payoffof v to the agent. The periodic income

of the agent income is her private information θt, her type, which is assumed to be an i.i.d. draw

θt ∼ F (·) in all periods. Her payoff is given by a continuous and strictly concave utility function
u (x) that is unbounded from below. The famous immiseration result by Thomas and Worrall

(1990) states that along the optimal consumption path, we have almost surely xt → 0 and therefore

u (xt) → −∞. This result is also shown by Atkenson and Lucas (1992) to hold for a utilitarian
social planner operating subject to an aggregate feasibility constraint.14

To understand this result, note that the concavity in the utility function makes the threat

of low future consumptions an effective way of delivering incentives for current reports. A low

current θt is associated with a relatively high current consumption xt, and to preserve incentive

compatibility, this must be associated with a relatively low future payoff. A simple variational

argument establishes that the marginal cost for the principal for providing promised utility v must

be a martingale. The martingale convergence theorem establishes the convergence of this marginal

cost. Promised utilities cannot converge to a finite constant since this would result in optimal full

insurance within period contradicting incentive compatibility (with constant future promises) and

the result follows.

The second key result is the inverse Euler equation for the provision of consumption. Rogerson

(1985) considers the optimal contracting problem between a risk-neutral principal and a risk-averse

agent choosing an unobservable action (and no private information). One of the key findings in

14Feasible allocations are constrained by the endowment process in an exchange economy.
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that paper is that the optimal form of providing dynamic incentives to the agent takes the form:
1

u′ (xt)
=

1

δEu′ (xt+1)
.

Notice that the terms in this formula are the inverses of the lhs and the rhs of the usual Euler

equation and hence the name. This same characterization holds for dynamic models of incomplete

information where x
(
θt
)
is determined based on the reported types as long as current utility does

not depend on θt. In the literature on dynamic public finance, monetary transfers are not present,

and the allocation takes typically the form x
(
θt
)

=
(
c
(
θt
)
, l
(
θt
))
, where c denotes the consumption

and l denotes the labor supply. If u (x, θ) takes the form

u (x, θ) = v (x)− g (l, θ) ,

the inverse Euler equation for the consumption allocations holds as shown in Golosov, Kocherlakota,

and Tsyvinski (2003). By Jensen’s inequality, one sees immediately that if the agent is allowed to

save at interest rate 1/δ, she will optimally do at the consumption path x
(
θt
)
. This observation has

given rise to the large literature on optimal contracting with hidden savings. (We should include

some references here).

The immiseration results have led to a reconsideration of the assumption of full commitment on

the two sides of the contracting problem. Assuming that the outside option of the agent is increasing

in her current type leads to a new qualitative feature in the optimal contract. As observed by Harris

and Holmstrom (1982) and Kocherlakota (1996), without commitment, the promised utility in the

contract moves upward over time as higher and higher types are reached.

An alternative approach is taken in Farhi andWerning (2007), where the planner discounts future

periods less than the generation born in the initial period. This consideration for intergenerational

distribution leads to solutions that often generate optimal income distributions that do not converge

towards the immiseration outcome.

If one assumes that the set of possible types is a connected interval and that the process of types

has full support, then the Bellman equation of the agent can be written as:

V ′ (θt) =
∂u
(
xt
(
θt
)
, θt
)

∂θt
+

∫ θ

θ

V ′ (θt+1)
∂f (θt+1 |θt )

∂θt
dθt+1.

Integration by parts gives:

V ′ (θt) =
∂u
(
xt
(
θt
)
, θt
)

∂θt
+ E

[
−∂F (θt+1|θt )

∂θt

f (θt+1 |θt )
V ′ (θt+1)

]

=
∂u
(
xt
(
θt
)
, θt
)

∂θt
+ E

[
It,t+1

(
θt
)
V ′ (θt+1)

]
.
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In other words, a similar envelope theorem characterization for the agent’s utility is still possible

in this model. The next step of substituting the agent’s payoff into the principal’s objective unfor-

tunately fails because of the lack of quasi-linear utility. As a result, solving the model is in general

more diffi cult than in the quasi-linear case and numerical methods are typically needed. This also

implies that checking full incentive compatibility becomes much harder in this class of models.

5.2 Limited Liability

In financial economics, a key incentive problem is between a privately informed manager (agent)

and an uninformed owner (principal). Limited liability protection on part of the agent implies

an upper bound on the transfers that can be made from the agent to the principal. Often this

constraint takes the form that all transfers must be from the principal to the agent. This prevents

of course the principal from selling the enterprise to the agent at the outset. Since recent surveys of

this large literature exist (see for example Biais, Mariotti, and Rochet (2013)), we do not attempt

a comprehensive survey of the topic.

A recent paper Krasikov and Lamba (2016) takes up a particular quasilinear version of our

general dynamic model with the added feature of limited liability. In a two-state Markov chain model

of information for their model, they consider optimal contracting between a principal and a manager

that knows her private cost type. The restriction to a binary type set allows Krasikov and Lamba

(2016) to solve fully the optimal contract using techniques similar to Battaglini (2005). Echoing the

results from earlier papers in dynamic mechanism design, the paper shows that the optimal contract

converges eventually to the effi cient static contract. Prior to the path of reaching this region, the

contract displays various types of ineffi ciencies reflecting the limited liability constraints as well as

distortions arising from the principal’s attempt to extract information rent from the agent.

We believe that a lot of work still remains in the analysis of the risk-neutral setting with

additional contractual limitations imposed on the problems. Partial verifiability as in the case

of a manager that cannot exaggerate the cash flow of her firm and limited liability constraints are

good starting points for this analysis. More work is also needed towards a better understanding of

ex post participation constraints.
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5.3 Bounding the Performance of Mechanisms

The intertemporal allocations and commitments that resulted from the dynamic mechanism bal-

anced trade-offs over time. These trade-offs were based on the expectations of the agents and the

principal over the future states. In this sense, all of the mechanisms considered were Bayesian

solutions and relied on a shared and common prior of all participating players. Yet, this clearly is a

strong assumption and a natural question would be to what extent weaker informational assump-

tions, and corresponding solution concepts, could provide new insights to the format of dynamic

mechanisms. For example, the sponsored search auctions which provide much of the revenue for the

search engines on the web, are clearly repeated and dynamic allocations with private information,

yet, most of the allocations and transfer are determined by spot markets rather than long-term

contracts. An important question then is why not more transactions are governed by long-term

arrangements that could presumably share the effi ciency gains from less distortionary allocations

between the buyers and the seller. An important friction to long-term arrangements is presumably

the diversity in expectations about future events between buyer and seller. In a recent paper, Mir-

rokni, Leme, Tang, and Zuo (2017) provide lower bounds for a revenue maximizing mechanism in

which the players do not have to agree on their future expectations. The mechanism that achieves

the lower bound in fact satisfies the interim participation and incentive constraints for all possible re-

alizations of future states. This approach reflects the recent interest of theoretical computer science

in dynamic mechanism design, see for example Papadimitriou, Pierrakos, Psomas, and Rubinstein

(2016), and mechanism design more generally. But in contrast to the approach most commonly

taken by economic theory who attempt to explicitly identify and design the optimal mechanism,

theoretical computer science often describes achievable bounds on the performance. The bounds are

frequently achieved by mechanisms that have computational advantages in terms of computational

complexity relative to the, possible unknown, exact optimal mechanism.

6 Concluding Remarks

It was our objective to present some of the recent work on dynamic mechanism design. We hope we

have conveyed the scope and the progress that has been made in the past decade. Our discussion

should have also indicated that many interesting questions remain wide open. We shall describe

some of them in these final remarks.

We argued that the optimal dynamic mechanism allows the seller to receive a large share of the
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surplus by replacing the sequence of periodic, and hence static and ex post participation constraints,

by a single ex ante participation constraints. We discussed above that an important friction to

long-term arrangements is presumably the diversity in expectations about future events among

the players. Here, a natural direction is to ask to what extent the insights from static mechanism

design can be transferred to dynamic settings. Mookherjee and Reichelstein (1992) establish that in

static environments the revenue maximizing allocation can frequently be implemented by dominant

rather than Bayesian incentive compatible strategies. Similarly, Bergemann and Morris (2005)

present conditions for static social choice functions under which an allocation can be implemented

for all possible interim beliefs that the agents may hold. The robustness to private information is

arguably an even more important consideration in dynamic environments.

The central problem that the literature of dynamic mechanism has addressed is how to provide

incentives to report the sequentially arriving private information. Thus, the central constraints on

the design are given by the sequence of interim incentive compatibility conditions. The participation

constraints on the other hand have, perhaps surprisingly for a dynamic environment, have received

much less attention. Now, sometimes a dynamic mechanism can guarantee the ex-ante participation

constraints as well as the interim (or periodic) ex-post constraints. The dynamic pivot mechanism

that governed the dynamically effi cient allocation provided such an instance. By contrast, the

dynamic revenue maximization contract only imposed the participation constraint at time zero, thus

ex-ante relative to all future arriving private information. In particular, the dynamic mechanism

cannot provide any guarantees about ex post participation constraints. Indeed, Krähmer and

Strausz (2015) show that sequential screening frequently reduces to a static screening solution

if the seller has to meet the ex post rather than the ex ante participation constraints of the buyers.

Moreover, if the dynamic mechanism improves upon a static mechanism in the sequential screening

model, then the ex post participation constraint severely limits the ability of the seller to extract

surplus through option contracts as shown in Bergemann, Castro, and Weintraub (2017).

A related but distinct issue that is likely to require more analysis is the timing of the contractual

agreement between principal and agents. Much of the current analysis assumes that the arrival of

the agents is known to the principal and that the principal can make a single, take-it-or-leave-it offer

at the moment of the agent’s arrival. This constraint, while natural in a static setting, is much less

plausible in dynamic settings. In particular, it explicitly excludes the possibility for the agent to

postpone and delay the acceptance decision to a later time when he may have additional information

about the value of the contract offered to him. A notable exception is Garrett (2016) who allows
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for the random arrival of buyers and suggests that it may offer an explanation for temporary price

reduction even in an otherwise stationary environment. The participation constraints may impose

important constraints on the principal either because the agents may arrive over time and the

arrival time may be private information to the agent, or because the principal lacks in commitment

power relative to future offers. For example, Lobel and Paes Leme (2017) assume that the seller

can make future commitments to the current buyer, yet the seller is unable to commit to future

offers that he will make to newly arriving buyers. The resulting inability to preclude future, and

possibly more favorable offers, presents a new option to the current buyer, and hence strengthens

his bargaining position, and limits the ability of the seller to extract surplus. Bergemann and Strack

(2017) analyze the dynamic revenue maximizing contract subject to the restriction that the seller

has to offer a stationary contract. Thus the seller is forced to renew the contract offer in every

period, both to newly arriving and currently waiting customers. They show that the ability to

postpone the acceptance of an offer to a future period can increase the value of the buyer and can

lead to a more effi cient allocation resulting in equilibrium.
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