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When Salespeople Manage Customer Relationships: 
Multidimensional Incentives and Private Information 

 
 

Abstract 

At many firms, incentivized salespeople with private information about customers are 

responsible for CRM. While incentives motivate sales performance, private information can 

induce moral hazard by salespeople to gain compensation at the expense of the firm. We 

investigate the sales performance--moral hazard tradeoff in response to multidimensional 

performance (acquisition and maintenance) incentives in the presence of private information. 

Using unique panel data on customer loan acquisition and repayments linked to salespeople from 

a microfinance bank, we detect evidence of salesperson private information. Acquisition 

incentives induce salesperson moral hazard leading to adverse customer selection, but 

maintenance incentives moderate it as salespeople recognize the negative effects of acquiring 

low quality customers on future payoffs. Critically, without the moderating effect of maintenance 

incentives, adverse selection effect of acquisition incentives overwhelms the sales enhancing 

effects, clarifying the importance of multidimensional incentives for CRM. Reducing private 

information (through job transfers) hurts customer maintenance, but has greater impact on 

productivity by moderating adverse selection at acquisition. The paper also contributes to the 

recent literature on detecting and disentangling customer adverse selection and customer moral 

hazard (defaults) with a new identification strategy that exploits the time varying effects of 

salesperson incentives. 

 

Keywords: salesforce compensation, CRM, private information, adverse selection, moral hazard
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INTRODUCTION 

Firms increasingly recognize the value of customer relationship management (CRM) in that 

although acquiring customers is important, maintaining customer relationships—and ongoing 

revenue streams through higher customer lifetime value— is even more critical for a firm’s 

overall profitability (Jain and Singh 2002, Shin and Sudhir 2010, Venkatesan and Kumar 2004). 

The academic literature on CRM has typically focused on settings where salaried marketers 

balance customer acquisition and maintenance goals using customer databases (e.g., Li, Sun and 

Montgomery 2011, Gupta and Lehmann 2005, Zhang, Netzer and Ansari 2014), but have 

generally ignored the common setting where firms use incentivized salespeople to acquire 

customers and maintain customer relationships.1  

There are two major issues when incentivizing salespeople in CRM settings that have not 

been addressed in the sales incentives literature. First, we consider the need for multidimensional 

performance based incentives that balances sales from both new customer acquisition and 

existing customer retention and maintenance. But typical compensation plans that have been 

studied in the literature (e.g., Chung, Steenburgh and Sudhir 2014; Misra and Nair 2011) are 

only based on a unidimensional measure of performance such as total revenues, which do not 

decompose revenues arising from new customers as opposed to maintenance of existing 

customers--the core of CRM concepts of customer acquisition and retention.2 Second, 

salespeople can have private information on customers, beyond publicly available information 

that is also known to the firm, through their relationships with customers. The private 

information can help the firm aid in improving customer acquisition and maintenance efficiency, 

but it may also be potentially used by salespeople to engage in moral hazard that improves their 

own compensation at the expense of the firm. 
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Our goal is to investigate the sales performance--moral hazard tradeoff among salespeople 

in the use of managerial levers related to multidimensional incentives and private information 

when salespeople manage customer relationships. First, the multi-dimensional incentive scheme 

rewards salespeople based on joint performance on the acquisition and maintenance dimensions. 

While acquisition metrics motivate salespeople to bring in sales through new customers, it also 

incentivizes them to commit moral hazard by selectively bringing in easier-to-acquire, poorer-

quality customers with lower lifetime value. Firms can align salesperson acquisition behavior 

and address the moral hazard issue by appropriately weighting performance by customer quality 

if quality is observable to the firm (e.g., credit rating), but it is not feasible to do this with private 

information. Hence private information can hurt the firm through customer adverse selection.3 

Maintenance metrics incentivize salespeople to strengthen and maintain relationships to generate 

sales from previously acquired customers (e.g., through ongoing purchases/subscriptions, loan 

repayments etc.). But beyond this direct effect, it can also moderate the moral hazard by 

indirectly incentivizing forward looking salespeople to ex-ante not acquire bad customers, who 

are more difficult to retain (and therefore have lower CLV). By giving salespeople a stake in 

future cash flows from customers, maintenance incentives align firm and salesperson payoffs 

over the long-term, thus ameliorating the potential customer adverse selection motivation arising 

from acquisition incentives. 

While the effects of acquisition and maintenance metrics in isolation are intuitive from 

the discussion above, their joint effects are harder to characterize. To help fix ideas, we develop 

a stylized analytical model of salesperson behavior in response to joint acquisition and 

maintenance incentives when they have private information about customers. Two key results 

arise. First, we find that given private information, salespeople engage in advantageous customer 



4 

 

selection when there is high maintenance pressure (i.e. the prospect of existing customers 

bringing low profit in the future), and adverse customer selection when maintenance pressure is 

low. The result is insightful in that theoretically, maintenance incentives can not only ameliorate 

adverse selection, but even reverse it to obtain advantageous selection. What happens in practice 

is an empirical question. Second, and not surprisingly, customer maintenance performance 

always improves as maintenance pressure increases independent of acquisition incentives.  

Second, we consider a lever that a firm can use to control the level of private information 

resident in salespeople, given the potential adverse selection effects of private information. One 

relevant lever in sales management that helps control the level of private information is periodic 

job transfers, that break customer-salesperson ties by relocating the salesperson to a new location 

with new customers.4 While this can help the firm by reducing the cost due to adverse selection, 

it can also hurt the sales and maintenance efficiency gains from private information. Which of 

these effects dominate when there is a transfer is an empirical question.5 

The above discussion on how private information and multidimensional incentives 

interact to produce a sales performance-moral hazard tradeoff makes it clear that the effect of 

multidimensional incentives and private information on customer selection, maintenance and 

overall productivity in CRM settings need empirical investigation.  Accordingly, the paper 

addresses the following research questions relevant to salesforce management in CRM settings: 

(1) Do salespeople have private customer information? (2) Do acquisition incentives impact 

acquired customers’ unobservable quality, and if so do they lead to advantageous or adverse 

customer selection? (3) Do maintenance incentives improve customer maintenance and how does 

it impact customer selection? (4) Do transfers that reduce private information improve or hurt the 

quality of customer selection and do they hurt or help customer maintenance? (5) Finally, what is 
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the net effect of acquisition/maintenance incentives and transfers on overall productivity given 

the complex tradeoffs in terms of acquisition and maintenance efficiency, and selection effects?  

Answering these questions poses a number of challenges. First, one needs matched panel 

data on salesforce incentives/performance and customer relationships over time. This is typically 

difficult to obtain, as such data tend to reside separately within different functions of a firm. 

Specifically, the sales incentive and performance data reside within human resource/sales 

functions within a firm, whereas detailed customer panel data reside within the marketing 

function. We use unique panel-data from a microfinance bank in Mexico that lends to small 

business customers and allowed us to match the panel data on performance/ compensation/ 

transfer information about their loan officers (salespeople) with the loan acquisition and 

repayment behavior of their customers. 

Second, detecting private information is challenging due to its intrinsic unobservability. Our 

primary identification strategy leverages the idea that, conditional on public information, 

salesforce performance metrics under the incentive scheme should not directly affect future 

consumer repayment behavior and profitability of new customers, but only indirectly through 

salespeople’s efforts as customers do not observe the metrics. Empirically, we test if there is a 

systematic relationship between the salesperson’s performance metrics, based on which the 

compensation is paid out, and the IRR of the acquired loans conditional on credit rating, loan 

characteristics, and various unobserved demand shifters.  

Moreover, our empirical setting allows for exogenous variation in the level of private 

information, because the bank randomly transferred their salespeople, severing past relationships 

and private information about their customers. The policy is well-designed to be random and 

unpredictable so that salespeople cannot indulge in strategic behavior just prior to transfers.6 The 
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transfer policy allows us to understand how incentives interact with private information in 

producing customer acquisition, maintenance and overall productivity outcomes by comparing 

the salespeople’s acquisition and maintenance behavior before and after the transfer.  

We find that salespeople possess private information about customers and engage in moral 

hazard by using it to maximize their payoffs at the expense of the firm. The key takeaways from 

our findings are as follows: First, multidimensional incentives are critical to overwhelm the 

negative effects of moral hazard and obtain sales productivity gains in CRM settings. 

Salespeople “abuse” private information to acquire lower-quality customers conditional on 

observables to perform well on the acquisition metric, but the customer maintenance metric not 

only reduces loan defaults (better maintenance), but also indirectly moderates the adverse 

selection as forward looking salespeople anticipate the future consequences of current customer 

acquisition. It turns out that the overall impact on productivity from acquisition performance 

would not be positive without the joint use of maintenance incentives. Second, private 

information has positive efficiency enhancing effects, but the negative moral hazard effects on 

productivity are larger. When firms reduce private information and salesperson-customer 

relational capital using transfers,7 the gain from a reduction in adverse selection is greater than 

the loss due to an increase in loan defaults as the relationships between the salesperson and 

borrowers is severed. Hence the periodic destruction of private information through transfers is a 

useful managerial lever in this setting. 

The rest of the paper is organized as follows. We introduce how this paper is related to 

previous literature. Next, we describe institutional details and data. Third, we propose a stylized 

analytical model to formalize the idea. Fourth, we explain our empirical strategy and results and 

discusses the key findings. Lastly, we conclude and provide future research direction. 
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RELATIONSHIP TO THE LITERATURE 

This paper contributes to multiple literatures in marketing and economics. As discussed in 

the introduction, the CRM literature has not addressed organizational issues of implementing 

CRM through an incentivized salesforce, and this paper addresses that important omission, given 

the ubiquity of sales force driven CRM across many industries.8 

[Insert Table 1 here] 

 Our primary contribution is to the empirical literature on salesforce compensation, which 

we summarize based on the four columns Table 1. First, the existing empirical salesforce 

compensation literature (e.g., Chung, Steenburgh and Sudhir 2014; Misra and Nair 2011) either 

focuses on the situation where one-shot transactions generate sales or ignore the distinction 

between sales arising from new customers and those with existing relationships. This paper adds 

to the literature by examining the important case where ongoing customer relationships matter 

and therefore important to distinguish between sales from new customers versus sales from 

existing customers with whom there is already a relationship. Second, existing empirical 

salesforce compensation papers study unidimensional performance metrics. Although there have 

been a large number of empirical papers in the field of education and health on the multitasking 

agency problem (e.g., Feng Lu 2012, Neal and Schanzenbach 2010) since the seminal theoretical 

paper by Holmstrom and Milgrom (1991), to the best of our knowledge, our paper is the first 

empirical paper on salesforce compensation that studies a multidimensional compensation 

scheme.  

Third, our paper introduces the issue of private information of salespeople as a source of 

salesperson moral hazard. Existing empirical papers consider salesperson moral hazard around 

the issue of sales or effort timing problems in response to nonlinear incentive plans involving 
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bonuses and targets at periodic intervals. In contrast, we focus on salesperson moral hazard 

arising from the existence of private information on customers, which can lead to adverse 

customer selection in customer acquisition and/or delinquency due to inability to collect from 

those with whom there is strong relationship. In particular, our analytical model introduces a 

stylized framework that helps clarify the joint impact of acquisition and maintenance metrics on 

outcomes when there is private information. A key insight is that maintenance metrics can not 

only ameliorate adverse selection, but also lead to advantageous selection.  

Fourth, our paper considers potential misalignments between a firm and its salesforce 

incentives in terms of information that is unobservable to the firm. In Larkin (2014), 

misalignment between the firm and its salespeople arises because the firm’s performance metric 

does not take into account profit margins even though the firm can observe them, and 

salespeople offer excessive price discounts. In Copeland and Monnet (2008), potential 

misalignment between the firm and its workers is eliminated because the firm’s performance 

metric weighs more the performance on difficult jobs. In these papers, at least conceptually, it is 

possible to address misalignment due to differences in true productivity based on observables by 

appropriately reweighting contemporaneous variables without concerns for intertemporal effects. 

In our paper, the firm faces a misalignment issue due to unobservable (or non-contractible) 

information and the nature of the misalignment is intertemporal. The maintenance incentive 

addresses the intertemporal misalignment by providing an ongoing stake in future cash flows 

from the “customer asset” through an effective “partial ownership” (Grossman and Hart 1986).  

Our paper is also related to the literature on social capital in organizations (Sorenson and 

Rogan, 2014). As noted earlier, the private information residing within salespeople is a form of 

social relationship capital between the firm and its customers—an intangible asset whose 
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ownership i.e., control and residual rights resides not with the firm, but with the salesperson 

(Grossman and Hart 1986). Recently, Shi et al. (2017) investigate the effect of sales 

representative departures on sales in a B2B setting and find that customer reassignment to 

different types of salespeople lead to customer churn with 13.2%-17.6% losses in annual sales 

for the firm, but this paper does not consider potential adverse selection effects. Canales and 

Greenberg (2015) show that these losses may be mitigated by replacing a sales representative 

with another who is stylistically similar in their interactions. These papers suggest that the 

salesperson-customer relationship is valuable to the firm for customer maintenance. Our paper 

shows that while this intangible asset (i.e., private ties that constitute relational contracts) is 

useful to firm in retaining and maintaining customers, its impact through salesperson moral 

hazard in customer acquisition can be high enough that its periodic destruction through transfers 

is profitable to the firm (Fisman, Paravisini and Vig 2011; Canales and Greenberg 2015).  

Methodologically, this study contributes to a growing literature that empirically tests for the 

existence of private information and distinguishes the effects of customer adverse selection and 

customer moral hazard in insurance and credit markets. Note than in our empirical setting, loan 

defaults is a form of customer moral hazard. Identifying the existence of private information and 

quantifying its effect are challenging because of its intrinsic unobservability. Chiappori and 

Salanie (2000) initiated the literature and propose a positive correlation test to detect existence of 

asymmetric information in the car insurance market. Subsequent studies test for asymmetric 

information in health insurance, by obtaining access to additional information such as pre-

existing conditions that cannot be lawfully used by insurance companies (Finkelstein and 

McGarry 2006, Finkelstein and Poterba 2004) to see if this information explains the type of 

insurance plans chosen by the individual and the ex-post health care consumption. The key issue 
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is that researchers cannot disentangle whether the poor outcomes arise from ex-ante adverse 

selection or ex-post moral hazard by only observing ex-post customer behaviors.9 Past studies 

address the issue through a randomized controlled experiment with contract terms (Karlan and 

Zinman 2009) or by exploiting policy changes (Dobbie and Skiba 2013). In a contemporaneous 

paper, Jeziorski et al. (2016) use the specific institutional rules of the Portuguese auto insurance 

market to address adverse selection and moral hazard. Our paper introduces a new identification 

strategy that exploits “supply-side” variation in the salespeople’s motivation to use private 

information at the point of customer acquisition and a policy that explicitly changes the level of 

private information about customers to separate customer adverse selection and customer moral 

hazard.  

INSTITUTIONAL DETAILS AND DATA 

	
 In this section, we describe the institutional details of our empirical setting and then explain 

the data used in our empirical analysis. 

Institutional Details 

Our empirical application is in the context of a Microfinance Institution (MFI) in Mexico 

that provides collateral-free loans to low income, small business entrepreneurs through loan 

officers (salespeople). The loans are characterized by their small amount (median of $690), high 

interest rate (median rate is 85%), short maturity (average length is 6 months) and high 

delinquency probability (average of about 25.4%), as is common for microcredit institutions in 

emerging markets (see, e.g., Sengupta and Aubuchon (2008) for more discussion on microcredit 

loans in emerging markets). 

Loan officers have two main responsibilities: acquiring new loans and ensuring repayments 

on existing loans. The acquisition stage involves recruiting borrowers through referrals or 
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personal visits, accepting loan applications, and recommending loan terms to the bank. The bank 

uses public information about the borrower (i.e., a 1-5 credit rating with 5 as best, constructed 

with data from an external agency)10 together with information in the loan application to both 

approve the loan and set the interest rate. Since a salesperson has a lot of discretion to approve a 

loan in our setting, she does not need to have a borrower take further actions if she wants to 

accept the loan. After acquisition, officers must ensure that loans are repaid on time (e.g., 

through phone calls and in-person visits).  Throughout a loan’s life, loan officers can create 

relational capital with their clients and use it to obtain private information about their motives, 

needs, financial capabilities/liabilities, and behavior. Salespeople can use such private 

information in loan decisions on top of observable variables (e.g., credit rating), because 

observables alone may not be sufficient to evaluate borrowers.11 Our interest lies in how loan 

officers use this private information to enhance their personal income—either through increased 

efficiency in customer acquisition and maintenance that also benefits the firm or through adverse 

customer selection, which hurts the firm.12 

The salesperson’s compensation in the bank we study has two parts: salary and bonus. The 

salary is solely determined by seniority, not performance, while the bonus is a function of 

performance on both acquisition and customer maintenance. Acquisition performance is 

benchmarked against one’s own past performance to create an acquisition index (Ajt for officer j 

at period t is defined by 𝐴!" =
!!"
!!"
! , where 𝑁!" is the amount of new loans acquired by office j at 

period t, and 𝑄!"!  is the acquisition quota, or the amount of active loans at period t). Maintenance 

performance is based on the number and value of loans collected relative to the loans outstanding 

as a maintenance index (𝑀!" =
!!"
!"!"

 where 𝑅!" is the outstanding value of loans that are in good 
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standing, and 𝐿𝑉!"is the outstanding value of loans in salesperson j’s portfolio due at period t. 

Hence 𝐷!" = 1−𝑀!" is the fraction of the value of loans outstanding that is delinquent. The final 

bonus is the product of the base salary, acquisition index, and maintenance index (i.e., Bonusjt = 

Salaryjt×Ajt×Mjt); thus, receiving zero points in any category would earn them no bonus at all. 

Note that the multiplicative feature of the incentive scheme leads officers to balance effort 

between acquisition and maintenance in any given time period and introduces a dynamic trade-

off for the salesperson: between the immediate benefits of acquiring (possibly lower quality) 

customers to improve acquisition performance, and its future negative effect on maintenance 

performance. 

Finally, the bank periodically relocates loan officers from their current branch to another 

branch. Such transfers are common in the retail banking sector to avoid the potential abuse of 

private information by loan officers, which could lead to adverse selection (e.g., Fisman, 

Paravisini and Vig 2011). Transferred salespeople take over and monitor the loans acquired by 

their predecessors who left the branch. The transferred salesperson’s maintenance bonus does not 

depend on the loans she has collected in the previous branch, but solely depends on repayment 

outcomes of loans she took over after transfer. A particularly interesting characteristic of the 

transfer policy at the MFI is that the transfers, both in terms of timing and location, are entirely 

randomly determined. The randomness in timing is intended to prevent loan officers from 

engaging in greater adverse selection, when their expectations of transfer are high.13 In the next 

subsection, we show that the transfers are indeed randomly determined. It allows us to treat 

transfers as an exogenous shock to salesperson private information. 

Data 
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Our panel data include monthly salesforce performance and compensation data matched 

with the transactions on loans generated and maintained by the salespeople. We observe 461 loan 

officers working on 129,839 loans for 14 months from January 2009 to February 2010. The loan 

data include information on loan characteristics such as the borrower’s credit rating, loan terms 

(e.g., amount, interest, origination date and loan duration) and details of loan repayment (e.g., 

monthly payments, delinquency). We do not observe rejected loans, but our empirical analysis 

does not rely on such information. Each loan can be matched with the loan officer who 

originated the loan, and with the loan officer who is currently maintaining the loan (which is 

typically the originating officer, except when there is a transfer). For each loan officer, we have 

monthly information on the branch they were assigned to (from which we can infer transfers), 

and their score on the acquisition and maintenance benchmarks, which determined their bonus. 

 [Insert Tables 2a and 2b here] 

Table 2a reports summary statistics of loan characteristics and bonus points. The average 

loan size is 9,192 pesos (approximately 690 US$ in 2009), with an average loan term of 6 

months. The average (annual) interest rate is high at 87% as is typical in many emerging markets 

without collateral. The high interest rate reflects both a high overall delinquency rate of 

approximately 25.4% and high cost of acquiring and collecting loans. 

The average of monthly acquisition points (A) is 0.75 and maintenance points (M) is 0.85; 

the average of the overall bonus multiplier (A*M) is 0.59 of the salary. Although we have 

significant missing values for the salary information, the average base salary is 4,050 Mexican 

pesos ($313 USD). Lastly, the average number of transfers is 0.37, with a maximum of three 

transfers over the 14 months we observe.  
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Next, we report on the relationship between the bank’s credit rating of borrowers and loan 

performance. Recall that the bank’s five-point rating of borrowers (1 least creditworthy to 5 most 

creditworthy) is determined by the central office and shared with the loan officers who place the 

loan and the loan underwriters who approve the terms of the loan. We confirmed that the 

delinquency probability falls and Internal Rate of Return (IRR) of a loan improves as the credit 

rating goes up, which indicates that the credit rating is a reliable predictor of borrower quality 

and the loan’s risk and performance. Details on how we calculate the IRR can be found in the 

Appendix.   

Table 2b further explores the relationship between credit rating and loan characteristics. 

71% of the loans are given to those with credit rating of 5, 18% to those with credit rating of 4. 

Only 11% of loans are given to those with credit ratings of 3 and below. The interest rates are 

roughly the same across credit ratings, though the standard deviations are high. This is because 

the bank sets interest rates according to a policy where all first-time clients start at the highest 

rate, which is gradually lowered if clients maintain a good credit history. In contrast, duration of 

the loan is greater for those with lower credit rating, which may be the bank’s attempt to make it 

feasible for borrowers with lower incomes to help pay back the loan. 

During the observation window, 33.4% of officers had a transfer, and 3.2% had transfers 

more than once. To assess the randomness of the transfer policy, we report the results of logistic 

regression with transfer as a dependent variable, and observable officer characteristics as 

explanatory variables in Table 3. Transfer is not related to any of the officers’ characteristics, 

such as tenure, the number of months since their previous transfer, gender, or previous period 

performance, confirming the firm’s description of the implementation of the transfer policy. 

Transfer is also not correlated with officers’ past performances up to 3 months before transfer, or 
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other officer characteristics, such as education level, marital status, relationship type (Canales 

2013; Canales and Greenberg 2015) or position in the firm.  

[Insert Table 3 here] 

ANALYTICAL MODEL 

We propose a stylized analytical model of salesperson behavior in response to acquisition 

and maintenance incentives as a function of current loan defaults in a salesperson’s portfolio. 

The analytical model aims at setting formal structure to clarify the intuition underlying the verbal 

arguments laid out in the introduction and then understand the joint effects of acquisition and 

maintenance performance metrics on salesperson behavior. Given our focus on salesperson 

private information in the empirical analysis, the analytical model abstracts away observables 

about borrower quality (e.g., credit scores) and loan heterogeneity (e.g., loan amounts, duration), 

that are visible to both the firm and salesperson. Note that abstraction of these factors in the 

analytical model is equivalent to controlling for these factors in the empirical analysis (which we 

will do).  

Customer Primitives 

Prospective customers arrive periodically with requests for loans to a salesperson. The 

salesperson decides whether to offer a loan or not to each prospective customer given her 

incentive payoff and effort cost. There are two types of borrowers; a high type H who has a 

higher loan repayment probability (𝑝!) relative to the low type (𝑝!), i.e., 0 ≤ 𝑝! < 𝑝!.  Further, 

we assume that loan delinquency is an absorbing state; i.e., a low type loan once delinquent is 

never repaid, i.e., 𝑝! = 0. To reflect the idea that it is easier for salespeople to acquire low type 

customers,14  we assume the arrival rate of low type customers 𝜆! is greater than that of the high 

type, i.e., 0 < 𝜆! < 𝜆!. We normalize without loss of generality that 𝜆! = 1.  
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Salesperson Payoffs: Incentives and costs 

The salesperson faces a multidimensional incentive based on acquisition and maintenance 

performance. Let B be the bonus, S the salary, A and M are the acquisition and maintenance 

metrics of performance. Consistent with our empirical setting, we use the following bonus 

function: 𝐵 = 𝑆 ∗ 𝐴 ∗𝑀, where A is the number of loans acquired during the period, relative to 

one’s quota for number of loans (Q), and M is the fraction of the loan portfolio that is not 

delinquent. Without loss of generality, we normalize S and Q to 1.15  

Next we describe the cost of effort for acquisition and maintenance for the salesperson. To 

reflect the idea that greater effort is required to acquire a scarcer, higher value customer, we 

assume that the effort required for acquiring a customer of certain type is inversely proportional 

to their rate of arrival. Hence the cost of effort for acquiring a high and low type customer is !
!!

 

and !
!!

respectively. Therefore if a salesperson acquires 𝑛! high and 𝑛! low type customers, the 

acquisition effort is given by 𝑒! =
!!
!!

+𝑛𝐿𝜆𝐿. Let 𝑒! = 𝑚𝑝 be the maintenance effort of a 

salesperson to obtain repayment probability of p from the low type that is not delinquent. Note 

that given the customer primitives above, maintenance effort cannot affect the probability of 

repayment of either the high type or the low type that is delinquent. The cost of effort in any 

given period is convex in the sum of acquisition and maintenance efforts, i.e.,𝑐(𝑒) = !
!
(𝑒! +

𝑒!)!. 

A key characteristic of the bonus scheme is that the maintenance metric (fraction of 

delinquent loans in salesperson’s loan portfolio) induces inter-temporal forward-looking 

behavior by salespeople who anticipate how the mix of customers they acquire and the 

maintenance effort they incur to avoid delinquency in the present will affect their future 
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compensation through its impact on the future delinquency rate. A complete characterization of 

the salesperson’s acquisition and maintenance effort choices therefore requires solving a 

dynamic program, where the loan portfolio and default rate jointly evolve as a function of the 

mix of high and low type loans and the effort choices of the salesperson. Characterizing the 

analytic solution to such a dynamic program is non-trivial.  

However, our goal of this analysis is more modest; to simply hypothesize whether 

acquisition and maintenance efforts are increasing or decreasing as a function of the value of the 

maintenance metric at the beginning of the period, i.e., share of delinquent loans in the loan 

portfolio. Our analytical strategy is therefore to solve for the salesperson choices for any 

arbitrary future continuation values of different loan types for the salesperson, such that their 

relative values satisfy constraints that are guaranteed to hold. Specifically let 𝑉!,𝑉! and 𝑉!denote 

arbitrary continuation values of salesperson payoff for a high type, low type and delinquent loan 

respectively. Given 1 = 𝑝! > 𝑝! > 𝑝! = 0, the order constraints 𝑉! > 𝑉! > 𝑉! will hold. As a 

normalization, we further assume 𝑉! = 0. 

Salesperson acquisition and maintenance choices 

We now solve for salesperson choices in a period, conditional on the state of her portfolio at 

the beginning of the period. We characterize the portfolio in terms of its number of high, low and 

delinquent loans. Let h and d be the fraction of high type and delinquent loans respectively and 

let k be the total number of loans in the portfolio. Therefore the number of high, delinquent and 

low-non delinquent loans in the portfolio are kh, kd, and 𝑘(1− ℎ − 𝑑) and  respectively. Recall 

that high types do not become delinquent (i.e., 𝑝! = 1), therefore all delinquencies occur from 

the low type.  
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As the firm does not observe loan types, but only the level of delinquents, maintenance 

incentives are only a function of loans that are delinquent (d). But the salesperson with private 

customer information can identify the borrower’s type and acquire or maintain loans 

differentially by type. Given all borrowers are otherwise identical, a salesperson’s choice in the 

acquisition stage is what fraction of arriving prospective borrowers to accept by borrower type. 

We denote the fraction as 𝛼! for high type and 𝛼! for low types. Given the rates of arrival, the 

number of borrowers accepted is 𝜆!𝛼! high types and 𝛼! low types. In the maintenance stage, a 

salesperson with private information will only monitor low types who are not delinquent as high 

types always repay and delinquent loans never repay. For a monitoring intensity of 𝑝, as 

described earlier, the repayment probability of the low type is 𝑝! = 𝑝.    

Now we compute the salesperson’s net current period payoff given bonus and cost of effort. 

The acquisition metric of performance is the number of acquired loans divided by quota 

(normalized to 1) i.e., 𝜆!𝛼! + 𝛼!. The maintenance metric of performance is the fraction of 

loans repaid, i.e., ℎ + (1− ℎ − 𝑑)𝑝. Given the multiplicative bonus scheme, the salesperson 

bonus is (𝜆𝛼! + 𝛼!) ∗ (ℎ + (1− ℎ − 𝑑)𝑝). The effort required to acquire 𝜆!𝛼! + 𝛼!is 𝛼! +

𝛼!. The maintenance effort required to obtain repayment probability p from the low types is 

given by mp. Thus the total effort given by 𝑒 = 𝛼! + 𝛼! +𝑚𝑝 and cost of effort is !
!
𝑒!.  

The salesperson with private information chooses acquisition rates by type (𝛼! ,𝛼!) and 

monitoring level p so as to maximize the sum of the current period payoff and the continuation 

value of payoffs from existing loans:   

𝑈(𝛼! ,𝛼! ,𝑝) = (𝜆!𝛼! + 𝛼!) ∗ (ℎ + (1− ℎ − 𝑑)𝑝)−
𝑐
2 (𝛼! + 𝛼! +𝑚𝑝)

! 

+[(𝜆!𝛼! + 𝑘ℎ)𝑉! + (𝛼! + 𝑘(1− ℎ − 𝑑)𝑝)𝑉!] 
s.t. 0   ≤   𝛼! ,𝛼! ,𝑝   ≤   1 
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The solution consists of the optimal acquisition rate by type 𝛼!∗  and 𝛼!∗, and monitoring level 𝑝∗. 

We now state the key propositions from our analysis. To help understand the effects of private 

information, we begin with a benchmark result on customer acquisition for the symmetric 

information case, where neither salesperson nor firm has private information. 

Lemma: Customer selection in acquisition without private information: When there is no private 

information, the acceptance rate of low type and high type customers will be equal, i.e., !𝐿
∗

𝛼𝐻
∗ =1. 

The ratio of number of low to high types among newly acquired customers !𝐿
∗

𝜆𝛼𝐻
∗ will equal the ratio 

of the arrival rates of the two types 1
𝜆 , irrespective of the level of delinquent loans at the 

beginning of the period.  

The lemma is intuitive. Without any private information on types, salespeople accept all 

customers at the same rate, and their relative share is entirely determined by the arrival rates of 

these customers. 

Proposition 1: Customer selection in acquisition with salesperson private information  

(i) As share of delinquents in the salesperson’s loan portfolio (𝑑) at the beginning of the period 

increases, the ratio of low types to high types among newly acquired borrowers in the period !!
∗

!!!
∗  

decreases till it reaches zero, at which point, only high types are acquired. 

(ii) There exists a threshold level of share of delinquent loans in the portfolio 𝑑∗, above which 

the ratio of low types to high types among newly acquired customers !!
∗

!!!
∗ is lower than the 

symmetric case, i.e., !!
∗

!!!
∗ < !

!
, i.e., there is advantageous selection relative to the symmetric 
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case. In contrast, below 𝑑∗, there is adverse selection in new customer acquisition, i.e.,  

!!
∗

!!!
∗ > !

!
.  

Proof: In Appendix. 

Figure 1 illustrates the proposition with a numerical example for the case of 𝜆 = 0.4, 𝑘 =

0.45, 𝑐 = 0.65,𝑚 = 0.01,𝑉! = 0.25,𝑉! = 1.625, ℎ = 0.6. Figure 1a shows that the share of low types 

decreases and that of high types increases as 𝑑 goes up. In Figure 1b, there is a threshold level of 

𝑑∗at which the share of low to high types crosses the “no private information” share of low to 

high types 1
𝜆 , indicating the shift from adverse selection to advantageous selection.  

The proposition states that when salespeople have higher maintenance pressure (higher share 

of delinquent loans in portfolio), they bring fewer easier to acquire “low type” customers. 

Whether private information will lead to adverse selection or advantageous selection will depend 

on a threshold level of 𝑑, below (above) which private information leads to adverse 

(advantageous) selection in acquisition.  

Proposition 2: Ex-post (after acquisition) maintenance effort and loan delinquency 

As the share of delinquent loans 𝑑 in the salesperson’s portfolio increases, their maintenance 

effort increases. The resulting probability of loan defaults falls monotonically with d, i.e., !!
∗

!"
>0. 

Proof: In Appendix. 

The proposition states that as maintenance pressure in the form of higher share of defaults in 

loan portfolio increases, salespeople increase their monitoring effort p, and reduce the probability 

of loan defaults for the low types 𝑝! . For the same parameters as in the earlier numerical 

example, Figure 1c shows that monitoring effort p increases in d. 

[Insert Figures 1a, 1b and 1c here] 
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EMPIRICAL ANALYSIS 

We first discuss the identification strategy and then outline steps of the empirical analysis. 

Identification Strategy 

Given that a salesperson’s private information is inherently unobservable, it is challenging to 

demonstrate its presence or identify its effects on salespeople’s performance outcomes. Our 

identification strategy relies on two ideas (1) that customers do not observe the salesperson’s 

incentive based motivation driving customer acquisition and maintenance efforts and (2) 

transfers exogenously change the level of salesperson’s private information about customers. 

First, if a salesperson has no private information, the profitability of newly acquired loans 

(IRR) should not systematically change with the salesperson’s acquisition performance or 

maintenance pressure at the time of acquisition, after conditioning on observable characteristics 

such as loan terms and macro shocks. Thus any effect of acquisition performance or 

maintenance pressure on customer acquisition helps identify private information.  

Second, the transfer policy creates variation in the level of private information among 

salespeople with transferred people having less private information or relational capital with their 

customers. The randomness in the policy makes this variation exogenous. Therefore, by 

comparing the the IRR of newly acquired loans between transferred and continuing officers, 

controlling for other observables and fixed effects helps identify the effect of private information 

on customer acquisition. Similar comparison of the probability of delinquency of existing loans 

helps identify the effect of private information during the maintenance period. Whether the 

private information leads to advantageous/adverse selection at customer acquisition or 

increase/reduce defaults at the maintenance stage remains an empirical question.  

Empirical Strategy 
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Our empirical analysis proceeds in three steps. First, we examine selection effects on the 

quality of loans due to managerial levers: acquisition/maintenance incentives, and transfers. This 

allows us to test for both the existence of private information and empirically assess how multi-

dimensional incentives and transfers impact customer selection. Second, we examine ex-post 

repayment/delinquency behavior in response to the managerial levers. Finally, we examine the 

effects of the levers on overall salesperson productivity. We complement our main results with 

robustness checks. All reported specifications are available in the Web Appendix. 

Acquisition: Selection Effects When Originating Loans 

We investigate the selection effects during customer acquisition as a function of (1) 

acquisition performance, (2) maintenance pressure and (3) transfer state of the salesperson at the 

time of origination of the loan (denoted by o). We estimate the following panel linear regression 

model 

(1)            𝐼𝑅𝑅!"# = 𝛼! + 𝛽!𝐴!" + 𝛽!𝐷!,!!! + 𝛾!𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" + 𝛾!𝑋! + 𝜇! + 𝜙! + 𝜖!"# 

In equation (1), IRRijo is the internal rate of return of loan i, originated by officer j, at time o. 

IRRijo  measures loan performance realized after the loan cycle. To eliminate the effects of cross-

sectional variation across salespeople and focus on intra-salesperson states, we demean 

acquisition performance (Ajo) by salesperson average across all periods to obtain Ãjo. Similarly 

we demean the fraction of the value of delinquent loans in salesperson j’s portfolio at t (𝐷!") by 

salesperson average across all periods to obtain 𝐷!". As we explained in the analytical model, the 

maintenance pressure in period o is based on the fraction of delinquent loans at the end of the 

previous period o-1, so we include 𝐷!"!!in the regression. The dummy variable Transferjo equals 

1 if officer j was new to the branch at the origination period, which we operationalize as working 

at the branch for less than a month.16  
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The model controls for observable loan characteristics in Xi, such as the borrower’s credit 

rating, loan amount, duration, and interest rate. The model also includes loan officer fixed effects 

to control for unobserved heterogeneity in salespeople, such as risk-aversion, leniency or effect 

of quotas. Lastly, the model has time fixed effects to capture any macro-level shocks, such as 

competition against other banks or macroeconomic shocks. We abstract away from potential 

concerns of endogeneity in the loan terms for now, but revisit this issue in the robustness checks 

section. 

We are primarily interested in coefficients β1, β2 and γ1. The coefficients β1 indicates how 

unobservable loan quality changes with acquisition performance, controlling for all observable 

borrower and loan characteristics. A negative β1 indicates adverse customer selection as the 

salesperson seeks out privately known “bad” customers who are easier to acquire to improve 

acquisition performance.  A positive β2 implies that adverse selection is moderated by the 

maintenance incentive and that officers are forward-looking, i.e., officers under high 

maintenance pressure screen out unprofitable borrowers at o to prevent a higher delinquency risk 

in the future. Lastly, the coefficient γ1 shows the effect of the transfer policy. A positive γ1 shows 

that continuing officers acquire worse loans than transferred officers, suggesting that salespeople 

with little private information (relational capital) engage less in adverse selection. Note that 

transferred and continuing salespeople likely differ in their incentive quotas and information 

levels. γ1 indicates the pure effect of change in the level of information due to a transfer, since we 

control for their incentive states, 𝐴!" and 𝐷!,!!! in the specification. 

[Insert Table 4 here]  

Table 4 reports the results. In Model 1, we find that a one-point increase in acquisition 

performance relative to the loan officer’s average leads to 0.54% decrease in the IRR of new 
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loans. A one-point increase in the maintenance pressure leads to a 1.07% increase in IRR of new 

loans. Transferred officers, whose private information is eliminated, bring in higher-quality loans 

by 2% of IRR. This shows evidence of private information among the salesforce, that higher 

acquisition performance accentuates adverse selection, maintenance pressure mitigates adverse 

selection, and transfers also mitigate adverse selection. We additionally examine loan 

performance measures beyond IRR, such as the number of late repayments and the failure to 

collect a loan on time at least twice during the loan cycle, and found qualitatively similar results. 

Those results are available from the authors upon request. 

Model 2 adds an interaction term between the two incentive states, while Model 3 includes 

quadratic terms for them to capture potential nonlinear effects. The results above remain robust -

all of the specifications support the hypothesis that the marginal quality of the loan suffers due to 

the loan officers’ use of private information to accept riskier borrowers. The coefficients of other 

variables are in the expected direction. As observable credit rating increases, IRR goes up. 

Smaller loan amounts, longer durations, and higher interest rates are associated with lower 

profitability.  

Finally, in an unreported specification, we test if transferred salespeople who do not have 

private information engage in less adverse selection even as they increase their acquisition 

performance. Indeed that interaction effect is positive, supporting the hypothesis. 

Maintenance: Ex-post Loan Repayment 

Next, we investigate how maintenance pressure and transfers impact ex-post repayment 

behavior or delinquency at the maintenance stage.  Loan officers under high maintenance 

pressure are expected to increase monitoring to reduce defaults on repayment. However, 

transferred officers without private information may perform worse on this dimension as they 
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have less information to targeting their maintenance effort, where they are most needed. Hence, 

we run the following regression. 

(2)  𝐷𝑒𝑙𝑖𝑛𝑞𝑢𝑒𝑛𝑐𝑦!"# = 𝛼! + 𝛽!𝐴!" + 𝛽!𝐷!,!!! + 𝛾!𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 

𝐵𝑎𝑑!"!!(𝛼! + 𝛽!𝐴!" + 𝛽!𝐷!,!!! + 𝛾!𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!")+ 𝛾!𝑋!" + 𝜇! + 𝜙! + 𝜖!"# 

 Note that the equations (1) and (2) examine salespeople’s behavior at different stages 

(acquisition stage denoted as “o” and maintenance stage is denoted as all subsequent periods 

after acquisition, generically denoted by “t”). In Equation (2), Delinquencyijt is a dummy 

indicating delinquency of loan i, under loan officer j, at time t. A key part of the maintenance 

model in equation (2) is that it separately examines the effects on loans that are already 

delinquent at the end of t-1, which is represented by the indicator 𝐵𝑎𝑑!"!! (i.e. 𝐵𝑎𝑑!"!! = 1) and 

those that are repaid on time in period t-1 (i.e. 𝐵𝑎𝑑!"!! = 0). We do so because a salesperson’s 

monitoring may have greater impact on loans that are not currently delinquent (i.e. 𝐵𝑎𝑑!"!! = 0), 

as we find in the data that delinquent loans tend to remain delinquent irrespective of loan officer 

actions. We then examine the effect of the maintenance pressure and the transfer policy for each 

group of borrowers. The model also controls for loan characteristics through 𝑋!" and officer and 

period fixed effects through 𝜇! and 𝜙!, respectively.  

The main coefficients of interest are those related to maintenance pressure, which primarily 

incentivizes salespeople to ensure repayments on loans. A positive β2  shows that salespeople 

under high maintenance pressure increase monitoring intensity to improve borrowers’ repayment 

behavior at t. A positive γ1 indicates that the removal of private information when the salesperson 

was transferred just prior to period t increases delinquency at t; suggesting that relational capital 

and the private information that results from it does help target efforts on the right borrowers and 

ensure repayment.  
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[Insert Table 5 here] 

The estimates are reported in Table 5. Model 1 has only maintenance pressure at t, Model 2 

has both acquisition and maintenance states, and Model 3 adds the interaction of the two 

components. The coefficient of 𝐷!,!!! is negative and significant in Models 1, 2 and 3, indicating 

that maintenance pressure improves monitoring and reduces delinquency of good loans. 

Specifically, a one-unit increase in maintenance pressure in period t , leads to a 2% decrease in 

the delinquency probability of loans in period t among loans in good standing at t-1. Across 

Models 1-3, the coefficient of Transferjt is consistently positive and significant, indicating that 

the elimination of private information through transfers prevents effective monitoring and hurts 

loan repayment by 0.4%. The negative coefficient of Ãjt in Model 2 indicates that performance on 

acquisitions is complementary to that on maintenance due to the multiplicative form of the 

incentive structure. A large coefficient on Badi,t-1 suggests that loans that are delinquent are more 

likely to remain so. Thus, under high maintenance pressure, officers are less likely to monitor 

such loans and more likely to focus on loans currently in good standing. The positive coefficient 

of 𝐵𝑎𝑑!,!!! ∗ 𝐷!,!!! suggests that currently delinquent loans receive less monitoring and are 

more likely to remain delinquent under high maintenance pressure. We find that transfers have 

little effect on bad loans, because continuing salespeople also do not exert significant effort to 

maintain those borrowers. We confirm that our results are robust to alternative definitions of Bad 

loans.  

In sum, combining the findings from the estimates of equations (1) and (2), we find that 

private information plays different roles in the acquisition and maintenance stages. In the 

acquisition stage, continuing salespeople with private information engage in adverse selection, 

which hurts the firm’s profit, evidenced by the positive 𝛾!in equation (1). However, the negative 
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𝛾! in the equation (2) shows that their information advantage leads to more effective monitoring 

at the maintenance stage, which reduces defaults and increases the firm’s profit.  

Salesperson Productivity: Total Net Present Value of Loans Generated 

Thus far, we have found evidence of salesperson moral hazard that results in customer 

adverse selection due to acquisition incentives. Maintenance incentives mitigate this adverse 

selection, and also improve customer repayment. Transfers which reduce private information 

reduce adverse selection, but also hurt customer repayment. This is a very rich set of empirical 

effects. However, the central question in the use of these levers remains. What is the net effect on 

the incentives and transfers, on overall salesforce productivity?  For this, we examine whether 

the sales-enhancing effect of the incentive levers (e.g., Chung, Steenburgh and Sudhir 2014) 

exceeds the negative adverse selection effect due to private information, and whether the positive 

effect of transfer (decrease in adverse selection) exceeds the negative effect (ineffective 

monitoring). We analyze salesperson productivity at the salespeople-month level rather than at 

the loan-level to allow for sales expansion effects.17 In particular, we run the following model in 

equation (3). 

(3) 𝑁𝑃𝑉!" = 𝛼! + 𝛽!𝐴!" + 𝛽!𝐷!,!!! + 𝛽! 𝐴!" ∗ 𝐷!,!!! + 𝛾!𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 

+𝛾!𝑋! + 𝜇! + 𝜙! + 𝜖!"# 

      The dependent variable NPVjo represents the sum of the net present value of new loans 

acquired by officer j at period o. The coefficients β1, β2 and β3 show the effect of incentive 

components on the overall quality of loans originated by officer j. The coefficient γ1 shows the 

effect of the transfer decision at the point of origination on profits generated by salesperson j. 

[Insert Table 6 here]  



28 

 

Table 6 reports the regression results. Model 1 is the baseline case and the estimates show β1 

is positive, β2  positive, and γ1  positive and the effects are all statistically significant. These 

results imply that each of the levers considered contribute positively to firm profits. However we 

need to consider the interaction between the acquisition and maintenance stages to understand 

how these incentives jointly affect profitability. Model 2 adds an interaction term between 

acquisition points and maintenance states, illustrated in Figure 2. When the salesperson is under 

high maintenance pressure (i.e., those whose previous-period maintenance points are 0.5 point 

below their average), the greater acquisition performance leads to a sharp increase in profits, but 

when the maintenance pressure is low (0.5 point above their average), an increase in acquisition 

points leads to very little increase in profits. In the absence of maintenance pressure, salespeople 

engage in significant adverse selection, which neutralizes profits from customer acquisition. In 

effect, the firm is paying out commissions with little gains in profitability. However, officers 

avoid risky acquisitions under high maintenance pressure, which contributes to the firm’s profits. 

This shows that, without the use of maintenance metrics of performance that penalize ex-post 

delinquency, salespeople will resort to significant adverse selection and hurt firm profitability. 

[Insert Figure 2 here] 

Managerial Implications 

Our analytical approach and our findings around private information and multidimensional 

incentives have important managerial implications for sales force compensation and 

management. Our simple regression based approach to evaluate how current incentive plans at an 

organization can affect customer acquisition, retention and aggregate salesforce productivity in 

the presence of private information can be widely used. We note that while our application is in a 

setting of multidimensional incentives where the salesforce is responsible for both customer 
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acquisition and retention, the acquisition and productivity regressions can also be used when 

salesforces are only incentivized for acquisition, to measure adverse selection effects and the net 

productivity effects (sales expansion-adverse selection trade-off) of the incentives.  

Next we discuss how our findings provide guidance for salesforce management. First, while 

it is well-appreciated by managers that the sales expanding benefits of acquisition incentives are 

accompanied by moral hazard costs (salespeople can choose actions for private gain at the 

expense of the firm), the conventional wisdom is that the sales expanding benefits should more 

than overwhelm the moral hazard costs. Surprisingly, in our application we find that without the 

disciplining effects of maintenance metrics on salesforce moral hazard, the overall benefits from 

acquisition incentives can be negative because of adverse selection and lack of attention to 

retention. This suggests that the cost of salesforce moral hazard and remedies should be 

evaluated more seriously by sales management in settings even when only acquisition incentives 

are currently offered. In particular, we highlight the role of transfers when feasible as way to 

“kill” private information in order to reduce salesperson moral hazard. While our results justify 

the oft-employed transfer practices in retail banking,18 we note that the net effects of transfers 

will vary across settings. Our approach however provides a general approach for managers to 

study the net effects of transfers in other settings. 

Second, an often-used remedy for firm-salesforce misalignment is to appropriately weigh 

performance metrics to create alignment. For instance, if salespeople discount heavily to win 

sales and improve revenue performance, weighing the revenues by margins can create alignment. 

But weighting may not always be feasible, and our findings suggest that multidimensional 

performance metrics may be the more feasible option to create alignment. For example, in the 

context of CRM it is well-known that retention often matters more than even acquisition for firm 
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value. While weighting acquired customers by CLV is a possibility, it is often infeasible because 

(i) CLV requires forecasts of future retention and revenues, and it may not be feasible to tie 

incentives to forecasts and (ii) it is not possible to hold the salesperson responsible for future 

retention, once payments have been made based on forecasts. Multidimensional incentives where 

incentives balance current acquisition and future maintenance performance are a very effective 

managerial solution in these settings without requiring future forecasts.   

Finally, our findings have implications for job design in CRM settings. Firms implementing 

CRM often use a hunter-farmer model where some salespeople are responsible for customer 

acquisition (hunting), while others are responsible for customer maintenance (farming), to take 

advantage of the benefits of specialization in skills needed for these two types of activities. Our 

results suggest that the gains from specialization may be overwhelmed by the moral hazard at 

customer acquisition due to customer adverse selection. Our results suggest that it may be useful 

to create teams with joint responsibility for acquisition and maintenance, to benefit from the 

gains in specialization,while simultaneously internalizing the potential for moral hazard.  

CONCLUSION  

This paper aims at addressing the challenges of the sales performance-moral hazard trade-

off arising when salespeople manage customer relationships. We consider the role of 

multidimensional incentives that are based on joint acquisition and maintenance metrics and that 

of private information. A stylized analytical model of salesperson behavior in CRM settings 

helps us understand how the acquisition and maintenance jointly impact outcomes when there is 

private information. We then exploit unique matched panel data on customers and salespeople at 

a microfinance organization to empirically analyze how these sales management levers impact 

CRM outcomes. Managerially, our study illustrates how firms managing CRM can assess the 
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effect of their performance metrics and compensation plans on customer acquisition, retention 

and overall productivity. This approach can be used even firms only use acquisition performance 

incentives by estimating only the customer acquisition and productivity regressions. 

Methodologically, the paper also introduces a new identification strategy to detect and 

disentangle customer adverse selection and customer moral hazard that has been a major issue in 

credit and insurance markets, by exploiting time-varying effects of loan officer incentives and 

job transfers. 

We believe this paper is a first step to address a rich set of research issues at the intersection 

of CRM and sales management. We conclude with some suggestions for future research. First, 

we considered a setting involving customer acquisition for loans and ongoing repayment for the 

loan’s life. Insurance settings are similar in that they also involve customer acquisition of 

insurance policies and ongoing premium payments over the life of the policy. But other common 

settings do not have clear maintenance outcomes--for example CRM often involves cross-selling 

of products, increasing the share of a customer’s wallet etc. Further research is needed on how 

firms should incentivize salespeople on such CRM related metrics.  

Second, substantive research on multidimensional incentives is still scarce. While 

multidimensional incentives involve balancing short-run and long-run considerations with 

acquisition and maintenance incentives in our paper, firms may want to align employee 

incentives by weighing competing contemporaneous considerations (e.g., lowering service time 

and increasing satisfaction) in other settings. 

Third, in finance, transfers are commonly used as a means to render the salesperson’s 

relational capital unusable and thus minimize negative effects of adverse selection in customer 

acquisition. However, this can potentially hurt the efficiency gains from the ongoing 
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relationship. Canales and Greenberg (2015) find that much of the potential loss of repayment of 

loans may be averted by replacing salespeople with others who have a similar relational style, 

suggesting that there may be a way to reduce customer adverse selection through transfers, while 

avoiding the increased loan defaults through continuity in salespeople styles. More generally, 

while we find that transfers have a net benefit for the bank, Shi et al. (2017) find in their setting 

that customer reassignment to salespeople (equivalent to transfers) can lead to significant loss 

churn in the context of electrical product retailer. However, Shi et al. does not consider the 

adverse selection issue. Future research may investigate how the relative importance of adverse 

selection vs. efficiency from private information varies across industries and how managers can 

balance them.  

Finally, our results should motivate more research on sales person job design in CRM 

settings. While in bank and insurance settings, salespeople are responsible for both customer 

acquisition and maintenance, many organizations and industries follow a specialized hunter-

farmer model (Palmatier et al. 2007) with different employees responsible for customer 

acquisition (hunt) and customer retention/maintenance (farm). In such cases, we suggest that to 

the extent possible, a CLV weighted metric of performance should be used to incentivize 

hunters, while the farmers be incentivized on maintenance metrics. Alternatively, one may 

construct teams that are responsible for both acquisition and retention, thus gaining both 

specialization benefits while reducing the cost of moral hazard. But more broadly, our research 

suggests that when designing organizations for CRM, we need to balance the efficiency gain 

from specialization in acquisition and maintenance activities, with the potential adverse effects 

that we identify arises from the separation of those tasks.  



33 

 

REFERENCES 

Agarwal, Sumit, and Itzhak Ben-David. “Do Loan Officers' Incentives Lead to Lax Lending 

Standards?” mimeo. 2014. 

Canales, Rodrigo. "Weaving straw into gold: Managing organizational tensions between 

standardization and flexibility in microfinance." Organization Science 25, no. 1 (2013): 1-28. 

Canales, Rodrigo, and Jason Greenberg. "A Matter of (Relational) Style: Loan Officer 

Consistency and Exchange Continuity in Microfinance." Management Science 62, no. 4 

(2015): 1202-1224. 

Chevalier, Judith, and Glenn Ellison. "Risk Taking by Mutual Funds as a Response to 

Incentives." Journal of Political Economy 105, no. 6 (1997): 1167-1200. 

Chiappori, Pierre-André, and Bernard Salanie. "Testing for asymmetric information in insurance 

markets." Journal of Political Economy 108.1 (2000): 56-78. 

Chung, Doug J., Thomas Steenburgh, and K. Sudhir. "Do bonuses enhance sales productivity? A 

dynamic structural analysis of bonus-based compensation plans." Marketing Science 33.2 

(2013): 165-187. 

Cole, Shawn, Martin Kanz, and Leora Klapper. "Incentivizing Calculated Risk­‐Taking: 

Evidence from an Experiment with Commercial Bank Loan Officers." The Journal of Finance 

70, no. 2 (2015): 537-575. 

Dobbie, Will, and Paige Marta Skiba. "Information asymmetries in consumer credit markets: 

Evidence from payday lending." American Economic Journal: Applied Economics 5, no. 4 

(2013): 256-282. 

Feng Lu, Susan. "Multitasking, information disclosure, and product quality: Evidence from 

nursing homes." Journal of Economics & Management Strategy 21, no. 3 (2012): 673-705. 



34 

 

Finkelstein, Amy, and Kathleen McGarry. "Multiple dimensions of private information: evidence 

from the long-term care insurance market." American Economic Review 96.4 (2006): 938-

958. 

Finkelstein, Amy, and James Poterba. "Adverse selection in insurance markets: Policyholder 

evidence from the UK annuity market." Journal of Political Economy 112, no. 1 (2004): 183-

208. 

Fisman, Raymond, Daniel Paravisini, and Vikrant Vig. “Social proximity and loan outcomes: 

Evidence from an Indian Bank.” Working Paper, 2011. 

Grossman, Sanford J., and Oliver D. Hart. “The Costs and Benefits of Ownership: A Theory of 

Vertical and Lateral Integration.” Journal of Political Economy (1986): 691-719.  

Gupta, Sunil, and Donald R. Lehmann. “Managing Customers as Investments: The Strategic 

Value of Customers in The Long Run.” No. s 48. Upper Saddle River, NJ: Wharton School 

Publishing, 2005. 

Heider, Florian, and Roman Inderst. “Loan prospecting.” Review of Financial Studies 25, no. 8 

(2012): 2381-2415. 

Hertzberg, Andrew, Jose Liberti, and Daniel Paravisini. “Information and Incentives Inside The 

Firm: Evidence from Loan Officer Rotation." Journal of Finance 65, no. 3 (2010): 795-828. 

Holmstrom, Bengt, and Paul Milgrom. "Multitask principal-agent analyses: Incentive contracts, 

asset ownership, and job design." Journal of Law, Economics, & Organization 7 (1991): 24-

52. 

Jain, Dipak, and Siddhartha S. Singh. “Customer Lifetime Value Research in Marketing: A 

Review and Future Directions.” Journal of Interactive Marketing 16, no. 2 (2002): 34-46. 



35 

 

Jeziorski, Przemyslaw, Elena Krasnokutskaya, and Olivia Ceccarini. "Adverse Selection and 

Moral Hazard in a Dynamic Model of Auto Insurance." (2016). 

Karlan, Dean, and Jonathan Zinman. “Observing Unobservables: Identifying Information 

Asymmetries with a Consumer Credit Field Experiment.” Econometrica 77, no. 6 (2009): 

1993-2008. 

Kishore, Sunil, Raghunath S. Rao, Om Narasimhan, and George John. "Bonuses versus 

commissions: A field study." Journal of Marketing Research 50, no. 3 (2013): 317-333. 

Kumar, V., Sarang Sunder, and Robert P. Leone. “Measuring and Managing a Salesperson's 

Future Value to the Firm.” Journal of Marketing Research 51, no. 5 (2014): 591-608. 

Larkin, Ian. “The Cost of High-powered Incentives: Employee Gaming in Enterprise Software 

Sales.” Journal of Labor Economics 32, no. 2 (2014): 199-227. 

Li, Shibo, Baohong Sun, and Alan L. Montgomery. “Cross-selling the Right Product to the Right 

Customer at the Right Time.” Journal of Marketing Research 48, no. 4 (2011): 683-700. 

Misra, Sanjog, and Harikesh S. Nair. “A Structural Model of Sales-force Compensation 

Dynamics: Estimation and Field implementation.” Quantitative Marketing and Economics 9.3 

(2011): 211-257. 

Neal, Derek, and Diane Whitmore Schanzenbach. "Left behind by design: Proficiency counts 

and test-based accountability." The Review of Economics and Statistics 92, no. 2 (2010): 263-

283. 

Oyer, Paul. "Fiscal year ends and nonlinear incentive contracts: The effect on business 

seasonality." The Quarterly Journal of Economics 113, no. 1 (1998): 149-185. 



36 

 

Palmatier, Robert W., Lisa K. Scheer, and Jan-Benedict EM Steenkamp. "Customer loyalty to 

whom? Managing the benefits and risks of salesperson-owned loyalty." Journal of Marketing 

Research 44, no. 2 (2007): 185-199.  

Reinartz, Werner, Manfred Krafft, and Wayne D. Hoyer. “The Customer Relationship 

Management Process: Its Measurement and Impact on Performance.” Journal of Marketing 

Research, 41, no. 3 (2004): 293-305. 

Sappington, David. “Limited Liability Contracts between Principal and Agent.” Journal of 

Economic Theory 29, no. 1 (1983): 1-21. 

Schöttner, Anja. "Optimal sales force compensation in dynamic settings: commissions vs. 

Bonuses." Management Science 63, no. 5 (2016): 1529-1544. 

Sengupta, Rajdeep, and Craig P. Aubuchon. “The Microfinance Revolution: An Overview.” 

Federal Reserve Bank of St. Louis Review 90.January/February 2008 (2008). 

Simester, Duncan, and Juanjuan Zhang. “Why Do Salespeople Spend So Much Time Lobbying 

for Low Prices?” Marketing Science 33, no. 6 (2014): 796-808. 

Shi, Huanhuan, Shrihari Sridhar, Rajdeep Grewal, and Gary Lilien. "Sales Representative 

Departures and Customer Reassignment Strategies in Business-to-Business Markets." Journal 

of Marketing 81, no. 2 (2017): 25-44. 

Shin, Jiwoong, and K. Sudhir. "A Customer Management Dilemma: When Is It Profitable to 

Reward One's Own Customers?” Marketing Science 29, no. 4 (2010): 671-689. 

Sorenson, Olav, and Michelle Rogan. "(When) do organizations have social capital?." Annual 

Review of Sociology 40 (2014): 261-280.  

Steenburgh, Thomas J. “Effort or Timing: The Effect of Lump-sum Bonuses.” Quantitative 

Marketing and Economics 6, no. 3 (2008): 235-256. 



37 

 

Venkatesan, Rajkumar, and V. Kumar. “A Customer Lifetime Value Framework for Customer 

Selection and Resource Allocation Strategy.” Journal of Marketing 68, no. 4 (2004): 106-125. 

Zhang, Jonathan Z., Oded Netzer, and Asim Ansari. "Dynamic targeted pricing in B2B 

relationships." Marketing Science 33, no. 3 (2014): 317-337. 

ENDNOTES 

1.  Related papers at the sales management-CRM interface include (1) Kumar, Sunder and Leone 

(2014), who propose a metric to compute salesperson lifetime value based on CLV managed by 

each salesperson, and (2) Palmatier et al. (2007) and Shi et al. (2016) who study the linkages 

between salesperson turnover and customer loyalty. These papers do not address incentive 

issues. 

2.  A natural question is whether one could use aggregate CLV aggregate CLV of a salesperson’s 

acquired customers in a period as unidimensional metric to determine incentives. Two practical 

challenges arise. First, CLV requires forecasting future revenues of customers, but incentive 

contracts based on forecasts is often infeasible. Further, the salesperson has little incentive to 

deliver the forecast CLV by retaining customers after having received the incentive.  

3.  The issue of adverse selection in response to sales incentives has received much media 

attention in in the context of the subprime mortgage crisis. Loan officers in banks were accused 

of approving mortgages to customers with less than stellar credit, by disguising their lack of 

creditworthiness in order to receive loan acquisition bonuses as they were not responsible for 

subsequent performance. Adverse selection is also critical in other marketing settings where 

firms invest substantially in customer acquisition and hope to recover the benefits of their 

investments over the life of the relationship. If a salesperson knowingly acquires customers who 
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are likely to leave soon before the acquisition costs have been recouped, such acquisitions can 

hurt firm value. 

4.  Employee transfer is a common practice in the B2B finance sector. France, Germany, and the 

U.S., for example, mandate rotation of audit partners across clients. See discussion in Fisman, 

Parvasini and Vig (2011) on mandated transfers in the Indian state banking sector. 

5.  Firms typically do not have levers either contractually or through incentives to appropriate 

this asset from the salesperson so that the firm can avoid the adverse selection. For instance, 

although firms encourage salespeople to input information about their ongoing conversations 

with prospects and stage of conversion in CRM tools, salespeople are reluctant to part with this 

information, which they view as their own assets for which they receive no rewards for sharing. 

6.  Hertzberg, Liberti, and Paravisini (2010) find that loan officers are more likely to make 

negative reports on borrowers’ ability to repay, when anticipating transfers. The randomization 

of transfers in our setting excludes the possibility of such strategic behavior by officers. 

7.  We do not distinguish between private information and relational capital. Both are established 

as a salesperson interacts with potential customers and existing customers (borrowers) over time, 

at the time of loan application, screening, monitoring and repayment. Thus we treat transferred 

salespeople as those who lost both private information and relational capital. 

8.  Reinartz, Krafft and Hoyer (2004) consider issues of organizational alignment in 

implementing CRM, but do not consider salesforce incentive issues. 

9.  The relationship between loan officers’ incentives and their screening/monitoring behaviors 

have been studied in finance (Agarwal and Ben-David 2014; Cole, Kanz and Klapper 2015; 

Heider and Inderst 2012; Hertzberg, Liberti and Paravisini 2010). They mention problems with 

unidimensional incentives but do not formally address the balance between multiple tasks. 
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10.  Loan officers cannot change credit ratings, nor do they advise customers about how to 

improve credit ratings. Since a salesperson has significant discretion in approving the loan in our 

setting, she does not need to make a borrower to take further action to recommend the loan. 

11.  Based on interviews, Canales (2013) notes that salespeople do not completely trust 

observables, and tend to act based on private information. We quote from two interviews: (1) 

“You (a loan officer) go through the entire analytic process and, at the end, if you trust the client 

and believe in her, you give her the loan. Maybe the liquidity index will not be enough 

[according to the rules] but if you believe in her, you will “help her out” and you will take the 

risk with her.” and (2) “They (officers) have access to information on each of their clients. They 

can use that information to determine the moral and economic solvency of new prospects, to 

detect when a client is in trouble, and to be more effective when they need to collect. They have 

seen what works and what doesn’t. They know who does what and who knows who. When 

officers use that information to benefit a client, they can make a big difference.” 

12.  Our data allows us to study repayment behavior within a loan, but we lack sufficiently long 

panel data to study customer retention and repayment behavior across loans. Further, 

maintenance incentives are only for repayment. Therefore we only consider repayment within 

the loan as maintenance. 

13.  As salespeople are given less than one week to start work at the new location after a transfer 

it is hard for them to change their behavior or share private information to incoming salespeople. 

14.  This is because observably high type customers have more outside options due to greater 

competition for their business (see Jeziorski et al. 2016 for such evidence in car insurance 

market). 
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15.  We check the robustness of our hypotheses for an additive bonus function and find them to 

be qualitatively robust in the Web Appendix. 

16.  We use the one month operationalization for “newness to branch” because: 1) given short 

loan cycles, salespeople seek to elicit as much information as possible in a short time and 2) 

salespeople work for 14-15 hours a day, thus typically get to know their customers within the 

month. Our results are robust to alternative operationalizations of newness.  

17.  The total NPV metric is similar in spirit to the Salesperson Lifetime Value Metric in Kumar, 

Sunder and Leone (2015) at the salesperson-month level, but with ex-post known (as opposed to 

forecast) values of future customer cash flows. 

18.  We note that the effects of transfers can vary by context, by the specifics of the transfer 

policy used, and the nature and use of private information in that context. Like in our paper, Shi 

et al. (2017) show that transfers break the relationship between employees and customers and 

increase customer churn rate, but it is possible that the adverse selection costs of private 

information may be weaker in other settings. 
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Table 1. Previous Literature on Salesforce Compensation 
 
 

Paper Transaction/ 
Relationship 

Performance 
Metric 
Uni/Multi 
dimensional 

Salesperson Moral Hazard 
(Hidden action) 

Firm/Agent 
Misalignment as 
performance metric 
not weighted by 
observables  

Oyer (1998) Transactional 
(Sales) 

Unidimensional: 
Annual revenue 
targets  

Moral Hazard: Find evidence 
that sales timing shifts to reach 
quota 

 

Misra and 
Nair (2011); 
Kishore,Rao, 
Narasimhan 
and John 
(2013) 

Transactional Unidimensional: 
Quarterly revenue 
targets with 
ratcheting 

Moral Hazard: Find evidence 
that sales timing shifts to reach 
quota 
 
 

 

Chung, 
Steenburgh 
and Sudhir 
(2014) 

Transactional Unidimensional: 
Quarterly and 
annual revenue 
targets with non-
ratcheting quotas 

Moral hazard: Finds evidence 
that sales timing shifts to reach 
quota, but can be minimized 
through overachievement 
commission and non-ratcheting 
quotas  

 

Larkin 
(2014) 

Transactional Unidimensional: 
Annual revenues 

None  Misalignment: 
Salespeople discount 
price as performance 
metric does not 
account for observable 
margins 

Copeland 
and Monnet 
(2008) 

Transactional Unidimensional: 
No of checks 
sorted daily as a 
weighted function 
of task difficulty 

Moral Hazard: Find evidence 
that effort timing shifts based on 
distance to quota 

Reduce misalignment 
within periods: 
Weighting observable 
job difficulty leads to 
right effort allocation 
within day 

This paper Relationship 
(distinguish 
new and 
existing 
customers)  

Multidimensional:  
Function of 
monthly loan 
acquisition and 
loan repayment 

Moral hazard: due to customer 
private information 
* Advantageous/Adverse 
customer selection? 
* Customer maintenance? 

Reduce misalignment 
across periods: Future 
maintenance concerns 
discourage easier, low 
quality (low credit 
rating) customer 
acquisition 
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Table 2a. Summary Statistics 
Loan Characteristics Mean SD Min Max 

Amount (pesos) 9,192 8,956 700 55,000 
Annual Interest rate (%) 87.21 8.81 42 100.29 

Duration (months) 6.27 3.89                                                                                                                                                                                                                            1 33 
Delinquency (%) 25.42    

Salesforce Incentives and Transfer Mean SD Min Max 

By Salesperson-period Acquisition Point (𝐴) 0.75 0.45 0 3.188 
Maintenance Point (𝑀) 0.85 0.23 0 1.25 

By Salesperson 
𝐴 ∗𝑀 0.59 0.3   

No. of Transfers 0.37 0.55 0 3 
 

Table 2b. Distribution of Loan Performance and Characteristics across Credit Rating 
Credit 
Rating N 

IRR Delinquency prob. Interest rate Duration 
Mean SD Mean SD Mean SD Mean SD 

1 4,484 45.9 44.57 0.65 0.36 88.67 9.83 10.76 6.38 
2 3,089 53.36 39.46 0.59 0.38 86.71 9.58 10.84 6.89 
3 6,754 66.98 35.63 0.46 0.38 88.1 8.46 8.43 4.41 
4 23,768 79.16 23.96 0.25 0.3 86.27 7.25 6.13 3.77 
5 91,744 87.28 19.66 0.14 0.22 87.58 9.13 5.84 3.38 

 
Table 3. Randomness of Transfer Policy1 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

DV 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 

𝐴!!! 
-0.251  -0.294    -0.0195 
(0.203)  (0.206)    (1.199) 

𝑀!!!  0.342 0.429    -1.771 
 (0.387) (0.406)    (2.916) 

Tenure 
   -0.00199   0.00960 
   (0.00139)   (0.00850) 

Female 
    0.368  1.645 
    (0.241)  (1.047) 

Time since     
Last Transfer 

     0.151 0.357 
     (0.0957) (0.282) 

Intercept 
-2.897*** -3.505*** -3.218*** -2.716*** -3.440*** -4.284*** -6.338* 

(0.304) (0.452) (0.439) (0.152) (0.182) (0.486) (3.493) 
Period FE Yes Yes Yes No No No Yes 

N 2,603 2,646 2,590 3,224 1,947 696 150 
1We run logistic regression (DV: Transfer, Indicator 1 if an officer is new to the branch at period t).  
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Table 4. Internal Rate of Return (IRR) of Newly Originated Loans 
 

 Model 1 Model 2 Model 3 
DV IRR IRR IRR 

𝐴!"   
-0.537*** -0.540*** -0.645*** 

(0.152) (0.152) (0.159) 

𝐷!,!!! 1.070** 1.059** 0.970* 
(0.538) (0.538) (0.567) 

𝐴!" ∗ 𝐷!,!!!  -0.556  
 (1.382)  

(𝐴!")!   -0.556** 
  (0.244) 

(𝐷!,!!!)!   1.037 
  (1.851) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.987*** 1.984*** 1.988*** 
(0.216) (0.216) (0.216) 

Rating 2 3.991*** 3.991*** 3.995*** 
(0.598) (0.598) (0.598) 

Rating 3 13.33*** 13.33*** 13.33*** 
(0.476) (0.476) (0.476) 

Rating 4 21.74*** 21.74*** 21.75*** 
(0.420) (0.420) (0.420) 

Rating 5 26.66*** 26.66*** 26.66*** 
(0.404) (0.404) (0.404) 

Loan 
Amount 

0.630*** 0.630*** 0.629*** 
(0.0790) (0.0790) (0.0790) 

Duration -0.108*** -0.108*** -0.108*** 
(0.0202) (0.0202) (0.0202) 

Interest Rate 0.657*** 0.657*** 0.657*** 
(0.00703) (0.00703) (0.00703) 

Intercept -10.95*** -10.97*** -10.87*** 
(1.231) (1.232) (1.233) 

Salesperson, 
Period FE Yes Yes Yes 

N 89,993 89,993 89,993 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table 5. Delinquency of Existing Loans   
 Model 1 Model 2 Model 3 

DV Delay Delay Delay 

𝐷!,!!! 
-0.0201*** -0.0203*** -0.0203*** 

(0.00763) (0.00764) (0.00778) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 
0.00448* 0.00442* 0.00442* 

(0.00257) (0.00257) (0.00257) 

𝐵𝑎𝑑!,!!! 
0.470*** 0.470*** 0.470*** 

(0.00198) (0.00198) (0.00198) 

𝐵𝑎𝑑!,!!! ∗ 𝐷!,!!! 
0.0954*** 0.0957*** 0.0957*** 

(0.0128) (0.0128) (0.0129) 

𝐵𝑎𝑑!,!!! ∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 
-0.00403 -0.00376 -0.00377 

(0.00390) (0.00390) (0.00391) 

𝐴!" 
 -0.00440** -0.00441** 

 (0.00178) (0.00180) 

𝐵𝑎𝑑!,!!! ∗ 𝐴!" 
 0.000994 0.000999 

 (0.00321) (0.00322) 

𝐴!" ∗ 𝐷!,!!! 
  -0.000431 

  (0.0169) 

𝐵𝑎𝑑!,!!! ∗ 𝐴!" ∗ 𝐷!,!!! 
  0.000603 

  (0.0300) 

Rating 2 
-0.00468 -0.00468 -0.00468 

(0.00415) (0.00415) (0.00415) 

Rating 3 
-0.0720*** -0.0720*** -0.0720*** 

(0.00351) (0.00351) (0.00351) 

Rating 4 
-0.165*** -0.165*** -0.165*** 

(0.00314) (0.00315) (0.00315) 

Rating 5 
-0.253*** -0.253*** -0.253*** 

(0.00301) (0.00301) (0.00301) 

Loan Amount 
-0.00482*** -0.00483*** -0.00483*** 

(0.000718) (0.000718) (0.000718) 

Duration 
0.00162*** 0.00163*** 0.00163*** 

(0.000180) (0.000180) (0.000180) 

Interest Rate 
0.00212*** 0.00212*** 0.00212*** 

(0.0000686) (0.0000686) (0.0000686) 

Age of Loan 
0.0113*** 0.0113*** 0.0113*** 

(0.000299) (0.000299) (0.000299) 

Intercept 0.126*** 0.126*** 0.126*** 
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(0.0112) (0.0112) (0.0112) 

Salesperson, Period FE Yes Yes Yes 
N 278,943 278,943 278,943 

***: p<0.01, **: p<0.05, *: p<0.1 
 
 
 
 

Table 6.  Total NPV of Originated Loans by Salesperson by Month  
 

 Model 1 Model 2 
DV 𝑁𝑃𝑉!"  𝑁𝑃𝑉!"  

𝐴!"   
2.390*** 2.410*** 
(0.264) (0.264) 

𝐷!,!!! -0.205 -0.000635 
(0.924) (0.930) 

𝐴!" ∗ 𝐷!,!!!  4.403* 
 (2.431) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"   
0.928*** 0.941*** 
(0.323) (0.323) 

Intercept 4.957*** 5.058*** 
(1.885) (1.885) 

Salesperson FE Yes Yes 
Period FE Yes Yes 

N 3,403 3,403 
***: p<0.01, **: p<0.05, *: p<0.1 
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Figure 1a. Acceptance rate by Type under Private Information  

 
Figure 1b. Relative acceptance rate (Low/High) under Private information vs. No information 

 
Figure 1c. Monitoring Intensity under Private Information 

  
*Optimal behavior under 𝜆 = 0.4, 𝑘 = 0.45, 𝑐 = 0.65,𝑚 = 0.01,𝑉𝐿 = 0.25,𝑉𝐻 = 1.625, ℎ = 0.6 
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Figure 2. Profit under High vs. Low Maintenance Pressure 
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APPENDIX 

Details on Compensation Plan 

We describe the specifics of how acquisition and maintenance points are calculated for the 

purposes of compensation. Tables A.1 describes how a sales person’s target for a month is set 

based on the portfolio size of the previous month. Acquisition point (A) is the ratio the value of 

newly acquired loans to acquisition target as defined in Table A.1.  Table A.2 describes the 

nonlinear mapping from percentage of loan amount in good standing to maintenance points.  

[Insert Tables A.1 and A.2 here] 

Formal Analytical Model 

We provide the details of the analytical model. We solve for the optimal action for a 

salesperson to maximize the objective function. Only the interior solutions are presented here but 

the corner solutions (0 or 1) are applied under some conditions. 

𝛼!∗ =
1

𝑐(1− ℎ − 𝑑)!(1− 𝜆)! [(1− ℎ − 𝑑)
!(𝑉!𝜆 + 𝑉!(𝑐𝑘(1− 𝜆)− 𝜆))− 𝑐𝑚(ℎ!(1− 𝜆) 

+(𝑐 + 2(1 − 𝑑))𝑉𝐻𝜆 − 𝑐𝑉𝐿 − (1 − 𝑑)(1 + 𝜆)𝑉𝐿 − ℎ(1 − 𝑑 + 𝑐(1 − 𝜆) − 𝜆(1 − 𝑑) + 2𝑉𝐻𝜆 

−𝑉!(1 + 𝜆))) + 𝑐!𝑚!(𝑉!𝜆 − 𝑉! − ℎ(1 − 𝜆))] 

𝛼!∗ =
1

𝑐(1− ℎ − 𝑑)!(1− 𝜆)! [−(1− ℎ − 𝑑)
!(𝑉!𝜆! + 𝑉!(𝑐𝑘(1− 𝜆)− 𝜆!)+ 𝑐𝑚𝜆((1− ℎ

− 𝑑)(𝑉!(1+ 𝜆) 

−ℎ(1− 𝜆)− 2𝑉!)− 𝑐(ℎ(1− 𝜆)− 𝑉!𝜆 + 𝑉!))+ 𝑐!𝑚!(−𝑉!𝜆 + 𝑉! + ℎ(1− 𝜆)) 

𝑝∗ =
𝜆(𝑉! + ℎ) − (𝑉! + ℎ)
(1 − 𝜆)(1 − ℎ − 𝑑)

 

Proof of Proposition 1.  
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!
!"
( !!

∗

!!!
∗ ) < 0 when 𝑑 < (!!!)!!(!!!!!)

!!!(!!!!!!!!(!!!))(!�!(!!!)!!!!(!!!)(!!!)!!(!!!))
!  !  !  !!(!!!)

!    !  (!!!!!!!!!!!(!"(!!!)!!!)!(!!!!"!!!(!!!)))
 

+
(𝑐!𝜆!(1 − 𝜆)!(𝑉! − 𝑉!)

!(ℎ(1 − 𝜆) − 𝑉!𝜆 + 𝑉!)
!(1 −𝑚) + 𝑐!𝑘𝑉!𝑚(1 − 𝜆)

!(ℎ(1 − 𝜆) − 𝑉!𝜆 + 𝑉!)
!(1 −𝑚))

!
!

𝑐  ℎ  𝑘  𝑉!(1 − 𝜆)
!     +   (1 − 𝜆)(𝑉!!𝜆! − 𝑉!𝜆𝑉!(𝑐𝑘(1 − 𝜆) + 2𝜆) − (𝜆! + 𝑐𝑘𝑉!!(1 − 𝜆)))

 

!!
∗

!!!
∗ >

1
𝜆
 (e.g. adverse selection) or 𝛼!∗ < 𝛼!∗ when 

𝑑 <
1

2𝜆(1 − 𝜆)(𝑉! − 𝑉!) + 4𝑐𝑘𝑉!(1 − 𝜆)
[2𝜆(1 − ℎ)(1   +   𝜆)(𝑉! − 𝑉!)+ 𝑐𝑘𝑉𝐿(4  (1 −   ℎ)(1 − 𝜆)

+ (  ℎ  (1   + 𝜆!) 

+(1+ 3  𝜆)𝑉𝐿 − 𝑉𝐻𝜆  (3 +   𝜆))𝑚)+ 𝑐𝑚(𝑚(8(𝑉𝐻𝜆 − 𝑉𝐿 − ℎ(1 − 𝜆))(𝑉𝐻𝜆(1 + 𝜆)    

+𝑉!(2𝑐𝑘(1 − 𝜆) − 𝜆(1 + 𝜆)) + (1 − 𝜆)(𝑉!!𝜆!(1 − 𝜆) + ℎ!(1 − 𝜆)(1 + 𝜆)! − 2𝑉!𝑉!𝜆(1 − 𝜆 − 8𝑐𝑘) 

−(1− 𝜆 + 16𝑐𝑘)𝑉𝐿2 + 2ℎ𝑉𝐿(1 − 𝜆)(𝑉𝐻𝜆(1 + 𝜆) + (1 + 𝜆 + 8𝑐𝑘)))1/2] 

!!
∗

!!!
∗ <

1
𝜆
(e.g. advantageous selection) or 𝛼!∗ > 𝛼!∗ when 𝑑 is greater than the threshold. 

Proof of Proposition 2. !!
∗

!"
= !(!!!!)!(!!!!)

(!!!)(!!!!!)!
> 0 since 𝜆(𝑉! + ℎ) − (𝑉! + ℎ) > 0 

Table A.1: Compensation Plan – Acquisition Target 

Portfolio Size 01/09 – 06/09 07/09 – 02/10 Portfolio Size 01/09 – 06/09 07/09 – 02/10 

0 – 500,000 50,000 60,000 1,500,001 – 
2,000,000 110,000 120,000 

500,001 - 
1,000,000 70,000 80,000 2,000,000 – 

2,500,000 130,000 140,000 

1,000,001 – 
1,500,000 90,000 100,000 2,500,001 - 150,000 160,000 

 
Table A.2: Compensation Plan – Maintenance Point 

 
 % loan amount in 

good standing Point  % loan amount in 
good standing Point  % loan amount in 

good standing Point 

0 - 87.5% 0 93 - 93.5% 0.75 96.5 - 97% 1.05 
87.5 - 88.5% 0.5 93.5 - 94% 0.8 97 – 97.5% 1.08 
88.5 - 90% 0.6 94 - 94.5% 0.85 97.5 - 98% 1.1 
90 - 92.5% 0.65 94.5 - 96% 0.9 98  - 99% 1.15 
92.5 -93% 0.7 96 - 96.5% 1 99 - 99.5% 1.2 

    99.5 - 100% 1.25 
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Web Appendix (Not for Publication) 
 
Further evidence on the randomness of transfer policy 

In the main text, we argue that transfer decisions are completely random, verified by 

interviews with the firm and our analysis in Table 3 in the paper. In this section, we additionally 

confirm that the transfer decisions are not correlated with the average loan amount that each 

salesperson gives out, or the interaction between time since the last transfer and previous 

period’s maintenance performance. The result reported in Table WA1 shows that no coefficient 

is significant at the 10% level and verifies the randomness of transfer policy.  

[Insert Table WA1 here] 

Duration of the Effect of Transfer  

In the main text, we assume a salesperson as new to the branch, if he has worked for the 

branch for less than a month. Our assumption stems from the fact that 1) loan cycles are very 

short (i.e. 6 months on average), thus salespeople tend to try to elicit much information about 

customers in a short time and 2) salespeople typically work for 14-15 hours per day, thus might 

have enough time to get to know a new set of customers in a month. 

In order to see how long it takes for a salesperson to get familiar with her new area, we 

check another definition of “new” loan officers. The variable 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" is defined as the 

dummy variable indicating that a salesperson j has been in the branch for less than two months as 

of the period o. In Table WA2, we find that at the acquisition stage, the effects of 𝐴!" and 𝐷!,!!! 

remain qualitatively consistent, but the Transfer effect becomes statistically insignificant. As we 

argued earlier, we believe that 2-months is already a very long time in this setting, considering 

the loan cycle and salespeople’s working hours. Thus, the new definition dilutes the effect of 

transfer policy that gets rid of private information from salespeople. 
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[Insert Table WA2 here] 

Table WA3 reports our analysis at the maintenance stage. The variable 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" is 

defined as the dummy variable indicating that a salesperson j has been in the branch for less than 

two months as of the period t. As in the main analysis in the paper, we find the negative 

coefficient of 𝐷!,!!!, implying the maintenance pressure ramps up monitoring intensity and 

reduces loan defaults among loans in good standing in the previous period (i.e. 𝐵𝑎𝑑!,!!! = 0). 

Also, the transferred salespeople do less effective monitoring, but the magnitude of the effect 

gets smaller. The coefficient of 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" in Table 5 is 0.00442, whereas the coefficient goes 

up to 0.00541 with the new definition.  All other coefficients remain qualitatively consistent with 

our main analysis documented in Table 5 in the paper. 

[Insert Table WA3 here] 

Analytical Model Under Additive Incentive Scheme 

 In our empirical context, the bank uses a multiplicative compensation scheme, where 

acquisition and maintenance performance indices are multiplied to compute bonuses. 

Accordingly, our hypotheses in the main paper were based on a model using a multiplicative 

compensation structure. We now assess whether our hypotheses will continue to hold an additive 

compensation scheme, by changing the compensation scheme in Section 3. 

 All assumptions and notation remain the same as in Section 3. The only change is that we 

the total bonus is now based on the sum of acquisition and maintenance performance. The 

salesperson maximizes the sum of the current period’s bonus and her loans’ continuation value, 

considering the acquisition and monitoring costs, as she does under the multiplicative incentive 

scheme. 

𝑈(𝛼! ,𝛼! ,𝑝) = (𝜆!𝛼! + 𝛼!)+ (ℎ + (1− ℎ − 𝑑)𝑝)−
𝑐
2 (𝛼! + 𝛼! +𝑚𝑝)

! 



52 

 

+[(𝜆!𝛼! + 𝑘ℎ)𝑉! + (𝛼! + 𝑘(1− ℎ − 𝑑)𝑝)𝑉!] 

s.t 0   ≤   𝛼! ,𝛼! ,𝑝   ≤   1 

We solve for the optimal solution of acquisition rate by type 𝛼!∗  and 𝛼!∗, and monitoring level for 

low type 𝑝∗. The solutions are provided below. 

𝑝∗ = (𝑚(1+ 𝑉!)− (1− ℎ − 𝑑)(𝑘𝑉! + 1))/(𝑐𝑚(𝑚 − 1)) 

𝛼!∗ + 𝛼!∗ = (𝑉!(𝑘 − 1)− (𝑘𝑉! + 1)(ℎ + 𝑑))/𝑐(𝑚 − 1) 

Both the hypotheses from the Analytical Model section, continue to remain valid.  

Details on Calculating Internal Rate of Return 

In this section, we explain how to calculate the internal rate of return (IRR), which is a key 

outcome variable in our main empirical analysis. The IRR of each loan is calculated based on 

loan size and returned amount over time. Our data do not include exact cash inflow; thus, we 

make the following assumption on the returned amount: a borrower decides to make zero 

repayment in the delinquent period and make full repayment in other periods. A loan officer 

cannot collect any amount from the period in which the loan defaults. IRR of loan i is defined as 

the rate that makes the loan’s NPV zero.  

 

Here, Cit is cash inflow in the period t (either full amount to be repaid, or zero amount), Cio 

is loan size, r is the interest rate and T is the number of time periods to be considered. If a 

borrower does not default, T is equal to the loan’s maturity, otherwise T is the number of periods 

before default. 
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Robustness Check - Endogeneity In Branches Where The Officers Are Transferred 

In the main paper, we demonstrate that the transfer was indeed random (Table 3). 

Nevertheless, even if the transfer policy is random, it may be possible that officers in under-

performing branches are more likely to be transferred to higher-performing branches or branches 

faced with better market conditions. If so, transferred officers may face a more profitable 

customer base in a new branch; thus, her new loans might perform better, and this may have 

nothing to do with the elimination of adverse selection due to private information. To address 

this concern, we include branch fixed effects and re-estimate coefficients in equations (1) and 

(2). 

Tables WA4 and WA5 show that our main results remain robust with branch fixed effects. 

Model 1 shows the estimates from Tables 4 and 5 in the main paper without branch fixed effects 

for comparison. For the acquisition stage regression reported in Table WA5, we continue to find 

evidence of adverse selection due to acquisition incentives and moderation of adverse selection 

due to maintenance incentives. The incentive states have smaller effect on IRR in Model 2 than 

in Model 1, since now the effect of branch-level market conditions (i.e., overall quality of 

customer base in a branch) on loan performance is controlled. Even including brand fixed 

effects, the coefficient of Transferjo remains positive, showing that transfers reduce adverse 

selection — transferred officers bring in higher quality loans than do continuing officers, even 

conditional on branch-level unobserved heterogeneity.  

     Table WA5 documents salespeople’s monitoring behavior within a branch. While the 

main loan default effects of incentives remain robust, the maintenance incentive effects are 

smaller with branch fixed effects, for both good and bad loans. In Model 2, the effect of transfer 

is insignificant for good loans, and slightly positive for bad loans, indicating that transferred 
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salespeople without private information are not very effective in monitoring existing loans, 

particularly bad loans. 

[Insert Tables WA4 and WA5 here] 

Robustness Check - Endogeneity in Loan Terms 

In our main specification, we treated loan terms as exogenous. A salesperson, however, may 

adjust loan terms (amount and maturity) using her private information. In order to address this 

concern, we redo the analysis, by using instruments for loan amount and loan duration to account 

for potential endogeneity. Recall that the interest rate is set by the bank as a function of the credit 

rating. 

We use the average loan characteristics of other loans acquired by the same loan officer j at 

period o as instruments for loan characteristics. Our rationale for the instruments is as follows: 

The average loan terms of a loan officer conditional on their observed loan rating in any given 

period reflect both the general style of the loan officer and his/her incentive based motivations in 

that period in offering loan terms. These factors are thus independent of any private information 

that the salesperson has on the customer and thus its impact on ex-post profitability and therefore 

is a valid instrument. Table WA6 shows that our instruments have sufficiently large F-values and 

are correlated with endogenous variables in the first stage. 

We report the results of the IRR regression with instruments in Table WA7. Interestingly, 

the effects of the main variables of interest, Acquisition, Maintenance and Transfers on IRR 

remain the same, but now the adverse selection effects have larger magnitudes and the 

maintenance pressure and transfer effects have smaller magnitudes. First, this shows that there is 

indeed endogeneity of loan terms. Further, it shows that the endogeneity of loan terms attenuate 

the effects of acquisition incentives and strengthens the effects of maintenance pressure and 
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transfers on IRR. Further, we find a reversal of signs for the terms loan amount and duration in 

Model 2. Specifically, we find that larger loans have lower IRR and larger duration loans have 

lower IRR. This suggests that salespeople offer larger loan amounts and longer duration loans to 

consumers about whom they have negative private information, conditional on other observed 

characteristics.  

[Insert Table WA7 here] 

We assess robustness based on an additional instrument for loan amounts and duration 

based on the loan amount and duration offered by the same salesperson to other customers with 

the same credit rating as the current customer. While this is more closely related as an instrument 

given that we additionally condition on customer observables, the challenge is that the number of 

such matched loans by customer types and salesperson tends to be often very few.  In our setting, 

there are about 42 loans on average served by the same officer in the same month, but only about 

24 loans on overage with the same credit rating and served by the same officer in the same 

month.  

Nevertheless, the results remain qualitatively robust as seen in Table WA8. The F-value 

confirms that the instruments work well. We still find the adverse selection when a salesperson 

acquires more customers, and is a continuing officer in the same branch. The effect of 

maintenance pressure (𝐷!,!!!) has the same positive sign, but becomes insignificant at the 10% 

significance level with the duration instrument. We partly attribute this finding to fewer matched 

cases.  

[Insert Table WA8 here] 
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Robustness Check - Interaction between Incentive States and Transfer 

In the main text, we find evidence that transferred officers do not have private 

information and thus are less likely to engage in adverse selection. In other words, the adverse 

selection is expected to go down for transferred salespeople, if we include the interaction 

between Transfer dummy and Acquisition performance and observables. We report the results of 

such a specification in Table WA9. We find all main findings remain consistent: a salesperson 

engages in adverse selection due to acquisition incentive, the effect is moderated due to 

maintenance pressure, and the transfer to a new branch induces a salesperson to acquire higher 

quality borrowers. The positive coefficient of the interaction between acquisition incentive and 

transfer dummy tells us that the adverse selection due to acquisition incentive goes down for 

transferred salespeople. This is consistent with our theory and expectation that customer adverse 

selection will be greater for continuing salespeople who have more private information about 

customers.  

[Insert Table WA9 here] 

Robustness Check - Salesperson Learning 

We test additional specifications to rule out the explanation that a salesperson learns 

about how to increase IRR of customers over time in general. In Table WA10, we examine the 

effect of the dummy variable indicating the acquisition increases in column 1, and split the data 

based on whether the acquisition increases or not in columns 2 and 3. In Table WA11, the model 

controls for each salesperson’s tenure (i.e. years since he/she joined the institution). We still find 

that a salesperson is more likely to engage in adverse selection when her acquisition performance 

goes up, mainly when 𝐴!" is positive in column 2 of Table WA10. Other variables in interest 

show consistent results. The adverse selection is mitigated under higher maintenance pressure 
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and the transferred officers are more likely to accept safer loans. In Table WA11, the positive 

coefficient of Tenure variable shows that the experience at the bank helps the salesperson acquire 

better quality customers.  

[Insert Tables WA10 and WA11 here] 

Further, a salesperson might learn about customers in a particular region over time after moving 

to a new branch, and the increase in information affects loans’ profitability. We examine if any 

change in a salesperson’s private information about a region drives our qualitative result on IRR. 

We measure how many quarters have passed since transfer (i.e. since a salesperson started to 

work in a new branch) and interact the term with Incentive states, Transfer states and 

Salesperson fixed effects. In Table WA12, the most variables in interest are in effect. The table 

below shows that most variables in interest are still in effect. The first column interacts the 

quarter FE with Incentive states, the second column interacts the quarter FE with Incentives 

states and Transfer states, and the third column interacts the quarter FE with Salesperson FE to 

accommodate time-varying unobserved heterogeneity across salespeople. 

[Insert Table WA12 here] 

We interpret these results as follows. While is possible for a salesperson to improve his/her 

ability to increase IRR as they learn about a region (greater efficiency), private information can 

lead to losses in IRR as salesperson brings in easy to acquire low type consumers, conditional on 

observables. We define private information as any information about customer profitability 

beyond credit rating or the firm’s observables. If a salesperson learns about how to increase IRR 

of general customers or customers in a particular region, but still engages in adverse selection, it 

strengthens our argument that private information induces salespeople to acquire lower-quality 

customers. 



58 

 

Acquisition Target Ratcheting 

In Table A.1 of the appendix, we describe how the bank sets its acquisition targets. As can 

be seen, in the quota schedule, a larger starting portfolio can lead to larger acquisition targets, 

with discrete jumps above discrete thresholds. One may wonder whether our results are robust to 

ratcheting effects.  

Observe that ratcheting incentives will not change our qualitative conclusions. The 

ratcheting effect leads to a perverse incentive for a salesperson who has just met current 

acquisition targets to not exceed the threshold, so as not to have a higher target the following 

month. This means that in the face of ratcheting incentives, adverse selection incentive is 

marginally mitigated. In other words, our measured estimate of adverse selection in response to 

acquisition incentives is a lower bound.  

Previous empirical literature on salesforce compensation has highlighted the adverse 

consequences of ratcheting incentive that induces workers to withhold effort to avoid larger 

future quotas (e.g., Anderson, Dekker and Sedatole 2010; Misra and Nair 2011). Our results shed 

new light on the another effect of ratcheting by alleviating customer adverse selection; 

disciplining salespeople to avoid the abuse of asymmetric information for short-term 

compensation at the expense of the firm. This effect may be a rationale for the use of target in 

practice (e.g., Leone and Rock 2002; Weitzman 1980). 
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Table WA1. Randomness of Transfer Policy 
 

 Model 1 Model 2 

DV 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟! 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!  

𝑀!!! 
-0.0480  
(0.203)  

Time since Last Transfer -0.0116  
(0.0146)  

𝑀!!! * Time since Last Transfer 0.0157  
(0.0159  

Average Loan Amount  0.0384 
 (0.0357) 

Intercept 0.0405 -0.0122 
(0.0716) (0.0164) 

Period FE Yes Yes 
N 659 3,448 

***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA2. Internal Rate of Return (IRR) of Newly Originated Loans with a new definition of 
the Transfer dummy 

 
DV IRR 

𝐴!"   
-0.504*** 

(0.152) 

𝐷!,!!! 1.129** 
(0.538) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 0.00570 
(0.193) 

Intercept -9.196*** 
(1.227) 

Loan 
Characteristics Yes 

Salesperson, Period FE Yes 
N 89,993 

***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA3. Delinquency of Existing Loans with a new definition of the Transfer dummy 
 

 Model 1 
DV Delay 

𝐷!,!!! 
-0.0202*** 
(0.00764) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 
0.00541** 
(0.00214) 

𝐵𝑎𝑑!,!!! 
0.469*** 
(0.00205) 

𝐵𝑎𝑑!,!!! ∗ 𝐷!,!!! 
0.0943*** 
(0.0128) 

𝐵𝑎𝑑!,!!! ∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 
0.00516 

(0.00318) 

𝐴!" 
-0.00453** 
(0.00178) 

𝐵𝑎𝑑!,!!! ∗ 𝐴!" 
0.00111 

(0.00321) 

Intercept 

0.126*** 
(0.0112) 

Loan Characteristics Yes 
Salesperson, Period FE Yes 

N 278,943 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA4: IRR of New Loans with Branch FE 
 

 Model 1* Model 2 
DV IRR IRR 

𝐴!"   
-0.537*** -0.396** 

(0.152) (0.158) 

𝐷!,!!! 1.070** 0.969* 
(0.538) (0.572) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.987*** 2.177*** 
(0.216) (0.230) 

Rating 2 3.991*** 3.863*** 
(0.598) (0.609) 

Rating 3 13.33*** 13.02*** 
(0.476) (0.484) 

Rating 4 21.74*** 21.23*** 
(0.420) (0.427) 

Rating 5 26.66*** 26.09*** 
(0.404) (0.411) 

Loan Amount 0.630*** 0.619*** 
(0.0790) (0.0800) 

Duration -0.108*** -0.0923*** 
(0.0202) (0.0205) 

Interest Rate 0.657*** 0.662*** 
(0.00703) (0.00711) 

Intercept -10.95*** -8.615*** 
(1.231) (2.593) 

Salesperson FE Yes Yes 
Period FE Yes Yes 
Branch FE No Yes 

N 89,993 86,886 
***: p<0.01, **: p<0.05, *: p<0.1  

*Note that we show the result of Model 1 in Table 4 in the first column. 
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Table WA5: Delinquency of Existing Loans with Branch FE 
 

 Model 1* Model 2 
DV Delinquency  Delinquency 

𝐷!,!!! -0.0203*** -0.0193** 
(0.00764) (0.00789) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 
0.00442* -0.00454 
(0.00257) (0.00425) 

𝐵𝑎𝑑!,!!! 0.470*** 0.470*** 
(0.00198) (0.00197) 

𝐵𝑎𝑑!,!!! ∗ 𝐷!,!!! 0.0957*** 0.0888*** 
(0.0128) (0.0132) 

𝐵𝑎𝑑!,!!! ∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" -0.00376 0.0229*** 
(0.00390) (0.00674) 

𝐴!" 
-0.00440** -0.00503*** 
(0.00178) (0.00182) 

𝐵𝑎𝑑!,!!! ∗ 𝐴!" 
0.000994 0.00288 
(0.00321) (0.00334) 

Rating 2 -0.00468 -0.00554 
(0.00415) (0.00418) 

Rating 3 -0.0720*** -0.0730*** 
(0.00351) (0.00354) 

Rating 4 -0.165*** -0.166*** 
(0.00315) (0.00317) 

Rating 5 -0.253*** -0.255*** 
(0.00301) (0.00303) 

Loan Amount -0.00483*** -0.00478*** 
(0.000718) (0.000725) 

Duration 0.00163*** 0.00159*** 
(0.000180) (0.000181) 

Interest Rate 0.00212*** 0.00213*** 
(0.0000686) (0.0000692) 

Age of Loan 0.0113*** 0.0111*** 
(0.000299) (0.000301) 

Intercept 0.126*** 0.181*** 
(0.0112) (0.0509) 

Salesperson, Period FE Yes Yes 
Branch FE No Yes 

N 278,943 274,907 
***: p<0.01, **: p<0.05, *: p<0.1 

*Note that we show the result of Model 2 in Table 4 in the first column. 
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Table WA6: Instrumental Variable Regression - First Stage 
 

DV Amount IV Duration IV 

𝐴!"   
0.013** 0.082*** 
(0.006) (0.025) 

𝐷!,!!! -0.041* 0.034 
(0.022) (0.089) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 0.002 0.0997*** 
(0.008) (0.0357) 

Loan Amount 0.27*** 1.86*** 
(0.012) (0.011) 

Duration 0.12*** 0.144*** 
(0.00075) (0.012) 

Intercept 0.051 4.10*** 
(0.033) (0.213) 

Loan 
Characteristics Yes Yes 

Salesperson FE 
Period FE 

No Yes 
Yes Yes 

F-value 1474.87 130.78 
N 89,860 89,860 

***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA7. IRR of Newly Originated Loans with Instrumental Variables  
 

 Model 1 Model 2 
DV IRR(IV) IRR (IV) 

Instrument 
Variable 

Average 
Amount 

Average 
Duration 

𝐴!"   
-0.647*** -0.705*** 

(0.149) (0.167) 

𝐷!,!!! 0.876* 0.984* 
(0.528) (0.567) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.901*** 1.795*** 
(0.189) (0.232) 

Rating 2 3.990*** 5.473*** 
(0.670) (0.735) 

Rating 3 13.27*** 18.48*** 
(0.719) (1.445) 

Rating 4 21.6*** 29.81*** 
(0.779) (2.191) 

Rating 5 26.5*** 34.83*** 
(0.816) (2.213) 

Loan Amount 1.136 -2.962*** 
(1.038) (0.967) 

Duration -0.179 1.820*** 
(0.127) (0.518) 

Interest Rate 0.652*** 0.598*** 
(0.0133) (0.0176) 

Intercept -11.55*** -20.42*** 
(0.810) (2.839) 

Salesperson FE 
Period FE 

No Yes 
Yes Yes 

N 89,860 89,860 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA8. IRR of Newly Originated Loans with new Instrumental Variables 
 

DV IRR (IV) IRR (IV) 
Instrument 
Variable 

Average 
Amount 

Average 
Duration 

𝐴!"   
-1.095*** -0.655*** 

(0.257) (0.160) 

𝐷!,!!! 1.555** 0.848 
(0.722) (0.568) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.703*** 1.689*** 
(0.284) (0.227) 

Intercept -17.65*** -23.96*** 
(1.865) (1.842) 

Loan 
Characteristics Yes Yes 

Salesperson FE 
Period FE 

Yes Yes 
Yes Yes 

First Stage F-
value 78.11 127.45 

N 89,860 89,860 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA9. IRR of New Loans with Interaction between Transfer and Incentive States 
 

 Model 1 
DV IRR 

𝐴!" -0.717*** 
(0.168) 

𝐴!" ∗ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"   
0.986*** 
(0.379) 

𝐷!,!!! 0.901* 
(0.535) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 18.23*** 
(1.563) 

Intercept -13.91*** 
(1.267) 

Loan Characteristics and 
Interactions with 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" Yes 

Salesperson, Period FE Yes 
N 89,993 

***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA10. IRR of Newly Originated Loans (Learning) 
 

DV IRR IRR IRR 
  Positive 𝐴!" Negative 𝐴!" 

𝐴!"  -1.285** 0.287 
 (0.544) (0.334) 

Positive 𝐴!"   
-0.514***   

(0.134)   

𝐷!,!!! 1.076** 1.936** 1.029* 
(0.537) (0.810) (0.557) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.99*** 3.018*** 1.554*** 
(0.216) (0.352) (0.293) 

Intercept -10.60*** -9.56*** -10.96*** 
(1.231) (1.851) (1.637) 

Loan 
Characteristics Yes Yes Yes 

Salesperson FE 
Period FE 

Yes Yes No 
Yes Yes No 

N 89,993 49,489 40,504 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA11. IRR of Newly Originated Loans (Learning) 
 

DV IRR 

𝐴!"   
-0.44*** 
(0.157) 

𝐷!,!!! 1.029* 
(0.557) 

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 1.942*** 
(0.226) 

Tenure 22.50*** 
(0.362) 

Intercept -251.6*** 
(4.249) 

Loan 
Characteristics Yes 

Salesperson FE 
Period FE 

Yes 
Yes 

N 84,152 
***: p<0.01, **: p<0.05, *: p<0.1 
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Table WA12. IRR of Newly Originated Loans (Learning about a region) 
 

DV IRR IRR IRR 

𝐴!" -0.321 -0.323 -0.295* 
(0.255) (0.255) (0.173) 

𝐴!"* (Quarter = 2) -0.684* -0.574  
(0.404) (0.407)  

𝐴!"* (Quarter > 2) -0.107 -0.0920  
(0.338) (0.339)  

𝐷!,!!! 3.439*** 3.391*** 0.986 
(0.880) (0.880) (0.638) 

𝐷!,!!!* (Quarter = 2) -4.799*** -4.766***  
(1.459) (1.460)  

𝐷!,!!!* (Quarter > 2) -3.204** -3.219**  
(1.311) (1.311)  

𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!" 2.025*** 3.157*** 2.328*** 
(0.217) (0.580) (0.243) 

(𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"= 0) * 
(Quarter = 2) 

 1.061***  
 (0.234)  

(𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"= 0) * 
(Quarter > 2) 

 1.234***  
 (0.231)  

(𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"= 1) * 
(Quarter = 2) 

 -0.518  
 (0.579)  

(𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟!"= 1) * 
(Quarter > 2) 

 -0.791  
 (1.064)  

Intercept -11.06*** -11.84*** -13.53*** 
(1.233) (1.242) (2.464) 

Loan Characteristics Yes Yes Yes 
Salesperson FE 

Period FE 
Yes Yes No 
Yes Yes No 

Salesperson FE * 
Quarter FE No No Yes 

N 89,993 89,993 89,993 
***: p<0.01, **: p<0.05, *: p<0.1 
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