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Abstract

We study market entry decisions when firms have private information

about their profitability. We generalize current models by allowing general

forms of market competition and heterogeneous firms that self-select when

entering the market. Post-entry profits depend on market structure, and on

the identities and the private information of the entering firms. We introduce

a notion of the firm’s strength and show that an equilibrium where players’

strategies are ranked by strength, or herculean equilibrium, always exists.

Moreover, when profits are elastic enough with respect to the firm’s private

information, the herculean equilibrium is the unique equilibrium of the game.
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1 Introduction

Understanding firms’ entry decisions is essential in economics. Entry determines

market structure, which directly affects prices and welfare. When deciding whether

to enter a market, firms base their decisions on the market’s observable characteris-

tics, including the number of (potential) competitors and their technology, as well

as their own private characteristics (e.g., marginal costs). Lacking a general theory

that incorporates heterogeneous public and private firm characteristics, structural

analysis has traditionally modeled entry decisions as a complete information game.

It has been assumed that: (i) all information is known before entering (á la Bresna-

han and Reiss, 1991) or, (ii) firms learn some private information only after entry

has occurred (á la Levin and Smith, 1994). These assumptions turn market entry

into a coordination problem which commonly leads to multiple equilibria (Tamer,

2003). Multiplicity weakens identification, precluding the possibility of performing

robust counterfactual analysis (Berry and Reiss, 2007).

Roberts and Sweeting (2013, 2016) argue that, in addition to multiplicity, com-

plete information entry models are restrictive and could produce biased counter-

factuals. These models cannot account for firms self-selecting when entering the

market, i.e., they are unable to account that more efficient firms are more likely

to enter the market. Since the seminal work by Seim (2006), recent work have in-

corporated private information in firms’ entry decisions. This literature introduces

private information as an additive shocks to profits. When the private shock is

interpreted as an entry or sunk cost, there can be no self-selection.

In this article, we examine the question of equilibrium uniqueness in a general

class of entry games under private information. The model allows for diverse forms

of firm heterogeneity and equilibrium outcomes in which firms may self-select when

entering the market. To facilitate characterization of the firms’ entry strategies,

we propose a simple index, called strength, which summarizes a firm’s capacity

to endure competition. The use of strength in entry games is similar to the use

of a Gittins index in multi-armed bandit games (Gittins, 1979) as it summarizes

the game’s relevant information, facilitating the search for equilibria. Unlike the

Gittins index, which summarizes information in a single-agent context, strength

summarizes information in a n-firm game using the public characteristics of every

potential entrant. We show that the entry game always has an equilibrium where

strategies are ordered according to strength, or herculean equilibrium. Strength re-

duces the computing power necessary to find equilibria and estimate entry models.
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In particular, when there are n potential entrants, there are n! possible rankings

for firms’ entry strategies; strength reduces this problem to the computation of n

simple indexes.

Our main contribution is to identify a sufficient condition that guarantees the

uniqueness of equilibrium in the entry game. The sufficient condition aids in the

empirical identification of the model and broades the scope of the applications in

which market entry can be studied. The condition is easy to verify and requires that

payoffs are stable under small changes in the firms’s private information. We show

that our sufficient condition is not too demanding as it also guarantees well-behaved

comparative statics in the entry model. Similarly to monotone virtual valuations in

mechanism design à la Myerson (1981), our sufficient condition establishes whether

the entry game is sufficiently regular.

The proposed model allows for flexible forms of firm heterogeneity and rich

strategic interactions. Firms may differ in their public characteristics, including

those that are unobserved by the econometrician (as in Li et al., 2016). To the

best of our knowledge, this is the first model that can handle situations in which

firms are not uniformly ranked in terms of their competitiveness. For example, our

framework incorporate situations in which a subset of firms have larger (publicly

observed) entry costs but are likely to have lower (privately observed) marginal

cost than another set of competitors. Private information adds an extra layer

of heterogeneity. Payoffs may not only depend on the opponents’ actions but,

conditional on entry, payoffs may also depend the opponents’ private information in

non-linear ways. For example, if firms are privately informed about their marginal

costs of production, facing a competitor with lower marginal costs will harm a

firm’s profitability. The magnitude of this effect will depend (non-linearly) on

the firm’s marginal costs, the elasticity of demand, the number of entrants and

their degree of product substitutability. Our framework accommodates post-entry

competition in price, quantity, quality, and follower-leader scenarios, among others.

One of the central topics in Industrial Organization is to understand the de-

terminants of market structure and its consequences for welfare. Mankiw and

Whinston (1986) studied entry in a model of homogeneous agents with complete

information.1 Levin and Smith (1994), studying an auction setting, examined the

case in which firms are ex-ante homogeneous but learn their valuations only af-

ter entering the market; i.e, firms are ex-ante identical when taking their entry

1In order to avoid confusion we use the expressions (hetero)homogeneous to refer to firms’
ex-ante characteristics, whereas (a)symmetric is used to refer to firms’ strategies.
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decision, but heterogeneous ex-post. Brock and Durlauf (2001) is closer to our

approach as they examine a model in which privately-informed agents choose a

binary action. Our modeling shares the idea that both the action and the type of

an agent affect the payoffs of other agents. Our analyses differ in that we examine

a context in which entry decisions are strategic substitutes and in that we allow for

ex-ante heterogeneous firms.

Bresnahan and Reiss (1990, 1991) and Berry (1992) developed the first mod-

els of market entry that explicitly accounted for the strategic interaction between

post-entry market competition and firms’ entry decisions. When firms are perfectly

informed about market outcomes, the entry game often contains multiple equilib-

ria. Berry (1992) shows that if the heterogeneity among the firms is limited, partial

identification can be achieved. In contrast, our private-information model can han-

dle any source of heterogeneity. Although Sweeting (2009) argued that multiplicity

of equilibria may help with the model’s identification in games without outside op-

tions, Tamer (2003) showed that, without further assumptions, multiple equilibria

usually lead to set, rather than point, identification. Seim (2006) showed numeri-

cally that private information may solve the problem of multiplicity of equilibria.

However, Berry and Tamer (2006) constructed examples of multiple equilibria un-

der private information, raising the question of when uniqueness can be achieved.

We contribute to this discussion by identifying sufficient conditions that guarantee

equilibrium uniqueness in entry games under private information.

Models of perfect information are intended to understand long-run equilibrium

outcomes, where ex-post regret is unlikely. Our framework is especially useful in

settings where there is both substantial private information and substantial entry

costs, so that ex-post regret is likely to arise in the medium term. Private infor-

mation is particularly important in dynamic settings with information shocks over

time as in Ericson and Pakes (1995). Grieco (2014) showed that, in practice, part of

the observed heterogeneity comes from private information—marginal costs, con-

tracts with suppliers, and managerial ability—that firms possess at the moment of

making their entry decisions. Moreover, he showed that omitting private informa-

tion from the model can lead to qualitatively different results. In the same spirit,

Magnolfi and Roncoroni (2016), using the notion of Bayes Correlated Equilibrium

(Bergemann and Morris, 2013, 2016), rejected the idea that their data is generated

by a process of complete information. Our contribution is to provide a framework

that allows for private information under rich forms of strategic interactions. The
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framework allows for firm heterogeneity in both their observable characteristics as

well as in their distribution of unobservable characteristics (private information).

The article is organized as follows. Section 2 introduces the model and Section 3

defines and discusses the notions of firm strength and herculean equilibrium. Sec-

tion 4 studies the case with two potential entrants. We show that the existence of a

herculean equilibrium is guaranteed and provide a sufficient condition for when the

herculean equilibrium is the unique equilibrium of the game. Section 5 extends the

analysis to cases with more than two firms in contexts that often arise in empirical

applications. Section 6 discusses extensions of our model and Section 7 concludes.

2 A Model of Market Entry

Consider n firms simultaneously deciding on whether to enter a market. Each firm

possesses private information about its profitability upon entering the market.

The post-entry profits of firm i depend on every firm entry decision, i’s private

information vi ∼ Fi (scalar), and the private information of the entering firms.

We assume that the draws of private information are independent across firms

but not (necessarily) identically distributed. In particular, we assume that each

firm i is endowed with a distribution function Fi that is atomless and continuously

differentiable with full support on R.2

Let ei ∈ {0, 1} be an indicator function that takes the value 1 if firm i enters

the market. Denote by e = (e1, e2, . . . , en) the vector of ex-post entry decisions, we

also refer to e as the (realized) market structure. Define Ei = {e : ei = 1} be the

set of all possible market structures in which firm i enters. For a given vector of

entry decisions e, define I(e) = {i : ei = 1} to be the set of firms participating in

market e. Similarly, define Ii(e) = {j 6= i : ej = 1} and Oi(e) = {j 6= i : ej = 0}
to be the set of i’s competitors that are in and out of the market under structure

e, respectively. Define v = (v1, v2, . . . , vn) to be the vector containing the draws of

private information (signals) of every firm. Similarly, v−i represents the draws of

private information of every firm except firm i; and ve ≡ (vk)k∈I(e) is the vector of

draws of every firm participating in market e.

With a slight abuse of notation, let πi(ve) be a real valued function representing

firm i’s profits of entering the market when the realized vector of private informa-

2All our results would go through if the support of Fi were any interval [a, b] with a < b. The
current formulation is used for consistency with the literature.
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tion is v and the realized market structure is e. To illustrate the workings of the

notation observe that πi(vi) represents firm i’s profit when its private information

is vi and i is the only firm entering the market. Similarly, πi(v) = πi(vi, v−i)

represents i’s profit when every potential firm enters the market and the vector

of private information is given by v. By adopting this notation we assume that

the private information of non-entering firms is payoff irrelevant. In addition, we

assume that a firm that does not enter receives zero profit, that the profit function

is integrable with respect to ve under any market structure e, and that the expec-

tation of the profit function with respect to the distribution of private information

is finite. Also, since we only require differentiability of πi(ve) with respect to vi, we

use π′i(ve) to denote such derivative. Conditional on i’s entry (ei = 1), we assume

that πi(ve) satisfies the following properties.

(A1) Monotonicity: πi(ve) is strictly increasing and differentiable in vi;

i.e., π′i(ve) > 0 for all vi and ve\i.
3

Assumption A1 gives economic meaning to the private information, vi. Upon

entering the market, and regardless of the realized market structure e, firms’ prof-

its are increasing in vi. In terms of traditional competition models, higher vi

can represent lower marginal cost of production, higher product quality, or higher

managerial ability. A1 excludes, for instance, Bertrand competition under homo-

geneous goods, but not under heterogeneous goods. In the former case, firms may

have profits that are only weakly increasing with respect to their own marginal

costs and the profit function may not be differentiable everywhere.4

(A2) Competition: For each j ∈ Oi(e), πi(ve) is weakly decreasing in ej.

For each j ∈ Ii(e), πi(ve) is weakly decreasing in vj.

Assumption A2 concerns how competition affects profitability. In general terms,

it states that firm i’s profits decrease with competition, i.e., πi(ve) decreases with

entry and higher draws of private information by competitors. From the firm’s per-

spective, A2 implies that firms’ entry decisions are strategic substitutes and that

the degree of substitutability increases with higher draws of private information

from a rival. A2 is a minimal assumption on competition.

Finally, to ensure an interior solution we add a third assumption. With a slight

3For any e ∈ Ei, e \ i denotes the vector e but with a zero in the ith position. Similarly, for
any firm j ∈ Oi(e), e ∪ j denotes the vector e but with a one in the jth position.

4Our results are still valid under a weaker version of monotonicity that includes homoge-
nous Bertrand competition. For brevity, clarity in exposition, and because it encompasses most
applications, we choose to present the results under A1.
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abuse of notation we define φi(ve) =
∏

j∈Ii(e) fj(vj) to be joint density of the private

information of i’s competitors under market structure e.

(A3) Interior: There exists values vi < v̄i such that πi(vi) = 0 and∫
Rn−1

πi(v̄i, v−i)φi(v−i)d
n−1v−i > 0.

where the integral is over each of the n− 1 dimensions of v−i.

Assumption A3 concerns the entry problem. The value vi represents the mini-

mal draw of private information required to incentivize a monopolist to enter the

market. Jointly with A2, the first part of A3 implies that no firm would choose

to enter the market, regardless of market structure, when its draw (or private in-

formation) is sufficiently low (vi < vi). For this condition to hold, a monopolist

should be able to obtain negative post-entry profits. Observe that, because entry

costs are incorporated into π(·), post-entry profits can be negative even under the

assumption of non-negative variable profits, as firms may always choose not to

produce and obtain zero variable profits. The second part of A3 states that any

firm may enter the market if its draw of private information is sufficiently high. In

particular, there exists a value v̄i such that drawing vi > v̄i ensures entry regardless

of whether every competitor decides to enter the market.

The timing of the game is as follows. Before making any entry decision, each

firm privately observes vi. After observing vi and without observing v−i, each

firm independently and simultaneously decides whether to enter the market. After

entry decisions are made, market structure e is realized and each firm entering the

market gets a payoff πi(ve). The tuple (πi, Fi)
n
i=1—which includes the number of

potential entrants n—is commonly known by all the firms in the market.5

An entry strategy for firm i is a mapping from the firm’s private information vi

to a probability of entering in the market τi : R→ [0, 1]. We assume that the strat-

egy of player i is an integrable function with respect to its own type vi. We study

the Perfect Bayesian Equilibria of the entry game. Denote by τ = (τ1, τ2, . . . , τn)

the vector of entry strategies. Given a strategy profile τ , the expected profits

of firm i after drawing the private information vi but before entry decisions are

5The model also accommodates partially informed firms, where firms first obtain a private
signal about their market profitability and only after entry, do they become fully informed (see
Section 6).
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realized is

Πi(vi, τ) = τi(vi)

[∑
e∈Ei

{∫
Rn−1

πi(ve) Pr[e|τ−i, v−i]φi(v)dn−1v−i

}]
(1)

where Pr[e|τ−i, v−i] is the probability of observing market structure e, given the

vector of strategies τ−i and the realization of private information v−i. The integral

is over each of the n − 1 dimensions of the private information of firm i’s com-

petitors, v−i. Conditional on i’s entry, which occurs with probability τi(vi), the

expected profits of firm i consist on the expected sum of profits that firm i would

get under each feasible market structure, which is induced by the vector of strate-

gies τ and the realization of private information v, integrated over all possible

realizations of the competitors’ private information.

The model allows for general forms of firm heterogeneity. First, firms can dif-

fer in their distribution of private information Fi. For instance, firms’ may have

publicly-known production technologies but have private contracts with (poten-

tially different) suppliers. Or, firms could be located in different regions and thus

their production is affected by local shocks. Perhaps more importantly, the model

allows for firm heterogeneity in the profit function πi(ve). As noted above, this

formulation can accommodate firms with different entry costs. These can represent

models in which firms make complementary investments or incur sunk entry costs,

in which firms enter the market with different production capacities, or in which

firms locate at various distances from some exogenously given market location.

Also, the model allows for heterogeneity in the way firms compete after entry has

occurred. In particular, the general form of the functions πi(ve) accommodates

situations in which firms compete with heterogeneous products and have different

production capacities. The model can accommodate the existence of dominant

firms, or even a predetermined order of play in the post-entry market, such as,

competition à la Stackelberg.

The proposed formulation of πi(ve) does have some restrictions on the nature

of post-entry competition. First, πi(ve) is a function rather than a correspondence,

which imposes that either the post-entry game has a unique equilibrium or, under

multiplicity of post-entry equilibria, the equilibria are payoff equivalent or that

there is a market consensus about which equilibrium will be played. Another,

subtler, restriction is the fact that πi(ve) does not depend on the strategy profile

τ . A natural interpretation for the model is that entering firms’ private informa-
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tion becomes public after entry occurs but before firms compete in the product

market. As a consequence, firms carry no beliefs about their competitors’ private

information when playing in the post-entry game. Another interpretation is that

no private information is revealed after entry and πi(ve) is only observed at the end

of the game. To see why the omission of τ in πi(ve) is restrictive, consider the case

in which ve remains private in the post-entry game but the market structure e is

observed. In such scenario firms will base their strategies in the post-entry game on

their beliefs about the private information of their competitors. Through Bayesian

updating, these beliefs would depend on the strategy profile τ and the observed

market structure e, making it part of the post-entry profit function. Although

important, the analysis of such models lie outside of the scope of this article.

3 Preliminaries

In this section we provide a general characterization of all equilibria in the entry

game and establish the existence of equilibrium. It is shown that, without loss

of generality, we can restrict attention to cutoff strategies. Then, using the cutoff

structure of equilibria, we introduce two key definitions—firm strength and her-

culean equilibrium—for the main results in Sections 4 and 5. We provide intuitions

on the nature of these constructions.

3.1 Characterization of Equilibria

Definition (Cutoff Strategy). A strategy τi(vi) is called cutoff if there exists a

threshold x > 0 such that

τi(vi) =

{
1 if vi ≥ x

0 if vi < x
.

A cutoff strategy specifies whether a firm enters a market with certainty de-

pending on whether its private information is above or below some given threshold.

In any best response, there exists a draw of private information, vi, that makes a

firm indifferent between entering the market, or not. We break this indifference

by assuming that firms enter. For a cutoff strategy, this means that a firm enters

when its draw of private information is equal to its cutoff. Given a vector τ−i,

a best response is given by the strategy τ̂i that maximizes (1) at every value of
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vi. A (Bayesian Nash) equilibrium, is thus defined by a vector of strategies τ in

which every firm best respond to each other. The next proposition establishes the

existence of equilibrium and that, without loss of generality, we can restrict our

analysis to cutoff strategies.

Proposition 0. For any game (πi, Fi)
n
i=1 there exists an equilibrium. For any

vector τ−i, firm i’s best response is a cutoff strategy. Therefore, every equilibrium

of the game is in cutoff strategies.

Existence follows from Brouwer’s fixed-point theorem. The restriction to cutoff

strategies is quite intuitive: regardless of which strategy competitors are playing,

assumption A1 implies that firm i’s expected profit is strictly increasing in its

private information. Because i’s expected profit is linear in its entry probability

(see eq. (1)), i either prefers to enter with certainty when it is profitable to do so,

or to stay out otherwise.

We abuse notation and denote a cutoff strategy by the cutoff itself. In partic-

ular, from now on xi ∈ R represents the cutoff valuation under which, if vi ≥ xi,

the firm enters the market. We also simplify notation by writing πi(vi, ve) instead

of πi
(
vi, ve\i

)
when the context leads to no ambiguity. Let ne represent the num-

ber of firms entering under market structure e. For a vector of cutoff strategies

x = (x1, x2, . . . , xn), define the function

Hi(x) ≡
∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

∫ ∞
(xj)j∈Ii(e)

πi (xi, ve)φi(ve)d
ne−1ve\i

 (2)

where the integral is across each of the ne−1 dimensions of ve\i.
6 The next Lemma

characterizes all cutoff equilibria.

Lemma 1. The vector x of cutoff strategies constitutes an equilibrium if and only

if Hi(x) = 0 for each firm i.

Lemma 1 characterizes every equilibrium of the entry game. The function

Hi(vi,x−i) represents firm i’s expected profit of entering the market when it draws

the private information vi and the opponents play the vector of cutoffs x−i. Firm

i’s best response to x−i is defined by a cutoff xi equal to the value of vi that

satisfies Hi(vi,x−i) = 0. A profile of equilibrium cutoffs x is, thus, constructed

6The following notation conventions are used throughout the article:
∑
∅ = 0,

∏
∅ = 1, and∫

∅ a = a.
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by the collection of functions Hj(x) evaluated at a point in which every firm j is

indifferent between entering the market when drawing private information xj.

Lemma 2. The function Hi is differentiable, strictly increasing in xi, and weakly

increasing in xj.

Lemma 2 connects cutoff strategies with the nature of competition in the entry

game. When a firm chooses a higher cutoff, it increases its expected payoff upon

entry, but enters the market with lower probability. Similarly, when a competitor

of firm i increases its entry cutoff, xj, firm i faces less expected competition, leading

to an increase in i’s expected payoff.

3.2 Strength and Herculean Equilibrium

In general, there might be multiple equilibria (see Section 4.1 for an example).

The lemmas above provide little information about which firm plays which cutoff,

and the number of equilibria in the entry game. The next definition, which ranks

players according to a summary of the game fundamentals in their willingness to

enter the market, is instrumental in characterizing the entry game further and

establishing conditions for the uniqueness of an equilibrium.

Definition (Firm Strength). For a given game (πi, Fi)
n
i=1, let σi(s) ≡ Hi(s, . . . , s).

The strength of player i is the unique number si ∈ R that solves σi(si) = 0; i.e.,

σi(si) =
∑
e∈Ei


 ∏
j∈Oi(e)

Fj(si)

∫ ∞
(si)j∈Ii(e)

πi (si, ve)φi(ve)d
ne−1ve\i

 = 0.

We say that firm i is stronger than firm j if si < sj.

Lemma 3. σi(s) is strictly increasing and single crosses zero.

Lemma 3 shows that strength is well defined, assigning a unique scalar si to

each firm i and, therefore, delivering a complete ranking of the firms. In words,

strength ranks firms by finding the cutoff si that firm i would play under the

assumption that all firms play the same cutoff si. Intuitively, strength ranks firms

according to their ability to endure competition. Firm i being stronger than firm j

(si < sj) indicates that firm i, facing more competition than j, needs lower draws

of private information than j to enter the market. This observation motivates our

next definition.
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Definition (Herculean Equilibrium). An equilibrium is called herculean if the

equilibrium cutoffs are ordered by strength, with stronger players playing lower

cutoffs.

Intuitively, because stronger firms are more able to endure competition, they

should be more inclined to enter the market than weaker firms. Therefore, an

equilibrium in which cutoffs are ordered by strength should naturally emerge in

entry games. We show in Proposition 1 that this is indeed the case, and that,

under certain conditions, the herculean equilibrium is the unique equilibrium of

the game. The next definition and corollary will help us motivate and to convey

intuitions behind our focus on herculean equilibria.

Definition (Homogeneous entry game). An entry game is homogeneous when

every firm i has homogeneous CDFs: Fi(vi) = F (vi) for all i and vi; and, ho-

mogeneous and anonymous profit functions: πi(vi, ve\i) = π(vi, vpermi(e\i)) for all i

where vpermi(e) is any permutation that fixes the realizations in ve but changes the

identities of the entering firms in e excluding the identity of firm i.

Homogeneous games correspond to the private-information analogue of com-

plete information models à la Bresnahan and Reiss (1990, 1991). In the context

of incomplete information, homogeneous-firms models have been studied by Brock

and Durlauf (2001), Seim (2006) and Sweeting (2009), among others. It is impor-

tant to observe that even if firms are ex-ante homogeneous, particular realizations

of firms’ private information can produce outcomes in which firms are ex-post het-

erogeneous. In homogeneous games the focus is usually restricted to symmetric

equilibrium. The next corollary makes explicit the connection between herculean

and symmetric equilibrium.

Corollary 1. If firms are equally strong (i.e., si = s for all i), there exists a

unique herculean equilibrium. In this equilibrium every firm plays cutoffs equal to

their strength (xi = s for all i). In particular, when the game is homogeneous, the

(unique) herculean equilibrium and the symmetric equilibrium coincide.7

Herculean equilibrium aims to extend the idea of symmetric equilibrium to

games with heterogeneous agents; i.e., to construct an asymmetric analogue of the

symmetric equilibrium. We do so by ranking firms in terms of their strength, which

7Notice that the result applies trivially to games with homogeneous firms, where firms have
the same strength by construction, but also to games with heterogeneous firms when they simply
happen to have the same strength.
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summarize each firm’s ability to endure competition by using the notion of sym-

metric strategies. In games with homogeneous firms, every firm is equally strong.

Thus, the notions of strength, herculean equilibrium and symmetric equilibrium

coincide. We show that herculean equilibria possess some desirable properties. Its

existence is guaranteed, under certain conditions it is the only equilibrium of the

game, and the cutoff order prescribed among firms is intuitive.

The uniqueness result in Corollary 1 follows from strength being uniquely de-

fined. Because strength and the herculean cutoffs coincide when firms are equally

strong, there is a unique herculean/symmetric equilibrium in the entry game. Note,

however, that non-herculean equilibria may still exist.

4 Two Potential Entrants

To convey our intuition, we begin studying a market with two potential entrants.

Section 5 extends the analysis to scenarios likely to arise in applied work under n

potential competitors. We show that herculean equilibria always exist and establish

a general sufficient condition for equilibrium uniqueness. Then we proceed to

link our condition with models used in empirical applications. Finally, we study

comparative statics of the entry game.

4.1 Herculean Equilibria: Existence and Uniqueness

Let ∆i(vi, vj) ≡ πi(vi)− πi(vi, vj) be firm i’s profit loss under private information

vi when firm j enters the market with private information vj, i.e., the difference

between monopoly and duopoly profits. In what follows, firms are ordered by

strength, with firm 1 being the strongest firm in the game. Recall (from A3) that

vi is the minimum value under which firm i enters the market.

Proposition 1. In any entry game (πi, Fi)
2
i=1, an herculean equilibrium always

exists and is characterized by cutoffs x1 ≤ x2 that solve Hi(x1, x2) = 0; i.e.,

πi(xi)Fj(xj) +

∫ ∞
xj

πi (xi, y) dFj (y) = 0.

Moreover, the entry game has a unique equilibrium if for every firm i, all vi > vi,

and all vj > vj
∆i(vi, vj)

π′i(vi)

fi(vi)

Fi(vi)
< 1. (3)
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Figure 1: Strength and Herculean equilibrium

Proposition 1 guarantees the existence of herculean equilibria, confirming the

intuition that this type of equilibria emerges naturally. Figure 1 depicts the con-

struction of a herculean equilibrium. Consider the functions σ1(s) and σ2(s) defin-

ing the strength of each firm. Firm 1 is stronger than firm 2 as s1 < s2. By

Lemma 3, σi(s) is strictly increasing, crossing the horizontal axis once, at s1 and

s2 respectively. At s2, σ2(s2) = 0 and firm 2 breaks even when both firms play

the cutoff strategy s2; i.e., when xi = s2 for all i. Since σ1(s2) > 0, however, firm

1 gets positive expected profits, so this cannot be an equilibrium. Because profits

are increasing in the firm’s private information, in equilibrium firm 1 plays a lower

cutoff, so that x1 < s2. Observe that x1 < s2 implies that firm 2 is facing more

competition than what it would face at its strength cutoff s2. Consequently, firm

2 responds by increasing its own cutoff above s2, so that s2 < x2. This establishes

that when x1 < s2 we must have x2 > s2.

Similarly, at s1, σ1(s1) = 0 and firm 1 breaks even when both firms play the

cutoff strategy s1, i.e., when xi = s1 for all i. Since σ2(s1) < 0, however, firm 2 gets

negative expected profits, so this cannot be an equilibrium. Because profits are

increasing in the firm’s private information, in equilibrium firm 2 plays a higher

cutoff, so that x2 > s1. Observe that x2 > s1 implies that firm 1 is facing less

competition than what it would face at its strength cutoff s1. Consequently, firm

1 responds by reducing its own cutoff below s1, so that x1 < s1 whenever x2 > s1.

Therefore, by the construction above and assumption A3, we must have a pair

(x1, x2) such that x1 < s1 < s2 < x2; where the equilibrium thresholds are always

further away from each other than the values of strength. Hence, there always exists
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Table 1: Examples

Firm 1
In Out

Firm 2 In v1 − δ1, v2 − δ2 0, v2
Out v1, 0 0, 0

Notes. (a) In examples 1, 2, and 3: δi = δ for all i. (b) Profit ranking: δ1 = 1/4 and δ2 = 1/6.

an equilibrium where cutoffs are ordered by strength, i.e., an herculean equilibrium.

The argument above does not preclude the existence of multiple herculean equi-

libria, or of non-herculean equilibria. Another contribution of Proposition 1 is to

provide a sufficient condition under which the herculean equilibrium is the unique

equilibrium of the entry game, which is a stability condition. It guarantees that

the gain in firm i’s profit induced by an increase in its own cutoff xi cannot be

overcome by any response by the competitor’s cutoff xj.
8 Condition (3) uses only

information with respect to each firm i, but it has to hold for every firm in the

market. Also, it is sufficient to check the condition only where entry is feasible—

where vk > vk for k ∈ {1, 2}—as deviations for valuations below the minimal entry

cutoff vk are always outside the equilibrium path.

To illustrate Proposition 1, consider the next three examples using the entry

game described in Table 1 under the assumptions that firms are homogeneous

(Fi(v) = F (v) and δi = δ) and δ > 0. These examples corresponds to type-

independent extensive margin models (case B in Table 2) which have been the

focus of most of the empirical literature. In this model, condition (3) becomes

f(v)/F (v) < δ−1 and has to hold for every v > 0 = vi.

Example 1 (Multiplicity). Suppose that F (v) = v2 with support in [0, 1]. By

Corollary 1, homogeneous games possess a unique symmetric equilibrium, which

is given by xs = (
√

1 + 4δ2 − 1)/(2δ) < 1 for any δ. Notice that uniqueness is

not guaranteed, as condition (3) is never satisfied for all v > 0.9 In particular, for

δ >
√

3/4, there are two asymmetric equilibria for i = 1, 2 given by

xi =
(

1 +
√

4δ2 − 3
)/

2δ x3−i =
(

1−
√

4δ2 − 3
)/

2δ.

8The implicit function theorem guarantees the local uniqueness of the vector x defined by
H(x) ≡ (H1(x), H2(x), . . . ,Hn(x)) = 0. Gale and Nikaido (1965) show that, when the Jacobian
of H is a P-matrix, the vector x becomes globally unique. Although the proof provided is
constructive, it can be shown that condition (3) guarantees the Jacobian of H to be a P-matrix.

9Since f(v)/F (v) = 2/v, for every δ there exists a value of v > 0 such that (3) does not hold.
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Example 2 (Extreme-Value Distribution). Following Seim (2006), assume that

v follows a standard type-I extreme value distribution. Then f(v)/F (v) = e−v,

which is decreasing in v. Since f(0)/F (0) = 1, condition (3) is satisfied for every

δ < 1, which implies that the symmetric equilibrium is the unique equilibrium for

this set of parameters.

Example 3 (Normal Distribution). Berry and Tamer (2006) observe that, when

vi ∼ N(µ, σ) and δ > µ, the entry game has multiple equilibria when σ → 0 and

a unique equilibrium when σ → ∞. Let µ = 1 and δ = 4. Using that the reverse

hazard rate for a normal distribution decreases in v, that f(0)/F (0) decreases in σ,

and condition (3), we can establish that the entry game has a unique equilibrium

whenever σ > 3.876.

4.2 Uniqueness in Applications

To illustrate how our sufficient condition applies to commonly-used models in the

literature, consider the following example under linear profit functions. When firm

i is the sole entrant in the market its profits are πi(vi) = vi−Ki where Ki are the

publicly known entry costs of firm i. If both firms enter, firm i’s profits become

πi(vi, vj) = (1− γ)vi− ρvj − δ−Ki. The profit functions are increasing in firm i’s

private signal vi (assumption A1) and are weakly decreasing in j’s entry (δ ≥ 0 and

γ ∈ [0, 1]) and in j’s private information (ρ ≥ 0, as in A2). This parametrization

captures the idea that entry by an opponent decreases firm profitability and that

the magnitude of this loss depends on the traits of the competing firm.

Consider firm i’s profit loss when j enters the market: ∆i,j(vi, vj) = γvi+ρvj+δ.

Table 2 summarizes different entry models under various assumptions of market

competition.10 Case A corresponds to scenarios in which firms do not interact.

This may happen because firms are not direct market competitors, competitors

are atomistics, or where firm i is the only potential entrant in the industry.

A type-independent extensive margin model (case B) assumes that j’s entry

decreases i’s profit, but this decrease is independent of the characteristics of both

firms. A large extent of the Industrial Organization literature, beginning with the

seminal work of Bresnahan and Reiss (1991) and Berry (1992), has examined these

effects in the context of a complete information model. Seim (2006) and Grieco

(2014) are examples of case B models in the context of private information. The

10See the Online Appendix for a discussion on the micro-foundation of these cases.
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Table 2: Different dimensions of competition in oligopolistic models

Case Competition Model ∆i,j(vi, vj) Condition (3) CDF
A No Interaction 0 Always unique No condition

B Type-independent e.m. δ
fi(vi)

Fi(vi)
<

1

δ

Bounded
hazard rate

C Type-dependent e.m. γvi
vifi(vi)

Fi(vi)
<

1

γ
Concave∗

D Intensive margin ρvj
vifi(vi)

Fi(vi)
< 1 Concave∗

E Full Oligopoly γvi + ρvj + δ
vifi(vi)

Fi(vi)
< 1 Concave∗

Notes: (a) e.m. stands for extensive margin. (b) The parameters of the model in each case are: A)
γ = ρ = δ = 0; B) γ = ρ = 0; δ > 0; C) ρ = δ = 0; γ ∈ (0, 1); D) γ = δ = 0, ρ > 0, and; E) δ, ρ >
0, γ ∈ (0, 1). (c) Conditions D and E make use of πi(vi, vj) = max{0, (1− γ) vi − ρvj − δ} −Ki

as a firm may choose not to produce if it leads to negative variable profits. Thus, ∆i,j(vi, vj) is
always bounded above by vi.
∗When the support of Fi is R+, concavity of the CDF is equivalent to vfi(v) < Fi(v) (cases
C–E). When the support of Fi is R, the conditions above are weaker than concavity.

proposed model also accommodates important aspects of competition that have

not yet been fully explored in the literature.11

A type-dependent extensive margin model (case C) incorporates the idea that

j’s entry directly affects i’s profitability by taking away a share γ of the market.

In contrast to the previous models, the profitability of i in its share of the market

and, consequently, the magnitude of i’s profit loss, directly depends on i’s private

information. This scenario may represent competition in differentiated products

where a firm’s private information corresponds to the quality or marginal costs of

its product. Similarly, we could consider models in which the intensive margin

effect (case D) is isolated. In these models, larger draws of vj, which can be

interpreted as facing a more competitive opponent, leads firm i to experience a

larger profit loss when j enters the market.

More generally, our framework can account for competition models that incor-

porate both intensive and extensive margins effects (case E). It can also accommo-

date micro-founded models—such as price and quantity competition with general

11Entry models in which private information is introduced as a linear additive shocks (case B)
include Seim (2006); Aguirregabiria and Mira (2007); Bajari et al. (2007); Pakes et al. (2007);
Pesendorfer and Schmidt-Dengler (2008); Sweeting (2009); Aradillas-Lopez (2010); Bajari et al.
(2010); De Paula and Tang (2012); Vitorino (2012); Grieco (2014); Mazzeo et al. (2016).
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demand forms—in which these effects can appear in non-linear ways. Finally, the

model is flexible enough to capture heterogeneity among firms, incorporating the

idea that firms may have different size, capacities, technologies, suppliers, loca-

tions, etc.

Table 2 also summarizes sufficient condition (3) for the different cases. Due to

the linerarity of the profit function, the sufficient condition translates to imposing

structure to the distribution of private information. In type-independent extensive

margin models (case B), for instance, it is sufficient that the reversed hazard rate

of the distributions to be bounded by the inverse of the increase-in-competition

effect, δ. When the reversed hazard rate fi(vi)/Fi(vi) is decreasing in vi, as is the

case with Type-I Extreme Value distributions, it is sufficient to check the condition

at the entry lower bound vi. For cases C–E, a weak version of concavity of the

CDF guarantees equilibrium uniqueness.

More generally, in micro-founded models of competition, condition (3) may be

hard to verify. It requires computing closed-form solutions to both monopolistic

and duopolistic outcomes. The next result provides a stronger sufficient condition

that may be easier to check in applied work.12

Corollary 2. Let π̃i(ve) ≥ 0 be firms’ i variable profits under market structure and

realization of private information ve. The entry game has a unique equilibrium if

for every firm i and all vi > vi:

ε ≡ π̃′i(vi)

π̃i(vi)

/
fi(vi)

Fi(vi)
> 1. (4)

The corollary simply follows from observing that π′i(vi) = π̃′i(vi) and ∆(vi, vj) =

π̃i(vi) − π̃i(vi, vj) ≤ π̃i(vi) because variable profits are non-negative. The term ε

corresponds to the elasticity of firm i’s monopolistic variable profits with respect

its distribution of private information. Condition (4) tells us that uniqueness

is achieved when monopoly variable profits are responsive to changes in private

information; i.e., when a change in firm i’s expected profit induced by increasing xi

cannot be overcome by a change in best response xj. Condition in (4) is stronger

than (3) in the sense that there may exists models in which (3) is satisfied but

none of the conditions in (4) hold. It is, however, easier to check as only requires

information about each firm’s monopolistic variable profits.

12See the Online Appendix for examples of micro-founded models and their conditions for
uniqueness.
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4.3 Comparative Statics

We now study comparative statics for the entry model. We begin by parameterizing

the fundamentals of the model (πi, Fi). Suppose that, for each firm i, there are

parameters (ωi, θi) characterizing the distribution of private information Fi(vi) =

Fi(vi|ωi) and profits πi(ve) = πi(ve, θi), respectively. We assume that for every

i, the family (ωi)
n
i=1 orders Fi(vi|ωi) in terms of first order stochastic dominance

(FOSD). In particular, we assume ω′ > ω implies Fi(vi|ω′) ≤ Fi(vi|ω) for every

vi. Similarly, the family of parameters (θi)
n
i=1 order the firms’ profits uniformly ;

i.e., θ′ > θ implies πi(ve, θ
′) > πi(ve, θ) for every vector and market structure ve.

In words, under higher θ, firm i becomes uniformly more profitable. Examples

of objects that can order firms profits uniformly are entry costs, fixed costs of

production, or access to cheaper suppliers. Finally, using (2), define

H̄i(x) ≡
∫ ∞
xi

Hi(s, x−i)dFi(s) (5)

to be the ex-ante expected profit of firm i when the vector of cutoffs x is played.

Proposition 2. In equilibrium and under condition (3), an increase of ωi or θi

leads to: (i) A decrease in xi and a increase in xj. (ii) An increase in H̄i(x) and

a decrease in H̄j(x).

Proposition 2 is quite intuitive, it tells us that when firm i becomes more

competitive—by having, for example, lower entry costs or systematically higher

draws of private information—firm i is more likely to participate in the market

and receives higher expected profits. In contrast, when an opponent becomes more

competitive, a firm is less likely to enter the market and receives lower expected

profits. Observe that the results in Proposition 2 are only guaranteed when the

conditions for uniqueness in equation (3) hold. This suggests that models possess-

ing multiple equilibria may be associated with ill-behaved comparative statics.

Some empirical studies of entry models under complete information deal with

estimation problems due to multiplicity of equilibria using an equilibrium selection

criteria. A common criteria used in practice is to assume that there exists an entry

order among firms which is based on the firm’s profitability. In particular, it is

assumed that more profitable firms enter the market first (Berry, 1992; Jia, 2008).

Because under incomplete information multiplicity of equilibria may still exist, a

natural question to ask is whether this methodology can be extrapolated to this
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context. More precisely, we examine whether firms’ ex-ante expected profits—i.e.,

before firms observe their private information—relate to cutoff order and entry

probabilities. Ex-ante expected profits are a good proxy for (ex-post) aggregated

firm profitability, as the latter could be understood as the realization of multiple

entry decisions in independently drawn markets. We show that the relative like-

lihood of entering a market, cutoff order, and firm profitability are related in the

class models defined below.13

Definition (Quasi-homogeneous in Distributions – QHD). An entry game is quasi-

homogeneous in distribution when firms are characterized by homogeneous and

anonymous profit functions, a collection of parameters (ωi)
n
i=1 and CDFs Fi(vi) =

F (vi|ωi) such that ωi orders Fi in terms of first order stochastic dominance

Definition (Quasi-homogeneous in Profits – QHP). An entry game is quasi-

homogeneous in Profits when firms are described by homogeneous CDFs, a collec-

tion of parameters (θi)
n
i=1, and πi(ve) = π(ve, θi) where θi order i’s profits uniformly.

Quasi-homogeneous entry games corresponds to the private information ana-

logue of a wide class of models studied in practice, including the analogue of Berry

(1992) where firms can be ex-ante ranked by entry costs. Other examples of quasi-

homogeneous games arise in situations where firms are ranked in terms of their

production capacities, or where firms produce homogeneous goods but may have

access to different production technologies. In practice, QHD games have been

used in the empirical auction literature by Athey et al. (2011) where bidders are

ordered in terms of hazard rates; and QHP models have been studied by Vitorino

(2012) where profits are linear in the private information and vi are identically

distributed among firms.

Proposition 3. Firms ex-ante profits (5) can be (inversely) ranked according to

the order of equilibrium cutoffs when: (i) firms are homogeneous and play an asym-

metric equilibrium; (ii) firms are quasi-homogeneous (in distributions or profits)

and play herculean equilibria. In these situations, a lower entry cutoff also trans-

lates to higher probability of entering the market.

In entry games where firms have identical distributions of private information,

as in homogeneous entry games or in QHP games, entry cutoff ranking naturally

13The difference between quasi-homogeneous (QH) games and the order presented at the be-
ginning of this section is that QH games order across instead of within a firm.
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translates into a ranking of market-entry probabilities. Despite firms having dif-

ferent CDFs, this relation between cutoff and entry likelihood extends to QHD

games whenever firms play herculean equilibria. In applied work, these connec-

tions are important, as they link a firm’s observed behavior (e.g., firm’s probability

of entering a market) with equilibrium behavior and observed profitability.

In more general models of market entry, Proposition 3 does not necessarily

hold. We can construct examples in which cutoff order, entry probability, and

profit-ranking do not relate. To illustrate this, consider again the example in Table

1 corresponding to a type-independent extensive margin model (Table 2 case B).

Consider the following set of assumptions: firms pay an entry cost K = 1/2,

δ1 = 1/4, δ2 = 1/6, v1 ∼ U [0, 1], and v2 ∼ U [0, 4/5]. In this scenario firms are not

(quasi) homogeneous but are equally strong with si = 4/7 for i ∈ {1, 2}. Firm

1 is more profitable in expectation, because F1(v) FOSD F2(v). However, firm 1

suffers more losses when facing competition because δ1 > δ2. Also, it is not hard

to verify that condition (4) holds for all vi > 1/2 ≡ vi.
14 Hence, the game has

a unique equilibrium (the herculean equilibrium). By Corollary 1, firms playing

cutoffs equal to their strength, i.e., x1 = x2 = 4/7, is an herculean equilibrium.

Thus, firms are not (strictly) ordered in terms of their entry cutoffs. Observe that

firm 1 is more likely to enter the market as F1(4/7) = 4/7 < 5/7 = F2(4/7).

Firm 1 also obtains higher expected profits as H̄1(X)/H̄2(X) = 225/64 > 1. By

continuity, one can construct similar examples with a slightly smaller (larger) δ1

such that x1 < s1 < s2 < x2 (x1 > s1 > s2 > x2), while preserving equilibrium

uniqueness and the previous rankings in terms of expected profit and probability

of entering the market.

The example above shows that our framework can accommodate situations

where the ranking of firm profitability (represented by vi) is different than the rank-

ing of firm competitiveness (represented by δi). In complete information models,

this degree of firm heterogeneity would violate the assumption of the equilibrium

selection criteria proposed by Berry (1992). To illustrate this, consider a perfect

information version of the example in Table 1. Assume that monopoly profits are

πM1 = 0.23 and πM2 = 0.2 and, using δ1 = 1/4 and δ2 = 1/6, duopoly profits are

πD1 = −0.02 and πD2 = 0.033. This is a simple variation on the Bresnahan and

Reiss (1991) model where δi is heterogeneous among firms.15 Because complete in-

14Simply observe that fi(vi)/Fi(vi) = v−1i , ∆i = δi, and π′(vi, ve) = 1 for all e. Then (4) for
firm i becomes vi > δi which holds for vi >vi=1/2.

15Ciliberto and Tamer (2009) propose an estimator to partially identify the parameters of the
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formation models may have multiple equilibria, Berry (1992) proposed a monotone

selection criteria where, at every step, the most profitable firm decides whether to

enter the market. This criteria relies on the assumption that the ranking of firm

profitability does not change across market structures. In the example above, this

is not true. When there are no firms in the market, firm 1 has the largest monopo-

listic profits and the criteria prescribes entry. In the second step, firm 2 also enters

the market because πD2 > 0. This, however, cannot be an equilibrium because

πD1 < 0. Moreover, the unique equilibrium of the game is that only firm 2 enters,

even though firm 1 would have higher monopoly profits. Although we assume that

firms possess private information, one of our main contributions is to provide a

framework and a methodology that can handle any type of firm heterogeneity, in-

cluding situations in which the ranking of firm profitability changes across market

structures.

5 Equilibria with More than Two Entrants

This section extends the ideas behind Proposition 1 in contexts with more than two

potential entrants. The first extension studies an environment with n homogeneous

firms. The second extends results to a scenario in which firms belong to one of two

groups, each group having an arbitrary number of potential entrants. Firms are

identical within groups, but there are no restrictions on the degree heterogeneity in

profit functions and distribution of private information that firms can have across

groups.

The next definition extends firm’s i profit loss after firm j enters the market

under more general market structures. As before, this object will be important in

defining the sufficient condition for uniqueness of equilibrium. For any firm i and

fix a market structure e such that i participates (i.e., e ∈ Ei), for any firm j not

participating in market e (i.e., j ∈ Oi(e)) define:

∆i,j(vi, vj, ve) ≡ πi(vi, ve\i)− πi(vi, vj, ve\i) (6)

to be firm i’s profit loss when firm j enters the market under initial market structure

e, firm i’s private information is vi, firm j’s private information is vj, and the rest

of the entering firms private information is represented by ve\i. Observe that, by

Bresnahan and Reiss (1991) model when δi varies by firm.
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A2, this loss is non-negative for any vi, vj and ve, i.e., ∆i,j(vi, vj, ve) ≥ 0.

5.1 Homogeneous Entry Games

We begin by extending the ideas behind Proposition 1 to n-firm homogeneous entry

games which were formally defined in Section 3.2. We can drop the i sub-index

from profits and distributions functions, and write i’s profit loss in market structure

e as ∆(vi, vj, ve), because under homogeneity profits functions are anonymous and

identical across firms.

Proposition 1A. In homogeneous entry games, there exists a unique herculean

equilibrium characterized by the strength of the firms; i.e., xi = s for all i, where

s is the unique number that solves

σ(s) ≡
n−1∑
r=0

{(
n− 1

r

)
F (s)n−1−r

∫ ∞
s

π(s,yr)φi(yr)d
ry

}
= 0.

Moreover, if for every market structure e ∈ Ei, every opponent j ∈ Oi(e), and

draws of private information vk ≥ vk for k ∈ e ∪ j the following holds

∆(vi, vj, ve)

π′(vi, ve)

f(vi)

F (vi)
< 1, (7)

the herculean (i.e., symmetric) equilibrium is the unique equilibrium of the game.

From Corollary 1 we know that homogeneous games have a unique symmetric

equilibrium. Proposition 1A, thus, builds upon this result by providing a sufficient

condition under which the symmetric equilibrium is the unique equilibrium of

the entry game. Comparing conditions (7) and (3) two key differences arise: (i)

condition (7) has to hold across more market structures e (not only monopoly-

duopoly), and; (ii) it has to hold for every realization of ve. This suggests that

condition (7) is, in principle, more demanding than (3). In practice, however,

this may not be the case. As shown in Proposition 4 in Section 6 below, for

certain models of quantity competition, if condition (4) in Corollary 2 holds for

the monopolist, then condition (7) holds for every possible market structure.
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5.2 Two Groups of Firms

We now extend our model to a market characterized by two groups of firms g ∈
{1, 2}. Within each group firms are identical (homogeneous). Group g consists of

mg ∈ N firms described by the pair (πg, Fg). Let gi be the group of firm i, define

πi(ve) ≡ πgi(vi, v
gi
e\i, v

3−gi
e ) where vge represents the draws of private information of

firms in group g that participate under market structure e. We assume that profits

are anonymous to the private information of competitors within a group: i.e.,

πgi(vi, v
gi
e\i, v

3−gi
e ) = πgi(vi, v

gi
permg

i (e\i)
, v3−gi

permg
i (e)

) where vpermg
i (e)

is any permutation

that fixes the group g and the realizations in ve but changes the identities of the

entering firms in e excluding the identity of firm i.

Because firms are homogeneous within a group, an herculean equilibrium pre-

scribes that every firm within a group should play symmetric strategies. To for-

mally characterize an equilibrium, fix a firm i, let ϕgi (ve) =
∏

j∈e\i,gj=g fg(vj) be

the probability that firms participating under the structure e that belong to group

g but are not firm i, and draw the vector of private information vge . Without loss

of generality, we assume that firms in group 1 are stronger than those in group 2

(s1 ≤ s2). For a pair of cutoff strategies x = (x1, x2) define E[πgi(vi)|x, r, k] as the

expected profits of a firm in group gi when it draws private information vi, and r

other firms of group gi and k firms of group 3− gi have entered the market, that is

E[πgi(vi)|x, r, k] =

∫ ∞
x1

(∫ ∞
x2

πgi(vi, v
gi
e\i, v

3−gi
e )ϕ3−gi

i (ve)ϕ
gi
i (ve\i)d

kv3−gie

)
drvgie\i

where the integrals are over the r and k dimensions of vgie\i and v3−gie respectively.

Then, a pair of strategies x = (x1, x2) is an equilibrium if and only if, from the

perspective of a firm in group gi, x satisfies:

mj∑
k=0

{(
mj

k

)
Fj(xj)

mj−k

[
mi−1∑
r=0

(
mi − 1

r

)
Fi(xi)

mi−1−rE[πi(xi)|x, r, k]

]}
= 0,

where, for notational ease, i = gi and j = 3 − gi. To understand the equation

above, fix a market structure e in which r firms of group i and k firms of group j

participate in the market. Because there are mj firms in group j, there exist mj

choose k possibilities to obtain a market structure with k competitors from group j,

each occurring with probability Fj(xj)
mj−k. Similarly, because the analysis is from

the perspective of a firm in group gi, there exists mi − 1 choose r possibilities to
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observe r competitors from group i, each occurring with probability Fi(xi)
mi−1−k.

The expression above is, thus, obtained by summing across every possible market

structure e.

Proposition 1B. An herculean equilibrium always exists. Moreover, the her-

culean equilibrium is the unique equilibrium of the game if for any market structure

e ∈ Ei, any firm j 6∈ e, and any type vk ≥ vk for k ∈ e∪ j the following conditions

holds:

� If j belongs to i’s group (i.e., gj = gi):

∆i,j(vi, vj, ve)

π′i(vi, ve)

fi(vi)

Fi(vi)
< 1 (8)

� If j does not belong to i’s group (i.e., gj 6= gi):

∆i,j(vi, vj, ve)

π′i(vi, ve)

fi(vi)

Fi(vi)
<

1

m3−gi
O(e)

(9)

where m3−gi
O(e) is the number of firms in group 3− gi that do not participate in

market structure e.

Proposition 1B provides two conditions that need to be satisfied for uniqueness.

Condition (8) is analogous to (7) in Proposition 1A, as it is required to hold

among firms within the same group; i.e., among homogeneous firms. This condition

guarantees that only group-symmetric strategies are played. Empirical applications

usually restrict their analyzes to these type of strategies (see references below).

Condition (8), thus, guarantees that this restriction is without loss. Recall that

herculean equilibria are always group-symmetric equilibria. Firms belonging to the

same group are equally strong and, therefore, play the same (herculean) strategy.

Condition (9), on the other hand, guarantees that the herculean equilibrium is

the unique equilibrium of the game. Condition (9) has to hold for every firm that is

not in the same group than firm i and is a bit more demanding than condition (8),

as its right hand side (RHS) is a function of the number of firms not participating

in market structure e. In other words, the larger the number of firms in group

3 − gi participating in e, the more likely is that condition (9) holds. Notice that

(9) has to hold for any j ∈ O(e), thus, the smallest value for m3−gi
O(e) is 1.

In applied work, models of two groups of potential entrants have been used by

Athey et al. (2011) and Roberts and Sweeting (2013), who study the timberwood
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industry, and distinguish between loggers and mills; and by Krasnokutskaya and

Seim (2011), who study highway procurement, and divide firms between favored

(small) and non-favored (large) firms. This type of group structure can arise in

applications ranging from incumbents and entrants, high and low quality segments,

local and international producers, discount retailers and traditional supermarkets,

to legacy and low-cost airlines.

6 Discussion

In this section we discuss some results in greater depth, present some extensions,

and relate our results to other topics outside the entry literature.

Uniqueness and Market Demand The sufficient condition for uniqueness (4)

can be related to observable market objects. We can do this by interpreting private

information as marginal cost. In particular, assume there exists a marginal cost

function ci(vi) that is decreasing and differentiable in vi. Let p∗i (ve) be firm’s i

equilibrium price under market structure and realization of private information ve.

Then, µi(ve) ≡ (p∗i (ve)−ci(vi))/ci(vi) represents i’s markup under market structure

and private information ve.

Lemma 4. In games in which higher vi leads to lower marginal costs ci(vi), con-

dition (4) is equivalent to

−c′i(vi)
ci(vi)

/
fi(vi)

Fi(vi)
> µi(vi). (10)

This function identifies a unique equilibrium for entry games in which the elas-

ticity of marginal costs with respect to the distribution of private information is

larger than the mark-up. The mark-up connects uniqueness to demand elasticity.

For example, markets with inelastic demand tend to have lower mark-ups, suggest-

ing that those markets have a unique entry equilibrium. Similarly, if firms have a

very elastic marginal cost function with respect to the private information vi, the

game is likely to have a unique equilibrium.

A Single Sufficient Condition The number of sufficient conditions to check

increase exponentially in the number of potential entrants n. This is the case be-

cause, for each firm i, we have to check whether conditions hold for each feasible
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market structure. The next proposition shows that, in quantity competition mod-

els, it is sufficient to check a single condition per firm. In particular, we show that

when uniqueness condition (4) (or (10)) holds under monopoly, the conditions in

markets with more competitors also hold.

Proposition 4. In quantity competition games in which higher vi leads to lower

marginal costs ci(vi) and where entry decreases markups, µ(ve). If condition (4)

(or equivalently condition (10)) holds for firm i at vi, then condition (7) holds at

ve = (vi, ve\i) for any realization of ve\i and market structure e ∈ Ei.

Consider a Cournot competition game with homogeneous goods and linear de-

mand P = 1−Q where Q =
∑

i∈n qi and ci(vi) : R→ [0, 1) (see Online Appendix).

As in Corollary 2, we can substitute ∆i,j(x, y, ve) for π̃i(x, ve) in condition (7) and

get a stronger sufficient condition. Then, it is not hard to verify

−(1− ci(vi))
2c′i(vi)

=
π̃i(vi)

π̃′i(vi)
≥ π̃i(ve)

π̃′i(ve)
= − 1

2c′i(vi)

(
1 +

∑
j∈e\i cj(vj)

ne
− ci(vi)

)

where c′i(vi) < 0 for all vi. This inequality implies that checking for (4) (com-

petition under monopoly) at the realization vi is sufficient for (7) to hold at any

ve = (vi, ve\i); i.e., (7) holds for any market structure e, independently of the

realization of competitors’ private information ve\i.

Selective Entry Recent structural analyses of market entry study scenarios in

which firms are ex-ante homogeneous but become partially informed before their

entry decision by receiving a signal correlated with their type. Since firms with

high realizations are relatively more likely to enter the market, there is selective

entry.16 At one extreme there are LS models (Levin and Smith, 1994) where signals

are infinitely noisy; i.e., firms possess no private information before entry. At the

other extreme are S models (Samuelson, 1985) in which firms become perfectly (and

privately) informed about their type. The model presented in Section 2 belongs to

the latter category. Below, we argue that both models with perfectly informative

signals and models with a partially informative signals can be solved using the tools

developed in this article. Notice, however, that these models may have different

empirical predictions (Gentry and Li, 2014). For example, in a selective entry

16Selective entry models have been studied by Roberts and Sweeting (2013); Gentry and Li
(2014); Bhattacharya et al. (2014); Sweeting and Bhattacharya (2015); Grieco (2014).
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model with a partially informative signal, an entrant who receives a high signal

will submit a “very low” bid after learning that his true value is low.17 This cannot

happen in games with perfectly informative signals.

LS models, as argued by Roberts and Sweeting (2013, 2016) and Gentry and

Li (2014), produce no selection in unobservables. These models can predict the

number, but not the identity, of entrants from a particular group. The models also

predict that there are no differences in unobservable (to other players) characteris-

tics between entrants and non-entrants. These are the same predictions of models

à la Bresnahan and Reiss (1991). Because entry in LS models occurs before private

information is revealed, these types of entry games are de facto games of complete

information. Li and Zheng (2009) and Krasnokutskaya and Seim (2011), modify

the LS model by allowing entry costs to be private information before entry occurs,

but realization of valuations to be learned after entry. This condition turns the

entry stage into a private information game, which is embedded in our framework.

However, because entry costs do not affect valuations, there is no selective entry:

the distribution of valuations before and after firms’ entry decisions coincide.

We now show that under a simple informational assumption and a reinterpre-

tation of the profit function, our results extend to general selective entry models.

Let Fi(vi, εi) be a joint cumulative distribution of signals vi and types ε with sup-

port in R2. The distributions Fi are independent across firms. Before making their

entry decisions, firms observe the signal vi that partially informs firms about their

type εi. Let Fi(vi) =
∫∞
−∞ Fi(vi, s)ds and let Fi(εi|vi) = Fi(vi, εi)/Fi(vi) be the

CDF of εi conditional on vi.

(A4) Affiliated Signals: For v′ > v, Fi(ε|v′) < Fi(ε|v) for all i and ε.

Assumption A4 states that higher signals lead to higher expected types in terms of

First Order Stochastic Dominance (FOSD) similarly to Marmer et al. (2013) and

Gentry and Li (2014).

Let π̂i(εe) be the profits of firm i when the market structure is e and the

realization of private information for every firm in e is εe. Then, we can re-interpret

πi(ve) as

πi(ve) =

∫ ∞
−∞

π̂i(εe)
∏
k∈I(e)

fk(εk|vk)dneεe

where the integral is across the ne dimensions of εe. Given the properties of FOSD,

17Where a “very low” bid is in relation to the entry cost, the number of potential entrants and
their distributions of private characteristics.
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it is straightforward to see that if the profit function π̂i(εe) satisfies analogous

conditions to A1-A3, then πi(ve) satisfies the assumptions of the model, and the

results go through.

Observe that πi(ve) is obtained by integrating π̂i(εe) over all possible realiza-

tions of εe. This means that we could weaken the differentiability requirements of

π̂i and the everywhere (strictly) increasing assumption in εi, and still obtain A1

in πi. This means that our results apply to selective entry models in which firms

compete on prices with homogeneous goods and in second-price auctions. This

case is studied further in Esṕın-Sánchez et al. (2018).

Dynamic Oligopoly Models with Entry We present our results in the context

of static entry games. Our findings, however, extend to dynamic entry models á

la Ericson and Pakes (1995) when firms possess private information when deciding

whether to enter (e.g., Aguirregabiria and Mira, 2007). In a dynamic setting, it

is sufficient to show that the entry value function (the sum of current profits and

the discounted expected sum of future profits) satisfies assumptions A1-A3, when

firms make their entry decisions. Although it is beyond the scope of this article to

find conditions in the game fundamentals that guarantee that the value function

satisfies these assumptions, we think it is an important avenue for future work.

Supermodular Games There are some similarities in our approach to the the-

ory of supermodular games. Although, supermodularity requires players’ actions to

be strategic complements (see Morris and Shin, 2003), and while we treat actions by

contrast as strategic substitutes, our uniqueness condition imposes a payoff struc-

ture that resembles supermodularity. To illustrate this, consider an entry game

with two potential firms. The uniqueness condition requires that firm i’s profits

from participating in the market are increasing in its private information, even

when firm j best-responds to i’s entry. That is, once we account for the opponent’s

actions, higher draws of private information always leads to higher incentives to

enter.

7 Concluding Remarks

In this article, we study entry games under private information. Our analysis

generalizes previous models by allowing heterogeneous firms and rich strategic
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interactions. The proposed model provides a framework that can be used in em-

pirical work to incorporate firm selection. To characterize the game, we propose

a simple firm index, called strength, that orders firms by competitiveness. This

index greatly reduces the computational burden of calculating equilibria with het-

erogeneous firms. The equilibrium associated with this index (herculean) can be

thought of as a focal equilibrium in games with heterogeneous firms. This equilib-

rium always exists and is unique under mild conditions that are easy to check.

The model presented here is general, encompassing entry models currently used

in both the theoretical and the empirical literature. The tools we develop could

also be useful in solving more general (non-entry) games. Although the research is

beyond the scope of this article, the results could be extended to dynamic games

with finite or infinite horizons. In that case, one would have to check that the

value function in the Bellman equation is monotone on the firm’s type, and that

the other regularity conditions hold. We believe that this avenue of research has

great potential.
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Appendix

A Omitted Proofs

Proof of Proposition 0. Best responses are cutoff strategies: Fix any firm i and
vector of strategies τ . Because i’s profit is linear in τi, i’s best response is to participate
with probability one whenever there is a positive payoff of doing so. Suppose i enters
the market with certainty (τi(vi) = 1). A1 implies that profits are strictly increasing
in vi. By A3 Πi(vi, τ) ≤ 0, and Πi(v̄i, τ) > 0. Thus, Πi(vi, τ) single crosses zero
and i’s best response to τ−i is the cutoff strategy defined by the value xi that satisfies
Πi(xi, τi = 1, τ−i) = 0.

Existence: We check the conditions of Brouwer’s fixed-point theorem. Because Fi is
atomless and has full support and πi(ve) being continuous and differentiable in vi, player
i’s best response lies in the compact and convex set [vi, v̄i]. Thus the n-dimensional
function of best responses is a continuous mapping from ×ni=1[vi, v̄i] to itself and the
conditions for the theorem are met. �

Proof of Lemma 1. By the previous proof a cutoff strategy is defined as the value xi
satisfying Πi(xi, τi = 1, τ−i) = 0. Because in a cutoff equilibrium Pr[e|τ, vi] is either zero
or one. Integrating (1) over payoff-irrelevant firms delivers (2). �

Proof of Lemma 2. Start with the derivative of Hi with respect to i, then:

∂Hi

∂xi
=
∑
e∈Ei


 ∏
j∈Oi(e)

Fj(xj)

∫ ∞
{xj}j∈Ii(e)

π′i (xi, ve)φi(ve)d
ne−1ve\i

 > 0. (11)

For the derivative of Hi with respect to j, pick a market structure e such that j 6∈ e.
Conditional on e, the derivative of Hi with respect to xj is equal to:

fj(xj)

 ∏
k∈Oi(e)\j

Fk(xk)

∫ ∞
{xk}k∈Ii(e)

πi (xi, ve)φi(ve)d
ne−1ve\i > 0.

Now take market structure e from above and, using Leibnitz differentiation, compute
the derivative of Hi with respect to xj conditional on market structure e ∪ j; i.e., entry
decisions by every firm remain the same as in e except that of firm j, which now enters:

−fj(xj)

 ∏
k∈Oi(e)\j

Fk(xk)

∫ ∞
{xk}k∈Ii(e)

πi (xi, xj , ve)φi(ve)d
ne−1ve\i < 0.

Observe that both expressions from above only differ in sign and in the profit function
that is integrated over. Summing both equations delivers a positive expression where
the integral is over ∆i,j(xi, xj , ve) which is the non-negative expression defined in (6).
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Summing across every market structure we obtain:

∂Hi

∂xj
= fj(xj)

∑
e∈Ei\Ej


 ∏
k∈Oi(e)\j

Fk(xk)

∫ ∞
(xk)k∈Ii(e)

∆i,j (xi, xj , ve)φi(ve)d
ne−1ve\i

 . (12)

Thus, the derivative is non-negative. �

Proof of Lemma 3. We show that si exists and that σi(s) single crosses zero.
Existence: Observe that A3 jointly with A2 imply σi(vi) < 0. We need to show that
exist ŝ such that σi(ŝ) > 0, so that σi(si) = 0 exist by the Intermediate Value Theorem.
Observe that, by Lemma 2, σi(s) ≥ Hi(xi = s,−∞−i).18 But, by A3, there exist ŝ such
that Hi(xi = ŝ,−∞−i) > 0. Thus, for the same ŝ, we have that σi(ŝ) > 0.
Uniqueness: By Lemma 2 and the chain rule we have that σ′i(s) > 0. Thus, σi(s) single
crosses zero; i.e., there is a unique value si satisfying σi(si) = 0. �

Proof of Corollary 1. By definition of strength, if σi(s) = 0 for every i, then
Hi(s, . . . , s) = 0 for every i and xi = s for all i constitute an equilibrium. The equilibrium
is the unique herculean equilibrium as, by Lemma 3, strength is uniquely defined. �

Proof of Proposition 1. Preliminaries: Suppose first s1 = s2 = s. Then, by definition
of strength, x1 = x2 = s corresponds to a herculean equilibrium. Assume without loss
of generality s1 < s2. Define g(x) to be the function that solves H1(g(x), x) = 0. Then,
g(x) corresponds to firm one’s best response to firm two, when firm two plays the cutoff
strategy x. By Lemma 7 in Appendix B, the value g(x) exists and is unique; i.e., g(x) is
well defined.

Claim 1. g(s1) = s1, g
′(x) ≤ 0 and, under (3), g′(x) is bounded below by

− f2(x)F1(g(x))

F2(x)f1(g(x))
. (13)

Proof. By definition of strength H1(s1, s1) = 0. Then, when x = s1, g(s1) = s1. Using
the implicit function theorem:

g′(x) = − f2(x)∆1(g(x), x)

F2(x)π′1(g(x)) +
∫∞
v π′1(g(x), y)dF2(y)

which is non-positive as the denominator is positive and the numerator is non-negative.
For the lower bound of g′(x) observe that the integral term in the denominator is positive.
Then, taking the integral to zero:

g′(x) ≥ −f2(x)∆1(g(x), x)

F2(x)π′1(g(x))
≥ −f2(x)F1(g(x))

F2(x)f1(g(x))
,

where condition (3), ∆1(g(x), x) ≤ F1(g(x))π′1(g(x))/f1(g(x)), was used in the second
inequality. �

18The notation xi = −∞ is used to denote that firm i always enters the market; i.e., plays the
entry cutoff −∞. Thus, −∞−i denotes when every firm but i always enter the market.
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Existence: Define the function h : [s1,∞)→ R by h(x) = H2 (x, g(x)). This function
is continuous and corresponds to the expected profits of firm two entering in the market
when firm 1 best responds to x. Define x2 to be the value satisfying h(x2) = 0, we
prove that x2 exists and that is an herculean equilibrium. The next two claims prove
the result.

Claim 2. x2 ∈ (s1,∞) is necessary and sufficient for x1 < x2 (herculean cutoffs).

Proof. g(x) is weakly decreasing in x and g(s1) = s1. Therefore, x1 = g(x2) < x2 if and
only if x2 ∈ (s1,∞). �

Claim 3. h(s1) < 0 and there exists x̂ such that h(x̂) > 0.

Proof. Because firm two is weak, Lemma 3 and the definition of strength implies h(s1) =
H2 (s1, s1) < H2 (s2, s2) = 0. For the second part of the claim start by observing that
H2(x, y) is increasing in y by Lemma 2. Then H2(x, g(x)) ≥ H2(x,−∞) for all x. By
A3, there exists x̂ such that H2(x̂,−∞) > 0 and the result follows. �

Claim 3 and the Intermediate Value Theorem imply that exists x2 > s1 such that
h(x2) = 0. Claim 2 implies that (g(x2), x2) constitute an herculean equilibrium.

Uniqueness: The uniqueness proof is divided in two claims. Condition (3) is used in
each of them.

Claim 4. There exists a unique herculean equilibrium.

Proof. To prove uniqueness within the herculean class, it is shown that h′(x) > 0 so that
h(x) single crosses zero from below. The derivative of h(x) is:

h′(x) = π′2(x)F1 (g(x)) +

∫ ∞
g(x)

π′2 (x, y) dFj(y) + g′(x)f1 (g(x)) ∆2(x, g(x)).

The first two terms of h′(x) are positive. The term containing g′(x) is non-positive.
Replacing the lower bound (13), which only needs to hold (by construction of a best
response) for values of g(x) and x greater than v1 and v2 respectively, for g(x) we find

h′(x) > π′2(x)F1 (g(x)) +

∫ ∞
g(x)

π′2(x, y)dF1(y)− f2(x)∆2(x, g(x))F1(g(x))

F2(x)

Condition (3) implies f2(x)∆2(x, g(x)) < F2(x)π′2(x), then:

h′(x) >

∫ ∞
g(x)

π′2(x, y)dF1(y) > 0

proving uniqueness within the herculean class. �

Claim 5. There is no equilibrium in which the strong firm plays a higher cutoff than
the weak firm.

Proof. To prove that the only equilibrium is the herculean, suppose we have a non-
herculean equilibrium—i.e., x1 > x2 but s1 < s2. Define ḡ(x) to be the function that
satisfies H2(ḡ(x), x) = 0. ḡ(x) corresponds to firm two’s best response to the cutoff of
firm one when x1 = x. As before, Lemma 7 implies that ḡ(x) is well defined. Similarly,
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following the steps of Claim 1 , it can be shown: ḡ(s2) = s2, ḡ
′(x) < 0, and, under (3),

ḡ′(x) is bounded below by

− f1(x)F2(g(x))

F1(x)f2(g(x))
. (14)

Define the continuous function h̄(x) = H1(x, ḡ(x)) which corresponds to firm one’s
expected profits of entering in the market under valuation x when firm two best responds
to x. We show that there is no x such that x1 = x > ḡ(x) = x2 and h̄(x) = 0 exists;
i.e., no non-herculean equilibrium exists. Start by observing that x > ḡ(x) if and only if
x ∈ (s2,∞). In Lemma 3 we showed the function σ1(s) = H1(s, s) is strictly increasing
in s. Then, by the definition of strength and by firm two being weak,

σ1(s1) = H1(s1, s1) = 0 < σ1(s2) = H1(s2, s2) = H1(s2, ḡ(s2)) = h̄(s2).

Following analogous steps to those in Claim 4 (which requires to use the lower bound
(14)) it is possible to show h̄′(x) > 0. Then, because h̄(s2) > 0 and h̄′(x) > 0, h̄(x) never
crosses zero when x > s2 and the result holds. � �

Proof of Proposition 2. We start proving statement (i). Define H : R2
+ → R2 where

each dimension is defined according to Hi(xi, xj). An equilibrium is, thus, defined by
H(x) = 0. We make use of implicit differentiation. Let J be the Jaccovian of H. By
Lemma 2, the terms in the diagonal of J are positive and the off-diagonal terms are
non-negative. Then,

J−1 = det(J)

(
+ ≤ 0
≤ 0 +

)
where det(J) =

(
∂H1

∂x1

∂H2

∂x2
− ∂H1

∂x2

∂H2

∂x1

)
,

J−1 consists of positive terms along the diagonal and non-positive terms off the diagonal.
The derivatives in the determinant are computed in Lemma 2. Using condition (3) we
can bound det(J) below and show it is strictly positive.

The comparative static with respect parameter κ ∈ {ωi, θi} is defined by xκ =
−(J−1)Hκ, where subscripts denote derivatives. The next lemma will be used in this
proof and in the proof of other propositions.

Lemma 5. Let (Fi, πi)
n
i=1 be (respectively) parametrized by (ωi, θi)

n
i=1 where ωi orders Fi

in terms of FOSD and where πi is uniformly increasing in θi. Let Hi(x) be the function
defined in (2). Then, for every i and j 6= i

(i)
∂Hi

∂θi
> 0; (ii)

∂Hi

∂θj
=
∂Hi

∂ωi
= 0, and; (iii)

∂Hi

∂ωj
< 0. (15)

Proof. Statement (ii) directly follows from θj and ωi not being in Hi. (i) Follows from πi
being increasing in θi. (iii) follows from observing that when j 6∈ e, Fj(xj |ωj) decreases
in ωj . When j ∈ e, then∫ ∞

(xk)k∈Ii(e)

πi (xi, ve)φi(ve\j)fj(s|ωj)dne−1ve\i

decreases in ωj by integrating over a decreasing function under FOSD. �
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To complete proof of the first statement, by the lemma above, the signs of the
derivatives with respect the parameters are Hω1 = [0,−], and Hθ1 = [+, 0] (similarly for
derivatives with respect parameters of firm two), the result follows from multiplying and
checking the sign. For statement (ii) simply note:

dH̄i

dθi
=

∫ ∞
xi

(
∂Hi(s, xj)

∂θi
+ fj(xj)

dxj
dθi

∆i(s, xj)

)
dFi(s) > 0

dH̄i

dθj
=

∫ ∞
xi

fj(xj)
dxj
dθj

∆i(s, xj)dFi(s) < 0

dH̄i

dωi
=

∫ ∞
xi

fj(xj)
dxj
dωi

∆i(s, xj)dFi(s) +

∫ ∞
xi

Hi(s, xj)
dfi(s)

dωi
ds > 0

dH̄i

dωj
=

∫ ∞
xi

(
∂Hi(s, xj)

∂ωj
+ fj(xj)

dxj
dωj

∆i(s, xj)

)
dFi(s) < 0

where the signs follow from statement (i), Lemma 5 and by integrating over an increasing
function under FOSD. �

Proof of Proposition 3. For claim (i) suppose without loss x1 < x2. Subtracting
H̄2(x) to H̄1(x), see (5), under the assumption that firms are homogeneous we obtain:∫ x2

x1

(
H1(x, x2) +

∫ ∞
x2

∆(y, x)dF (y)

)
dF (x).

In equilibrium H1(x1, x2) = 0 and, by Lemma 2, H1(x, x2) > 0 for x > x1. Also,
∆1(x, y) ≥ 0. Thus, x1 < x2 implies H̄1(x) > H̄2(x). For claim (ii), suppose that firms
are ordered by θi with θ1 > θ2 (similar proof applies when firms are ordered by ωi). Let
x1 < x2 be a herculean equilibria. Consider an alternative entry game, where firms are
homogeneous and equal to firm 1 (i.e., θi = θ1) but x1 < x2 is played. Although this is
not an equilibrium, the same steps as in claim (i) imply H̄1(x, θ1) > H̄2(x, θ1). Then,
because of the profit order, H̄2(x, θ2) < H̄2(x, θ1) and the result follows. �

Proof of Proposition 1A. This proof makes use of Lemma 6, presented below.

Lemma 6. Under condition (7), two homogeneous firms that best respond to each other
must play the same cutoff strategy.

Proof. Consider two homogeneous firms, p and q, and fix any profile of cutoffs strategies
(xj)j 6=p,q for the rest of the firms. For ease in notation we drop sub-indexes from π and
F when referring to firms p and q. Define Hp,q(x, y) ≡ Hp(xp = x, xq = y,x−{p,q}) where
Hp is the function defined in (2). Hp,q(x, y) represents p’s expected profit of entering
the market under valuation x when q plays the entry cutoff y and all other firms play
according to (xj)j 6=p,q. By Lemma 1, the equilibrium condition for firm p holds whenever
there exists xp and xq such that Hp,q(xp, xq) = 0. Define g(x) to be the value of xp such
that Hp,q(g(x), x) = 0; i.e., g(x) is p’s best response to xq = x. By Lemma 7, g(x) is
well defined; i.e., there is a unique value g(x) for each x. To prove the Lemma we need
to prove three claims.

Claim 6. There exists a unique equilibrium such that xp = xq.
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Proof. Start by assuming that homogeneous firms play symmetric cutoffs; i.e., xp = xq =
y. Define σ̂p(y) = Hp,q(y, y) and observe that σ̂p(y) = σ̂q(y). By the discussion above, a
p,q-symmetric equilibrium exists whenever σ̂p(y) = 0. We need to show that there exists
a unique value of y such that σ̂p(y) = 0. Following analogous steps to those in Lemma
3, it easy to show σ̂p(vp) < 0 and that there exists ŷ such that σ̂p(ŷ) > 0. Using Lemma
2, we can show that σ̂′p(y) > 0 so that the value of y is unique. �

Claim 7. Under condition (7): 0 ≥ g′(x) > −f(x)F (g(x))/(F (x)f(g(x))).

Proof. To simplify notation we use xq to denote x and xp to denote g(x). Implicitly
differentiating Hp,q(xp, xq) = 0 and using equations (11) and (12) from Lemma 2, we
obtain that g′(x) is equal to:

−
f(xq)

∑
e∈Ep\Eq

{(∏
j∈Op(e)

Fj(xj)
) ∫∞

(xj)j∈Ip(e)
∆p,q(xp, xq, ve)φp(ve)d

ne−1ve\p

}
F (xq)

∑
e∈Ep

{(∏
j∈Op(e)

Fj(xj)
) ∫∞

(xj)j∈Ip(e)
π′(xp, ve)φp(ve)dne−1ve\p

} ,

which is non-positive as the denominator is positive and numerator is non-negative. To
show the lower bound for g′(x) first, make the denominator smaller by taking π′(xp, ve) =
0 for every e ∈ Ep ∩ Eq. After this step, both numerator and denominator are sums of
market structures in Ep \ Eq. Then, use condition (7) to substitute for ∆p,q(xp, xq, ve)
in the numerator and obtain the mentioned lower bound. �

Claim 8. An increase in xq, which p best responds by playing g(xq), leads firm q to
strictly increase its profits; i.e., Hq,p(x, g(x)) is increasing in x.

Proof. Differentiating Hq,p(x, g(x)) with respect to x we obtain

∑
e∈Eq\Ep

 ∑
j∈Oq(e)

[
f(g(x))

F (g(x))
g′(x) Pr[Oq(e)]

∫ ∞
(xj)j∈Ip(e)

∆q,p(x, g(x), ve)φq(ve)d
ne−1ve\q

]
+
∑
e∈Eq

 ∏
j∈Oq(e)

Fj(xj)

∫ ∞
(xj)j∈Ip(e)

π′(x, ve)φq(ve)d
ne−1ve\q.

where Pr[Oq(e)] =
∏
j∈Oq(e)

Fj(xj). Because g′(x) ≤ 0, the first summation is non-
positive. The second summation is positive. Take a lower bound for the first summation
using Claim 7 and condition (7) to get

∑
e∈Eq\Ep

 ∑
j∈Oq(e)

 f(x)

F (x)

 ∏
j∈Oq(e)

Fj(xj)

∫ ∞
(xj)j∈Ip(e)

π′(x, ve)
F (x)

f(x)
φq(ve)d

ne−1ve\q


Subtracting to the second summation above we obtain

Hq,p(x, g(x)) ≥
∑

e∈Eq∩Ep

 ∏
j∈Oq(e)

Fj(xj)

∫ ∞
(xj)j∈Ip(e)

π′(x, ve)φq(ve)d
ne−1ve\q > 0

Proving the result. �
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We prove the lemma by contradiction. Recall that (xj)j 6=p,q is fixed. Suppose there
exists xp < xq constituting an equilibrium. By Claim 6 there exists a unique value y
such that σ̂j(y) = 0 with j ∈ {p, q}. Suppose first xp < y < xq. Because

σ̂q(y) = Hq,p(y, y) = Hq,p(y, g(y)) = 0,

Claim 8 implies that we must have Hq,p(xq, g(xq)) > 0 as xq > y, which contradicts
(xq, xp) being an equilibrium. Suppose now xp < xq < y. Lemma 2 and Claim 6 imply:

0 = σ̂p(y) > σ̂p(xq) = Hp,q(xq, xq) > Hp,q(xp, xq)

which contradicts (xq, xp) being an equilibrium. Similar argument can be constructed
for the case y < xp < xq, proving the Lemma. �

To prove the proposition observe: (i) By Lemma 3, there exists a unique value of
strength and, therefore, a unique symmetric equilibrium, which also corresponds to the
unique herculean equilibrium. (ii) If firms are not playing a symmetric equilibrium,
then there must exists two homogeneous firms best-responding to each other but playing
different cutoffs, contradicting Lemma 6. �

Proof of Proposition 1B. Preliminaries: If s1 = s2 the herculean equilibrium corre-
sponds to the strength of the firms. Assume s1 < s2 and define Hi(xi, xj) to be equal
to:

mj∑
k=0

{(
mj

k

)
Fj(xj)

mj−k

[
mi−1∑
r=0

(
mi − 1

r

)
Fi(xi)

mi−1−rE[πi(xi)|x, r, k]

]}
. (16)

The function Hi(xi, xj) represents the expected profits of entering the market for a firm
in group i when the firm draws xi and the other firms in group i play the cutoff xi
and the firms in group j play the cutoff xj . Define g(x) to be the function that solves
H1(g(x), x) = 0. Thus, g(x) corresponds to group one’s best response to every firm
in group two playing the cutoff strategy x. By Lemma 7, the value g(x) exists and is
unique; i.e., g(x) is well defined.

Claim 9. g(s1) = s1, g
′(x) ≤ 0 and, under (9), g′(x) is bounded below by (13).

Proof. By definition of strength we know H1(s1, s1) = 0, therefore g(s1) = s1. Using the
implicit function theorem

g′(x) = −∂H1(g(x), x)/∂x2
∂H1(g(x), x)/∂x1

,

which is negative by Lemma 8 in Appendix B. Define

Ei [E[πi(xi)|x, r, k]] =

mi−1∑
r=0

(
mi − 1

r

)
Fi(xi)

mi−1−rE[πi(xi)|x, r, k].

For the lower bound of g(x) observe that the ∆1,1 terms in the denominator of g′(x) are
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non-negative. Taking a lower bound by making them zero delivers

g′(x) ≥ −
f2(x)

∑m2−1
k=0

{(
m2

k

)
(m2 − k)F2(x)m2−k−1E1 [E[∆1,2(g(x), x)|x, r, k]]

}∑m2
k=0

{(
m2

k

)
F2(x)m2−kE1[E[π′1(g(x))|x, r, k]]

}
=
−f2(x)

∑m2
k=0

{(
m2

k

)
(m2 − k)F2(x)m2−kE1 [E[∆1,2(g(x), x)|x, r, k]]

}
F2(x)

∑m2
k=0

{(
m2

k

)
F2(x)m2−kE1[E[π′1(g(x))|x, r, k]]

} ,

where in the last expression we multiplied and divided by F2(x). Using equation (18)
(see Lemma 9 in Appendix B) in the denominator, we obtain the lower bound (13). �

Existence: Define the function h : [s1,∞)→ R by h(x) = H2(x, g(x)). This function
is continuous and corresponds to the expected profits of entering the market for a firm
in group 2 when it draws the valuation x, every other firm in group two plays the cutoff
x, and every firm in group one play their best response to x; i.e., g(x). Define x2 to be
the value satisfying h(x2) = 0. Because the statements and the proofs of Claims 2 and
3 apply directly (see the proof of Proposition 1), it follows that there exist x2 > s1 such
that h(x2) = 0. Therefore, the pair (g(x2), x2) constitute a herculean equilibrium of the
game.

Uniqueness. Start by observing that if condition (8) and (9) hold, then condition
(7) holds when applied to firms in the same group. By the Lemma 6, when condition
(7) holds, homogeneous firms will always play (in equilibrium) the same entry cutoff.
Therefore, is without loss to restrict the analysis to within-group symmetric strategies.
To prove uniqueness, then, we need to show that no other herculean equilibrium exists
and that we can not have an equilibrium where x2 < x1.

Claim 10. There exists a unique herculean equilibrium.

Proof. To prove uniqueness within the herculean class, we shown h′(x) > 0 so that h(x)
single crosses zero from below. Differentiating h(x) we obtain:

m1∑
k=0

{(
m1

k

)
F1(g(x))m1−1

(
E2

[
E[π′(x)|x, r, k]

]
+

m2−2∑
r=0

(
m2 − 1

r

)
(m2 − r − 1)F2(x)m2−2−rE[∆2,2(xi, xi)|x, r, k]

)}
+

f1(g(x))g′(x)

m1−1∑
k=0

{(
m1

k

)
(m1 − k)F1(g(x))m1−k−1E2 [E[∆2,1(x, g(x))|x, r, k]]

}
The first two terms of h′(x) are positive, and only the third term (containing g′(x)) is
negative. We work on bounding below the third term. Using the lower bound (13) for
g(x) and equation (18) in Lemma 9 we obtain the following lower bound for the third
term:

−
m1−1∑
k=0

{(
m1

k

)
F1(g(x))m1−kE2

[
E[π′2(x)|x, r, k]

]}
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Substituting back in the expression for h′(x) we obtain:

h′(x) ≥ E2

[
E[π′(x)|x, r,m1]

]
+

m1∑
k=0

{(
m1

k

)
F1(g(x))m1−1 ×

m2−2∑
r=0

(
m2 − 1

r

)
(m2 − r − 1)F2(x)m2−2−rE[∆2,2(xi, xi)|x, r, k]

)}
> 0

which is positive, proving uniqueness within the herculean class. �

Claim 11. There is no equilibrium in which the strong firm plays a higher cutoff than
the weak firm.

Proof. To prove that the only equilibrium is the herculean, suppose we have a non-
herculean equilibrium—i.e., x1 > x2 but s1 < s2. Define ḡ(x) to be the function that
satisfies H2(ḡ(x), x) = 0 were H2 is defined by (16). ḡ(x) corresponds to group two’s best
response to the cutoff of group one when x1 = x. As before, Lemma 7 implies that ḡ(x)
is well defined. Similarly, following the steps of Claim 9, it can be shown: ḡ(s2) = s2,
ḡ′(x) < 0, and, under (9), ḡ′(x) is bounded below by

− f1(x)F2(g(x))

F1(x)f2(g(x))
. (17)

Define the continuous function h̄(x) = H1(x, ḡ(x)) which corresponds to firm one’s
expected profits of entering in the market under valuation x when firm two best responds
to x. We show that there is no x such that x1 = x > ḡ(x) = x2 and h̄(x) = 0 exists;
i.e., no non-herculean equilibrium exists. Start by observing that x > ḡ(x) if and only if
x ∈ (s2,∞). In Lemma 3 we showed the function σ1(s) = H1(s, s) is strictly increasing
in s. Then, by the definition of strength and by firm two being weak (s1 < s2),

σ1(s1) = H1(s1, s1) = 0 < σ1(s2) = H1(s2, s2) = H1(s2, ḡ(s2)) = h̄(s2).

Following analogous steps to those in Claim 10 (which requires to use the lower bound
(17)) it is possible to show h̄′(x) > 0. Then, because h̄(s2) > 0 and h̄′(x) > 0, h̄(x) never
crosses zero when x > s2 and the result holds. � �

Proof of Lemma 4. Suppose that firms compete in prices (analogous proof apply in
Cournot-type of games). Variable profits are given by π̃i(vi) = (pi(vi) − ci(vi))qi where
qi is a function of price. Differentiating variable profits with respect to vi

π̃′i(vi) =

(
(p∗i − ci)

dqi
dpi

+ qi

)
dpi
dci

c′i(vi)− qic′i(vi)

By the Envelop Theorem, the parenthesis above is zero, and π̃′i(vi) = −qic′i(vi). Taking
the ratio π̃′i(vi)/π̃i(vi) and rearranging, we obtain (10). �

Proof of Proposition 4. Let pi(q1, . . . , qne) be firm i’s price under market structure
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e. Differentiating π̃i(ve) with respect vi and using the envelope theorem

π̃′i (ve) = −c′i (vi) qi

1−
∑
j∈e−i

dp

dqj︸︷︷︸
(−)

dqj
dqi︸︷︷︸
(−)

dqi
dci︸︷︷︸
(−)

 = −c′i (vi) qi (1 +K) > 0

where K is a positive constant summarizing the effect of a change in i’s marginal cost
on the opponents decisions. Under standard assumptions dp/dqj < 0 by downward
sloping demand, dqj/dqi < 0 by strategic substitutes, and dqi/dci < 0 by implicitly
differentiating the firms first order condition. Then, it is not hard to check

π̃′i (ve)

π̃i (ve)
= (1 +K)

−c′i (vi)

ci (vi)

1

µ(ve)
>
−c′i (vi)

ci (vi)

1

µ(ve)
≥ −c

′
i (vi)

ci (vi)

1

µ(vi)
=
π̃′i (vi)

π̃i (vi)

where in the last step µi(vi) ≥ µi(ve), markup decreasing with competition, was used. �

B Auxiliary Results

Lemma 7. Let Hi be defined by (2). For any profile x−i of cutoff strategies by the
competitors, there exist a unique value x̂ such that Hi(x̂,x−i) = 0.

Proof. We start by showing existence of x̂ using the Intermediate Value Theorem.
Fix x−i and observe that A3 jointly with A2 implies Hi(vi,x−i) ≤ πi(vi) < 0. On
the other hand, Lemma 2 implies Hi(x̂,x−i) ≥ Hi(x̂,−∞−i). By A3, there exist v̄i
such that Hi(v̄i,−∞−i) > 0 and, therefore, Hi(v̄i,x−i) > 0. Then, by the Intermediate
Value Theorem there exist x̂ such that Hi(x̂,x−i) = 0. For uniqueness, by Lemma 2
∂Hi/∂xi > 0. Therefore Hi(xi,x−i) single crosses zero. �

Lemma 8. Let Hi(xi, xj) be defined by equation (16). The partial derivatives of Hi with
respect to xi and xj are positive and equal to:

∂Hi

∂xj
=

mj−1∑
k=0

{(
mj

k

)
(mj − k)Fj(xj)

mj−k−1fj(xj)Ei [E[∆i,j(xi, xj)|x, r, k]]

}
∂Hi

∂xi
=

mj∑
k=0

{(
mj

k

)
Fj(xj)

mj−k

[
Ei
[
E[π′i(xi)|x, r, k]

]
+ fi(xi)

mi−2∑
r=0

(
mi − 1

r

)
(mi − 1− r)Fi(xi)mi−2−rE[∆i,i(xi, xi)|x, r, k]

]}
.

Proof. We prove the result for the derivative of Hi with respect to xj . The proof
for the derivative of Hi with respect to xi follows the simmilar steps. Using Leibnitz
differentiation:

∂Hi

∂xj
=

mj∑
k=0

{(
mj

k

)
(mj − k)Fj(xj)

mj−k−1fj(xj)Ei [E[πi(xi)|x, r, k]]

}
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−
mj∑
k=0

{(
mj

k

)
(k)Fj(xj)

mj−kfj(xj)Ei [E[πi(xi, xj)|x, r, k − 1]]

}
Observe that the first summation becomes zero when k = mj , and that the second
summation becomes zero when k = 0. Changing the second summation’s range to go
from 0 to mj − 1 (instead of going from 1 to mj) we obtain:

∂Hi

∂xj
=

mj−1∑
k=0

{(
mj

k

)
(mj − k)Fj(xj)

mj−k−1fj(xj)Ei [E[πi(xi)|x, r, k]]

}

−
mj−1∑
k=0

{(
mj

k + 1

)
(k + 1)Fj(xj)

mj−k−1fj(xj)Ei [E[πi(xi, xj)|x, r, k]]

}
.

The result follows from using the identity
(mj

k+1

)
(k + 1) =

(mj

k

)
(mj − k) and subtracting

both expressions.19 �

Lemma 9. In a two-group entry model, suppose firms play according to x = (x1, x2)
where xi is the cutoff strategy of a firm in group i. Then, for any market structure e ∈ Ei
and j 6∈ e, condition (9) implies:

(mj − k)fi(xi)E[∆i,j(xi, xj)|x, r, k] < Fi(xi)E[π′i(xi)|x, r, k]. (18)

Proof. Fix market structure e and pick j 6∈ e. Let r be the number of firm in group i
firms entering in e minus one, and let k be the number of j firms entering in e. Rewrite
condition (9) as:

fi(x)∆i,j(x, y, ve)(mj − k) < Fi(x)π′i(x, ve)

Because condition holds for every x, y and ve, we could integrate on both sides with
respect to any measure and the inequality would be preserved. In particular, because
firms play according to x, for a given market structure e we have that:∫ ∞

{xj}j∈Ii(e)
∆i,j(xi, xj , ve)φi(ve)d

ne−1ve = E[∆i,j(xi, xj)|x, r, k],

where r and k are the number of firms (other than i) in group gi and 3−gi, respectively,

participating in e. Repeating steps with respect to the integral of π′i(x, ve) we obtain the

right hand side of (18) and the result follows. �

19For the combinatorial identity simply observe that
(

m
k+1

)
(k + 1) is equal to:

m!

(k + 1)!(m− k − 1)!
(k + 1)

m− k
m− k

=
m!

k!(m− k)!
(m− k) =

(
m

k

)
(m− k).
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