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Dispersed Behavior and Perceptions in Assortative Societies∗

Mira Frick Ryota Iijima Yuhta Ishii

Abstract

Motivated by the fact that people’s perceptions of their societies are routinely incorrect,
we study the possibility and implications of misperception in social interactions. We focus on
coordination games with assortative interactions, where agents with higher types (e.g., wealth,
political attitudes) are more likely than lower types to interact with other high types. Assor-
tativity creates scope for misperception, because what agents observe in their local interactions
need not be representative of society as a whole. To model this, we define a tractable solution
concept, “local perception equilibrium” (LPE), that describes possible behavior and perceptions
when agents’ beliefs are derived only from their local interactions. We show that there is a
unique form of misperception that can persist in any environment: This is assortativity neglect,
where all agents believe the people they interact with to be a representative sample of society as
a whole. Relative to the case with correct perceptions, assortativity neglect generates two mu-
tually reinforcing departures: A “false consensus effect,” whereby agents’ perceptions of average
characteristics in the population are increasing in their own type; and more “dispersed” behavior
in society, which adversely affects welfare due to increased miscoordination. Finally, we propose
a comparative notion of when one society is more assortative than another and show that more
assortative societies are characterized precisely by greater action dispersion and a more severe
false consensus effect, and as a result, greater assortativity has an ambiguous effect on welfare.
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Duke, Glasgow, ITAM, Kyoto, Michigan, NSF Conference on Network Science in Economics (Vanderbilt), Rochester,
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1 Introduction

1.1 Motivation and Overview

People’s perceptions of the societies they live in are routinely and substantially incorrect. An ac-
tive empirical literature spanning the social sciences documents systematic biases in individuals’
perceived distributions of key population characteristics such as income or political attitudes.1 Ad-
ditionally, in social psychology and more recently economics, empirical research on “network cogni-
tion” finds systematic discrepancies between people’s perceived and actual “interaction structures,”
i.e., the patterns of who interacts with whom.2 While a large theoretical literature highlights the
impact of social structures on individual behavior and welfare (for surveys, see Goyal, 2012; Jack-
son, 2010; Vega-Redondo, 2007), this literature has thus far assumed that agents possess a perfect
understanding of their societies. In this paper, we take a first step toward analyzing the possibility
and implications of misperceptions in social interactions.

Our starting point is the fact that many social interactions are assortative, in the sense that
people interact more often with others with similar characteristics.3 Thus, wealthier people are in
general more likely than poorer people to have wealthy friends; and conservatives are more likely than
liberals to interact with other conservatives. Assortativity creates scope for misperception, because
what individuals observe in their local interactions need not be representative of society as a whole.
Understanding the ramifications of this is made all the more relevant by evidence that societies are
growing increasingly assortative.4 Our analysis seeks to answer the following questions: What kinds
of misperceptions can persist in assortative societies; what are the implications for behavior and
welfare; and how are these affected by the extent of assortativity in society?

To address these questions, we introduce a tractable model of assortative local interactions. A
society consists of a large population of agents with linearly ordered types (e.g., income or political
attitudes), along with an interaction structure that randomly matches pairs of types. Capturing
assortativity, higher types’ match distributions first-order stochastically dominate those of lower
types. Agents are engaged in a coordination game, where players’ best response functions (e.g.,
consumption decisions or political activities) are increasing in their own type, as well as in expected
behavior among their matches and in society as a whole (e.g., due to peer effects or adherence to
social norms). Two key modeling contributions allow us to investigate the effect of assortativity on
behavior and perceptions: First, we introduce a solution concept, “local perception equilibrium,”
that describes possible behavior and (mis)perceptions of society when agents’ beliefs are derived

1See, e.g., Cruces, Perez-Truglia, and Tetaz (2013); Norton and Ariely (2011) for income; and Ahler (2014);
Westfall, Van Boven, Chambers, and Judd (2015) for political attitudes. We discuss concrete findings below.

2In economics, see Dessi, Gallo, and Goyal (2016); Breza, Chandrasekhar, and Tahbaz-Salehi (2018). Relevant
work in social psychology includes Krackhardt (1987); Kumbasar, Rommey, and Batchelder (1994); Krackhardt and
Kilduff (1999); Kilduff, Crossland, Tsai, and Krackhardt (2008); see Brands (2013) for a survey.

3See Pin and Rogers (2016) for a survey and discussion of potential sources of assortativity, such as institutional
constraints determining meeting opportunities or socio-psychological factors (e.g., homophily).

4See, e.g., Jargowsky (1996); Reardon and Bischoff (2011) for studies of increased residential segregation by income
in the US, and Bishop (2009); Lawrence, Sides, and Farrell (2010); Huber and Malhotra (2017) for evidence of growing
online and offline segregation by political attitudes.
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only from observing their matches’ behavior. Second, we develop comparative notions that capture
when one society is “more assortative” than another.

Our main findings are threefold. First, there is a unique form of misperception of the interaction
structure that can persist in any environment: This is assortativity neglect, i.e., the belief that all
agents interact with a representative sample of society. Second, assortativity neglect generates two
mutually reinforcing departures from the correct perceptions benchmark: A “false consensus effect,”
whereby agents’ perceptions of average characteristics in the population are increasing in their own
type; and more “dispersed” behavior in society, which adversely affects welfare due to increased mis-
coordination. Finally, we show that more assortative societies are characterized precisely by greater
action dispersion and a more severe false consensus effect, and as a result, greater assortativity has
an ambiguous effect on welfare.

Our analysis proceeds in two steps: We first examine Nash equilibrium behavior, i.e., assuming
correct perceptions. This serves as a benchmark and stepping stone for our analysis of local percep-
tion equilibrium, but also constitutes an independent contribution to the literature on network/local
interaction games under correct perceptions, which has so far abstracted away from preference het-
erogeneity and assortativity and focused instead on implications of other societal features such as
degree distributions and centrality measures (see the discussion of related literature in Section 1.2).

Our game admits a unique Nash equilibrium, which we characterize in terms of a particular
monotone Markov process over the type space (see the penultimate paragraph of the introduction).
This enables us to show that the extent of assortativity in society manifests itself in a simple way:
More assortative societies correspond precisely to more dispersed behavior. To capture greater
assortativity, we define an order over the copulas associated with any society (see Section 2.2) that
reflects that people in top quantiles of the population (e.g., in the top 5% of the wealth distribution)
are less likely to interact with bottom quantiles. Greater action dispersion, in the sense of mean-
preserving spread, captures the idea that the gap between higher and lower types’ actions increases;
for example, if wealthier people step up their consumption of luxury goods or if left and right-leaning
individuals each engage in more partisan political activities. Using tools from majorization theory
(Marshall, Olkin, and Arnold, 2010), Theorem 1 shows that one society is more assortative than
another if and only if it gives rise to more dispersed behavior regardless of the type distribution and
coordination game. At the same time, we also highlight two alternative sources of action dispersion:
Stronger coordination motives and increased type dispersion.

We next incorporate the possibility of misperception. A local perception equilibrium (LPE) in a
given society consists of a true strategy profile along with a perceived society and perceived strategy
profile for each agent, subject to three requirements: Each agent (i) correctly observes the distri-
bution of actions among his matches; (ii) holds perceptions that “rationalize” these observations;
and (iii) best-responds to his perceptions. Thus, unlike Nash equilibrium, where each agent best-
responds to the correct beliefs about the underlying society and behavior, LPE allows agents to
be wrong about both. However, by (i), these misperceptions must be observationally consistent, in
the sense that they imply the correct distribution of matches’ actions. Thus, LPE captures misper-
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ceptions that are persistent, because agents’ beliefs are never contradicted by what they observe in
their local interactions.

What kinds of misperceptions can arise under LPE? Focusing first on perceived interaction
structures, Theorem 2 shows that there is a particularly simple form of misperception that can
be sustained in LPE in any society and strategic environment. This is assortativity neglect, i.e.,
the belief that all agents interact with a representative sample of society. Moreover, assortativity
neglect is the only perception of the interaction structure that can arise in any environment; any
other perceived interaction structure is inconsistent with LPE in some settings. A key observa-
tion driving this “robust sustainability” of assortativity neglect is the following fundamental feature
(Lemma 3): Unlike any other misperception, assortativity neglect can explain any observed be-
havior; specifically, agents can rationalize others’ behavior by attributing all action dispersion to
type dispersion, ignoring the fact that variation across other agents’ behavior may also be driven by
differences in their matches’ behavior. Lemma 3 can be viewed as providing a microfoundation for
the “fundamental attribution error” (Ross, 1977), a central bias studied in social psychology that
refers to people’s tendency to attribute others’ behavior to intrinsic characteristics rather than to
external factors such as social influence.

We next show that in any given environment, being able to sustain assortativity neglect in
LPE uniquely determines agents’ behavior and their perceptions of population characteristics. As
a result, assortativity neglect both offers a unified explanation for existing empirical findings and
provides several new predictions:

First, we highlight two mutually reinforcing implications of assortativity neglect: Perceptions of
population characteristics are subject to the aforementioned “false consensus effect” and behavior
is more dispersed than under correct perceptions. Going back to Ross, Greene, and House (1977),
the fact that people’s perceptions of others’ attributes are positively correlated with their own has
been documented empirically in a wide variety of settings. For example, individuals’ perceptions
of the median income in their society are substantially increasing in own income, and supporters
(opponents) of a particular political position tend to overestimate (underestimate) its support in
the population.5 In our setting, this effect arises in equilibrium due to the fact that higher types
tend to observe higher actions and under assortativity neglect, falsely attribute this to a higher type
mean in the population. Moreover, we show that this increases action dispersion, by exacerbating
the difference between higher and lower types’ coordination incentives. As a result, higher types
observe an even higher distribution of actions, further amplifying the false consensus effect.

Second, we demonstrate how agents’ misperceptions about population characteristics are shaped
by the nature of their social interactions. In particular, while under assortativity neglect (as under
Nash) increased assortativity and coordination motives both give rise to more dispersed behavior,
they have opposing effects on perceptions: The false consensus effect is exacerbated in more as-
sortative societies, but it is less pronounced when coordination motives are stronger. Moreover,
depending on the relative strength of coordination motives and assortativity, agents can either

5See the references following Corollary 1.
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under- or overestimate type dispersion in their society; this may help shed light on empirical ev-
idence of both forms of misperception, e.g., widespread underestimation of income inequality but
overestimation of political attitude polarization.6

Our analysis has important implications for welfare in assortative societies. First, misperception
in the form of assortativity neglect Pareto decreases welfare relative to the Nash benchmark, both
subjectively (when utilities are evaluated according to agents’ perceptions) and objectively (accord-
ing to correct perceptions). This is because the fact that assortativity neglect exacerbates action
dispersion, increases miscoordination costs for all agents.7 Second, increased assortativity can have
an ambiguous effect on welfare: On the one hand, greater assortativity leads to less dispersed match
distributions, facilitating coordination, but on the other hand, it increases action dispersion across
types, which hinders coordination. We show that the latter effect dominates whenever coordination
motives are sufficiently strong and is further exacerbated by assortativity neglect.

Finally, at a methodological level, a contribution of our paper is to import monotone Markov
processes into the study of local interaction/network games. Even though our setting is static, every
society can be viewed as inducing a discrete-time Markov process over its space of types: Starting
with any type θ0, this process first draws a match θ1 for θ0 according to the interaction structure,
then draws type θ1’s match θ2, and so on; crucially, assortativity corresponds to this process being
monotone (Daley, 1968). We show that equilibrium strategies (under both Nash and LPE) can be
represented as particular discounted sums of t-step ahead expectations of this process. This fact,
along with monotonicity of the process, plays a key role throughout our proofs, while also helping
build intuition for our results.

The remainder of the paper is structured as follows. Section 2 defines our coordination game with
assortative interactions along with our comparative notion of assortativity. Section 3 studies the
Nash equilibrium benchmark. Section 4 defines LPE. Section 5 analyzes LPE misperceptions and
behavior, while Section 6 considers welfare implications. Section 7 discusses additional directions.
Section 8 is a conclusion.

1.2 Related Literature

Our paper relates most closely to the literature on network/local interaction games (Ballester, Calvo-
Armengol, and Zenou, 2006; Jackson and Yariv, 2007; Galeotti, Goyal, Jackson, Vega-Redondo, and
Yariv, 2010; Bramoulle, Kranton, and DíAmours, 2014). As is common in this literature, we study
coordination games with linear best-response functions. We make two main contributions:

First, we introduce a framework that allows agents to hold persistent misperceptions about in-
teraction structures—an important departure from the standard assumption in this literature that
the underlying network is common knowledge. While systematic misperceptions about interaction
structures have been widely documented (see the first paragraph of the introduction), to the best
of our knowledge, we are the first to provide an economic model of their origins and implications.

6For references, see the discussion following Proposition 4.
7To formalize this, we employ the widely used quadratic-loss utility specification.
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We provide specific predictions for what forms of misperceptions can be sustained, in particular
establishing the robust sustainability of assortativity neglect. This is consistent with experimental
findings in Dessi, Gallo, and Goyal (2016) and gives rise to further well-documented mispercep-
tions about population characteristics. Our results also show that such misperceptions can have
substantial implications for behavior and welfare.

A recent paper by Jackson (2018) studies implications of the “friendship paradox,”8 showing
that this leads equilibrium actions under local interactions to be higher than under uniform global
interactions. He also analyzes “naive” agents who are assumed to behave as in the local interaction
case but receive utilities according to the uniform global interaction case. This form of naiveté bears
some resemblance to assortativity neglect in our setting. However, beyond modeling differences, an
important distinction is that while naiveté in Jackson (2018) is imposed exogenously, our approach
models agents’ perceptions as endogenous equilibrium objects and derives assortativity neglect as
the unique robustly sustainable perception of the interaction structure. Additionally, our papers
focus on different phenomena: the effect of the friendship paradox is absent in our setting, because
we abstract away from degree heterogeneity; instead we focus on assortativity, which is absent in
Jackson’s framework.

Second, we characterize the impact of assortativity and type heterogeneity on equilibrium out-
comes under both Nash and LPE. While assortativity is a significant phenomenon in many social
interactions, its implications for equilibrium behavior have not been well explored; instead, the
existing literature tends to study the impact of other societal features, such as degree distributions
and centrality measures, under homogeneous preferences.9 Our modeling approach, in particular
our representation of interaction structures in terms of copulas, allows us to define non-parametric
comparative notions of assortativity and to establish a tight connection between greater assorta-
tivity and increased action dispersion. A key observation in deriving this result is to recast the
problem as a comparison of monotone Markov processes.10 This approach should prove useful in
studying network games beyond our specific context.

The idea behind LPE builds on the literature on learning-based equilibrium concepts, notably
self-confirming equilibrium and its variations (Battigalli, 1987; Fudenberg and Levine, 1993; Dekel,
Fudenberg, and Levine, 2004; Esponda and Pouzo, 2016). One difference is that while this literature
typically focuses on incorrect beliefs about others’ strategies,11 LPE additionally treats agents’
beliefs about interaction structures and type distributions as explicit equilibrium objects whose
properties and comparative statics we investigate. A second key departure is that in order to be
able to draw inferences from matches’ observed behavior to properties of the interaction structure

8This refers to the mathematical fact that people’s neighbors on average have higher degrees than themselves.
9Calvó-Armengol, Patacchini, and Zenou (2009) study a model with heterogeneous agents by generalizing Ballester,

Calvo-Armengol, and Zenou (2006) but do not consider assortativity or comparative statics. Golub and Jackson (2012)
consider DeGroot learning dynamics in which random networks are generated according to homophily; however, agents
in their setting have homogeneous preferences.

10Outside network economics, some previous work (e.g., Müller and Stoyan, 2002) compares monotone Markov
processes in terms of first-order dominance; by contrast, our comparison results are about dispersion of higher-order
expectations.

11Some exceptions are Fudenberg and Levine (2006) and Esponda (2008).
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and type distribution, agents in LPE rationalize this observed behavior by finding perceptions under
which it is Nash. This is unlike self-confirming equilibrium, where agents simply best-respond to
opponents’ observed behavior without forming a model that rationalizes their actions, and is closer
in spirit to rationalizable conjectural equilibrium (RCE) (Rubinstein and Wolinsky, 1994; Esponda,
2013). We discuss the relationship in more detail in Section 7.1, where we show that LPE can be
viewed as a tractable refinement of RCE, in particular differing from the latter in that it provides
unique predictions for agents’ perceived type distributions under assortativity neglect.

Finally, as mentioned in the introduction, a large empirical literature across the social sci-
ences (that we survey throughout Section 5) documents systematic misperceptions about distri-
butions of key population characteristics. Our theoretical framework offers sharp predictions for
what kinds of misperceptions can persist and how they vary with the underlying environment:
We show that the robust sustainability of assortativity neglect can provide a unified explanation
of several well-documented misperceptions in this literature (e.g., the false consensus effect and
over-/underestimation of type dispersion), while also yielding new testable predictions for how such
misperceptions are shaped by interaction patterns and coordination motives.

2 Model

2.1 Society and Coordination Game

There is a continuum of agents with mass normalized to 1. Each agent is identified with a type
θ ∈ R, representing, e.g., wealth levels or political attitudes on a left-right spectrum. An agent’s
type is his private information. Agents interact according to a random matching technology. A
society P specifies the probability with which any pair of types θ and θ′ are matched:12

Definition 1. A society is a joint cdf P over R× R that is:

1. symmetric: P (θ, θ′) = P (θ′, θ) for all θ, θ′

2. assortative: P (·|θ) first-order stochastically dominates P (·|θ′) if θ ≥ θ′.13

Symmetry is a consistency condition required to describe a random matching in a population.
Assortativity captures the idea that higher types are more likely than lower types to interact with
other high types. As discussed in the introduction, this property is widely documented in many
social interactions, and a large literature provides foundations for assortativity based on a variety
of factors including socio-psychological motivations (e.g., homophily) or institutional constraints.

Note that a society P jointly summarizes an underlying population , described by the marginal
type distribution F := margP , and a matching technology , which for every type θ specifies the

12This can be seen as a reduced form representation of a network that focuses on type/preference heterogeneity and
abstracts away from degree heterogeneity, as in Morris and Shin (2005). Galeotti, Goyal, Jackson, Vega-Redondo,
and Yariv (2010) and Jackson and Yariv (2007) use similar approaches, but they focus on degree heterogeneity and
abstract away from type heterogeneity.

13P (·|θ) denotes the conditional distribution given that one of the two types in the match is realized to be θ. By
the symmetry assumption, it is irrelevant which of the two types’ realizations we condition on.
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distribution P (·|θ) of θ’s matches. We assume that the distribution F is absolutely continuous, L1

and has a connected support, denoted by Θ. Let F denote the set of all cdfs with these properties.
Society is engaged in an incomplete-information coordination game. Agents have symmetric

action sets A = R, and a strategy profile is a measurable L1 function14 s : Θ→ A that specifies an
action s(θ) for each type θ. When types represent wealth, actions might capture brand or quality
choice in consumption decisions, such as what kind of car to drive or clothes to wear; while in the
case of political attitudes, actions could represent the extent to which agents manifest support for
particular positions or candidates on a day-to-day basis, e.g., by displaying yard signs or bumper
stickers or posting political content on social media.

To model coordination motives, we follow much of the literature on network/local interaction
games15 by considering linear best response functions: There exist coefficients γ, β ≥ 0 with γ+β < 1

such that each type θ’s best response against any strategy profile s in society P is given by

BRθ(s, P ) = θ + γEP [s(θ′)|θ] + βEF [s(θ′)]. (1)

The first term captures that higher types have an intrinsic tendency to take higher actions; e.g.,
wealthier people have a greater propensity to consume luxury goods, and more fervent conserva-
tives/liberals derive higher utility from manifesting support for conservative/liberal positions. The
second term represents a local coordination motive, whereby each type θ’s best response is increas-
ing in his matches’ expected behavior; this captures well-documented peer effects in consumption
decisions or political activities. Finally, reflecting a global coordination motive, θ’s best response
is also increasing in the average action in society; this could represent social status concerns in
consumption or a desire to adhere to a social norm (e.g., refraining from manifestation of extreme
political positions that are considered taboo).

Note that (1) assumes that θ best responds to a correct belief about s and P , as is the case
under (Bayes) Nash equilibrium, which we analyze in Section 3. In Section 4, we will introduce a
solution concept, “local perception equilibrium,” that allows for the possibility of misperception of
s and P .16

With the sole exception of the welfare analysis in Section 6, the best response function (1) is
all that matters for our results and the exact specification of agents’ utilities is irrelevant. For
concreteness, a widely used utility specification (e.g., Morris and Shin, 2002; Angeletos and Pavan,
2007; Bergemann and Morris, 2013)17 that gives rise to (1) is the quadratic-loss utility

uP (a, θ, s) = −EP [(a− θ − γs(θ′)− βEF [s(θ′)])2 | θ]. (2)

That is, agents wish to minimize the expected square loss relative to their bliss-point action θ +

14That is,
´
|s(θ)|dF (θ) <∞.

15See, e.g., Jackson and Zenou (2013) for a survey.
16See Hopkins and Kornienko (2004), Ghiglino and Goyal (2010), Immorlica, Kranton, Manea, and Stoddard (2017)

for related models of peer effects or status concerns in consumption, which however do not allow for the possibility
of misperception.

17These papers use a continuum population global interactions framework and focus on Gaussian type distributions.
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γs(θ′) + βEF [s(θ′)], which is influenced by own type, the action of their realized match, and the
global average action in society.

2.2 Copula Representation and Comparing Assortativity

Recall that any society P jointly summarizes an underlying population, given by the type distri-
bution F = margΘ P , and a matching technology (P (·|θ))θ∈Θ. In general, varying the matching
technology of P also changes the population, and vice versa. To be able to disentangle differences
along these two dimensions, we will frequently make use of the following equivalent representation
of societies.

The idea is to express who interacts with whom not in terms of types θ ∈ Θ (e.g., a particular
wealth level), but in terms of type quantiles x ∈ [0, 1] (e.g., the 5th wealth percentile). For any
society P with type distribution F ∈ F , define C(x, x′) to be the probability that two agents whose
type quantiles are below x and x′ are matched; that is,

C(x, x′) := P (F−1(x), F−1(x′)) (3)

for all x, x′ ∈ (0, 1), C(x, 0) = C(0, x) := 0 and C(x, 1) = C(1, x) := x for all x ∈ [0, 1].18 Note that
C is a (two-dimensional) copula, i.e., a joint cdf over [0, 1]2 with uniform marginals; moreover, C
inherits symmetry and assortativity from P .

Definition 2. An interaction structure is a two dimensional copula C that is (i) symmetric:
C(x, x′) = C(x′, x) for all x, x′ ∈ (0, 1); and (ii) assortative: C(·|x) first-order stochastically domi-
nates C(·|x′) if x ≥ x′.

As noted, any society induces an interaction structure via (3). Conversely, given any interac-
tion structure C and population F ∈ F , defining P (θ, θ′) := C(F (θ), F (θ′)) for all θ, θ′ yields a
society. Thus, pairs (F,C) of populations F ∈ F and interaction structures C yield an equiva-
lent representation of societies. Using the (F,C) decomposition, we can compare societies with
different interaction structures but the same population, or with different populations but the same
interaction structure. In the following we will move freely between the two representations.

In particular, by comparing societies in terms of their interaction structures, we can define a
comparative notion that captures when one society is more assortative than another:

Definition 3. Given interaction structures C1 and C2, we say that C1 is more assortative than
C2, denoted C1 %MA C2, if C1(·|x ≥ x∗) first-order stochastically dominates C2(·|x ≥ x∗) for all
x∗ ∈ (0, 1).

Recall that assortativity of C means that the distribution C(·|x) of matches’ quantiles is in-
creasing in own quantile x with respect to first-order stochastic dominance. Definition 3 says that
C1 is more assortative than C2 if this effect is stronger under C1, in the sense that conditional on

18For any cdf G, its inverse is defined by G−1(x) := inf{v ∈ R : G(v) ≥ x} for each x ∈ (0, 1).
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Figure 1: In the space [0, 1] × [0, 1] of pairs of quantiles, any interaction structure C assigns probability
(1− x∗)C(y∗|x ≥ x∗) to the high–low region corresponding to all matches between a quantile above x∗ and
a quantile below y∗. Thus, C1 %MA C2 if and only if for all x∗ and y∗, C1 assigns lower probability than
C2 to the high–low region; equivalently, C1 assigns higher probability than C2 to the high–high region and
low–low region and lower probability to the low–high region.

own quantile exceeding any given threshold x∗, matches’ quantiles are stochastically higher under
C1 than C2. For example, in more assortative societies, people in the top five percent of the wealth
distribution are less likely to interact with those in the bottom 20%. Figure 1 provides further illus-
tration. In the statistics literature (e.g., Joe, 1997),19 %MA is known as the PQD (positive quadrant
dependence) or concordance order and is used more generally to compare any two-dimensional cdfs.
To the best of our knowledge, we are the first to use this notion as a measure of assortativity. In
Section 7.2, we introduce a second, stronger assortativity order and show that natural analogs of
our main results remain valid.

The more assortative order has natural minimal and maximal elements. In particular, the %MA-
least assortative interaction structure is the independent interaction structure CI under which
CI(x, x

′) = xx′ for all x, x′; that is, the distribution CI(·|x) of matches’ quantiles is uniform on
[0, 1] regardless of own quantile x, or equivalently, in any society P = (F,CI), matches’ types are
drawn from the unconditional type distribution F . The %MA-most assortative interaction structure
is the perfectly assortative interaction structure CPer given by CPer(x, x′) = min{x, x′}; that
is, each quantile x is matched only with types of the same quantile.

From now on, we will only consider societies whose interaction structure C admits a density
function c(·, ·) that is positive and absolutely continuous on (0, 1)2. Let C denote the class of all
interaction structures with these properties.20 We conclude the description of the model with a
simple parametric example:

Example 1 (Gaussian societies). Symmetric bivariate Gaussian distributions with positive corre-
19See also Meyer and Strulovici (2012).
20Assuming a positive and absolutely continuous density is not essential for most results, but it simplifies the

exposition.
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lation represent a simple class of societies. Let P be given by the distribution of the form

(θ1, θ2) ∼ N

((
µ

µ

)
,

(
σ2 σ1,2

σ1,2 σ2

))
,

where the correlation coefficient ρ :=
σ1,2
σ2 ∈ [0, 1) is assumed weakly positive to ensure assortativ-

ity. The corresponding population F is normally distributed with mean µ and variance σ2. The
corresponding interaction structure C is given by

Cρ(x, x
′) := Φρ(Φ

−1(x),Φ−1(x′)),

where Φ is the standard normal cdf and Φρ is the cdf of the joint normal distribution with mean

vector

(
0

0

)
and covariance matrix

(
1 ρ

ρ 1

)
. Note that whereas F is parametrized by µ and σ2, Cρ

is fully parametrized by the correlation coefficient ρ. Moreover, it can be shown that Cρ1 %MA Cρ2

if and only if ρ1 ≥ ρ2, so that more assortativity is characterized precisely by greater correlation. �

3 Behavior in Assortative Societies: Nash Benchmark

As a stepping stone toward analyzing perceptions and behavior in assortative societies, this section
abstracts away from the possibility of misperception and studies the Nash equilibrium of our game.
We first observe that any society P can be associated with a particular monotone Markov process
over its space of types and derive a representation of Nash strategies as a discounted sum of the
t-step ahead expectations of this process. Using this observation, we establish a tight connection
between assortativity and action dispersion: More assortative societies correspond precisely to more
dispersed Nash behavior.

3.1 Markov Process Representation of Nash Equilibrium

While our model is static, a key observation for our analysis is the following: Any society P induces
a discrete-time Markov process over its space of types Θ whose initial distribution is the type
distribution F = margΘ P and whose transition kernel is represented by the matching technology
(P (·|θ))θ∈Θ. That is, this process first draws an initial type θ0 ∈ Θ according to F , then draws type
θ0’s match θ1 according to P (·|θ0), type θ1’s match θ2 according to P (·|θ1), and so on. We refer to
the process as the process of t-step ahead matches in society and also denote it by P . Note that
F is a stationary distribution of the process and that assortativity of P corresponds to the process
being monotone (Daley, 1968); the latter feature will play a central role throughout the paper.

The process of t-step ahead matches yields a simple description of the (Bayes) Nash equilibrium
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strategy profile s of our game. Indeed, iterating the best response condition (1), s must satisfy

s(θ0) = θ0 + γEP [s(θ1) | θ0] + βEF [s(θ)] = . . .

=

τ∑
t=0

γt (EP [θt | θ0] + βEF [s(θ)]) + γτ+1EP [s(θτ+1) | θ0]

for all θ0 and τ ∈ N. In Appendix A.2, we verify that the higher-order term γτ+1EP [s(θτ+1)|θ0]

vanishes as τ →∞, yielding the following result:

Lemma 1. There exists a unique Nash equilibrium. The equilibrium strategy profile s satisfies

s(θ0) =
∞∑
t=0

γtEP [θt | θ0] +
βEF [θ]

(1− γ)(1− γ − β)

for all types θ0, and is strictly increasing and continuous. The average action is EF [s(θ)] = EF [θ]
1−γ−β .

Thus, any type θ’s equilibrium action is a γ-discounted sum of θ’s expected t-step ahead matches
under the Markov process P plus a constant that depends on F , γ, and β. The equilibrium action
is increasing in θ for two reasons. First, because of the direct effect that higher types prefer higher
actions; second, because assortativity means that higher types are more likely to meet other high
types. The latter effect is reflected by the fact that the t-step ahead expectation EP [θt | θ0] is
(weakly) increasing in θ0 for all t ≥ 1, which is a consequence of the monotonicity of the Markov
process induced by P .21

3.2 Assortativity and Action Dispersion

We now show that the extent of assortativity in society manifests itself in a simple way: More
assortative societies are characterized precisely by more dispersed behavior.

For any (P, γ, β), the Nash action distribution is the cdf H = F ◦ s−1 over actions when
types are drawn according to F and behave according to the Nash strategy profile s at (P, γ, β).
Throughout the paper, we use the mean-preserving spread order to capture dispersion; natural
analogs of our results can also be derived under other measures of dispersion (see Section 7.2).
Recall that cdf H1 is amean-preserving spread of cdf H2, denoted H1 %m H2, if

´
ϕ(a) dH1(a) ≥´

ϕ(a) dH2(a) for any convex function ϕ : R→ R for which the integrals are well-defined.
The following result establishes an equivalence between the more assortative order over interac-

tion structures and the mean-preserving spread order over Nash action distributions.
21In a finite network setting with incomplete information, Golub and Morris (2017) also highlight the connection

between Nash equilibria of linear best response games and higher-order expectations of a related Markov process.
However, their setting does not feature assortativity/monotonicity, which is the key property driving our subsequent
analysis. Relatedly, in finite network settings with complete information, equilibria of linear best-response games
can also be expressed as infinite sums by iterating the underlying adjacency matrix. But again, without further
assumptions on the structure of this matrix, it would be difficult to conduct comparative statics of higher-order terms
and we are not aware of any work exploiting this infinite sum expression.
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Theorem 1. Fix C1, C2 ∈ C, and let HF,γ,β
i denote the Nash action distribution under (F,Ci, γ, β)

for each i = 1, 2. The following are equivalent:

1. C1 %MA C2

2. HF,γ,β
1 %m HF,γ,β

2 for all (F, γ, β).

Proof. See Appendix B.

The equivalence result in the theorem shows a tight connection between assortativity and action
dispersion. Not only does greater assortativity lead to greater action dispersion (by 1. ⇒ 2.), but
greater action dispersion is indeed the defining feature of more assortative societies (by 2. ⇒ 1.).
Note that HF,γ,β

1 and HF,γ,β
2 have the same mean, since by Lemma 1 the average Nash action

does not depend on the interaction structure. Moreover, since the underlying type distributions are
the same, HF,γ,β

1 %m HF,γ,β
2 can be expressed directly in terms of strategies as EF [sF,γ,β1 (θ)|θ ≥

θ∗] ≥ EF [sF,γ,β2 (θ)|θ ≥ θ∗] and EF [sF,γ,β1 (θ)|θ ≤ θ∗] ≤ EF [sF,γ,β2 (θ)|θ ≤ θ∗] for all θ∗. That is,
more assortative societies are characterized by the fact that on average high and low types both
take more extreme actions; for example, wealthier people may consume more luxury goods, or
left-/right-leaning individuals may each engage in more partisan political activities.

To see the intuition, consider the effect of greater assortativity on agents’ best responses against
some fixed monotone strategy profile s. In this case, greater assortativity implies that agents with
higher types are more likely to face matches with higher types and hence, since s is monotone, are
more likely to face higher actions. As a result, local coordination motives (γ ≥ 0) will induce higher
types to choose higher actions. Likewise, greater assortativity leads lower types to best-respond to
s with lower actions. Thus, the distribution of best responses against s is more dispersed. Note the
importance of local coordination motives for this argument; indeed, if γ = 0, greater assortativity
has no effect as best responses do not depend on the interaction structure C.

Of course, the intuition in the previous paragraph is incomplete, because it concerns only one
direction of the theorem and applies only to best responses against a fixed monotone strategy pro-
file (instead of to equilibrium behavior, i.e., the fixed point of the best response correspondence).
To establish the full-fledged equivalence result in Appendix B, we exploit the Markov process rep-
resentation of equilibrium strategies from Lemma 1. This allows us to reduce the problem to a
comparison of t-step ahead expectations of the Markov process induced by P , where assortativity
of P (i.e., monotonicity of the Markov process) plays an essential role at several steps of the proof.

More concretely, for any society P = (F,C) and t ≥ 1, let Dt
P denote the distribution of

EP [θt|θ0] where θ0 is distributed according to F ; that is, Dt
P is the distribution of expected t-step

ahead matches across society. The key observation is the following “duality lemma:”22

Lemma 2 (Duality lemma). For any C1, C2 ∈ C, the following are equivalent:
22Lemma 2 itself does not appear in Appendix B, but follows from two other lemmas. The equivalence between

(i) and (ii) follows from Lemma B.4, which shows that the mean-preserving spread order is the “dual order” of the
more-assortative order %MA. Given this, the fact that (ii) implies (iii) follows from Lemma B.3, which establishes
that %m is an “isotone” order.

13



(i) C1 %MA C2

(ii) D1
F,C1
%m D1

F,C2
for all F

(iii) Dt
F,C1
%m Dt

F,C2
for all F and t.

The equivalence between (i) and (ii) establishes a duality between the more assortative order
over interaction structures Ci and the mean-preserving spread order over the corresponding expected
match distributions D1

F,Ci
under all possible type distributions F . Moreover, by (iii), this duality

extends to higher-order expected match distributions. The step from (ii) to (iii) employs tools from
majorization theory (Marshall, Olkin, and Arnold, 2010). Given this duality result, we complete
the proof of Theorem 1 by exploiting the representation of Nash as a discounted sum of expected
t-step ahead matches along with the fact that %m is a linear and continuous order.

The following example illustrates Theorem 1 in Gaussian societies.

Example 2. Consider a Gaussian society P parametrized by (µ, σ2, ρ) as in Example 1. For each
type θ0, the distribution P (·|θ0) of θ0’s matches is also normal with mean EP [θ1|θ0] = (1−ρ)µ+ρθ0;
inductively, EP [θt|θ0] = (1 − ρt)µ + ρtθ0 for all t. Thus, by Lemma 1 the Nash equilibrium takes
the following linear form:

s(θ0) =
∞∑
t=0

γt
(
(1− ρt)µ+ ρtθ0

)
+

βµ

(1− γ)(1− γ − β)
=
θ0 − µ
1− γρ

+
µ

1− γ − β
.

Hence, the equilibrium action distribution is normally distributed with mean and variance

E[s] =
µ

1− γ − β
, Var[s] =

σ2

(1− γρ)2
.

Illustrating Theorem 1, Var[s] is increasing in the correlation coefficient ρ while E[s] is independent
of ρ. At the same time, Var[s] is also increasing in the local coordination motive γ and type
heterogeneity σ2. The following subsection will generalize the latter observations. �

3.3 Other Sources of Action Dispersion

We conclude the analysis of the Nash benchmark by highlighting two additional sources of action
dispersion that will play a role in subsequent sections: Type heterogeneity and local coordination
motives.

Proposition 1 (Effect of type heterogeneity). Let Hi denote the Nash action distribution under
(Fi, C, γ, β) for i = 1, 2. Then F1 %m F2 implies H1 %m H2.

Since local coordination motives affect the mean of the Nash action distribution (see Lemma 1),
we isolate the effect of γ on action dispersion by considering mean-adjusted Nash action distri-
butions. Given any cdf H, its mean-adjustment H̄ is the mean-zero cdf that is obtained by
subtracting the mean from all values ofH; i.e., H̄(a) := H(a+µH) for all a ∈ R, where µH := EH [a].
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Proposition 2 (Effect of local coordination motives). Let Hi denote the Nash action distribution
under (F,C, γi, βi) for i = 1, 2. Then γ1 ≥ γ2 implies H̄1 %m H̄2.

Note that the global coordination coefficients βi are arbitrary in Proposition 2. This is because,
by Lemma 1, β only affects each type’s strategy via the same constant term βEF [θ]

(1−γ)(1−γ−β) and hence
has no impact on action dispersion.

To see the intuition for Proposition 2, consider the effect of an increase in γ on best responses
against a fixed monotone strategy profile. When γ increases, higher/lower types have stronger
incentives to play high/low actions, given that, because interactions are assortative, they are likely
to meet other high/low types (and hence high/low actions). Paralleling the discussion following
Theorem 1, this intuition for best responses is again only partial, and to obtain the full equilibrium
comparison we again exploit the Markov process representation of equilibrium. The same approach
also underlies the proof of Proposition 1.

Finally, note that assortativity of C is key in bringing about a strict increase in action dispersion
under higher γ; indeed, under the independent interaction structure C = CI , γ does not influence
action dispersion. This echoes the observation following Theorem 1 that local coordination motives
γ > 0 are necessary for an increase in assortativity to have an effect on action dispersion.23

4 Local Perception Equilibrium (LPE)

So far, we have studied Nash equilibrium behavior, which assumes that agents best-respond to
correct perceptions about the underlying strategy profile s and society P . However, as motivated
in the introduction, assortative interactions create scope for misperception about both s and P .

Intuitively, we can think of our coordination game as capturing the steady state of a setting
where agents repeatedly interact with matches drawn according to the matching technology.24 In
such a situation, we might expect agents to possess a good understanding of the action distribution
among their matches (e.g., consumption levels of luxury goods among their peers). However, as
this is only a very partial snapshot of society, this information is not enough for them to correctly
identify s and P . In particular, they may not know how representative their matches’ behavior is of
the overall population, and consequently may draw wrong inferences about the action distribution
in society as a whole. Likewise, without knowing whom their matches interact with, they may
not be able to separate to what extent matches’ actions reflect their types (e.g., wealth) or their
coordination incentives (e.g., keeping up with their peers’ consumption), and hence may be incorrect
about the type distribution, both among their matches and in society as a whole.

23More generally, Proposition E.1 in Appendix E.3 formalizes a sense in which local coordination motives and
assortativity act as complements in increasing action dispersion.

24Note that the usual interpretation of Nash equilibrium is also based on steady states, which is used to justify
the assumption that players are correct about others’ strategies. We allow for potentially incorrect perceptions, since
interaction structures, non-matches’ actions, and all agents’ types are not directly observable. Also, as in many
games with imperfect observations, we assume that players do not observe their own utilities. This assumption is
particularly natural in our main examples, where players’ utilities may partly reflect non-material consequences, such
as psychological conformity motives.
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To capture this, we now introduce a solution concept that in any given society P jointly pins
down true behavior s as well as each agent’s perceptions of s and P , subject to the following three
requirements: Each agent (i) correctly observes the action distribution among his matches; (ii) holds
perceptions that can “rationalize” these observations, but need not be correct; and (iii) best-responds
to these perceptions.

To formalize this idea, we first define θ’s local action distribution, i.e., the distribution of
actions among θ’s matches. When the true strategy profile and society are s and P , this is given by
the distribution Hs,P

θ over actions that arises when θ’s matches are drawn from P (·|θ) and behave
according to strategy profile s; that is,25

Hs,P
θ (a) =

ˆ
Θ
1{s(θ′)≤a} dP (θ′|θ) for all a ∈ A. (4)

We now define our solution concept:

Definition 4. A local perception equilibrium (LPE) at P is a strategy profile s together with
a perceived society P̂θ and perceived strategy profile ŝθ for each type θ satisfying:

1. Observational consistency :

(a) Hs,P
θ = H ŝθ,P̂θ

θ

(b) ŝθ(θ) = s(θ);

2. Nash rationalization : For all θ′, ŝθ(θ′) = BRθ′(ŝθ, P̂θ).

Underlying any LPE is a true society P and true strategy profile s. Under Nash equilibrium,
players are correct about both these objects. LPE generalizes this, assuming instead that each type
θ has in mind a perceived society P̂θ and perceived strategy profile ŝθ. These perceptions need not
be correct, but are disciplined by two requirements.

First, observational consistency captures the idea ((i) above) that θ is correct about the distri-
bution of his matches’ actions, in the sense that (a) θ’s perceived local action distribution H ŝθ,P̂θ

θ

coincides with the true local action distribution Hs,P
θ ; additionally, (b) θ is correct about his own

behavior. Informally, based on the steady state interpretation above, observational consistency can
be thought of as capturing the idea that agents’ misperceptions are persistent, because they are not
contradicted even under perfect knowledge of what happens in agents’ local interactions.

The second bullet captures the requirement ((ii) above) that θ’s perceptions “rationalize” his
local observations: We require that the behavior, ŝθ(θ′), that θ attributes to any other type θ′

should be a best response given θ’s perceived strategy profile ŝθ and society P̂θ. Note that in
rationalizing others’ behavior, θ adopts the simple and dogmatic worldview that all other types θ′

share his perceptions ŝθ and P̂θ. We refer to this as Nash rationalization, because it implies that ŝθ
is the Nash equilibrium profile at P̂θ.

25Here 1{s(θ′)≤a} denotes the indicator random variable on the event {θ′ : s(θ′) ≤ a}.
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Observe that if θ had no views about other agents’ perceptions, then he could believe others to
employ arbitrary strategies, and this would severely limit his ability to draw inferences about the
global strategy profile and society from his local action distribution. This would be the case under
self-confirming equilibrium (Battigalli, 1987; Fudenberg and Levine, 1993), which we discuss in more
detail in Section 7.1. On the other hand, we could relax Nash rationalization to allow θ to believe
θ′ to hold different perceptions than his own (and to capture more general forms of higher-order
belief disagreement), as long as we impose common certainty of observational consistency and of
rationality. In Section 7.1, we consider such a solution concept by adapting Esponda (2013)’s notion
of “rationalizable conjectural equilibrium” to our setting, and we discuss to what extent our main
results remain valid under this concept.

Finally, note that observational consistency and Nash rationalization jointly imply the require-
ment ((iii) above) that θ best-responds to his perceptions: Indeed, by part (b) of observational
consistency, θ plays action ŝθ(θ), and by Nash rationalization, the latter is θ’s best response to his
perceptions (ŝθ, P̂θ).

5 LPE Analysis

Clearly, one special case of LPE is Nash equilibrium. We now proceed to analyze LPE in which
agents are incorrect about the underlying society; i.e., P̂θ 6= P for some θ. Analogous to Section 2.2,
we can decompose each perceived society P̂θ into a perceived type distribution F̂θ = marg P̂θ and
perceived interaction structure Ĉθ satisfying Ĉθ(x, x′) = P̂θ

(
F̂−1
θ (x), F̂−1

θ (x′)
)
for all x, x′ ∈ (0, 1).

We will structure our analysis by first asking which perceived interaction structures Ĉθ can be
sustained in LPE and then examining the corresponding perceived type distributions and behavior.
We take a two-pronged approach to this question: Section 5.1 asks which Ĉθ can be sustained in
arbitrary environments. We find that this “robustness” requirement selects a particularly simple
form of misperception, assortativity neglect, and analyze its implications in Sections 5.2 and 5.3.
Section 5.4 specializes to the case of Gaussian societies and fully solves for all LPE (with linear
strategies and Gaussian perceptions) that can arise in this setting.

5.1 Robust Sustainability of Assortativity Neglect

We say that type θ suffers from assortativity neglect if his perceived interaction structure Ĉθ
is the independent interaction structure CI ; that is, he believes everyone to interact with a rep-
resentative sample of society as a whole. Assortativity neglect is broadly in line with empirical
findings of “location effects” in the network cognition literature, in particular the fact that individu-
als exhibit a “projection bias” (Dessi, Gallo, and Goyal, 2016), viewing their own neighborhoods as
representative of the global network. Additionally, assortativity neglect bears some resemblance to
well-documented forms of inferential naiveté in the behavioral economics literature; notably “selec-
tion neglect” (e.g., Enke, 2017; Levy and Razin, 2017; Jehiel, 2018), where agents fail to take into
account that the information they see may be subject to selection effects, and “correlation neglect”
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(e.g., Enke and Zimmermann, 2017; Eyster and Rabin, 2010; Ortoleva and Snowberg, 2015; Levy
and Razin, 2015), where agents do not correctly account for correlation across different information
sources.26

The following theorem provides a theoretical foundation for assortativity neglect. First, in any
society and coordination game, there is a unique LPE in which all types suffer from assortativity
neglect. Thus, assortativity neglect is a very robust form of misperception that can persist regardless
of how assortative the actual society P is. Second, assortativity neglect is the only perception of
the interaction structure that is robust in this way: For any interaction structure Ĉ other than the
independent interaction structure and any type θ, there are environments in which θ cannot sustain
perception Ĉ in any LPE. For the second statement, we impose the following very mild regularity
requirement: Interaction structure Ĉ is called regular if there exists some y ∈ (0, 1) such that
|{x ∈ (0, 1) : Ĉ(x|x) = y}| = 1.27

Theorem 2 (Robust sustainability of assortativity neglect).

1. For any (P, γ, β), there exists a unique LPE such that Ĉθ = CI for all θ.

2. For any regular Ĉ 6= CI and any θ, there exists (P, γ, β) at which all LPE satisfy Ĉθ 6= Ĉ.

Theorem 2 is of interest for at least two reasons. First, the robustness result suggests that
misperception in the form of assortativity neglect is distinguished by the fact that it can be a
very stable phenomenon: Even if society changes over time (e.g., becomes more assortative) or if
agents are engaged in social interactions along many separate dimensions that each might involve
different type distributions and coordination motives, agents will never be forced to give up this
misperception, as long as they suitably adapt their perceptions of the underlying population and
behavior. Second, as we will discuss below, since assortativity neglect uniquely pins down the
corresponding LPE, it yields sharp predictions for agents’ behavior and their misperceptions about
the distribution of population characteristics, paving the way for comparative statics analysis of
how these are shaped by the nature of social interactions.

We prove Theorem 2 in Appendix D.2. The key observation is that assortativity neglect has the
unique feature that it can explain any behavior: Formally, under CI , any action distribution Ĥ can
be rationalized as Nash under some appropriate type distribution F̂ , and CI is the only interaction
structure with this property.

Lemma 3. For any Ĉ ∈ C, γ > 0 and β ≥ 0, the following are equivalent:

1. Ĉ = CI .
26Enke (2017) and Enke and Zimmermann (2017) provide experimental evidence for these phenomena. The remain-

ing papers exogenously impose these forms of naiveté and study their implications in specific settings. By contrast,
we endogenously derive assortativity neglect as the unique misperception of the interaction structure that can be
robustly sustained in LPE.

27The function x 7→ Ĉ(x|x) maps each quantile x to its “local quantile” under Ĉ, i.e., to the fraction of its matches
with quantile below its own. Regularity rules out the possibility that this function oscillates arbitrarily, in particular
requiring there to be at least one value y that is achieved exactly once. This is much weaker than the requirement that
the map be monotone, which is satisfied under both Gaussian interactions and the independent interaction structure.
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2. For any action distribution Ĥ ∈ F ,28 there exists a type distribution F̂ such that Ĥ is the
Nash action distribution under (F̂ , Ĉ, γ, β).

Moreover, if (2) holds then for every Ĥ the corresponding F̂ is unique.

Proof. See Appendix D.1.

The intuition for Lemma 3 is closely related to Section 3, where we saw that Nash action disper-
sion is increasing in assortativity (Theorem 1), but also in type heterogeneity and local coordination
motives (Propositions 1 and 2). Concretely, if Ĥ is the Nash action distribution in society (F̂ , Ĉ),
then the action difference between any two quantiles x > y can be decomposed into two terms—the
corresponding type difference and the difference in coordination incentives, where the latter results
from differences in x and y’s matches’ behavior and is greater under more assortative Ĉ:

Ĥ−1(x)− Ĥ−1(y)︸ ︷︷ ︸
∆(actions)

= F̂−1(x)− F̂−1(y)︸ ︷︷ ︸
∆(types)

+ γ

ˆ
Ĥ−1(z) d

(
Ĉ(z|x)− Ĉ(z|y)

)
︸ ︷︷ ︸

∆(coordination incentives)

. (5)

Under the independent interaction structure Ĉ = CI , there is no difference between x and y’s
coordination incentives as x and y face the same distribution of matches. As a result, we can
rationalize Ĥ by attributing all action dispersion to type dispersion, and for any Ĥ there is a unique
type distribution F̂ that achieves this while also yielding the correct action mean EĤ [a] =

EF̂ [θ]

1−γ−β .
By contrast, in the presence of assortativity, coordination incentives may differ too much across
agents for (5) to be satisfied: If Ĉ 6= CI , consider x > y such that the distribution Ĉ(·|x) of x’s
matches strictly stochastically dominates that of y. For any γ > 0, we can then find an action
distribution Ĥ whose xth and yth quantiles are very similar (Ĥ−1(x) − Ĥ−1(y) ≈ 0) but such
that x’s matches on average take substantially higher actions than y’s matches. In this case, it is
impossible to satisfy (5) regardless of F̂ , because x and y’s coordination incentives already differ by
more than their actions.

Lemma 3 can be viewed as providing a microfoundation for the “fundamental attribution error,”
a central bias studied in social psychology (e.g., Ross, 1977) that refers to people’s tendency to
attribute others’ behavior to intrinsic characteristics rather than to external factors such as social
influence. This corresponds to the mechanism we highlighted above, whereby agents who sufffer
from assortativity neglect rationalize any observed behavior by attributing all action dispersion to
type dispersion. Lemma 3 suggests a sense in which this is the unique view of society that can
explain any behavior, thus possibly shedding some light on the prevalence of this bias.

In Appendix D.2, we use Lemma 3 to show that if type θ’s perceived interaction structure is CI ,
then no matter what strategy s is being played, there is a unique perceived type distribution F̂θ and
perceived strategy ŝθ that allows θ to maintain observational consistency and Nash rationalization.
Conversely, if Ĉθ 6= CI , then in some environments θ will be unable to sustain this perception in
any LPE.

28Recall that F is the set of all cdfs that are absolutely continuous, L1 and have a connected support.

19



Finally, we complete the proof of Theorem 2 by showing that if all types suffer from assortativity
neglect, then this uniquely pins down LPE behavior. Suppose that s is sustained in an LPE by
perceptions (ŝθ, P̂θ)θ∈Θ with Ĉθ = CI for all θ. For any type θ, the Nash rationalization requirement
implies

ŝθ(θ) = θ + γEP̂θ [ŝθ(θ
′)|θ] + βEF̂θ [ŝθ(θ

′)].

But since Ĉθ = CI , θ’s perceived local action mean and perceived global action mean coincide, i.e.,
EP̂θ [ŝθ(θ

′)|θ] = EF̂θ [ŝθ(θ
′)]. Moreover, observational consistency implies that θ is correct about both

the local action action mean and his own action, i.e., EP̂θ [ŝθ(θ
′)|θ] = EP [s(θ′)|θ] and ŝθ(θ) = s(θ).

Combining these observations, we have

s(θ) = θ + (γ + β)EP [s(θ′)|θ].

Thus, iterating expectations, behavior for all θ0 must satisfy

sAN (θ0) =
∞∑
t=0

(γ + β)tEP [θt|θ0]. (6)

Henceforth, for any (P, γ, β), we refer to the unique LPE in which all types suffer from assortativity
neglect as the assortativity neglect LPE (ANLPE).

5.2 Implications of Assortativity Neglect

We now turn to examining the implications of assortativity neglect for behavior and perceptions
about the population distribution.

Corollary 1 (Implications of assortativity neglect). For any (P, γ, β), the unique ANLPE has
underlying strategy profile sAN given by (6) and satisfies the following properties:

1. False Consensus Effect: Type θ’s perceived population mean µ̂θ = EF̂θ [θ
′] is increasing in

θ, with

µ̂θ = (1− γ − β)
∞∑
t=0

(γ + β)tEP [θt+1|θ0 = θ]. (7)

2. Increased action dispersion: The induced action distribution HAN = F ◦ sAN−1 is a
mean-preserving spread of the Nash action distribution HNE at (P, γ, β).

Proof. See Appendix E.1.

We refer to the first bullet point as a “false consensus effect,” based on the eponymous finding in
social psychology (Ross, Greene, and House, 1977; Marks and Miller, 1987) that people’s perceptions
of others’ attributes tend to be positively correlated with their own attributes. This effect has been
documented in a variety of settings. For example, individuals’ perceptions of the median income in
their country or city tend to be increasing in own income (e.g., Cruces, Perez-Truglia, and Tetaz,
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2013); and in the context of political attitudes, supporters (opponents) of particular policies tend
to overestimate (underestimate) its support in the population (e.g., Bauman and Geher, 2002), by
as much as 67% vs. 33% in the case of abortion.

In our setting, this effect emerges in equilibrium as a consequence of assortativity neglect.
Moreover, it generates and is further amplified by a second key implication of assortativity neglect,
namely an increase in action dispersion relative to the Nash benchmark with correct perceptions.

To see the intuition, consider first the Nash equilibrium strategy profile s. Under assortativity
neglect, all types believe their local action distribution to be perfectly representative of the global
action distribution. However, since interactions are assortative and s is monotone, higher types
observe higher actions. Hence, to maintain observational consistency, they must perceive a higher
population mean, generating a false consensus effect. But then, higher types also perceive a higher
global action mean, and hence, since β ≥ 0, face stronger global coordination incentives than lower
types. Thus, relative to Nash, assortativity neglect leads best responses against s to exhibit greater
type sensitivity. This in turn exacerbates the false consensus effect, which feeds back into yet more
dispersed behavior.

Formally, observe that by (6) and Lemma 1, behavior under ANLPE is the same as Nash equi-
librium behavior in the modified game with local coordination motive γ+β and global coordination
motive 0. Since greater local coordination motives induce a more dispersed Nash action distribu-
tion (Proposition 2) while the average Nash action depends only on the sum of local and global
coordination coefficients, this immediately implies that HAN is a mean-preserving spread of HNE .
Finally, note that ANLPE and Nash strategy profiles coincide when β = 0, but the false consensus
effect still obtains.29

5.3 Comparative Statics under Assortativity Neglect

We have seen that assortativity neglect differs from Nash in two important ways: First, behavior is
more dispersed; second, perceptions about population characteristics are dispersed, as reflected for
instance by the false consensus effect. Since assortativity neglect can persist in all environments,
our framework lends itself to a number of comparative statics predictions.

Throughout this section, let M denote the distribution of perceived population means µ̂θ when
θ is distributed according to F ; we sometimes refer to M as perception distribution for short.
Note that by (7), agents’ perceptions are on average correct; i.e., EF [µ̂θ] = EF [θ].

In the following, we show howM and the action distribution HAN are shaped by the underlying
environment. We first consider the effect of the true level of assortativity in society:

Theorem 3 (Effect of greater assortativity). Fix C1, C2 ∈ C, and let HF,γ,β
i and MF,γ,β

i denote the
action and perception distributions under the ANLPE at (F,Ci, γ, β) for each i = 1, 2. Then the
following are equivalent:

29More generally, when β = 0, all LPE strategy profiles coincide with Nash equilibrium, while players’ perceptions
need not (see Lemma I.1 in Appendix I).
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1. C1 %MA C2

2. HF,γ,β
1 %m HF,γ,β

2 for all (F, γ, β)

3. MF,γ,β
1 %m MF,γ,β

2 for all (F, γ, β).

Proof. See Appendix E.2.

In Theorem 1, we saw that a defining feature of more assortative societies is more dispersed
Nash behavior. Theorem 3 shows that more assortative societies also correspond to more dispersed
ANLPE behavior. In addition, under assortativity neglect, greater assortativity leads to a more
dispersed perception distribution M , i.e., a stronger false consensus effect. Because of the latter
effect, for any given increase in assortativity, the increase in action dispersion is more severe under
ANLPE than under Nash, as formalized in the following corollary. Thus, assortativity neglect
amplifies the effect of assortatitivity on action dispersion.

Corollary 2 (Assortativity neglect amplifies effect of assortativity). Fix any (F, γ, β) and C1 %MA

C2. Let sANi and sNEi denote ANLPE and Nash strategy profiles under (F,Ci, γ, β) for i = 1, 2.
Then for all types θ∗,

EF [sAN1 (θ)− sAN2 (θ)|θ ≥ θ∗] ≥ EF [sNE1 (θ)− sNE2 (θ)|θ ≥ θ∗]. (8)

Proof. See Appendix E.3

Greater action dispersion under C1 corresponds to the fact that higher types on average take
higher actions than under C2 ; (8) implies that this effect is stronger under assortavity neglect than
under Nash.

The next proposition studies the effect of local and global coordination motives. Similar to the
effect of assortativity, greater coordination motives also lead to more dispersed behavior. This is
again reminiscent of the result under Nash (Proposition 2); however, while Nash action dispersion
is only affected by the local coordination motive γ, ANLPE action dispersion is affected by the sum
of local and global motives (γ + β). This is because under assortativity neglect, unlike under Nash,
global coordination incentives vary across agents, as perceived global action means are increasing
in agents’ types. At the same time, as far as perceptions are concerned, greater coordination
motives have the opposite effect of increased assortativity: Greater coordination motives diminish
the false consensus effect, leading to a less dispersed perception distribution. Under mild regularity
conditions, all agents’ perceived population means converge to the truth as γ + β → 1.

Proposition 3 (Effect of greater coordination motives). Fix (F,C) and consider γ1 +β1 ≥ γ2 +β2.
Let Hi and Mi denote the ANLPE action and perception distributions at (F,C, γi, βi) for i = 1, 2.
Then:30

1. H̄1 %m H̄2

30Recall that H̄i denotes the mean-adjustment of Hi.
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2. M2 %m M1.

Moreover, if limt→∞ EP [θt|θ0]→ EF [θ], then µ̂θ0 → EF [θ] as γ + β → 1.

Proof. See Appendix E.4.

To see the idea, recall that ANLPE behavior is given by s(θ) =
∑∞

t=0(γ + β)tEP [θt|θ0 = θ] for
all θ. Since this coincides with Nash behavior in the game with local coordination motives γ + β,
Proposition 2 implies that higher γ + β leads to a more dispersed action distribution.

One might expect this to also entail a more dispersed perception distribution. However, as far
as agents’ perceptions of the population mean are concerned, all that matters is the distribution of
normalized actions s̃(θ) = (1 − γ − β)s(θ) = (1 − γ − β)

∑∞
t=0(γ + β)tEP [θt|θ0 = θ], as all agents

know γ + β. Indeed, recall from Theorem 2 that type θ0’s perceived population mean is

µ̂θ0 = (1− γ − β)

∞∑
t=0

(γ + β)tEP [θt+1|θ0] = EP [s̃(θ1)|θ0].

Now note that under higher γ + β, any type θ’s normalized action s̃(θ) shifts relative weight away
from θ’s own type and θ’s expected match EP [θ1|θ0 = θ] towards more distant t-step ahead matches
EP [θt|θ0 = θ]. Since the latter are less sensitive to θ than the former, this renders s̃(θ) less sensitive
to θ, which by observational consistency translates into less dispersed perceptions of the mean.

If additionally limt→∞ EP [θt|θ0] → EF [θ], so that in the limit expected t-step ahead matches
perfectly approximate the average type in the population, then θ0’s perceived mean µ̂θ0 will converge
to the truth as γ + β → 1. The requirement that limt→∞ EP [θt|θ0]→ EF [θ] is a form of ergodicity.
This is satisfied, for example, in any Gaussian society P = (µ, σ2, ρ), as in this case EP [θt|θ0] =

(1−ρt)µ+ρtθ0 → µ by Example 2. More generally, the following lemma provides a simple sufficient
condition for limt→∞ EP [θt|θ0]→ EF [θ], which reflects the idea that the matching technology is not
too local and the society is well connected.

Lemma 4. Suppose P satisfies the following conditions:

1. There exists η ∈ [0, 1) and K ∈ R such that
´
|θ1| dP (θ1 | θ0) ≤ η|θ0|+K for all θ0.

2. On any compact interval, I ⊆ R, infθ1∈I,θ0∈I p(θ1 | θ0) > 0, where p denotes the density of P .

Then limt→∞ EP [θt|θ0]→ EF [θ] for all θ0.

Proof. See Appendix E.5.

Finally, in characterizing perceptions, our analysis so far has focused on perceived population
means µ̂θ. Of course, other moments of agents’ perceptions may also be of interest, and our
framework lends itself to predictions about such higher moments as well. As an illustration, we
briefly consider agents’ perceptions of type dispersion in the population. When types represent
income, this can be viewed as a measure of perceived income inequality, while in the case of political
attitudes it could represent perceived polarization. Both are the subject of an active empirical
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literature, which also documents their importance in shaping individuals’ preferences (e.g., for
redistributive policies) and behavior (e.g., political participation).

The following proposition highlights an interesting difference between perceived population
means and perceived dispersion. While we have seen that greater coordination motives lead to
more accurate perceptions of the population mean, this need not be the case for perceptions of
dispersion; indeed, perceived dispersion is strictly increasing in coordination motives.

Proposition 4 (Perceived population dispersion). Fix (F,C) and consider γ1 + β1 ≥ γ2 + β2.
For each θ, let F̂ iθ denote θ’s perceived type distribution under the ANLPE at (F,C, γi, βi). Then
¯̂
F 1
θ %m

¯̂
F 2
θ .

Proof. See Appendix E.6.

To see the intuition, note that greater coordination motives lead to more dispersed ANLPE
behavior (Proposition 3), and this is true not only at the global level, but also for each type’s
local action distribution. However, while agents are correct about the parameters γ and β, under
assortativity neglect the fact that their perceived interaction structure is CI means that increases
in these parameters do not affect their perceived action distribution (recall the discussion following
Lemma 3). Thus, they must instead rationalize increases in local action dispersion by attributing
them to increased type dispersion.

Proposition 4 leaves open the possibility that perceived type dispersion may be either smaller or
greater than actual. Both possibilities are consistent with empirical work, which documents under-
or overestimation depending on the context. For instance, a number of studies across different
countries establish widespread underestimation of income inequality (e.g., Norton and Ariely, 2011;
Engelhardt and Wagener, 2015); on the other hand, recent work on perceived political attitudes in
the United States suggests that individuals tend to overestimate political polarization (e.g., Ahler,
2014; Westfall, Van Boven, Chambers, and Judd, 2015). Focusing on the Gaussian environment,
Corollary 3 in the next subsection derives exact conditions under which agents under- or overestimate
dispersion, showing that which of the two occurs depends on the relative strength of coordination
motives and assortativity.

5.4 Linear-Gaussian LPE

So far, we have considered arbitrary societies and focused on LPE under assortativity neglect, which
we showed to be the only form of misperception about the interaction structure that is sustainable
in any environment.

In this section, we specialize to Gaussian societies as in Example 1, where P is jointly normally
distributed and parametrized by the mean µ and variance σ2 of the type distribution along with a
correlation coefficent ρ ∈ [0, 1). The purpose is twofold: First, this setting is particularly tractable,
allowing us to fully solve for all LPE (with linear strategies and Gaussian perceptions) in closed
form. Second, these LPE can feature partial assortativity neglect, where agents underestimate but
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do not completely neglect the assortativity in society, and we illustrate the robustness of our key
findings in the previous section to this weaker form of misperception.

Our analysis focuses on the subclass of LPE where strategies are linear in types (as under Nash,
cf. Example 2) and each type’s perceived society is itself Gaussian.

Definition 5. A linear-Gaussian LPE at P is an LPE (s, (ŝθ, P̂θ)θ∈Θ) such that

1. strategy profile s is linear and non-constant in types;

2. each type θ’s perceived society P̂θ is Gaussian parametrized by (µ̂θ, σ̂
2
θ , ρ̂θ).

The following proposition characterizes the set of all linear-Gaussian LPE under the assumption
that β > 0.31

Proposition 5 (Linear-Gaussian LPE). Consider a Gaussian society (µ, σ2, ρ) and suppose β > 0.
For any ρ̂ ∈ [0, 1), there exists a unique linear-Gaussian LPE in which ρ̂θ = ρ̂ for all θ. Conversely,
for any linear-Gaussian LPE, there exists ρ̂ ∈ [0, 1) such that ρ̂θ = ρ̂ for all θ 6= µ.

Proof. See Appendix F.1.

While Definition 5 allows different types θ to have different perceived correlations ρ̂θ, Proposi-
tion 5 shows that every linear-Gaussian LPE is in fact characterized by a single perceived correlation
ρ̂ ∈ [0, 1) that is common across all θ (except possibly the mean type).32 Moreover, any perceived
correlation ρ̂ ∈ [0, 1) can be sustained, and ρ̂ uniquely pins down the true strategy profile s, each
type θ’s perceived strategy profile ŝθ and perceived mean µ̂θ, and the type-independent perceived
variance σ̂2; the proof of Proposition 5 exhibits closed-form expressions for all these quantities.

Note that if ρ̂ = ρ, then linear-Gaussian LPE and Nash behavior coincide and all types’ per-
ceptions are correct. Consider instead the case of partial assortativity neglect where ρ̂ < ρ, so
that all agents underestimate assortativity in society but do not necessarily completely neglect it.
From the closed-form expressions in the proof of Proposition 5, it is easy to see that all qualitative
implications of the analysis under assortativity neglect remain valid in this case. In particular,
perceived population means are subject to a false consensus effect and behavior is more dispersed
than under Nash equilibrium; moreover, both effects are stronger in more assortative societies, while
stronger coordination motives lead to more dispersed behavior but more accurate perceptions of the
mean. Finally, more severe assortativity neglect (smaller ρ̂) also leads to more dispersed behavior
and perceptions. Figure 2 illustrates perceptions across different types under partial assortativity
neglect.

The following result expands on the analysis of perceived type dispersion in Proposition 4.
Recall that in any linear-Gaussian LPE, perceived population variance σ̂2

θ = σ̂2 is the same for all
31When β = 0, perceived correlation ρ̂θ can vary across types θ in an arbitrary manner, but the corresponding

values (µ̂θ, σ̂
2
θ) are uniquely pinned down by the same expressions as in the proof of Proposition 5. This is because

perceived correlation does not influence the actual strategy profile, which coincides with the Nash equilibrium.
32The perceived correlation ρ̂µ of the mean type θ = µ can take arbitrary values in [0, 1). However, µ’s perceived

mean and true strategy are given by µ̂µ = µ and s(µ) = µ
1−γ−β in every linear-Gaussian LPE, and every ρ̂µ ∈ [0, 1)

uniquely pins down µ’s corresponding perceived variance σ̂2
µ and perceived strategy profile ŝµ.
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µ̂θ

σ̂2
θ

←− ρ̂

· · · ·
ρ̂=0︷ ︸︸ ︷

ρ̂ = ρ

Figure 2: Perceived means and variances (µ̂θ, σ̂
2
θ) under partial assortativity neglect (ρ̂ increases westward

from 0 to ρ). For ρ̂ = ρ, perceptions are equal to the true values µ = and σ2 = 1; for ρ̂ < ρ, perceived
means exhibit a false consensus effect (µ̂θ is increasing in θ), which is more severe the smaller ρ̂. Perceived
variances are type-independent and can be higher or lower than the true variance. Parameter values: ρ =

0.6, γ = 0.25, β = 0.1.

θ 6= µ. Analogous to Proposition 4, under partial assortativity neglect, σ̂2 is again strictly increasing
in coordination motives. At the same time, however, perceived variance can be nonmonotonic in
assortativity ρ, and these two effects combine to yield overestimation of variance when coordination
motives are strong relative to assortativity and underestimation in the opposite case, as illustrated
in Figure 3.

Corollary 3 (Perceived variance under partial assortativity neglect). Fix (µ, σ2) and ρ̂ ∈ [0, 1).
For each ρ > ρ̂ and γ, β with β > 0, consider the commonly perceived type variance σ̂2 in the
linear-Gaussian LPE with perceived correlation ρ̂. Then

1. σ̂2 is strictly increasing in γ and β;

2. there is ρ̄(γ, β) ∈ [ρ̂, 1) which is nondecreasing in γ and β such that

σ̂2

> σ2 if ρ ∈ (ρ̂, ρ̄(γ, β))

< σ2 if ρ > ρ̄(γ, β)
.

To see the role played by assortativity, note the following two countervailing effects on local
action variance: On the one hand, the greater ρ the lower the local type variance σ2(1− ρ2), which
for any fixed linear strategy profile reduces local action variance. On the other hand, we have
seen that greater assortativity leads to greater action dispersion, by increasing players’ coordination
incentives, which for any fixed local type distribution increases local action variance. Moreover, this
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σ̂2 > σ2

σ̂2 < σ2

γ

ρ

ρ̂ = 0.2

Figure 3: Over-/underestimation of population variance depending on coordination motives and assorta-
tivity. The blue curve depicts ρ̄(γ, β) as a function of γ for β = 0.2 and ρ̂ = 0.2. When ρ > ρ̄(γ, β), agents
underestimate variance; when ρ̂ < ρ < ρ̄(γ, β), agents overestimate variance; for ρ = ρ̄(γ, β) or ρ = ρ̂,
perceived variance is correct.

latter effect is stronger the greater agents’ coordination motives, and when coordination motives are
strong enough relative to ρ, it can be shown to dominate the former effect. For a fixed level ρ̂ < ρ

of (partial) assortativity neglect, this means that if γ and β are large then assortativity neglect
pushes agents to underestimate local action variance, which to maintain observational consistency
must be counterbalanced by overestimating type variance; while if coordination motives are weak,
the opposite is the case, and agents will underestimate σ2, as summarized in the second bullet.

As discussed following Proposition 4, empirical work documents both over- and underestimation
of type dispersion depending on the context. Corollary 3 suggests investigating the role played by
coordination motives and/or assortativity. For instance, if it were the case that peer effects are
stronger for political activities than for consumption decisions (or that assortativity along wealth
is stronger than along political attitudes), this would be consistent with the finding that people
tend to overestimate political attitude polarization but underestimate income inequality in their
societies.

6 Welfare Implications

We now turn to welfare implications of our analysis. For this section only, we assume utilities of
the quadratic-loss form, where type θ’s payoff from action a against strategy profile s in society P
is given as in (2):

uP (a, θ, s) = −EP [(a− θ − γs(θ′)− βEF [s(θ′)])2 | θ].
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Note that under this specification, type θ’s utility to best-responding against any strategy profile s
is negatively proportional to θ’s local action variance under s: For a∗ = BRθ(s, P ),

uP (a∗, θ, s) = −γ2VarP [s(θ′)|θ]. (9)

Intuitively, this captures the fact that variation in θ’s matches’ behavior creates a miscoordination
cost for θ.

6.1 Welfare Implications of Misperception

We first consider the welfare implications of misperception in the form of assortativity neglect, by
comparing each type’s Nash equilibrium utility to that under ANLPE. In society P , θ’s Nash utility
is

uNEP (θ) := uP (sNE(θ), θ, sNE),

where sNE denotes the Nash strategy profile. Under ANLPE, we distinguish between θ’s objective
and subjective utility. The objective utility uANP (θ) is θ’s payoff under the true ANLPE strategy
profile and society sAN and P :

uANP (θ) := uP (sAN (θ), θ, sAN ).

The subjective utility ûANP (θ) is θ’s payoff under his perceived strategy profile and society ŝθ and
P̂θ:

ûANP (θ) := uP̂θ(s
AN (θ), θ, ŝθ) = uP̂θ(ŝθ(θ), θ, ŝθ),

where the final equality holds because ŝθ(θ) = sAN (θ) by observational consistency.

Proposition 6 (Welfare implications of assortativity neglect). Consider any (P, γ, β). Then every
type θ is both subjectively and objectively worse off under ANLPE than under Nash; that is,

uNEP (θ) ≥ ûANP (θ) ≥ uANP (θ).

Proof. See Supplementary Appendix G.1.

Thus, both subjectively and objectively, assortativity neglect Pareto decreases welfare relative
to the correct perceptions benchmark. At the same time, under ANLPE, agents are better off under
their subjective perceptions ŝθ and P̂θ than under the true strategy profile and society sAN and P .

To see the idea, recall from Corollary 1 that assortativity neglect increases (global) action dis-
persion relative to Nash. By a similar logic, each type’s local action variance is also higher under
ANLPE than under Nash. Given (9), ANLPE thus features greater local miscoordination costs,
and this effect is the same under subjective and objective ANLPE utility, as agents are correct
about their local action distribution. Under objective ANLPE utility, agents are further hurt by a
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second, misoptimization effect, which arises from the fact that sAN (θ) is a best response against θ’s
perceived strategy profile and society, but not against the true strategy profile and society.

In the context of perceptions of income distributions, a nascent empirical literature studies the
possibility and implications of correcting people’s misperceptions (e.g., Cruces, Perez-Truglia, and
Tetaz, 2013; Perez-Truglia, 2016). Some studies find that in the short run, greater transparency
may be harmful for poorer individuals because of an adverse effect on self-image (e.g., Perez-Truglia,
2016). Proposition 6 abstracts away from self-image considerations and instead highlights the fact
that in the longer run corrected perceptions may change equilibrium behavior in such a way that
could be beneficial for everyone in society.

6.2 Welfare Implications of Assortativity

A second implication of our analysis is that greater assortativity can have an ambiguous effect on
welfare. Recall from the discussion following Corollary 3 that greater assortativity affects local action
variance in two conflicting ways. On the one hand, it reduces local type variance, which other things
equal, reduces local action variance; but on the other hand, it increases action dispersion, which
tends to drive up local action variance. Moreover, the second effect dominates when coordination
motives are sufficiently strong. This is true under both Nash and ANLPE, with the difference that
under Nash, it is only local coordination motives that matter, while under assortativity neglect
both local and global coordination motives play a role. This suggests that whether assortatitivity
is beneficial or harmful depends on the strength of coordination motives. The following result
illustrates this in the Gaussian setting.

Corollary 4 (Welfare implications of assortativity). Consider any Gaussian society P = (µ, σ2, ρ)

and γ, β ≥ 0. Then for all types θ,

1. uNEP (θ) is decreasing in ρ if ρ < γ and increasing in ρ if ρ > γ;

2. ûANP (θ) is decreasing in ρ if ρ < γ + β and increasing in ρ if ρ > γ + β.

Proof. See Supplementary Appendix G.2.

Corollary 4 shows that a marginal increase in assortativity is beneficial only when assortativity is
already sufficiently high. In societies that exhibit a low degree of assortativity or strong coordination
motives, greater assortativity may be detrimental; moreover, assortativity neglect exacerbates this
problem, as it raises the threshold below which increases in ρ are harmful.

Outside the present model, there are of course many reasons why a social planner may prefer
to induce a less assortative and more evenly mixed society.33 Corollary 4 shows that even when,
as in our model, coordination is the only relevant consideration, a social planner may still prefer
to reduce assortativity: While in this setting welfare is maximized in perfectly assortative societies
(ρ = 1), if the social planner faces constraints (institutional or otherwise) that preclude achieving

33See, e.g., Currarini, Jackson, and Pin (2009) and the references therein.
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a high degree of assortativity (greater than γ or γ + β), then the least assortative society is in fact
best.

7 Discussion

7.1 Relationship with Other Solution Concepts

In this section, we discuss the relationship between LPE and the literature on self-confirming equilib-
rium (SCE) (Battigalli, 1987; Fudenberg and Levine, 1993) and its variants. In general games, SCE
captures possible behavior when all agents best-respond to beliefs about other agents’ strategies
that need not be correct, but instead need only be consistent with some limited feedback about op-
ponents’ behavior. LPE applies this idea to the specific setting in which each agent’s feedback about
opponents’ behavior is limited to correctly observing the action distribution among his matches,
where these matches are determined by some underlying society P ; moreover, in addition to beliefs
about strategies, LPE also treats agents’ beliefs about type distributions and interaction structures
as endogenous equilibrium objects.

However, in an important conceptual departure, LPE refines SCE by putting structure on how
agents draw inferences from their local action distributions: While under SCE agents do not form a
model of other agents’ behavior and can hold arbitrary beliefs about opponents’ strategies that are
consistent with observed feedback, agents in LPE hold perceptions that rationalize others’ behavior
as Nash.34 Formally, SCE applied to our setting retains the observational consistency requirement
in Definition 4, but relaxes Nash rationalization to the requirement that s(θ) = BRθ(ŝθ, P̂θ).35 As a
result of this relaxation, SCE has very little bite in our setting: In particular,36 in marked contrast
with our finding that under LPE assortativity neglect is the unique perception of the interaction
structure that can be sustained in any environment, under SCE any perceived interaction structure
can always be sustained; likewise, essentially any strategy profile s can always be sustained.37 Thus,

34Other commonly used departures from Bayes Nash equilibrium that can be viewed as special cases of SCE
include cursed equilibrium (Eyster and Rabin, 2005) and analogy-based expectation equilibrium (Jehiel, 2005; Jehiel
and Koessler, 2008). These again differ from LPE in that they do not impose a counterpart of Nash rationalization;
additionally, they only allow for incorrect beliefs about strategies and assume that agents are correct about the
underlying type distribution. Moreover, both solution concepts exogenously impose specific forms of incorrect beliefs
about opponents’ behavior (respectively, underestimating correlation between opponents’ actions and their types,
and assuming that opponents’ play is constant within certain “analogy classes” of states). In contrast, LPE allows
for arbitrary forms of misperception about behavior and society (subject to observational consistency and Nash
rationalization), and we endogenously derive a specific form of misperception, assortativity neglect, by showing that
it is the unique perception of the interaction structure that can be sustained in LPE in any environment.

35Note that since s(θ) = ŝθ(θ) by observational consistency, this is equivalent to ŝθ(θ) = BRθ(ŝθ, P̂θ), i.e., to θ’s
own perceived behavior being a best-response to his perceptions ŝθ, P̂θ. This is strictly weaker than requiring that
ŝθ(θ

′) = BRθ′(ŝθ, P̂θ) for all θ′, where θ believes all types θ′ to best-respond to ŝθ, P̂θ.
36Formally, consider any environment (P, γ, β) where P has full support. Then for any type θ and any perceived

interaction structure Ĉ, there exists an SCE where Ĉθ = Ĉ. Likewise, if β > 0, then for any strictly increasing and
continuous strategy profile s with s(Θ) = R, there exists an SCE where behavior is given by s. Details are available
upon request.

37While we have not derived the full set of LPE strategy profiles in general environments, it is clear in specific
settings that LPE is more restrictive than SCE. For example, Proposition 5 shows that the set of possible linear-
Gaussian LPE strategy profiles is one-dimensional and fully parametrized by values of ρ̂ ∈ [0, 1); in contrast, it is not
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its lack of a model for how agents draw inferences from their observed behavior renders SCE too
permissive to obtain clear predictions for possible behavior and perceptions in assortative societies.

Our Nash rationalization requirement makes LPE more similar in spirit to “rationalizable conjec-
tural equilibrium” (RCE), a refinement of SCE due to Rubinstein and Wolinsky (1994) and Esponda
(2013).38 However, RCE is still more permissive than LPE, as it allows agents to hold potentially
very complicated higher-order beliefs about other agents’ perceptions: Unlike Nash rationalization,
where θ believes each type θ′ to share his perceptions ŝθ and P̂θ and to best-respond to these, RCE
allows θ to believe that θ′ might best-respond to different perceptions than his own, as long as these
perceptions are in turn observationally consistent with the local action distribution that θ believes
θ′ to observe, where θ′ may again believe his matches to hold different perceptions from his own,
and so on. More generally, RCE captures the possible behavior s and perceptions about P and
s that can arise when players are constrained only by observational consistency, rationality, and
common certainty of these two requirements.

In Supplementary Appendix I, we formalize this relationship by defining RCE in our setting and
showing that LPE is a special case thereof. Corollary 5 demonstrates that the robust sustainability
of assortativity neglect generalizes to RCE and yields the same implications for behavior as under
ANLPE. At the same time, unlike under LPE where assortativity neglect uniquely pins down agents’
perceptions of the type distribution, under RCE it is consistent with a multitude of perceptions.
Thus, LPE can be viewed as a tractable refinement of RCE that is particularly well suited to our
goal of obtaining sharp predictions about agents’ misperceptions and their comparative statics with
respect to the environment, while also having the virtue of imposing less cognitive complexity on
agents’ inference process. We formalize the latter point in Supplementary Appendix I.3 by showing
how certain forms of lexicographic preferences for “simpler” perceptions can refine RCE into LPE
and ANLPE.

7.2 Alternative Notions of Assortativity and Dispersion

So far, we have employed the mean-preserving spread order as a measure of dispersion. In this
section, we show that analogs of our results remain valid under a second, stronger notion of dispersion
that is also frequently used in statistics (e.g., Shaked and Shanthikumar, 2007):

Definition 6. Given two cdfs G1, G2, we say that G1 is more dispersive than G2, denoted
G1 %d G2, if for all 0 < y ≤ x < 1,

G−1
1 (x)−G−1

1 (y) ≥ G−1
2 (x)−G−1

2 (y).

The more dispersive ranking requires the gap between any two quantiles to be greater under

difficult to see that any linear strategy profile can be sustained as part of an SCE with Gaussian perceptions.
38Fudenberg and Kamada (2015) introduce related solution concepts for extensive form games. Lipnowski and

Sadler (2017) consider RCE in which the observation structure is parametrized by a network; however, in their
setting the network does not affect game payoffs, and they assume that the network structure and agents’ types are
common knowledge.
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G1 than G2. When G1 and G2 have the same mean, this is a strictly stronger requirement than
the mean-preserving spread order. As a result, greater assortativity in the sense of %MA is not
in general sufficient to yield a more dispersive equilibrium action distribution (under either Nash
equilibrium or ANLPE). Instead, this is ensured by the following stronger notion of comparative
assortativity:

Definition 7. C1 is strongly more assortative than C2, denoted C1 %SMA C2, if for all x, y, z ∈
(0, 1) with x ≥ y,

C1(z|y)− C1(z|x) ≥ C2(z|y)− C2(z|x).

To interpret this condition, recall that assortativity of C requires the distribution of matches’
quantiles to be first-order stochastically increasing in own quantile; that is,

C(z|y)− C(z|x) ≥ 0

for all x ≥ y and z. Thus, C1 is strongly more assortative than C2 if the first-order stochastic
increase in matches’ quantile distribution is globally stronger under C1 than C2.

Example 3 (Mixing with independent interaction structure). Any interaction structure is strongly
more assortative than CI . More generally, if C2 = ρC1 + (1 − ρ)CI for some ρ ∈ [0, 1] (i.e., if C2

corresponds to drawing opponents’ quantiles according to C1 with probability ρ and uniformly with
probability 1− ρ), then we also have C1 %SMA C2. �

Paralleling Theorem 1, strongly more assortative societies are characterized precisely by more
dispersive Nash action distributions:

Theorem 4. Fix C1, C2 ∈ C, and let HF,γ,β
i denote the Nash action distribution under (F,Ci, γ, β)

for each i = 1, 2. The following are equivalent:

1. C1 %SMA C2

2. HF,γ,β
1 %d H

F,γ,β
2 for all (F, γ, β).

Proof. See Supplementary Appendix H.1.

Likewise, for ANLPE an analog of Theorem 3 holds, replacing %MA and %m by %SMA and %d
throughout.39

7.3 Identification and Misestimation

In our model, the fact that agents can sustain misperceptions is related to the difficulty of identifying
an underlying society (F,C) based only on observation of local action distributions. In particular,
Lemma 3 establishes that any action distribution, whether it is induced by a Nash equilibrium or

39Moreover, as the proofs in the appendix show, greater coordination motives in fact correspond to more dispersive
Nash and ANLPE behavior, so that we could have replaced H̄1 %m H̄2 with H1 %d H2 in Propositions 2 and 3.
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not, is observationally consistent with some Nash equilibrium under CI . We now briefly discuss
implications for the related problem of an outside observer (e.g., a policy maker or an analyst) who
observes the global action distribution in society and based on this estimates the corresponding
interaction structure and preference distribution.

To be concrete, suppose that agents are playing a Nash equilibrium.40 The action distribution
is observed by an outside observer who does not know the true society (F,C) and instead believes
that Ĉ is the true interaction structure. Given this, when and how can the outside observer find
some type distribution F̂ that rationalizes her observations as Nash under (F̂ , Ĉ)? The following
result summarizes the answer:41

Proposition 7. Consider any C, Ĉ ∈ C such that C %SMA Ĉ. Then for any (F, γ, β), there exists
F̂ such that the Nash action distributions under (F,C, γ, β) and (F̂ , Ĉ, γ, β) coincide. Furthermore,
such F̂ is unique for each (F, γ, β) and satisfies F̂ %d F and EF [θ] = EF̂ [θ].

Proof. See Supplementary Appendix H.2.

That is, whenever the outside observer underestimates assortativity, in the sense that C %SMA

Ĉ, she can always rationalize her observations by finding an appropriate type distribution F̂ . Note
that a special case of this is when the outsider observer fully neglects assortativity (i.e., Ĉ = CI),
which echoes the existence result for ANLPE.

The proposition also shows that the corresponding estimate of the type distribution F̂ must
be biased in a particular direction, viz., overestimating dispersion relative to the true F . The
reason is that since the outside observer underestimates assortativity in society, she misattributes
the observed action dispersion to type heterogeneity.42 At the same time, the estimated population
mean under F̂ is unbiased. (This follows from the fact that the Nash equilibrium action average is
not influenced by the interaction structure, as shown by Lemma 1.) This is in contrast to agents’
misperceptions under LPE, where we saw that assortativity neglect leads to a false-consensus effect.

8 Conclusion

This paper develops a framework to study the possibility and implications of misperceptions in as-
sortative societies. Our analysis provides a theoretical foundation for assortativity neglect, which we
showed to be the unique perception of the interaction structure that can persist in any environment.
Assortativity neglect in turn uniquely pins down agents’ behavior and perceptions about the type
distribution, giving rise to two mutually reinforcing departures from the Nash benchmark: greater

40Since ANLPE coincides with Nash equilibrium under modified coordination incentive parameters (γ, β), an
analogous exercise can be conducted for ANLPE.

41One could consider an alternative problem of finding Ĉ to rationalize the action observation under some fixed F̂ .
We focus on the case of fixed Ĉ, as this is more closely analogous to the analysis of assortativity neglect under LPE.

42When C is more assortative (but not strongly) than Ĉ, there might not exist an F̂ such that the Nash action
distributions under (F,C, γ, β) and (F̂ , Ĉ, γ, β) coincide. However, if such a F̂ exists, it satisfies F̂ %m F .
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action dispersion and the well-documented “false consensus effect.” Increased action dispersion ad-
versely affects welfare through increased miscoordination costs, suggesting that correcting agents’
misperceptions could be beneficial.

One virtue of our framework is that it yields testable predictions for how agents’ perceptions
and behavior vary with the environment. Our finding that increased assortativity manifests itself
in terms of greater action dispersion is particularly relevant in light of evidence that societies are
growing ever more assortative. In such a changing environment, the idea that agents might not be
fully aware of the extent of assortativity appears especially plausible, and we showed that neglecting
assortativity further exacerbates the effect of assortativity on action dispersion. We also highlighted
the crucial role that strategic incentives play in shaping not only the magnitude, but indeed the
direction of agents’ misperceptions about society, as captured for instance by the finding that
coordination motives determine whether agents over- or underestimate type dispersion in society.

The paper makes several methodological contributions that we believe could prove useful beyond
our specific setting: Our solution concept, “local perception equilibrium,” enabled us to analyze be-
havior and perceptions when agents only observe the distribution of actions among their matches;
the definition of LPE extends readily to general games with limited feedback about opponents’
behavior, where it could serve more broadly as a tractable refinement of rationalizable conjectural
equilibrium. Our observation that any assortative society induces a monotone Markov process over
its type space and that equilibrium strategies can be represented in terms of higher-order expec-
tations of this process played a central role in deriving comparative statics. Finally, by comparing
societies in terms of their copulas, we defined natural non-parametric notions of “more assortativity”
that might find application in other areas, such as matching theory under search frictions.

It is worth highlighting that our finding that assortativity neglect is always sustainable can
be extended in a variety of directions. First, this result does not rely on linear best response
functions and extends to LPE in more general games that admit Nash equilibria that are strictly
increasing in agents’ types. A second generalization is a hybrid model where only fraction α ∈
(0, 1) of agents of each type θ hold (mis)perceptions ŝθ and P̂θ that are subject to observational
consistency and Nash rationalization as under LPE, while fraction 1 − α are sophisticated, in the
sense that they know the underlying strategy profile and society as well as the fraction of LPE agents
and their perceptions. In this setting, we can again show that assortativity neglect is the unique
misperception of the interaction structure that the LPE agents can sustain in any environment;
moreover, under assortativity neglect the action distribution among LPE agents is more dispersed
than among sophisticated agents, and both are more dispersed than under Nash but less than under
ANLPE.43

Finally, an active recent literature analyzes learning dynamics under exogenously given mis-
specified models (Heidhues, Koszegi, and Strack, 2017; Fudenberg, Romanyuk, and Strack, 2017;
Esponda and Pouzo, 2017; Bohren and Hauser, 2017). The present paper differs from this litera-
ture by asking which misperceptions can be endogenously sustained in a static coordination game

43Details for both generalizations are available upon request.
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environment. Nevertheless, our finding that assortativity neglect is robustly sustainable suggests
model misspecification with respect to interaction structures as a relevant and important direction
for this literature, and in ongoing work, we pursue this question in the context of social learning.
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Appendix

A Preliminaries

A.1 Operator TC induced by interaction structure C

Many of our proofs make use of a particular operator TC over the the space of inverse cdfs that is
induced by any interaction structure C.

To define this, let L1 be the space of all measurable functions f : (0, 1) → R such that´ 1
0 |f(x)|dx < ∞, endowed with the L1 norm. Let I ⊆ L1 denote the subset consisting of all
weakly increasing and absolutely continuous44 functions. For each cdf F ∈ F , we have that F−1

is strictly increasing, absolutely continuous and that
´ 1

0 |F
−1(x)|dx =

´
|θ|dF (θ) < ∞, so that

F−1 ∈ I.
Given any interaction structure C, define the operator TC over L1 by

TCf(x) =

1ˆ

0

f(y) dC(y|x)

for all f ∈ L1. If C ∈ C with density c, then we can write TCf(x) =
´ 1

0 c(y, x)f(y)dy for all f ∈ L1.
The following lemma records some basic properties of TC that we invoke without reference from
now on.

Lemma A.1. Fix any C ∈ C. Then TC is a continuous operator from L1 to L1 with the following
properties:

1. ‖TCf‖ ≤ ‖f‖ for each f ∈ L1.

2. TC(f) ∈ I for any f ∈ I.

3. For any γ ∈ [0, 1) and f ∈ L1,

lim
τ→∞

τ∑
t=0

γt(TC)tf =

∞∑
t=0

γt(TC)tf ∈ L1,

where (TC)t is defined inductively for all t ≥ 0 by (TC)0(f) := f and (TC)t+1(f) := (TC)t(TC(f))
for all f .

Proof. For the first point, note that for any f ∈ L1,

‖TCf‖ =

1ˆ

0

|TCf(x)|dx ≤
1ˆ

0

1ˆ

0

c(x′, x)|f(x′)|dx′dx =

1ˆ

0

|f(x′)|dx′ = ‖f‖ <∞.

Thus, TC : L1 → L1. Moreover, since TC is clearly linear, the above ensures that it is also continuous.
For the second point, consider f ∈ I. Since C is assortative, TCf(x) ≥ TCf(x′) for all x ≥ x′,

so that TCf is weakly increasing. To show that TCf is absolutely continuous, note that for each
44That is, there is an integrable function f ′ ≥ 0 such that f(x) = f(x′) +

´ x
x′ f
′(y)dy holds for any x, x′ ∈ (0, 1).
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x, x′ ∈ (0, 1),

TCf(x) =

ˆ 1

0
c(y, x)f(y)dy

=

ˆ 1

0

(ˆ x

x′
c2(y, z)dz + c(y, x′)

)
f(y)dy

=

ˆ x

x′

ˆ 1

0
c2(y, z)f(y)dydz + TCf(x′)

where c2 denotes the partial derivative of c with respect to the second argument, which exists almost
everywhere by the absolute continuity assumption on c. Thus TCf is absolutely continuous with
(TCf)′(z) =

´ 1
0 c2(y, z)f(y)dy for each z.

Finally, for the third point, fix any f ∈ L1 and γ ∈ [0, 1). Then for any τ > τ ′,

‖
τ∑
t=0

γt(TC)tf −
τ ′∑
t=0

γt(TC)tf‖ ≤
τ∑

t=τ ′+1

γt‖(TC)tf‖ ≤
τ∑

t=τ ′+1

γt‖f‖ ≤ γτ
′+1

1− γ
‖f‖,

which vanishes as τ ′ → ∞. Thus, the sequence is Cauchy. Since the space L1 is complete, this
yields the desired result.

A.2 Proof of Lemma 1

Fix any (P, γ, β) with P = (F,C) and let µ := EF [θ]. Since F ∈ F , we have F−1 ∈ I with F−1

strictly increasing. Define

h(x) :=
∑
t≥0

γt(TC)tF−1(x) +
βµ

(1− γ)(1− γ − β)

for each x ∈ (0, 1). Note that by construction, we have h = F−1 + γTCh + βTCIh, where CI
denotes the independent interaction structure. Moreover, h is strictly increasing and continuous,
since (TC)tF−1 is weakly increasing and continuous for each t ≥ 0 and strictly increasing for t = 0.

Let s(θ) := h(F (θ)) for each θ ∈ Θ. Since h ∈ L1, we have
´
|s(θ)|dF (θ) =

´
|h(x)|dx <∞, so

that s is a strategy. Moreover, s inherits strict monotonicity and continuity from h and F . Finally,
s is a Nash equilibrium because for each type θ and x = F (θ), we have

s(θ) = h(x) = F−1(x) + γTCh(x) + βTCIh(x) = θ + γEP [s(θ′) | θ] + βEF [s(θ′)].

To show uniqueness of equilibrium, consider any Nash equilibrium ŝ. Define ĥ(x) := ŝ(F−1(x))
for each x. By the best-response condition for ŝ, we have

ĥ = F−1 + γTC ĥ+ βTCI ĥ (10)

Iterating (10) yields

ĥ = F−1 + βTCI ĥ+ γTC

(
F−1 + βTCI ĥ

)
+ γ2(TC)2ĥ = . . .

=
τ∑
t=0

γt(TC)t
(
F−1 + βTCI ĥ

)
+ γτ+1(TC)τ+1ĥ
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for all τ ∈ N. Since we also have h = F−1 + γTCh + βTCIh, the analogous iteration holds for h.
Thus,

‖ĥ− h‖ ≤ ‖
τ∑
t=0

γt(TC)t
(
F−1 − βTCI ĥ− F

−1 + βTCIh
)
‖+ γτ+1‖(TC)τ+1(ĥ− h)‖

≤ ‖
τ∑
t=0

γt(TC)t
(
βTCI (h− ĥ)

)
‖+ γτ+1‖ĥ− h‖ → ‖

∞∑
t=0

γt(TC)t
(
βTCI (h− ĥ)

)
‖

as τ → ∞. But integrating both sides of (10) with respect to x, we obtain
´ 1

0 ĥ(x)dx = TCI ĥ =
µ

1−γ−β , and analogously TCIh = µ
1−γ−β from the best-response condition for h. Thus, ‖ĥ− h‖ = 0,

whence ŝ = s.

B Proof of Theorem 1

The proof of Theorem 1 proceeds as follows. In Section B.1, we first consider any abstract order %
over I and define its dual order %∗ over the space of interaction structures. We establish that when
% satisfies three basic properties, then the %∗ order over interaction structures is equivalent to Nash
equilibrium behavior being ordered by %. Section B.2 shows that the mean-preserving spread order
satisfies these three properties, using tools from majorization theory. Section B.3 shows that the
more-assortative order is the dual order of the mean-preserving spread order. Finally, section B.4
combines these results to yield Theorem 1.

B.1 Dual orders over C

Consider any preorder (i.e., reflexive and transitive binary relation) % over I. Define the dual
order of % to be the preorder %∗ over C given by C1 %∗ C2 if and only if TC1f % TC2f for all
f ∈ I.

Theorem B.1 below shows that as long as % satisfies three basic properties, its dual order %∗

over interaction structures is characterized by Nash equilibrium behavior that is ordered according
to %.

Definition 8. Preorder % over I is called:

1. linear if for any f, g, h ∈ I and α1, α2 > 0, we have f % g if and only if α1f+α2h % α1g+α2h.

2. continuous if fn % gn for each n and fn → f ∈ I, gn → g ∈ I imply f % g.

3. isotone if f % g implies TCf % TCg for any C ∈ C.

For any F, γ, β, let H−1
F,C,γ,β denote the inverse cdf of the Nash action distribution under

(F,C, γ, β). By Lemma 1, we have

H−1
F,C,γ,β =

∑
t≥0

γt(TC)tF−1 +
βEF [θ]

(1− γ)(1− γ − β)
. (11)

Theorem B.1. Suppose that % is a linear, continuous, and isotone preorder over I. Then the
following are equivalent:

1. C1 %∗ C2
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2. H−1
F,C1,γ,β

% H−1
F,C2,γ,β

for all (F, γ, β).

Proof. (1) =⇒ (2): Suppose that C1 %∗ C2 and consider any F, γ, β. Let f := F−1, which is in I
since F ∈ F .

We first show by induction that (TC1)tf % (TC2)tf for all t. Since C1 %∗ C2, the claim for t = 1
is true by definition. Suppose the claim holds for some t ≥ 1. Then

(TC1)t+1 f = TC1 (TC1)t f % TC1 (TC2)t f % TC2 (TC2)t f = (TC2)t+1f,

where the first comparison follows from the inductive hypothesis by isotonicity of %, and the second
one holds because C1 %∗ C2. Thus, by transitivity of %, we have (TC1)t+1 f % (TC2)t+1 f , as
required.

Next, note that linearity of % and C1 %∗ C2 implies

τ∑
t≥0

γt(TC1)tF−1 %

γτ (TC2)τ +
τ−1∑
t≥0

γt(TC1)t

F−1 %

%

 ∑
t=τ−1,τ

γt(TC2)t +
τ−1∑
t≥0

γt(TC1)t

F−1 % · · · %
τ∑
t≥0

γt(TC2)tF−1

for any τ ∈ N. Moreover, by Lemma A.1, as τ →∞, we have

τ∑
t≥0

γt(TC1)tF−1 →
∑
t≥0

γt(TC1)tF−1,
τ∑
t≥0

γt(TC2)tF−1 →
∑
t≥0

γt(TC2)tF−1.

Thus, by continuity and linearity of %, we have∑
t≥0

γt(TC1)tF−1 +
βµ

(1− γ)(1− γ − β)
%
∑
t≥0

γt(TC2)tF−1 +
βµ

(1− γ)(1− γ − β)
,

where µ = EF [θ]. By (11), this is equivalent to H−1
F,C1,γ,β

% H−1
F,C2,γ,β

, as required.
(2) =⇒ (1): Suppose that H−1

F,C1,γ,β
% H−1

F,C2,γ,β
for all (F, γ, β). For any f ∈ I, applying this

with F = f−1 and β = 0, (11) yields that for any γ ∈ (0, 1),

H−1
F,C1,γ,β

=
∑
t≥0

γtTC1f %
∑
t≥0

γtTC2f = H−1
F,C2,γ,β

.

By linearity of % and since (TCi)
0(f) = f for i = 1, 2, this implies

TC1f +
∑
t≥2

γt(TC1)tf % TC2f +
∑
t≥2

γt(TC2)tf. (12)

Note that for each i = 1, 2,

‖TCif +
∑
t≥2

γt(TCi)
tf − TCif‖ ≤

∑
t≥2

γt‖(TCi)tf‖ ≤
∑
t≥2

γt‖f‖

so that, as γ → 0, TCif +
∑

t≥2 γ
t(TCi)

tf → TCif . Thus, by continuity of %, (12) yields TC1f %
TC2f . As this is true for all f ∈ I, we have C1 %∗ C2, as required.
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B.2 Linearity, Continuity, and Isotonicity of %m

Next, we show that the mean-preserving spread order %m, when viewed as an order over I, is indeed
linear, continuous, and isotone.

Define %m over I by setting f %m g if and only if
´ 1

0 φ(f(x))dx ≥
´ 1

0 φ(g(x))dx for all convex
functions φ such that φ ◦ f, φ ◦ g ∈ L1. Note that if F , G ∈ F , then F %m G if and only if
F−1 %m G−1. The following characterization of %m is standard:

Lemma B.1. Let f, g ∈ I. Then the following are equivalent:

1. f %m g

2.
´ 1
y f(x)dx ≥

´ 1
y g(x)dx for all y ∈ (0, 1), with equality for y = 0.

Proof. See, e.g., Section 3.A.1 in Shaked and Shanthikumar (2007).

The next two lemmas verify that %m over I satisfies the three basic properties:

Lemma B.2. %m is a preorder over I that is linear and continuous.

Proof. It is clear from the definition that %m is reflexive and transitive; moreover, by part 2 of
Lemma B.1 %m is linear. To check that %m is continuous, take sequences fn → f, gn → g in I such
that fn %m gn for each n. For any y ∈ (0, 1), we have

|
ˆ 1

y
f(x)dx−

ˆ 1

y
fn(x)dx| ≤

ˆ 1

y
|f(x)− fn(x)|dx ≤ ‖f − fn‖ → 0

and likewise |
´ 1
y g(x)dx −

´ 1
y gn(x)dx| → 0. Since

´ 1
y fn(x)dx ≥

´ 1
y gn(x)dx and

´ 1
0 fn(x)dx =´ 1

0 gn(x)dx for each n, this implies
´ 1
y f(x)dx ≥

´ 1
y g(x)dx and

´ 1
0 f(x)dx =

´ 1
0 g(x)dx. Thus,

f %m g by Lemma B.1.

Lemma B.3. Preorder %m over I is isotone.

Proof. We first show that %m is isotone. Take any f, g ∈ I such that f %m g and any C ∈ C. We
assume first that f and g are bounded. To show that TCf %m TCg, consider any convex function
φ such that φ ◦ TCf, φ ◦ TCg ∈ L1. We want to show that

1ˆ

0

φ (TCf(x)) dx ≥
1ˆ

0

φ (TCg(x)) dx.

We prove this by finite-dimensional approximation. Consider any k ∈ N. Define a k-dimensional
vector fk by

fki := k

ik−1ˆ

(i−1)k−1

f(x)dx

for each i ∈ {1, ..., k} and analogously for vector gk = (gki )i=1,...,k. Moreover, define a symmetric
k × k matrix Ck by

Ckij := k

ik−1ˆ

(i−1)k−1

jk−1ˆ

(j−1)k−1

c(x, x′)dxdx′
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for each i, j ∈ {1, ..., k}. Note that Ck is doubly stochastic, i.e., Ckij ≥ 0 and
∑k

l=1C
k
il =

∑k
l=1C

k
lj =

1 for each i, j.
Let Cki denote the ith row of Ck. In Section B.5, we use tools from majorization theory to prove

the following claim:

Claim 1. For any convex function φ, we have
∑k

i=1 φ(Cki · fk) ≥
∑k

i=1 φ(Cki · gk).

We can identify vectors fk, Ckfk with simple functions in L1 by setting

fk(x) := fki , (Ckfk)(x) := Cki · fk

for each x ∈ (0, 1) and i ∈ {1, .., k} such that x ∈ [(i − 1)k−1, ik−1); and likewise for gk, Ckgk.
Moreover, we can identify matrix Ck with the interaction structure whose density ck is given by

ck(x, x′) = kCij

for all x, x′ ∈ (0, 1) and i, j such that x ∈
[
(i− 1)k−1, ik−1

)
, x′ ∈

[
(j − 1)k−1, jk−1

)
. With these

identifications, we have
(Ckfk)(x) = TCkf

k(x) = TCkf(x)

for each x ∈ (0, 1), and likewise for Ckgk. Moreover, Claim 1 yields

1ˆ

0

φ (TCkf(x)) dx ≥
1ˆ

0

φ (TCkg(x)) dx. (13)

Note that TCkf(x) → TCf(x) as k → ∞ for all x. Indeed, for each y, the value of Ck(y|x)
can be written as a weighted average of C(y′|x′) among pairs (x′, y′) with |x′ − x|, |y − y′| ≤ 1

k .
Since C(y|x) is jointly continuous in (y, x) this implies that limk C

k(y|x) = C(y|x). Since C(·|x) is
atomless, this yields the weak convergence of conditional distributions Ck(·|x) to C(·|x). As f is
continuous and bounded, this ensures TCkf(x)→ TCf(x).

Since φ is continuous, this implies φ(TCkf(x))→ φ(TCf(x)) for each x. Hence,

1ˆ

0

φ (TCkf(x)) dx→
1ˆ

0

φ (TCf(x)) dx,

where the bounded convergence theorem applies because supk,x |φ(TCkf(x))| ≤ supx |φ(f(x))| <∞.
Analogously, we have

´ 1
0 φ (TCkg(x)) dx→

´ 1
0 φ (TCg(x)) dx. Thus, (13) implies

1ˆ

0

φ (TCf(x)) dx ≥
1ˆ

0

φ (TCg(x)) dx,

as desired.
Next, consider arbitrary f, g ∈ I such that f %m g. For each n ∈ N, define a bounded function

fn ∈ I by

fn(x) =


n
´ 1
n

0 f(y)dy if x ∈ (0, 1
n)

f(x) if x ∈ [ 1
n ,

n−1
n ]

n
´ 1
n−1
n
f(y)dy if x ∈ (n−1

n , 1),

(14)
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and analogously for gn. Note that fn %m gn for each n, so that by the previous part of the proof
we have TCfn %m TCgn. Moreover, fn → f and gn → g, so that TCfn → TCf and TCgn → TCg
since TC is a continuous operator. By continuity of %m, this yields TCf %m TCg. Hence, %m is
isotone.

B.3 %MA is the dual order of %m

Finally, we show that the more-assortative order %MA is in fact the dual order of %m.

Lemma B.4. C1 %∗m C2 if and only if C1 %MA C2.

Proof. By definition, C1 %∗m C2 if and only if for any f ∈ I, TC1f %m TC2f , which by definition of
%m means

´ 1
y TC1f(x)dx ≥

´ 1
y TC2f(x)dx for all y ∈ (0, 1) with equality if y = 0. But by Fubini’s

theorem,
´ 1
y TC1f(x)dx ≥

´ 1
y TC2f(x)dx, ∀y ∈ (0, 1)

⇐⇒
´ 1
y

´ 1
0 c1(x′, x)f(x′)dx′dx ≥

´ 1
y

´ 1
0 c2(x′, x)f(x′)dx′dx, ∀y ∈ (0, 1)

⇐⇒
´ 1

0

´ 1
y

1
1−y c1(x′, x)dxf(x′)dx′ ≥

´ 1
0

´ 1
y

1
1−y c2(x′, x)dxf(x′)dx′, ∀y ∈ (0, 1).

Hence, C1 %∗m C2 is equivalent to C1(· | x ≥ y) first-order stochastically dominating C2(· | x ≥ y)
for any y ∈ (0, 1), i.e., to C1 %MA C2.

B.4 Completing the Proof of Theorem 1

Combining Lemmas B.2-B.4 and Theorem B.1, we have that C1 %MA C2 if and only if H−1
F,C1,γ,β

%m

H−1
F,C2,γ,β

for all (F, γ, β), which in turn is equivalent to HF,γ,β
1 %m HF,γ,β

2 , as claimed.

B.5 Proof of Claim 1

Finally, we establish Claim 1 from the proof of Lemma B.3. The proof uses tools from majorization
theory (Marshall, Olkin, and Arnold, 2010). Let Rn↑ ⊆ Rn denote the space of all n-dimensional
vectors x that have weakly increasing coordinates (i.e., x1 ≤ . . . ≤ xn). For x, y ∈ Rn↑ , we say that
x majorizes y if

n∑
j=k

xj ≥
n∑
j=k

yj ∀k = 1, . . . n,

with equality for k = 1. The above condition is a finite-dimensional analog of the %m order over I,
so that we also use x %m y to denote the majorization order.

Our proof of Claim 1 will make use of the following characterization of %m due to Hardy,
Littlewood, and Polya. To state this, recall that a transposition over Rn is a permutation of the
coordinates {1, . . . , n} that fixes all but at most two coordinates. Let T be the set of all matrix
representations of transpositions on Rn.45 For any T ∈ T and λ ∈ [0, 1], define matrix Tλ by
Tλ := λI + (1− λ)T . That is, if i < j are the unique coordinates permuted under T , then for any
x ∈ Rn↑ , we have (Tx)k = xk for all k 6= i, j and (Tλx)i − xi = (1 − λ)(xj − xi) = − (Tλx)j + xj .
Thus, Tλ transfers amount (1−λ)(xj−xi) from coordinate j to coordinate i. We have the following
alternative characterization of %m:

Lemma B.5 (Hardy, Littlewood, Polya). Let x, y ∈ Rn↑ . The following are equivalent:

45The identity matrix is an element of T .
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1. x %m y

2. There exist finite sequences T 1, T 2, . . . , Tm ∈ T and λ1, . . . , λm ∈ [0, 1] such that T kλk · · ·T
1
λ1
x ∈

Rn↑ for all k = 1, 2, . . . ,m, and
Tmλm · · ·T

1
λ1x = y.

Proof. See Lemma B.1 in Marshall, Olkin, and Arnold (2010) (p. 32).

Returning to the proof of Claim 1, note that the construction in the proof of Lemma B.3 satisfies
the following two properties:

1. fk, gk ∈ Rk↑ and fk %m gk for every k (since f %m g and by Lemma B.1).

2. Ck is monotone for every k. That is, the sequence of row vectors, Ck1 , Ck2 , . . . , Ckk , is decreasing
with respect to first-order stochastic dominance (i.e.,

∑m
l=1C

k
il ≥

∑m
l=1C

k
jl for each i < j and

m = 1, ..., k).

Given this, Claim 1 follows immediately from the following result, which we prove by invoking
Lemma B.5:

Lemma B.6. Fix any doubly-stochastic symmetric monotone matrix C ∈ Rn×n with row vectors
c1, . . . , cn and any x, y ∈ Rn↑ such that x %m y. Then for any convex function φ : R → R, we have∑n

j=1 φ (cj · x) ≥
∑n

j=1 φ (cj · y).

Proof. Fix any convex function φ : R→ R.
We first show that for any T ∈ T , λ ∈ [0, 1] and z ∈ Rn↑ such that Tλz ∈ Rn↑ , we have

n∑
j=1

φ (cj · z) ≥
n∑
j=1

φ (cj · (Tλz)) .

To see this, let i < k be the unique coordinates being permuted under T and let ∆ := (1 −
λ)(zi − zk) ≥ 0. Note that for all j, cj · z = cj · (Tλz) + ∆

(
cij − ckj

)
.

Define φ′ by

φ′(u) := sup ∂φ(u) = sup {γ ∈ R : φ(v) ≥ φ(u) + γ(v − u) ∀v ∈ R}

for all u ∈ R. It is well-known that φ′ exists and is weakly increasing in u. Then

n∑
j=1

φ (cj · z) =

n∑
j=1

φ
(
cj · (Tλz) + ∆(cij − ckj )

)
≥

n∑
j=1

φ(cj · (Tλz)) + φ′(cj · (Tλz))∆(cij − ckj ),

where φ′(c1 · (Tλz)) ≥ φ′(c2 · (Tλz)) ≥ · · · ≥ φ′(cn · (Tλz)).
Moreover, denoting the column vectors of C by c1, c2, . . . , cn, symmetry and monotonicity of C

implies c1 ≥FOSD c2 ≥FOSD · · · ≥FOSD cn. But then, we must have
∑n

j=1 φ
′(cj ·(Tλz))∆(cij−ckj ) ≥

0, whence
n∑
j=1

φ (cj · z) ≥
n∑
j=1

φ (cj · (Tλz)) ,

as claimed.
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Now consider x, y ∈ Rn↑ such that x %m y. By Lemma B.5, there exist λ1, . . . , λm ∈ R and
T 1, . . . Tm ∈ T such that

T kλk · · ·T
1
λ1x ∈ Rn↑

for all k = 1, 2, . . . ,m and
Tmλm · · ·T

1
λ1x = y.

The above argument shows that for any k ≤ m− 1,

n∑
j=1

φ (cj · x) ≥
n∑
j=1

φ
(
cj ·
(
T kλk · · ·T

1
λ1x
))
≥

n∑
j=1

φ
(
cj ·
(
T k+1
λk+1
· · ·T 1

λ1x
))

.

As a result,
n∑
j=1

φ (cj · x) ≥
n∑
j=1

φ (cj · y) ,

as required.

C Proofs for Section 3.3

C.1 Proof of Proposition 1

Take any F1, F2 such that F1 %m F2. Then F−1
1 %m F−1

2 . First, we inductively show that for each
t, (TC)tF−1

1 %m (TC)tF−1
2 . Indeed, supposing that the claim is true at t, isotonicity of %m implies

(TC)t+1F−1
1 = TC(TC)tF−1

1 %m TC(TC)tF−1
2 = (TC)t+1F−1

2 ,

as required. Next, since %m is linear, we have

τ∑
t=0

γt(TC)tF−1 %m

τ∑
t=0

γt(TC)tF̂−1

for all τ ∈ N. Since limτ→∞
∑τ

t=0 γ
t(TC)tF−1

i =
∑∞

t=0 γ
t(TC)tF−1

i for each i = 1, 2 (Lemma A.1),
continuity and linearity of %m then yields

H−1
1 =

∑
t≥0

γt(TC)tF−1
1 +

βEF1 [θ]

(1− γ)(1− γ − β)
%m

∑
t≥0

γt(TC)tF−1
2 +

βEF2 [θ]

(1− γ)(1− γ − β)
= H−1

2 ,

whence H1 %m H2, as claimed.

C.2 Proof of Proposition 2

Suppose that γ1 ≥ γ2. We will establish the stronger result that H1 %d H2, where %d denotes the
dispersiveness order defined in section 7.2.

Note that %d viewed as an order over I is linear and continuous (see Appendix H.1). Applying
linearity of %d together with the fact that f %d αf for any f ∈ I and α ∈ [0, 1], we obtain

τ∑
t=0

γt1(TC)tF−1 %d

τ∑
t=0

γt1(TC)t(γ2/γ1)tF−1 =

τ∑
t=0

γt2(TC)tF−1
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for any τ ∈ N.
Moreover, for any f, g ∈ I such that f %d g and for any constants η1, η2, we have f + η1 %d

g + η2. Since limτ→∞
∑τ

t=0 γ
t
i (TC)tF−1 =

∑
t≥0 γ

t
i (TC)tF−1 for each i = 1, 2 (Lemma A.1), this

observation together with continuity of %d then implies that

H−1
1 =

∑
t≥0

γt1(TC)tF−1 +
β1EF [θ]

(1− γ1)(1− γ1 − β1)
%d
∑
t≥0

γt2(TC)tF−1 +
β2EF [θ]

(1− γ2)(1− γ2 − β2)
= H−1

2 ,

whence H1 %d H2, as claimed.

D Proofs for Section 5.1

D.1 Proof of Lemma 3

Fix any Ĉ ∈ C, γ > 0 and β ≥ 0. Note first that for any action distribution Ĥ ∈ F and type
distribution F̂ ∈ F , Ĥ is the Nash action distribution under (F̂ , Ĉ, γ, β) if and only if

Ĥ−1(x) = F̂−1(x) + γ

ˆ
Ĥ−1(z)dĈ(z|x) + β

ˆ
Ĥ−1(z)dz for all x ∈ (0, 1). (15)

Indeed, if Ĥ = F̂ ◦ s−1 for the Nash equilibrium strategy profile s, then (15) follows from the
best-response condition (1) via the change of variables x = F̂ (θ). Conversely, if (15) holds, then the
corresponding strategy profile s = Ĥ−1 ◦ F̂ satisfies the best-response condition (1).

(1) =⇒ (2): Suppose Ĉ = CI and consider any action distribution Ĥ ∈ F . Define a type
distribution F̂ by

F̂−1(x) := Ĥ−1(x)− (γ + β)

ˆ
Ĥ−1(z)dz

for each x. Since Ĥ ∈ F , it follows that F̂−1 is L1, strictly increasing, and absolutely continuous,
so that F̂ ∈ F . Moreover, Ĉ = CI implies

´
Ĥ−1(z)dĈ(z|x) =

´
Ĥ−1(z)dz, so by (15), Ĥ is the

Nash action distribution at (F̂ , Ĉ,γ, β).
(2) =⇒ (1): We prove the contrapositive. Suppose that Ĉ 6= CI . We will construct an action

distribution Ĥ for which there is no type distribution F̂ such that Ĥ is the Nash action distribution
under (F̂ , Ĉ, γ, β). To do so, note first that since Ĉ is assortative and Ĉ 6= CI , there exists x ∈ (0, 1)
such that Ĉ(x | z) is weakly decreasing and non-constant in z. Thus, there exist y, y′ ∈ (0, 1) with
y > y′ such that Ĉ(x | y) < Ĉ(x | y′). Moreover, we can assume that either (i) y > y′ ≥ x or (ii)
x > y > y′.46

Let 1[x,1) denote the indicator function on [x, 1), and let (Ĥn)n be a sequence of action distri-
butions in F such that (Ĥ−1

n )n is uniformly bounded and Ĥ−1
n (z) → 1[x,1)(z) for all z ∈ (0, 1).47

46Indeed, either there exists y > x such that Ĉ(x|y) > Ĉ(x|x), in which case (i) holds setting y′ = x. Or
Ĉ(x|z) ≤ Ĉ(x|x) for all z, in which case the fact that Ĉ(x|z) is non-constant in z yields some y′ < x such that
Ĉ(x|y′) < Ĉ(x|x) and continuity yields y ∈ (y′, x) such that Ĉ(x|y′) < Ĉ(x|y); thus, (ii) is satisfied.

47Concretely, we can define Ĥn by

Ĥ−1
n (z) :=

{
n−1
n

(
z
x

)n if z ≤ x
1

n(1−x) (z − 1) + 1 if z > x.
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Then, under both (i) and (ii), we have that as n→∞,

Ĥ−1
n (y)− Ĥ−1

n (y′)→ 0;ˆ
Ĥ−1
n (z) d

(
Ĉ(z|y)− Ĉ(z|y′)

)
→ Ĉ(x|y′)− Ĉ(x|y) > 0.

Hence, setting Ĥ = Ĥn for some sufficiently large n, we have that

Ĥ−1(y)− Ĥ−1(y′) < γ

ˆ
Ĥ−1(z) d

(
Ĉ(z|y)− Ĉ(z|y′)

)
. (16)

But then, if Ĥ were the Nash action distribution under (F̂ , Ĉ, γ, β) for some type distribution F̂ ,
the best-response condition (15) would imply that

F̂−1(y)− F̂−1(y′) = Ĥ−1(y)− Ĥ−1(y′)− γ
ˆ
Ĥ−1(z) d

(
Ĉ(z|y)− Ĉ(z|y′)

)
< 0.

This is impossible since y > y′.
Finally, for the moreover part, note that if Ĥ is the Nash action distribution at (F̂ , CI , γ, β),

then by (15) we have Ĥ−1(x) = F̂−1(x) + (γ+β)
´
Ĥ−1(z) dz for all x ∈ (0, 1), which uniquely pins

down F̂ .

D.2 Proof of Theorem 2

Part (1): Fix any (P, γ, β). We first prove the existence of an LPE such that Ĉθ = CI for all θ.
Let the strategy profile s be given by (6); i.e., s(θ0) =

∑∞
t=0(γ+β)tEP [θt|θ0] for each type θ0. Note

that s coincides with the Nash equilibrium at (P, γ′, β′), where γ′ = γ + β and β′ = 0. Thus, s is
L1, strictly increasing, and continuous.

For each type θ, the local action distribution under (s, P ) is given byHs,P
θ (a) =

´ 1
0 1s(θ′)≤a dP (θ′|θ)

for all a. Since Hs,P
θ ∈ F , Lemma 3 implies that there exists a type distribution F̂θ ∈ F such that

Hs,P
θ is the Nash action distribution at (F̂θ, CI , γ, β). Thus, letting ŝθ denote the Nash equilibrium

strategy profile at (F̂θ, CI , γ, β) and P̂θ = (F̂θ, CI), Nash rationalization is satisfied by definition
and Hs,P

θ = H ŝθ,P̂θ
θ , proving part (a) of observational consistency. It remains to prove part (b) of

observational consistency, i.e., that s(θ) = ŝθ(θ). To see this, note that

s(θ) = θ + (γ + β)EP [s(θ′)|θ] (by construction of s)

= θ + (γ + β)EP̂θ [ŝθ(θ
′)|θ] (because Hs,P

θ = H ŝθ,P̂θ
θ )

= θ + γEP̂θ [ŝθ(θ
′)|θ] + βEP̂θ [ŝθ(θ

′)] (because Ĉθ = CI)

= ŝθ(θ) (because ŝθ is Nash at P̂θ).

Finally, to show uniqueness, note that by the derivation in the main text, the ANLPE strategy
profile s is uniquely pinned down by (6). Given this, Nash rationalization and observational consis-
tency uniquely pins down the perceived type distribution F̂θ for each θ, because by Lemma 3 there
is a unique F̂θ such that Hs,P

θ is Nash at (F̂θ, CI , γ, β). Finally, the uniqueness of the perceived
strategy profile ŝθ for each θ follows from Nash rationalization and the uniqueness of the Nash
equilibrium at P̂θ.

Part (2): Fix any θ and any regular Ĉ ∈ C with Ĉ 6= CI . Fix an arbitrary γ > 0 and let β = 0.
We will find a society (F,C) such that no LPE at (F,C, γ, β) satisfies Ĉθ = Ĉ.
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Note first that by regularity of Ĉ, there exists z ∈ (0, 1) such that {x ∈ (0, 1) : Ĉ(x|x) = z} = {x̂}
for some x̂. Moreover, since Ĉ admits a positive density on (0, 1)2, we have that Ĉ(· | x̂) is a bijection
from (0, 1) to (0, 1). Let Ĉ−1

x̂ denote its inverse. As in the proof of the “(2) =⇒ (1)” direction of
Lemma 3, we can find an action distribution Ĥ ∈ F and some y > y′ such that

Ĥ−1(y)− Ĥ−1(y′) < γ

ˆ
Ĥ−1(w) d

(
Ĉ(w|y)− Ĉ(w|y′)

)
. (17)

Note that setting H̃−1(x) := Ĥ−1(Ĉ−1
x̂ (x)) for all x ∈ (0, 1) defines another action cdf H̃ ∈ F .

Moreover, by the “(1) =⇒ (2)” direction of Lemma 3, there exists a type distribution F̃ ∈ F such
that H̃ is the Nash action distribution under (F̃ , CI , γ, β). Since F̃ ∈ F , there exists some ν ∈ R
such that F̃ (θ + ν) = z. Define a new type distribution F by F (θ′) := F̃ (θ′ + ν) for each θ′. Then
the Nash action distribution H at (F,CI , γ, β) satisfies

H−1(x) = H̃−1(x) +
ν

1− γ
for all x ∈ (0, 1). (18)

We claim that in environment (F,CI , γ, β), there exists no LPE with Ĉθ = Ĉ. Indeed, suppose
for a contradiction that there is an LPE with Ĉθ = Ĉ, where the corresponding true strategy profile
is s and θ’s perceived type distribution and perceived strategy profile are F̂θ and ŝθ. Since β = 0, the
strategy profile s at this LPE coincides with the Nash equilibrium profile (see Lemma I.1). Hence,
the true action distribution is given by H. Let Ĝθ = F̂θ ◦ ŝ−1

θ denote θ’s perceived global action
distribution. We will derive a contradiction from the requirement that by Nash rationalization, Ĝθ
is the Nash action distribution at (F̂θ, Ĉ, γ, β).

To this end, note first that θ’s perceived type quantile F̂θ(θ) is given by x̂. Indeed, θ’s true
quantile is F (θ) = z. Hence, under the true interaction structure CI , the fraction of θ’s matches
that play an action below s(θ) is CI(z|z) = z. But by observational consistency, θ must be correct
about this fraction; that is, θ must believe fraction z of his matches to have types below θ, i.e.,
Ĉ(F̂θ(θ)|F̂θ(θ)) = z. By choice of z, this implies F̂θ(θ) = x̂.

Given this, we have the following relationship between θ’s perceived local and global action
distributions H ŝθ,P̂θ

θ and Ĝθ:

H ŝθ,P̂θ
θ

−1
(x) = Ĝ−1

θ (Ĉ−1
x̂ (x)) for all x. (19)

Indeed, since θ perceives his own quantile to be x̂ and the interaction structure to be Ĉ, θ perceives
the xth quantile among his matches to correspond to quantile Ĉ−1

x̂ (x) in the overall population.
Hence, θ’s perception of the xth action quantile among θ’s matches (i.e, the LHS) is the same as
θ’s perception of the Ĉ−1

x̂ (x)th action quantile in the overall population (i.e., the RHS).
Moreover, since the true interaction structure is CI , θ’s true local action distribution Hs,P

θ is

given by the global action distribution H. Hence, by observational consistency, we have H ŝθ,P̂θ
θ = H.

Combining this with (19) yields that Ĝ−1
θ (Ĉ−1

x̂ (x)) = H−1(x) for all x; or equivalently (substituting
x = Ĉ(q|x̂)) that

Ĝ−1
θ (q) = H−1(Ĉ(q|x̂)) = H̃−1(Ĉ(q|x̂)) +

ν

1− γ
= Ĥ−1(q) +

ν

1− γ
for all q ∈ (0, 1),

where the final two equalities follow from (18) and the definition of H̃ above. Combining this with
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equation (17), we have

Ĝ−1
θ (y)− Ĝ−1

θ (y′) = Ĥ−1(y)− Ĥ−1(y′) < γ

ˆ
Ĥ−1(w) d

(
Ĉ(w|y)− Ĉ(w|y′)

)
= γ

ˆ
Ĝ−1
θ (w) d

(
Ĉ(w|y)− Ĉ(w|y′)

)
.

Since Ĝθ is the Nash action distribution at (F̂θ, Ĉ, γ, β), the best-response condition (15) then
implies that F̂−1

θ (y) < F̂−1(y′). This contradicts the fact that y > y′.

E Proofs for Sections 5.2 and 5.3

E.1 Proof of Corollary 1

By the proof of Theorem 2, the ANLPE strategy profile sAN is given by (6), i.e., s(θ0) =
∑∞

t=0(γ+
β)tEP [θt|θ0] for each type θ0.

Part 1: By Nash rationalization, each type θ0’s perceived strategy profile ŝθ0 is the Nash
equilibrium under (F̂θ0 , CI , γ, β). Hence,

µ̂θ0
1− γ − β

= EP̂θ0 [ŝθ0(θ)] = EP̂θ0 [ŝθ0(θ1)|θ0] = EP [sAN (θ1)|θ0] =

= EP [θ1 + (γ + β)EP [sAN (θ1)|θ0]|θ0] = · · · =
∞∑
t=0

(γ + β)tEP [θt+1|θ0],

where the first equality holds by Lemma 1, the second because Ĉθ = CI , the third by observa-
tional consistency, the fourth by (6), and the convergence of the infinite sum follows from a similar
argument as in the proof of Lemma 1.

Part 2: Observe that by (6) and Lemma 1, the ANLPE strategy profile sAN at (P, γ, β) coincides
with the Nash equilibrium strategy profile at (P, γ′, β′), where γ′ := γ + β and β′ := 0. Then the
claim is immediate from Proposition 2 and the fact (Lemma 1) that the average action under Nash
depends only on the sum of local and global coordination motives.

E.2 Proof of Theorem 3

As noted in the proof of Corollary 1, the ANLPE action distribution at (P, γ, β) coincides with the
Nash action distribution at (P, γ′, β′), where γ′ = γ + β and β′ = 0. Given this, the “(1) ⇒ (2)”
direction is immediate from the “(1) ⇒ (2)” direction of Theorem 1. The “(2) ⇒ (1)” direction also
follows from the proof of Theorem 1, by observing that in the proof of the “(2) ⇒ (1)” direction of
that theorem it is without loss to assume that β = 0.

To show the equivalence of (1) and (3), recall from Corollary 1 that each type θ’s perceived
population mean under the ANLPE at (P, γ, β) is given by µ̂θ = (1−γ−β)

∑∞
t=0(γ+β)tEP [θt+1|θ0 =

θ]. Thus, denoting by mF,γ,β
i the inverse cdf of MF,γ,β

i , we have for each quantile x ∈ (0, 1) that

mF,γ,β
i (x) = (1− γ − β)

∑
t≥0

(γ + β)t(TCi)
t+1F−1(x).

Hence, if C1 %MA C2, then m1 %m m2 for all (F, γ, β) since %m is linear, continuous, and isotone
by Lemmas B.2 and B.3. Conversely, if mF,γ,β

1 %m mF,γ,β
2 for all (F, γ, β), then by linearity and
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continuity of %m, it follows that TC1F
−1 %m TC2F

−1 for any F , which implies C1 %MA C2 by
Lemma B.4.

E.3 Proof of Corollary 2

We instead prove the following proposition, which shows that local coordination motives and assor-
tativity have a complementary effect on Nash action dispersion. Since the ANLPE strategy profile
sAN at (P, γ, β) coincides with the Nash equilibrium at (P, γ′, β′), where γ′ = γ + β and β′ = 0,
this then immediately implies (8), i.e., a greater increase in action dispersion from C2 to C1 under
ANLPE than under Nash.

Proposition E.1 (Complementarity of assortativity and local coordination motives). Let sij denote
the Nash strategy profile under (F,Ci, γj , βj) for i, j = 1, 2. If γ1 ≥ γ2 and C1 %MA C2, then for all
types θ∗,

EF [s11(θ)− s21(θ)|θ ≥ θ∗] ≥ EF [s12(θ)− s22(θ)|θ ≥ θ∗]. (20)

Proof of Proposition E.1. By linearity and isotonicity of %m, we have for all t that(
γt1(TC1)t + γt2(TC2)t

)
F−1 %m

(
γt2(TC1)t + γt1(TC2)t

)
F−1,

since γt1 ≥ γt2 ≥ 0 and C1 %∗m C2 (by Lemma B.4). Then linearity and continuity of %m also imply

∞∑
t=0

(
γt1(TC1)t + γt2(TC2)t

)
F−1 +

β1EF [θ]

(1− γ1)(1− γ1 − β1)
+

β2EF [θ]

(1− γ2)(1− γ2 − β2)

%m

∞∑
t=0

(
γt2(TC1)t + γt1(TC2)t

)
F−1 +

β1EF [θ]

(1− γ1)(1− γ1 − β1)
+

β2EF [θ]

(1− γ2)(1− γ2 − β2)
.

By monotonicity of sij , this yields for all θ∗ that

EF [s11(θ) + s22(θ)|θ ≥ θ∗] ≥ EF [s12(θ) + s21(θ)|θ ≥ θ∗],

which is equivalent to the desired expression.

E.4 Proof of Proposition 3

Since the ANLPE action distribution at (P, γ, β) coincides with the Nash action distribution at
(P, γ′, β′), with γ′ = γ + β and β′ = 0, the first part is immediate from Proposition 2, indeed (by
the proof of Proposition 2) under the stronger notion of dispersive ordering.

To show the second part, denoting by mi the inverse cdf of Mi, we have for each quantile
x ∈ (0, 1) that

mi(x) = (1− ηi)
∑
t≥0

ηti(TC)t+1f(x),

where ηi = γi + βi and f = F−1.
Moreover, by an inductive argument, we have that (TC)tF−1 %m (TC)t+1F−1 for all t ≥ 0.

Indeed, the base case t = 0 holds because of the following result by Ryff (1963): Call a linear
operator T : L1 → L1 an S-operator if F−1 %m TF−1 for all F ∈ F . The representation theorem in
Ryff (1963) implies that T is an S-operator if there exists some measurable function K : [0, 1]2 → R
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such that

Tf(x) =
d

dx

1ˆ

0

K(x, y)f(y)dy

for all f ∈ L1 and almost every x and the following conditions are met:

1. K(0, y) = 0 for all 0 ≤ y ≤ 1;

2. essupyV (K(·, y)) < ∞, where V (·) denotes the total variation and essup the essential supre-
mum;

3.
´ 1

0 K(x, y)f(y)dy is absolutely continuous in x for all f ∈ L1;

4. x =
´ 1

0 K(x, y)dy;

5. x1 < x2 =⇒ K(x1, ·) ≤ K(x2, ·);

6. K(1, y) = 1 for all y ∈ [0, 1].

Since C ∈ C, it is easy to see that TC satisfies these conditions with K(x, y) := C(x | y) for all x, y,
so that TC is an S-operator. Thus, F−1 %m TCF

−1, proving the base case. The inductive step
then follows from isotonicity of %m.

But this implies that for all τ ≥ 0, we have

1∑τ
t=0 η

t
2

τ∑
t=0

ηt2(TC)t+1f %m
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f. (21)

Indeed, for τ = 0, there is nothing to prove. And supposing the claim holds for some τ ≥ 0, it
follows that

1∑τ+1
t=0 η

t
2

τ+1∑
t=0

ηt2(TC)t+1f =

∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

(
1∑τ
t=0 η

t
2

τ∑
t=0

ηt2(TC)t+1f

)
+

ητ+1
2∑τ+1
t=0 η

t
2

(TC)τ+2f

%m

∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

(
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f

)
+

ητ+1
2∑τ+1
t=0 η

t
2

(TC)τ+2f

%m

∑τ
t=0 η

t
1∑τ+1

t=0 η
t
1

(
1∑τ
t=0 η

t
1

τ∑
t=0

ηt1(TC)t+1f

)
+

ητ+1
1∑τ+1
t=0 η

t
1

(TC)τ+2f

=
1∑τ+1
t=0 η

t
1

τ+1∑
t=0

ηt1(TC)t+1f,

as required. Here the second line holds by inductive hypothesis and the third line follows from
linearity of %m along with the fact that η1 ≥ η2 (so that

∑τ
t=0 η

t
1∑τ+1

t=0 η
t
1

≤
∑τ
t=0 η

t
2∑τ+1

t=0 η
t
2

and ητ+1
1∑τ+1
t=0 η

t
1

≥ ητ+1
2∑τ+1
t=0 η

t
2

)

and that (TC)t+1f %m (TC)τ+2f for all t ≤ τ + 1.
Taking τ →∞ in (21), continuity of %m then yields

(1− η2)
∑
t≥0

ηt2(TC)t+1f %m (1− η1)
∑
t≥0

ηt1(TC)t+1f,

i.e., m2 %m m1, as claimed.
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E.5 Proof of Lemma 4

The lemma is a consequence of Harris’ theorem (see Theorem 1.2 in Hairer and Mattingly (2011)).
Assumption 1 of the lemma ensures that Assumption 1 in Hairer and Mattingly (2011) is satis-

fied. Next, pick any R > 2K/(1− η) and let ν be the uniform probability measure on [−R,R]. By
the second assumption of the lemma, there exists some α > 0 sufficiently small such that

inf
θ0,θ1∈[−R,R]

p(θ1 | θ0) > α
1

2R
.

Then for every measurable set S ⊆ R, we have

inf
|θ0|≤R

P (θ1 ∈ S | θ0) > αν(S),

which ensures that Assumption 2 in Hairer and Mattingly (2011) is satisfied.
Thus, we can apply Harris’ theorem to conclude that the unique invariant measure of P is given

by the type distribution F and that there exist constants C > 0 and κ ∈ (0, 1) such that for all t,

sup
θ0∈R

|EP [θt | θ0]− EF [θ]|
1 + |θ0|

≤ Cκt.

This implies that for all θ0,

|EP [θt | θ0]− EF [θ]| ≤ Cκt(1 + |θ0|)→ 0

as t→∞, as required.

E.6 Proof of Proposition 4

Fix any (P, γ, β) and let H denote the ANLPE action distribution. We show a stronger claim based
on the dispersiveness order (see section 7.2) instead of mean-preserving spread. Consider any type θ
and let Hθ denote θ’s local action distribution under ANLPE. Recall from the proofs of Theorem 2
and Lemma 3 that θ’s perceived type distribution F̂θ satisfies

F̂−1
θ (x) := H−1

θ (x)− (γ + β)

ˆ 1

0
H−1
θ (y)dy

for each x. Because the constant term (γ + β)
´ 1

0 H
−1
θ (y)dy does not affect the dispersive ordering,

it suffices to show that Hθ is monotone in γ + β under the dispersive ordering. To verify this, note
that for any quantiles x > x′, we have

H−1
θ (x)−H−1

θ (x′) = H−1(y)−H−1(y′)

where y and y′ are such that x = C(y|F (θ)) and x′ = C(y′|F (θ)). Since H becomes more dispersive
as γ + β increases (see the proof of Proposition 3), the desired conclusion follows.
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F Proofs for Section 5.4

F.1 Proof of Proposition 5

We prove the proposition by showing that
(
s,
(
ŝθ, (µ̂θ, σ̂

2
θ , ρ̂θ)

)
θ∈R

)
is a linear-Gaussian LPE if and

only if there exists ρ̂ ∈ [0, 1) such that for all θ,

1. θ’s action is s(θ) = 1

1−γρ−β ρ−ρ̂
1−ρ̂

(θ − µ) + µ
1−γ−β

2. θ’s perceived society is given by

µ̂θ = µ+
(1− β − γ)(ρ− ρ̂)

(1− ρ̂)(1− γρ− β ρ−ρ̂1−ρ̂)
(θ − µ)

σ̂2
θ = σ2 (1− ρ2)

(1− ρ̂2
θ)

(
1− γρ̂θ

1− γρ− β ρ−ρ̂θ1−ρ̂θ

)2

ρ̂θ

{
= ρ̂ if θ 6= µ

∈ [0, 1) if θ = µ.

3. θ’s perceived strategy profile satisfies ŝθ(θ′) = θ′−µ̂θ
1−γρ̂θ + µ̂θ

1−γ−β for all θ′.

“Only if” direction: Suppose that
(
s,
(
ŝθ, (µ̂θ, σ̂

2
θ , ρ̂θ)

)
θ∈R

)
is a linear-Gaussian LPE. Since s

is linear and non-constant in types, there exist some x 6= 0 and y ∈ R such that

s(θ) = x(θ − µ) + y for all θ.

Then for every type θ, the local action distribution is distributed

N (xρ(θ − µ) + y, σ2(1− ρ2)x2). (22)

Moreover, by Nash rationalization, ŝθ is the Nash equilibrium profile at (µ̂θ, σ̂θ, ρ̂θ). That is, by
Example 2,

ŝθ(θ
′) =

θ′ − µ̂θ
1− γρ̂θ

+
µ̂θ

1− β − γ
for all θ′. (23)

Hence, θ’s perceived local action distribution is distributed

N

(
ρ̂θ(θ − µ̂θ)

1− γρ̂θ
+

µ̂θ
1− β − γ

, σ̂2
θ

(
1− ρ̂2

θ

)( 1

1− γρ̂θ

)2
)
. (24)

By part (a) of observational consistency, distributions (22) and (24) must coincide for each θ. In
particular, matching means for θ = µ implies

y =
ρ̂µ(µ− µ̂µ)

1− γρ̂µ
+

µ̂µ
1− β − γ

. (25)

Moreover, since y = s(µ) and by part (b) of observational consistency s(µ) = ŝµ(µ), we also have

y =
µ− µ̂µ
1− γρ̂µ

+
µ̂µ

1− β − γ
.
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Combining these equalities, we obtain

1

1− γρ̂µ
(1− ρ̂µ)(µ− µ̂µ) = 0,

which implies that µ̂µ = µ, i.e., type µ’s perceived population mean is correct. Substituting this
into (25) yields

y =
µ

1− β − γ
.

Thus, for all θ, matching means for (22) and (24) yields

xρ(θ − µ) +
µ

1− β − γ
=
ρ̂θ(θ − µ̂θ)

1− γρ̂θ
+

µ̂θ
1− β − γ

. (26)

This implies that for all θ 6= µ, we have µ̂θ 6= θ. Indeed, otherwise (26) implies xρ = 1
1−β−γ . But

then s(θ) = x(θ−µ) + y = 1
ρ(1−β−γ)(θ−µ) + µ

1−β−γ , which for θ 6= µ is not equal to θ
1−β−γ = ŝθ(θ),

violating part (b) of observational consistency.
Now observe that for all θ, we have

x(θ − µ) + y = s(θ) = ŝθ(θ) = θ + γEP̂θ
[
ŝθ(θ

′)|θ
]

+ βEP̂θ
[
ŝθ(θ

′)
]

= θ + γEP
[
s(θ′)|θ

]
+ βEP̂θ

[
ŝθ(θ

′)
]

= θ + γ (xρ(θ − µ) + y) +
β

1− β − γ
µ̂θ,

where the second equality holds by part (b) of observational consistency, the third by Nash ratio-
nalization, the fourth by part (a) of observational consistency, and the final equality by (22) and
(23). Substituting y = µ

1−β−γ and rearranging yields the linear equation

µ̂θ − µ = k(θ − µ),

where k := 1−β−γ
β (x(1− γρ)− 1). Note that k 6= 1, since by the previous paragraph µ̂θ 6= θ for all

θ 6= µ.
Plugging µ̂θ − µ = k(θ − µ) into (26) and rearranging yields(

xρ− ρ̂θ(1− k)

1− γρ̂θ

)
(θ − µ) =

k

1− β − γ
(θ − µ). (27)

Since k 6= 1, this implies that ρ̂θ must be constant for all θ 6= µ, say ρ̂θ = ρ̂ for some ρ̂ ∈ [0, 1). As
a result, (27) yields

xρ =
ρ̂

1− γρ̂
(1− k) +

k

1− β − γ
.

Substituting for k and solving for x, we obtain:

x =
1

1− γρ− β ρ−ρ̂1−ρ̂
.
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Combined with y = µ
1−β−γ , this shows that behavior must follow:

s(θ) =
1

1− γρ− β ρ−ρ̂1−ρ̂
(θ − µ) +

µ

1− β − γ
.

Finally, given x and y, matching (22) and (24) yields the desired expressions for µ̂θ and σ̂2
θ .

“If” direction: It is easy to verify that
(
s,
(
ŝθ, (µ̂θ, σ̂

2
θ , ρ̂θ)

)
θ∈R

)
given by points 1.–3. above

indeed satisfies observational consistency and Nash rationalization, and hence constitutes a linear-
Gaussian LPE.
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Supplementary Appendix to “Dispersed Behavior and Perceptions
in Assortative Societies”

Mira Frick, Ryota Iijima, and Yuhta Ishii

G Proofs for Section 6

G.1 Proof of Proposition 6

Fix any type θ and let HNE
θ = HsNE ,P

θ and HAN
θ = HsAN ,P

θ denote θ’s local action distribution
under Nash and ANLPE at (P, γ, β). For any quantiles x > x′, we have

(HAN
θ )−1(x)− (HAN

θ )−1(x′) = (HAN )−1(y)− (HAN )−1(y′)

≥ (HNE)−1(y)− (HNE)−1(y′)

= (HNE
θ )−1(x)− (HNE

θ )−1(x′)

where y, y′ are such that x = C(y|F (θ)) and x′ = C(y′|F (θ)), and the inequality holds since by the
proof of Corollary 1, the action distribution under ANLPE is more dispersive than under Nash (in
the sense of %d defined in Section H.1). Thus, HAN

θ %d HNE
θ , which implies that HAN

θ has higher
variance than HNE

θ (e.g., Shaked and Shanthikumar, 2007, p. 155).
We can write payoffs as

uNEP (θ) = −
ˆ 1

0
γ2
(
ā− (HNE

θ )−1(x)
)2
dx, ûANP (θ) = −

ˆ 1

0
γ2
(
ā′ − (HAN

θ )−1(x)
)2
dx,

uANP (θ) = −
ˆ 1

0

(
γā′ − γ(HAN

θ )−1(x) +
β(µ̂θ − µ)

1− γ − β

)2

dx,

where ā =
´ 1

0 (HNE
θ )−1(x)dx, ā′ =

´ 1
0 (HAN

θ )−1(x)dx, and µ = EF [θ]. Then we have uNEP (θ) ≥
ûANP (θ), since the variance of HAN

θ is higher than that of HNE
θ . Moreover, ûANP (θ) ≥ uANP (θ) since

the quadratic loss
´ 1

0

(
γā′ − γ(HAN

θ )−1(x) + c
)2
dx is minimized when the constant c equals 0.

G.2 Proof of Corollary 4

Recall that for any s, P , and θ, quadratic-loss utility satsfies uP (BRθ(s, P ), θ, s) = −γ2VarP [s(θ′)|θ].
Thus, by Example 2,

uNEP (θ) = −γ2VarP [sNE(θ′)|θ] = −γ
2σ2(1− ρ2)

(1− γρ)2
.

Moreover, evaluating the expressions derived in the proof of Proposition 5 at ρ̂ = 0,

ûANP (θ) = −γ2VarP̂θ [ŝθ(θ
′)|θ] = −γ2σ̂2 = − γ2σ2(1− ρ2)

(1− (γ + β)ρ)2
.
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This immediately yields the desired conclusion.

H Proofs for Section 7

H.1 Proof of Theorem 4

First, we define the dispersive order %d over I:

Definition 9. f %d g if for all x, x′ ∈ (0, 1) such that x ≥ x′, we have

f(x)− f(x′) ≥ g(x)− g(x′).

We verify that %d obeys the three basic properties from Theorem B.1:

Lemma H.1. %d is a preorder that is linear, continuous, and isotone.

Proof. It is clear from the definition that %d is reflexive, transitive, and linear. To check that
it is continuous, take sequences fn → f and gn → g in I such that fn %d gn for each n. By
standard results (e.g., Theorem 13.6 in Aliprantis and Border (2006)), we can find subsequences
(fnk)k∈N, (gnk)k∈N such that fnk(x) → f(x) and gnk(x) → g(x) for almost all x ∈ (0, 1). This
implies f(x) − f(x′) ≥ g(x) − g(x′) for almost all x ≥ x′, which ensures f %d g since f and g are
continuous.

To show that %d is isotone, first consider any bounded f, g ∈ I such that f %d g. Since
f and g are absolutely continuous, there exist integrable functions f ′, g′ : (0, 1) → R such that
f(x) = f(0) +

´ x
0 f
′(y) dy and g(x) = g(0) +

´ x
0 g
′(y) dy for all x ∈ (0, 1). Then, for any x ≥ x′ and

C ∈ C, integration by parts yields

TCf(x)− TCf(x′) =

ˆ 1

0
f(y)(c(y|x)− c(y|x′))dy

= −
ˆ 1

0
f ′(y)(C(y|x)− C(y|x′))dy + [f(y)(C(y|x)− C(y|x′))]10

= −
ˆ 1

0
f ′(y)(C(y|x)− C(y|x′))dy

≥ −
ˆ 1

0
g′(y)(C(y|x)− C(y|x′))dy

= −
ˆ 1

0
g′(y)(C(y|x)− C(y|x′))dy + [g(y)(C(y|x)− C(y|x′))]10

=

ˆ 1

0
g(y)(c(y|x)− c(y|x′))dy = TCg(x)− TCg(x′).

Here, the inequality holds because the fact that f %d g and f, g ∈ I implies f ′(y) ≥ g′(y) ≥ 0 for
almost all y ∈ (0, 1).

Next, consider arbitrary f, g ∈ I such that f %d g. By defining bounded functions

fn(x) =


1
n if x ∈ (0, 1

n)

f(x) if x ∈ [ 1
n ,

n−1
n ]

n−1
n if x ∈ (n−1

n , 1)

gn(x) =


1
n if x ∈ (0, 1

n)

g(x) if x ∈ [ 1
n ,

n−1
n ]

n−1
n if x ∈ (n−1

n , 1)

(28)
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for each n ∈ N, we obtain fn %d gn for each n and fn → f, gn → g. For any C ∈ C, since TC is a
continuous operator, this implies TCfn → TCf and TCgn → TCg. Thus TCf %d TCg by continuity
of %d, because we already know that TCfn %d TCgn from the previous part of the proof.

Next we show that the strongly more-assortative order %SMA coincides with the dual order of
%d:

Lemma H.2. C1 %∗d C2 if and only if C1 %SMA C2.

Proof. For the “if” part, suppose that C1 %SMA C2. First consider any bounded f ∈ I. Then
there exists an integrable function f ′ : (0, 1)→ R that is nonnegative almost everywhere such that
f(x) = f(0) +

´ x
0 f
′(y)dy for all x ∈ (0, 1). Then, for any x ≥ x′, integration by parts yields

TC1f(x)− TC1f(x′) =

ˆ 1

0
f(y)(c1(y|x)− c1(y|x′))dy

= −
ˆ 1

0
f ′(y)(C1(y|x)− C1(y|x′))dy + [f(y)(C1(y|x)− C1(y|x′))]10

= −
ˆ 1

0
f ′(y)(C1(y|x)− C1(y|x′))dy

≥ −
ˆ 1

0
f ′(y)(C2(y|x)− C2(y|x′))dy

= −
ˆ 1

0
f ′(y)(C2(y|x)− C2(y|x′))dy + [f(y)(C2(y|x)− C2(y|x′))]10

=

ˆ 1

0
f(y)(c2(y|x)− c2(y|x′))dy = TC2f(x)− TC2f(x′),

where the inequality holds because f ′(y) ≥ 0 for almost all y. Thus TC1f %d TC2f .
Next take an arbitrary f ∈ I. Define the sequence of bounded functions (fn) as in (28), so that

fn → f . By the previous observation, we have TC1fn %d TC2fn for each n. Since TC1fn → TC1f
and TC2fn → TC2f by continuity of TC1 and TC2 , continuity of %d then yields TC1f %d TC2f .

Finally, for the “only if” part, suppose that C1 %∗d C2. Suppose for a contradiction that C1 is
not strongly more assortative than C2. That is, there exist y and x > x′ such that

C2(y|x)− C2(y|x′) < C1(y|x)− C1(y|x′) ≤ 0.

Since C1 and C2 admit densities, the above inequality holds throughout some interval (y1, y2) 3 y.
Define f ∈ I by f(z) =

´ z
0 f
′(y′)dy′ for all z, where f ′ is an integrable function given by f ′(y′) = 1

for y′ ∈ (y1, y2) and f ′(y′) = 0 for all y′ 6∈ (y1, y2). Using the same integration by parts argument
as above, we obtain

TC1f(x)− TC1f(x′) = −
ˆ
f ′(y)(C1(y|x)− C1(y|x′))dy

< −
ˆ
f ′(y)(C2(y|x)− C2(y|x′))dy = TC2f(x)− TC2f(x′),

contradicting C1 %∗d C2.

Given Lemmas H.1–H.2, Theorem 4 then follows immediately from Theorem B.1.
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H.2 Proof of Proposition 7

We begin with the following lemma:

Lemma H.3. Fix any (F,C, γ, β) and Ĉ ∈ C. There exists F̂ ∈ F such that HF,C,γ,β = HF̂ ,Ĉ,γ,β if
and only if

H−1
F,C,γ,β(x)− γ

1ˆ

0

ĉ(y, x)H−1
F,C,γ,β(y)dy

is strictly increasing in x.

Proof. Let h(x) := H−1
F,C,γ,β(x) for each x. Suppose that HF,C,γ,β = HF̂ ,Ĉ,γ,β for some F̂ ∈ F .

Then h(x) = H−1

F̂ ,Ĉ,γ,β
(x) = F̂−1(x) + γ

´ 1
0 ĉ(y, x)h(y)dy+ β

´
h(y)dy for each x. Therefore, h(x)−

γ
´ 1

0 ĉ(y, x)h(y)dy = F̂−1(x) + β
´
h(y)dy is strictly increasing in x. Conversely, suppose that

h(x)− γ
´ 1

0 ĉ(y, x)h(y)dy is strictly increasing in x. Then define a strictly increasing function F̂ by
F̂−1 = h− γTĈh− β

´
h(y)dy, or

F̂−1(x) = h(x)− γ
ˆ
ĉ(y, x)h(y)dy − β

ˆ
h(y)dy

for each x. Since TĈh is L1 and absolutely continuous, so is F̂−1. Thus F̂ ∈ F . Then h−1 is the
Nash equilibrium strategy under (F̂ , Ĉ, γ, β) because h(x) = F̂−1(x)+γ

´
ĉ(y, x)h(y)dy+β

´
h(y)dy

for each x. Therefore, HF̂ ,Ĉ,γ,β = HF,C,γ,β .

To prove the first claim in the proposition, suppose that C %SMA Ĉ and take any (F, γ, β). Let
h(x) := H−1

F,C,γ,β(x) for each x. Then for any x > x′ in (0, 1),

h(x)− γTĈh(x) = F−1(x) + β

ˆ
h(y)dy + γ

(
TCh(x)− TĈh(x)

)
> F−1(x′) + β

ˆ
h(y)dy + γ

(
TCh(x′)− TĈh(x′)

)
= h(x′)− γTĈh(x′)

because F−1 is strictly increasing and TCh %d TĈh (note that h ∈ I). Thus, Lemma H.3 implies
the desired claim.

The claim that there cannot be multiple F̂ , F̂ ′ such that HF,C,γ,β = HF̂ ,Ĉ,γ,β = HF̂ ′,Ĉ,γ,β follows
from the fact that F̂−1(x) = h(x) − γ

´
ĉ(y, x)h(y)dy − β

´
h(y)dy = F̂ ′−1(x) holds for each x at

such F̂ , F̂ ′. The equality
´
θdF = (1− β − γ)

´
h(x)dx =

´
θdF̂ follows by Lemma 1.

Finally, note that

F̂−1 = h− γTĈh− β
ˆ
h(y)dy = F−1 + γ

(
TCh− TĈh

)
.

Thus, for each x > x′ in (0, 1),

F̂ (x)−F̂ (x′) = F−1(x)−F−1(x′)+γ
(
TCfh(x)− TĈh(x)− TCfh(x′) + TĈh(x′)

)
≥ F−1(x)−F−1(x′)

because TCh %d TĈh. This shows that F̂ %d F .
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I Relationship with RCE

This appendix elaborates on the relationship between LPE and RCE discussed in Section 7.1.
In constrast with LPE, existing formulations of RCE do not explicitly treat players’ beliefs as
equilibrium objects. Thus, to make the connection with LPE transparent, we first define an extended
version of RCE below, based on the reduced-form formulation in Esponda (2013) without a full
construction of an epistemic model. To define RCE in our environment, first define the state space
that encodes all uncertainty relevant to agents’ decisions:

Ω = {(s, P ) : P = (F,C),

ˆ
|s(θ)|dF <∞}.

Elements ω ∈ Ω are called states. We write ω = (sω, Pω), where Pω is the society and sω the
strategy profile corresponding to state ω. Let uθ(a, ω) denote the utility θ receives by choosing a
in society Pω against strategy profile sω; we consider utilities that give rise to best-responses of the
linear form in (1), for example the quadratic-loss utility specification in (2). For any probability
measure ν ∈ ∆(Ω), let uθ(a, ν) :=

´
uθ(a, ω)dν(ω). Let Hω

θ := Hsω ,Pω
θ denote the local action

distribution observed by type θ at state ω, as defined in (4).
Given some society P , RCE captures the possible behavior and perceptions about P that may

arise when players are only constrained by rationality, observational consistency, and common cer-
tainty of these two requirements. As a first step, the following definition formalizes the possible
beliefs that players may hold about Ω under these constraints:

Definition 10. A rational perception system consists of Ω̂ ⊆ Ω and ν := {νω,θ}ω∈Ω̂,θ∈Θ ⊆ ∆(Ω)

such that for all ω ∈ Ω̂ and θ,

1. rationality: sω(θ) ∈ arg maxa∈A uθ(a, νω,θ)

2. observational consistency: νω,θ({ω′ : Hω′
θ = Hω

θ and sω′(θ) = sω(θ)}) = 1

3. belief-closedness: νω,θ(Ω̂) = 1.

A rational perception system is a collection of type-dependent beliefs about Ω. Each belief νω,θ
is indexed by a state ω ∈ Ω̂, capturing some hypothetical true behavior sω and true society Pω. In
each state ω, (1) ensures that each type θ best-responds to his belief νω,θ, while (2) requires that
this belief be correct about the true local action distribution Hω

θ and about his own strategy sω(θ).
Finally, (3) ensures that at each ω, there is common certainty of (1) and (2).

Suppose that the true society is P . Using Definition 10, it is now straightforward to express
which behavior and beliefs about Ω can jointly arise under rationality, observational consistency,
and common certainty thereof: Consider any strategy profile s together with a perceived strategy
profile ŝθ and perceived society P̂θ for each type. We say that (s, (ŝθ, P̂θ)θ∈Θ) is rationalized by
the rational perception system (Ω̂, ν) at P if (s, P ) ∈ Ω̂ and νs,P,θ

(
{(ŝθ, P̂θ)}

)
= 1 for all θ ∈ Θ. A

rationalizable conjectural equilibrium is any tuple (s, (ŝθ, P̂θ)θ∈Θ) that can be rationalized by some
rational perception system:48

Definition 11. A rationalizable conjectural equilibrium (RCE) at P is a strategy profile
s together with perceptions (ŝθ, P̂θ)θ∈Θ that are rationalized by some rational perception system
(Ω̂, ν) at P .

48For simplicity, we focus here on the case in which players assign probability 1 to a particular state. This makes
the connection with LPE more transparent.
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Every LPE is an RCE, but the converse is not necessarily true. While in LPE each agent believes
that other agents follow a Nash equilibrium, RCE allows for more general perceptions. However,
when β = 0, RCE and LPE coincide and the underlying true behavior is in fact Nash. The key
observation is that absent global coordination motives, if θ best responds to a belief that generates
the same local action distribution as some true strategy profile and interaction structure, then this
is enough to ensure that θ best responds to the truth. Nevertheless, even when β = 0, there is
scope for misperception (i.e., we can have (ŝθ, P̂θ) 6= (s, P )) as long as the conjectured Nash and
true Nash are observationally equivalent for each type.

Lemma I.1. Every LPE (s, (ŝθ, P̂θ)θ∈Θ) at P is an RCE at P . If β = 0, the converse is true and
s is the Nash equilibrium profile at P .

Proof. See Appendix I.1.

This lemma directly implies that the first claim in Theorem 2 generalizes, i.e., that assortativity
neglect can be sustained as part of an RCE in any environment. The second part of Theorem 2
also extends, i.e., assortativity neglect remains the only form of misperception about the interaction
structure that can be sustained in RCE in any environment. The latter follows from Lemma I.1
because in the proof of Theorem 2 we can restrict attention to β = 0.

Corollary 5 (Robust sustainability of assortativity neglect under RCE).

1. For any (P, γ, β), there exists an RCE such that Ĉθ = CI for all θ.

2. For any regular Ĉ 6= CI and any θ, there exists (P, γ, β) at which all RCE satisfy Ĉθ 6= Ĉ.

Moreover, in any RCE such that Ĉθ = CI for all θ, the true strategy profile sAN is given by (6).

It is important to note that actual behavior under assortativity neglect remains uniquely pinned
down under RCE: Specifically, as under ANLPE, this behavior sAN is given by (6).49 Thus, all
implications of assortativity neglect for behavior that we derived in Section 5.1 remain valid. At
the same time, in contrast with Theorem 2, where assortativity neglect also uniquely pinned down
all agents’ perceived type distributions and perceived strategy profiles, under RCE there are many
perceptions which could be consistent with assortativity neglect. Thus, LPE can be viewed as
providing one natural way of selecting among these multiple perceptions.

In Appendix I.3, we also show that LPE can be obtained as a refinement of RCE by intro-
ducing lexicographic preferences over perceptions. The idea is that players prefer to adopt “simple”
perceptions as long as they are consistent with their local observations and do not decrease their
original game payoffs. Under such preferences, Lemma 3 above, which establishes that any local
action distribution can be rationalized as Nash equilibrium under CI , can be used to show that any
RCE with complicated higher-order beliefs unravels, eventually leading to LPE. If we additionally
assume that the independent interaction structure is simpler than any other perception, then this
lexicographic preference in fact yields ANLPE as the unique prediction.

49To see this, observe that the derivation of sAN in Section 5.1 only relied on the fact that each type θ (a) best-
responds to his perceptions (s(θ) = BRθ(ŝθ, P̂θ)) and (b) is correct about the local action mean (EP̂θ

[ŝθ(θ
′)|θ] =

EP [s(θ′)|θ]), both of which remain true under RCE. The key is that under assortativity neglect, (b) also pins down
the perceived global action mean, as when Ĉθ = CI the perceived global and local action mean coincide. Together
with (a), this uniquely determines behavior. In fact, the same argument also establishes that assortativity neglect
uniquely pins down behavior under the even more permissive solution concept of self-confirming equilibrium.
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I.1 Proof of Lemma I.1

Suppose that (s, (ŝθ, P̂θ)θ) is an LPE at P . We construct a rational perception system (Ω̂, (νω,θ)ω∈Ω̂,θ∈Θ)

as follows. Let ω∗ := (s, P ) and ω̂θ := (ŝθ, P̂θ) for all θ, set Ω̂ := {ω∗} ∪ {ω̂θ : θ ∈ Θ}, and set
νω∗,θ({ω̂θ}) = νω̂θ,θ({ω̂θ}) = νω̂θ,θ′({ω̂θ}) = 1 for all θ 6= θ′.

Clearly belief-closedness holds. Since H ω̂θ
θ = Hω∗

θ and ŝθ(θ) = s(θ), observational consistency
holds for θ at ω̂∗, and it trivially holds for θ at ω̂θ and ω̂θ′ . Finally, since s(θ) = ŝθ(θ) and
ŝθ(θ

′) = BRθ′(ŝθ, P̂θ) for each θ and θ′, rationality holds at all ω ∈ Ω̂ and θ. Thus, (Ω̂, (νω,θ)ω∈Ω̂,θ∈Θ)

is a rational perception system such that (s, P ) ∈ Ω̂ and νs,P,θ({(ŝθ, P̂θ)}) = 1 for all θ, whence
(s, (ŝθ, P̂θ)θ) is an RCE at P .

Suppose next that β = 0. Note that

ν{ω′ : Hω′
θ = Hω

θ } = 1 =⇒ argmax
a∈A

uθ(a, ω) = argmax
a∈A

uθ(a, ν) (29)

for any θ, ω, and ν ∈ ∆(Ω).
If (s, (ŝθ, P̂θ)θ) is an RCE at P , then there exists a rational perception system (Ω̂, (νω,θ)ω∈Ω̂,θ∈Θ)

such that (i) (s, P ) ∈ Ω̂ and (ii) νs,P,θ({(ŝθ, P̂θ)}) = 1 for all θ. Fix any θ and let ω∗ := (s, P ). By
rationality at ω∗, we have s(θ) ∈ argmaxa∈A uθ(a, νω∗,θ), and by observational consistency at ω∗,
we have ν{ω′ : Hω′

θ = Hω∗
θ } = 1. Hence, (29) implies s(θ) ∈ argmaxa∈A uθ(a, ω

∗). Thus, s is Nash
at P .

Moreover, by (ii) and observational consistency at ω∗ , there exists ω̂θ := (ŝθ, P̂θ) ∈ Ω̂ with
H ω̂θ
θ = Hω∗

θ and ŝθ(θ) = s(θ). Finally, applying rationality and observational consistency at ω̂θ,
implies that ŝθ is Nash at P̂θ as in the previous paragraph. Therefore (s, (ŝθ, P̂θ)θ) is an LPE at
P .

I.2 Proof of Corollary 5

The first part is an immediate consequence of the first part of Theorem 2 and the fact that any
RCE is also an LPE (Lemma I.1).

To verify the second part, fix any regular Ĉ 6= CI and any θ. Note that in the proof of the
second part of Theorem 2, we constructed (F,C, γ, β) with β = 0 under which Ĉθ 6= Ĉ holds at any
LPE. Then the desired conclusion follows from Lemma I.1, as any RCE is LPE when β = 0.

I.3 Lexicographic Preference over Perceptions

Below we show that LPE can be seen as a refinement of RCE in which each agent lexicographically
prefers to adopt perceptions without higher-order belief disagreement, as long as such perceptions
do not reduce his utility. To formalize this idea, we say that θ is dogmatic at ω under (Ω̂, ν) if

supp νω,θ = supp νω′,θ′

for all ω′ ∈ supp νω,θ and θ′. That is, agent θ believes that all other agents θ′ believe in the same
set of states as he does.

Definition 12. A rational perception system (Ω̂, ν) displays lexicographic preference for dog-
maticity at ω if the following is true: For any θ such that there exists a rational perception system
(Ω̂∗, ν∗) and ω∗ ∈ Ω̂∗ satisfying

1. ν∗ω∗,θ({ω′ : Hω′
θ = Hω

θ }) = 1

7



2. uθ(sω∗(θ), ν∗ω∗,θ) ≥ uθ(sω(θ), νω,θ)

3. θ is dogmatic at ω∗ under (Ω̂∗, ν∗),

we have that θ is dogmatic at ω under (Ω̂, ν).

The condition requires that there cannot be any agent θ who is not dogmatic at ω, but who could
weakly increase his utility by finding some other observationally consistent perception system that
does allow him to hold a dogmatic belief. This captures the idea that agents lexicographically prefer
to hold perceptions without higher-order belief disagreement. Such a preference might be justified
on the basis of aversion to complexity, since it is presumably “simpler” not to have higher-order
belief disagreement with other agents.50

Proposition I.1. Consider any strategy profile s that is strictly increasing and continuous. Then
(s, ŝ, P̂ ) is an LPE at P if and only if (s, ŝ, P̂ ) is rationalized by some rational perception system
(Ω̂, ν) at P that displays lexicographic preference for dogmaticity at (s, P ).

The key to the “if” direction is Lemma 3 above, which shows that any action distribution can be
rationalized as Nash under CI and some suitable F̂ . Given this, in any RCE, each agent can find
perceptions that are dogmatic, observationally consistent, and rationalize others’ behavior as Nash.
Given lexicographic preference for dogmaticity, this ensures that all agents are dogmatic, yielding
an LPE.

Next, we show that LPE can be further refined to ANLPE by additionally imposing a lexico-
graphic preference for perceptions that feature independent interactions.

Definition 13. A rational perception system (Ω̂, ν) displays lexicographic preference for in-
dependence at ω if, for any θ such that there exists a rational perception system (Ω̂∗, ν∗) and
ω∗ ∈ Ω̂∗ satisfying

1. ν∗ω∗,θ({ω′ : Hω′
θ = Hω

θ }) = 1

2. uθ(sω∗(θ), ν∗ω∗,θ) ≥ uθ(sω(θ), νω,θ)

3. ν∗ω∗,θ({ω′ : Cω′ = CI}) = 1,

we have that νω,θ({ω′ : Cω′ = CI}) = 1.

The condition requires that there cannot be any agent θ whose perceived interaction structure at
ω is not CI , but who could weakly increase his utility by finding some other observationally consistent
perception system that does allow him to believe in the independent interaction structure. This
represents the idea that agents lexicographically prefer to believe that the interaction structure is
independent. As before, such a preference might be justified on the basis of aversion to complexity.

Proposition I.2. Consider any strategy profile s that is strictly increasing and continuous. Then
(s, ŝ, P̂ ) is an LPE at P if and only if (s, ŝ, P̂ ) is rationalized by some rational perception system
(Ω̂, ν) at P that displays lexicographic preference for dogmaticity and independence at (s, P ).

The proof is similar to the previous result, and the key to the “if” direction is again Lemma 3.
We now show that in any LPE, each agent can find perceptions that are dogmatic, observationally
consistent, and rationalize others’ behavior as Nash under the independent interaction structure.
Given lexicographic preference for independence, this reduces LPE to ANLPE. Note that if we only
require lexicographic preference for independence (but not necessarily for dogmaticity), then s has
to be the ANLPE strategy profile while (ŝ, P̂ ) need not coincide with the ANLPE perceptions.

50This approach is somewhat similar in spirit to the idea of introducing preferences over the complexity of strategies
in games (Rubinstein, 1998).
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I.3.1 Proof of Proposition I.1

“If” direction: Suppose that (s, ŝ, P̂ ) is rationalized by a rational perception system (Ω̂, ν) at P
that displays lexicographic preference for dogmaticity at (s, P ) =: ω.

First, we show that any θ is dogmatic at ω under (Ω̂, ν). For this purpose, define

Ω̂∗ := {(s, (F,CI)) : F ∈ F , s is Nash at (F,CI)}.

For each ω′ ∈ Ω̂∗ and θ′, define ν∗ω′,θ′ ∈ ∆(Ω) by ν∗ω′,θ′({ω′}) = 1. To verify that (Ω̂∗, ν∗) is a
rational perception system, first note that belief-closedness is satisfied by construction. For each
ω′ = (s, (F,CI)) ∈ Ω̂∗ and θ′, observational consistency is satisfied at ν∗ω′,θ′ because the belief is
correct, i.e., ν∗ω′,θ′({ω′}) = 1. The rationality condition is also satisfied because the belief is correct
and s is Nash at (F,CI).

By the assumption on s, cdf Hω
θ is strictly increasing and continuous. By Lemma 3, there is

ω∗ ∈ Ω̂∗ such that Hω∗
θ = Hω

θ . This, combined with the rationality condition, implies

uθ(ν
∗
ω∗,θ) = −γ

ˆ
a2dHω∗

θ (a) = −γ
ˆ
a2dHω

θ (a) = uθ(νω,θ).

Note that θ is dogmatic at ω∗ under (Ω̂∗, ν∗) by construction. Therefore, by lexicographic preference
for dogmaticity, it follows that θ is also dogmatic at ω under (Ω̂, ν).

Next, we show for each θ that ŝθ is Nash at P̂θ. To see this, consider Ω̄ := suppνω,θ and the
restriction of ν to Ω̄, denoted by ν̄. Then (Ω̄, ν̄) is a rational perception system in which there is
common certainty that society is given by P̂θ. Since (ŝθ, P ) ∈ Ω̄, ŝθ is an RCE strategy profile in
this game, and hence is rationalizable under common certainty of P̂θ. Thus, ŝθ must coincide with
the unique Nash equilibrium at P̂θ.

Finally, since (s, ŝ, P̂ ) is rationalized by (Ω̂, ν) at ω, the above observations imply that the
observational consistency conditions Hω

θ = H ŝθ,P̂θ
θ and s(θ) = ŝθ(θ) hold for each θ. Thus, (s, ŝ, P̂ )

is an LPE at P .
“Only if” direction: Suppose that (s, ŝ, P̂ ) is an LPE at P .
Define Ω̂ := {(s, P )} ∪ {(ŝθ, P̂θ) : θ ∈ Θ}. Take any ω ∈ Ω̂. If ω = (ŝθ, P̂θ) for some θ, then for

each θ′ we construct νω,θ′ ∈ ∆(Ω) by setting νω,θ′({ω}) = 1. If instead ω = (s, P ), then for each θ
we construct νω,θ ∈ ∆(Ω) by setting νω,θ({(ŝθ, P̂θ)}) = 1.

By construction (Ω̂, ν) satisfies belief-closedness. For each ω with ω = (ŝθ, P̂θ) for some θ, the
rationality condition is satisfied since ŝθ is Nash at P̂θ, and the observational consistency condition
is satisfied because νω,θ′({ω}) = 1 for each θ′. If ω 6= (ŝθ, P̂θ) for all θ, which implies ω = (s, P ),
the fact that (s, ŝ, P̂ ) is LPE at P implies the rationality and observational consistency condition.
Therefore, (Ω̂, ν) is a rational perception system.

To see that (Ω̂, ν) displays lexicographic preference for dogmaticity at (s, P ), take any θ. Then
suppν(s,P ),θ = {(ŝθ, P̂θ)}. Moreover ν(ŝθ,P̂θ),θ′({(ŝθ, P̂θ)}) = 1 for any θ′ by construction. Thus θ is
dogmatic at (s, P ).

I.3.2 Proof of Proposition I.2

“If” direction: Suppose that (s, ŝ, P̂ ) is rationalized by a rational perception system (Ω̂, ν) at P
that displays lexicographic preference for dogmaticity and independence at (s, P ).

We show that νω,θ({ω′ : Cω′ = CI}) = 1 for any θ. For this purpose, as in the proof Proposi-
tion I.1, we define

Ω̂∗ := {(s, (F,CI)) : F ∈ F , s is Nash at (F,CI)}
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For each ω′ ∈ Ω̂∗ and θ′, define ν∗ω′,θ′ ∈ ∆(Ω) by ν∗ω′,θ′({ω′}) = 1. (Ω̂∗, ν∗) was verified to be a
rational perception system in the proof of Proposition I.1.

By the assumption on s, cdf Hω
θ is strictly increasing and continuous. By Lemma 3, there is

ω∗ ∈ Ω̂∗ such that Hω∗
θ = Hω

θ . This, combined with the rationality condition, implies uθ(ν∗ω∗,θ) =
uθ(νω,θ). Note also that ν∗ω∗,θ({ω′ : Cω′ = CI}) = 1. Therefore, by the lexicographic preference
condition, it follows that νω,θ({ω′ : Cω′ = CI}) = 1. Thus, Ĉθ = CI .

Note that by Proposition I.1, (s, ŝ, P̂ ) is an LPE at P . Since Ĉθ = CI for all θ, it is in fact the
ANLPE at P .

“Only if” direction: Suppose that (s, ŝ, P̂ ) is the ANLPE at P .
Define Ω̂ := {(s, P )} ∪

(
∪θ(ŝθ, P̂θ)

)
. Take any ω ∈ Ω̂. If ω = (ŝθ, P̂θ) for some θ, then for each

θ′ we construct νω,θ′ ∈ ∆(Ω) by setting νω,θ′({ω}) = 1. If not, which means ω = (s, P ), then for
each θ we construct νω,θ ∈ ∆(Ω) by setting νω,θ({(ŝθ, P̂θ)}) = 1.

As shown in the proof of Proposition I.1, (Ω̂, ν) is a rational perception system that displays
lexicographic preference for dogmaticity at (s, P ). To see that it also displays lexicographic prefer-
ence for independence at (s, P ), note that each θ satisfies ν(s,P ),θ({(ŝθ, (F̂θ, CI))}) = 1 for some F̂θ
since (s, ŝ, P̂ ) is the ANLPE at P .
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