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Abstract

I consider a bargaining game with two types of players – rational and stubborn.
Rational players choose demands at each point in time. Stubborn players are
restricted to choose from the set of “insistent” strategies that always make the
same demand and never accept anything less. However, their initial choice of
demand is unrestricted. I characterize the equilibria of this game. I show that
while pooling equilibria exist, fully separating equilibria do not. Relative to the
case with exogenous behavioral types, strong behavioral predictions emerge: in
the limit, players randomize over at most two demands. However, unlike in a
world with exogenous types, there is Folk-theorem-like payoff multiplicity.

1 Introduction
This paper endogenizes behavioral types in a bargaining setting. Rational and stubborn
types bargain over the division of a pie. The stubborn type can make any demand
over the pie but is insistent on the demand once made. What stubborn types arise
in equilibrium? Is there a bound on the payoff that the rational type can guarantee
himself? Does the rational type mimic the stubborn type, or do types separate when
the stubborn type is given some choice over the form of his stubbornness?

I consider a bargaining game with two types of players: rational and stubborn.
The game consists of two stages: a demand stage and a concession stage. The game
ends when one player concedes, i.e., agrees to his opponent’s demand. Rational players
can concede anytime. As in the literature, stubborn players cannot concede to their
∗I would like to thank Dilip Abreu, James Best, Ben Brooks, Olivier Compte, Péter Esö, Jack

Fanning, Faruk Gul, Johannes Hörner, Philippe Jehiel, Kyungmin Kim, Chiara Margaria, Margaret
Meyer, Sujoy Mukerji, Juan Ortner, Daniel Quigley, Rajiv Sethi, Jean Tirole, Juuso Välimäki, Alex
Wolitzky, and William Zame, as well as various seminar and conference audiences for helpful discussions
and comments. I gratefully acknowledge financial support from the ERC Grant No 340903.
†Yale University, Department of Economics, 30 Hillhouse Ave, New Haven, CT-06510, USA,

and Toulouse School of Economics, 1 Esplanade de l’Université, 31080 Toulouse, France,
anna.sanktjohanser@gmail.com.

1



opponent. However, I depart from the literature by giving them some choice over the
form of their “stubbornness,” namely, the choice of their initial demand is free.

Even in well-defined environments, real-world agents may not optimize over all
possible strategies. Instead, agents may restrict attention to a subset of strategies but
optimize within that subset. For instance, some agents may choose not to participate in
auctions on platforms such as eBay but make the choice of whether to join the platform
and which Buy It Now prices to accept on the platform optimally. Similarly, agents
may restrict attention to vendors in their vicinity but carefully choose from whom to
buy within their vicinity. While this paper does not microfound why agents restrict
attention to a subset of strategies, it analyzes the implications for behavior and payoffs
when such agents are present. In other words, the paper bridges the gap between
assuming that a player is either fully behavioral or fully rational in a well-known and
tractable environment.

This paper has three main results. First, for a small ex ante probability of stub-
bornness, equilibria exist where both types randomize over the same set of demands. In
contrast, (fully) separating equilibria do not exist. Second, as the ex ante probability of
stubbornness vanishes, in any symmetric equilibrium – be it pooling or semiseparating
– players randomize over at most two demands. More generally, for any ε > 0, when the
ex ante probability of stubbornness is sufficiently small, players randomize over offers
at most ε away from the limit support. Third, despite these stark predictions regarding
the structure of the equilibrium support, there is sufficient flexibility in the value of
these demands to establish Folk-theorem-like payoff multiplicity for the rational type.
Any feasible payoff, and hence delay of any length, can arise in equilibrium when the
probability that a player is stubborn is sufficiently small.

Relative to the model with exogenous types [Myerson 1991, Abreu and Gul 2000
(AG)], the behavioral predictions are stronger and the payoff predictions are weaker.
In AG, for any (positive) ex ante probability of stubbornness, the rational type may
randomize over offers with arbitrary support. Once the stubborn type is given a choice
over his initial demand, the behavioral type that allows for payoff predictions in AG
regardless of who else is there may not be present. More generally, this paper shows that
assuming the presence of any particular behavioral type is not innocuous. If behavioral
types are used as a modeling device to sharpen payoff predictions, equilibrium selection
or, equivalently, the presence of a particular behavioral type matters.

The reason that separating equilibria fail to exist is that preferences do not satisfy
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single-crossing. The intuition for this is as follows: fixing the opponent’s belief and
demand, preferences over demands are single-peaked. Players face a tradeoff between
the amount received if the opponent concedes and the speed with which the opponent
concedes: the higher a player’s demand, the more he obtains when the opponent con-
cedes, but everything else being equal, the higher a player’s demand, the slower the
opponent concedes. This tradeoff makes intermediate demands particularly attractive,
leading a player’s payoff to be single-peaked in his own demand. However, this single-
peakedness looks different for the two types. In particular, single-peakedness is more
pronounced for the rational type. When demands are compatible, the two types receive
the same payoff. When facing an incompatible demand, the rational type is able to
concede while the stubborn type cannot. A rational player is willing to wait to concede
as long as he is uncertain about the opponent’s type. Yet, once the player is certain
he is facing a stubborn opponent, he strictly prefers to concede. However, a stubborn
type cannot do so. This war of attrition takes longer the higher the demands are. As
a result, the time at which the rational type has a strict preference for conceding is
“far into the future,” and hence, the stubborn type’s cost of not being able to concede
is low when demands are high. Intermediate demands, on the other hand, mean that
demands are incompatible with a short war of attrition, allowing the rational type to
leverage his flexibility. Hence, indifference curves (with the dimensions being a player’s
own demand and the opponent’s belief) cross twice – a violation of single-crossing.

In contrast, in the model with exogenous types, the type of equilibrium that exists
follows from the distribution of stubborn types that is assumed. In other words, if
stubborn types exclusively make low demands, then the rational type does not benefit
from mimicking such types, and hence, types separate in equilibrium. If, on the other
hand, the stubborn types make demands that are sufficiently high, the rational type
mimics every one of those demands, and hence, types pool in equilibrium.

The intuition for why as the ex ante probability of stubbornness vanishes, players
randomize over at most two demands is as follows. It starts with two observations
already true in AG: in the limit, higher offers immediately concede to lower offers with
probability 1. Moreover, despite the rational type being willing to randomize over a
large number of offers, the offer closest to (but weakly larger than) 1/2 is made with
probability 1 when there are more than two demands.1 Given this, the stubborn type

1To be precise, the lowest offer above 1/2 is made with probability 1 in the limit unless there are
two demands with the lower demand being less than 1/2 and the higher demand being incompatible
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is not indifferent over multiple offers: fixing the demand that the stubborn type faces,
the cost of being stubborn is lower the higher the demand. In other words, given the
structure imposed by the rational type in terms of offers made and concession behavior,
the stubborn type prefers higher demands over lower demands.

Finally, what grants flexibility in the value of the two demands – and hence, what
gives rise to Folk-theorem-like payoff multiplicity – is that the probability that a demand
is believed to come from a stubborn type can vary across demands. This means that
players can be compensated for making otherwise “unattractive” demands by being more
likely to be believed to be stubborn; similarly, players can be deterred from making
otherwise “attractive” out-of-equilibrium demands by being believed to be rational. In
this way, any payoff in (0, 1/2] can be generated in symmetric equilibria. In the model
with exogenous types, provided that the “right” stubborn type is present, the rational
type can guarantee himself the Rubinstein payoff, i.e., 1/2 in the symmetric case. More
generally, for any payoff in (0, 1/2], one can find a distribution that gives rise to that
payoff in equilibrium.

My model builds on the framework by Myerson (1991) and AG. They consider a
bargaining environment where there is a small probability of a player being behavioral.
Behavioral types in AG have no choice over their actions, and the distribution of be-
havioral types is exogenously given. The results in this paper stand in contrast with
those when the stubborn type cannot choose its initial demand freely (as in AG). First,
in AG, for a fixed ex ante probability of stubbornness, the rational type may randomize
over offers with arbitrary support. In my model, this is not possible: fix a set of de-
mands (where the set has more than three elements). Then, there exists a threshold ex
ante probability of stubbornness below which no equilibrium with this support exists.
Second, in AG, when the probability of a player being stubborn is small, there is no
delay (and hence, inefficiency), assuming that the “right” stubborn type is present. The
right behavioral type is the type that makes a demand proportional to a player’s pa-
tience. If the right type is present, a rational player receives a payoff proportional to his
patience. My paper shows that the right stubborn type may not be present when given
a choice over his initial demand, which implies that the rational type cannot guarantee
himself a strictly positive payoff. This Folk-theorem-like payoff multiplicity survives
refinements such as D1 when applied to the demand game, taking the expected payoffs
in the war of attrition as given.

with the lower demand.
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More generally, this paper is related to the literature on reputation (Fudenberg and
Levine, 1989 and 1992; Kim 2009; Abreu, Pearce and Stacchetti, 2015; Fanning, 2016
and 2018) and bargaining (Nash, 1953; Abreu and Pearce, 2015). The most closely
related papers are Kambe (1999), Abreu and Sethi (2003), Wolitzky (2012) and Atakan
and Ekmekci (2014), who all build on AG. Abreu and Sethi (2003) endogenize behavioral
types using an evolutionary stability approach. In contrast, in my model, a stubborn
type selects his initial demand to maximize his payoff. They show that if a behavioral
type is present in an evolutionary equilibrium, the complementary demand must also
be present – this is not true in my model. Similar to my model, they find that inefficient
delays may occur in equilibrium. Atakan and Ekmekci (2014) endogenize behavioral
types in a two-sided search market. The matching market serves as an endogenous
outside option. Unlike in my model, stubborn types cannot choose their initial demand,
but they can exit the current trade when they are certain that they face a stubborn
player. Given the differences in modeling, it is difficult to compare the results of Atakan
and Ekmekci (2014) to mine. In Kambe (1999) and Wolitzky (2012), players do not
know at the demand stage whether they are behavioral. Rather, in Kambe (1999),
a player becomes “committed” with some exogenous probability after initial demands
have been chosen.2 In Wolitzky (2012), a player announces a (possibly nonstationary)
bargaining strategy and becomes committed to it with some exogenous probability
after the announcement. In my model, a player knows his type (behavioral or rational)
when choosing his demand. Which modeling choice is more reasonable depends on the
situation we have in mind. For instance, assuming that players become committed
with some exogenous probability may be better suited to analyzing situations where
an agent’s flexibility depends on some exogenous shocks – for example, growth rates
in the economy may lead a company to impose ex post constraints on a manager’s
flexibility in making decisions. In other cases, the agent himself is well aware of his
constraints, but these constraints are not common knowledge – a buyer knows his
budget constraint, but the seller does not. Similarly, how much a buyer values a good
may be private information of the buyer. Unlike in my model, the lower bound on the
payoff of a rational player in Wolitzky (2012) is nonzero. Kambe (1999) shows that as
the probability of a player being stubborn goes to 0, in any equilibrium, a rational type

2In an extension, Kambe (1999) also considers the case in which a player knows his type when
choosing his demand. He focuses on one-demand equilibria, and the results are similar to mine in this
special case.
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can guarantee himself a payoff proportional to his patience. Why is it “good” for the
rational type not to know his type when choosing the initial demand? In Kambe (1999),
any demand is equally likely believed to come from a stubborn type since players do
not their type when choosing the demand. As a result, players cannot be incentivized
to make more “extreme” demands either by being believed to be stubborn with higher
probability if making such a high demand or by the “threat” of being believed to be
rational if deviating from this demand. This makes “intermediate” demands particularly
attractive – which in turn leads to fast agreement.

The structure of this paper is as follows. I first describe the model in Section 2.
Section 3 analyzes the benchmark case with an exogenous distribution of stubborn
types as in AG and discusses the preferences of the rational type. Section 4 discusses
the necessary conditions for equilibrium existence with endogenous stubborn types.
The main results, which focus on pooling equilibria, are presented in Section 5. Section
6 discusses (semi-)separating equilibria. In Section 7, I discuss the robustness of the
results. Section 8 concludes the paper.

2 Model
The model and the notation (mostly) follow AG. Time is continuous, and the horizon
is infinite. Two players decide on how to split a unit surplus. At time 0, players i and
j simultaneously announce demands, αi and αj, with αi, αj ∈ [0, 1]. If αi + αj ≤ 1, the
demands are said to be compatible. In this case, the game ends. If αi + αj > 1, the
demands are incompatible. In this case, a concession game starts. The game ends when
one player concedes. Concession means agreeing to the opponent’s demand.

Each player i is rational with probability 1 − z and stubborn with probability z,
where z ∈ (0, 1). Before the game starts, each player privately learns whether he is
stubborn or rational. A rational player i = 1, 2 can make any demand αi ∈ [0, 1] at
time 0 and concede to his opponent at any point in time. Stubborn player i can choose
his initial demand αi ∈ [0, 1] but cannot concede to his opponent. Note that this is
unlike in AG, where a stubborn player cannot choose his initial demand.3

A strategy for a stubborn player, i, σSi , is defined by a probability distribution si

3In AG, there are K + 1 types of players: one rational type and K stubborn types, where K is an
arbitrary finite number. A stubborn player of type αi in AG always demands αi, accepts any demand
of at least αi, and rejects all smaller demands. They assume an exogenously given finite set of stubborn
types: C = {α1, α2, . . . , αK}.
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on [0, 1]. A strategy for a rational player i, σRi , is defined by a probability distribution
ri on [0, 1] and a collection of cumulative distributions F r,i

αi,αj
on R+ ∪ {∞} for all

αi + αj > 1. F r,i
αi,αj

(t) is the probability of rational player i conceding to player j by
time t (inclusive), given αi, αj. The probability of player i conceding by time t is given
by:

F i
αi,αj

(t) = (1− πi(αi))F r,i
αi,αj

(t),

where

πi(αi) =
zsi(αi)

zsi(αi) + (1− z)ri(αi)
(1)

is the posterior probability that player i is stubborn immediately after it is observed
that i demands αi at time zero given σRi and σSi . Therefore,

lim
t→∞

F i
αi,αj

(t) ≤ 1− πi(αi).

Note that F i
αi,αj

(0) may be positive. It is the probability that i immediately concedes
to j.

Player i’s discount rate is ρ > 0, for i = 1, 2. The continuous-time bargaining
problem is denoted B = {z, ρ}. If αi + αj ≤ 1 at t = 0, player i receives αi and
1 − αj with probability 1/2. Suppose that ᾱ = (αi, αj) is observed at time 0, with
αi + αj > 1. Then, player i’s expected payoff from conceding at time t, given strategy
profile σ̄ = (σi, σj), where σi =

(
σRi , σ

S
i

)
, is:

Ui(t, σ
j | ᾱ) = αi

∫
y<t

e−ρydF j
ᾱ(y) +

αi + 1− αj
2

(
F j
ᾱ(t)− F j

ᾱ(t−)
)
e−ρt

+ (1− αj)
(
1− F j

ᾱ(t)
)
e−ρt,

(2)

where F j
ᾱ(t−) = limy↑t F

j
ᾱ(y). Hence, player i receives the discounted value of his

demand αi if player j concedes to i before i concedes to j. If the players concede
simultaneously, then player i receives his own demand and the complement of player j’s
demand with equal probability. Player i receives the discounted value of the complement
of player j’s demand, 1− αj, if player i concedes first. Player i’s expected payoff from
never conceding is:

Ui(∞, σj | ᾱ) = αi

∫
y∈[0,∞)

e−ρydF j
ᾱ(y). (3)
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This is a stubborn player’s payoff from facing a demand that is incompatible with his
own demand. Since F i

αi,αj
describes the concession behavior of a player, unconditional

on his type, a rational player i’s concession behavior is described by:

1

1− πi(αi)
F i
αi,αj

.

Therefore, a rational player i’s expected utility from a mixed action F i conditional on
ᾱ = (αi, αj) being observed at time 0 is:

Ui (σ̄ | ᾱ) =
1

1− πi(αi)

∫
y∈[0,∞)

Ui(y, σj | ᾱ)dF i
ᾱ(y). (4)

A rational player i’s expected utility from the strategy profile σ̄ is:

Ui(σ̄) =
∑
αi

ri(αi)

 ∑
αj≤1−αi

αi + 1− αj
2

((1− z)rj(αj) + zsj(αj))


+
∑
αi

ri(αi)

 ∑
αj>1−αi

Ui(σ̄ | αi, αj) ((1− z) rj(αj) + zsj(αj))

 .

(5)

The first term is the payoff a rational player receives from demanding αi when αi +

αj ≤ 1. The second term is the payoff from demanding αi when facing an incompatible
demand. At this stage, it is useful for me to introduce two pieces of notation. I denote
the probability of player j facing demand αi by qi, i.e.,

qi = (1− z)ri(αi) + zsi(αi).

Moreover, I denote player i’s strength by µi(αi), where strength is defined as:

µi(αi) = πi(αi)
1

1−αi .

As becomes clear in the next section, the strength of a player is key to pinning down
the war of attrition.

Leaving aside the technical issues of defining continuous-time strategies that would
allow revisions of demands, changing one’s demand reveals rationality. As we know
from Myerson (1991), revealing rationality when the opponent is stubborn with positive
probability leads the rational player to immediately concede (i.e., to further revise the
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demand to make it compatible with the opponent’s).4 Hence, revision is essentially
equivalent to concession.

For the analysis in B = {z, ρ}, I use the solution concept of Perfect Bayesian
equilibrium (PBE). As usual, a PBE is a profile of strategies σ∗ = (σ∗1, σ

∗
2) and a

system of beliefs mapping demands into probabilities that a player is stubborn,

πi : [0, 1]→ [0, 1] for i = 1, 2,

such that the strategy maximizes a player’s expected utility (given beliefs), and the
beliefs are formed according to Bayes’ rule, where possible (see Fudenberg and Tirole,
1991 for a formal definition).5 Henceforth, equilibrium refers to PBE.

3 Benchmark and preferences of the rational type
In this section, I recall the unique equilibrium outcome when stubborn players have
no choice over their initial demand, as in AG.6 This serves as a benchmark for the
subsequent analysis. I also discuss the preferences of the rational type in some detail
and what they imply for the structure of the equilibrium, both in AG and in my model.

There is an exogenously given set of stubborn types C = {α1, α2, . . . , αK}, where
αk < αk+1 and αK < 1. A stubborn player of type αi always demands αi, accepts any
offer of at least αi, and rejects all smaller offers.

I denote the probability that stubborn player i is of type αk by si(αk). Hence, si
is a probability distribution on C. The continuous-time bargaining problem is denoted
BAG = {(C, z, si, ρ)2

i=1}. Proposition 1 (AG) establishes the existence and uniqueness
of the equilibrium outcomes with a given distribution of stubborn types.

Proposition 1 (AG, Proposition 2). For any bargaining game BAG, a PBE exists.
Furthermore, all equilibria yield the same distribution over outcomes.

4AG show that any convergent sequence of equilibrium outcomes within a broad family of discrete-
time games must converge to the unique continuous-time equilibrium outcome as the maximum time
between consecutive demands goes to 0. The modeling of AG differs from mine in some respects
– first, they assume that players make initial demands sequentially, while in my model players make
initial demands simultaneously. Second, they allow players to choose their demand in the open interval
(0, 1), whereas I allow players to choose any demand in [0, 1]. However, given the initial demands, my
continuation game is identical to that for which AG’s convergence result is established.

5Note that here I only specify the initial updating of beliefs. Strictly speaking, an equilibrium
should also specify beliefs after arbitrary histories, but given that this is a stopping game, the only
“surprise” ends the game.

6In AG, players make demands sequentially rather than simultaneously (as in my model).
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Figure 1: Probability of stubbornness conditional on the demand α, π(α), in a PBE
with exogenous stubborn types (see body for parameters).

The unique equilibrium outcome in this game can be characterized by the two
choices that a rational player makes: (1) when to concede and (2) whom to mimic. In
the equilibrium, after the initial choice of demands, (i) at most one player immediately
concedes with positive probability; (ii) players concede at a constant rate that makes
the opponent indifferent between waiting and conceding; and (iii) there is a finite time,
call it T0, by which the posterior probability of stubbornness reaches 1 simultaneously
for both players and concessions by the rational type stop. Moreover, any demand
above some threshold is mimicked with positive probability.

I illustrate the mimicking behavior of the rational type in Figure 1. The figure
shows the posterior probability of stubbornness in an equilibrium.7 We can see that
the lower three demands are not mimicked by the rational type, i.e., π

(
α|α ≤ 1

3

)
= 1.

On the other hand, any demand of 2
5
or higher is mimicked with positive probability,

i.e., π
(
α|α ≥ 2

5

)
< 1. The U-shaped structure of the posterior probability above the

threshold is driven by the concept of strength, as defined and discussed below.
Let me be more precise regarding the rate of concession and the stopping time of

the rational type. Player i is indifferent between waiting and conceding if the net cost
of waiting is equal to the net benefit of waiting:

ρ(1− αj) = (αi − (1− αj))
f jαj ,αi(t)

1− F j
αj ,αi(t)

,

7In particular, I choose a PBE with seven stubborn types C = { 1
15 ,

1
10 ,

1
3 ,

2
5 ,

3
5 ,

2
3 ,

9
10}, and z = 1

3 .
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where f jαj ,αi(t) = dF j
αj ,αi

(t)/dt. By waiting, a player loses the value of concession over
the next instant, which, given a player’s impatience, is given by the LHS. The first term
on the RHS captures the benefit from being conceded to relative to conceding. The
second term on the RHS is the probability with which the opponent concedes in the
next instant conditional on not yet having conceded. Therefore, after time 0, player j
demanding αj concedes to player i demanding αi at a rate

λ
αj ,αi
j =

ρ(1− αj)
αi + αj − 1

.

Note that the rate at which player j concedes is decreasing in player i’s demand: the
more a player demands, the more he receives conditional on his opponent conceding.
Therefore, the rate with which the opponent has to concede to make a player indifferent
is lower the higher the player’s demand is. Note also that this rate of concession is
time-independent. However, only the rational type concedes, which implies that the
probability of facing a rational opponent is decreasing over time. Hence, the rational
type’s rate of concession is increasing over time.

Requirement (iii) pins down the identity of the player who concedes at time 0 and
the probability with which this happens.8 Let Tαi,αji denote the time at which player
i is stubborn with probability 1 conditional on not conceding with positive probability
at time 0. Then, the time T0 is given by:

T0 = min{Tα1,α2

1 , Tα2,α1

2 },

where
T
αi,αj
i = − 1

λ
αi,αj
i

log πi(αi)

for i = 1, 2. Player i is stronger than player j if and only if Tαi,αji < T
αj ,αi
j . In other

words, a player is stronger the sooner is the time at which he is known to be stubborn.
Note that

T
αi,αj
i < T

αj ,αi
j ⇐⇒ πi(αi)

1
1−αi > πj(αj)

1
1−αj .

For the rest of the paper, I will denote a player’s strength by µi(αi), where

µi(αi) = πi(αi)
1

1−αi .

The weaker player j has to concede with sufficient probability at time zero that condi-
tional on not conceding, and given the concession rates, his probability of stubbornness

8For intuition for (iii), see AG page 10.
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reaches 1 at the same time as player i. In particular, the probability of immediate
concession by player j is given by:

F j
αj ,αi

(0) = max

{
1−

(
µj(αj)

µi(αi)

)1−αj
, 0

}
. (6)

The derivation follows AG. The strength of player j relative to player i depends on (i)
how likely j is thought to be stubborn conditional on his demand and (ii) how high
j’s demand is. Clearly, the more likely a player is thought to be stubborn, the more
willing the opponent is to concede. The higher a player’s demand, the more willing
his opponent is to wait. This is because conditional on giving up, a player obtains less
the higher his opponent’s demand. Hence, the lower the demand a player makes, the
stronger he is because it makes his opponent more willing to concede. Everything else
being equal, a player’s payoff is increasing in his strength. Consider an incompatible pair
of demands. In equilibrium, a weak player is not conceded to with positive probability
at time 0. He is indifferent between waiting and conceding and hence must receive what
he would receive by conceding immediately. A strong player is conceded to with positive
probability at time 0, in which case the player obtains what he demanded, which he
strictly prefers over conceding himself. If the strong player is not conceded to at time
0, he also simply receives what he would have received by conceding immediately. The
probability with which the opponent concedes to the strong player is strictly increasing
in the player’s strength. This yields a tradeoff: The more a player demands, the more
a player receives conditional on being conceded to immediately. However, the more a
player demands, the lower the probability with which the opponent concedes at time
0. This makes intermediate demands particularly attractive for the rational type. The
following Lemma is a straightforward consequence of this tradeoff for the rational type.
Let α denote the lowest demand.

Lemma 1. Fix any set of demands C. In any symmetric equilibrium with support C,
strength µ(α) is decreasing in α ∈ C, strictly so unless α ≥ 1− α.

Proof. See Appendix.

The key intuition for the proof is that F i
αi,αj

(0) is increasing in µj(αj). If µj(αj)
were increasing in αj, a player would always benefit from increasing his demand αj.
This is inconsistent with a player being indifferent between demands.
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Let me return to the U-shaped posterior probability of stubbornness in Figure 1.
Suppose that player j demands αj with probability 1 and is thought to be stubborn
with probability π(αj). Then, fixing the probability of player i being stubborn, the
preferences of a rational player i are single-peaked in his own demand αi: he trades off
the probability with which his opponent concedes at time 0, with how high his payoff is
conditional on his opponent conceding. This implies that in equilibrium, the conditional
probability of stubbornness must be single-bottomed in αi, as Figure 1 shows.

Proposition 2 (AG, Corollary in Section 5). Let BAG
n = {(C, zn, si)2

i=1} be a sequence
of continuous-time bargaining games such that limn→∞ zn = 0. Let ε be the mesh of
C ∪ {0, 1}.9 Then, for n sufficiently large, the equilibrium payoff of player i is at least
1
2
− ε, and hence, the inefficiency due to delay is at most 2ε.

Proposition 2 states that as the probability of a player being stubborn goes to 0,
delay and inefficiency disappear provided that the “right” behavioral type is present.
By the right type, I mean the type whose presence alone, i.e., regardless of which other
behavioral types are present, allows for payoff predictions. The right type in this sense
is the type making a demand proportional to a player’s patience. In the symmetric
discounting case, the right type is then a type demanding 1/2, and a rational type can
guarantee himself a payoff of 1/2 in the limit. The loose argument for why the right
type is the type demanding 1/2 is as follows. Since there cannot be any delay, it must
mean that with almost probability 1, a player’s demand is immediately accepted. Since
this is true for both players, it must mean that a player can mimic type 1/2.10 Note
that if the right behavioral type is not present, delay and hence inefficiency persist in
AG. For instance, if C =

{
2
5
, 3

5
, 4

5

}
, then the limit payoff of the rational type is 2

5
.

4 Preferences of the stubborn type
This section addresses the preferences of the stubborn type and what they imply for
the demand configurations that can arise in equilibrium. The difference between the
rational and the stubborn type is the payoff when facing an incompatible demand
coming from a potentially stubborn opponent. Suppose that a rational type faces an
incompatible demand. In equilibrium, a rational type is willing to wait until he is sure to
face a stubborn opponent. However, once he assigns probability 1 to facing a stubborn

9I.e., maxk (αk+1 − αk), ordering the demands from smallest to largest.
10More generally, a rational player in AG obtains a payoff proportional to his patience.
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opponent, the rational type strictly prefers to concede. However, the stubborn type
does not have this “option value of concession” – conditional on facing an incompatible
demand from a stubborn opponent, a stubborn player receives a payoff of 0. Hence,
when demands are incompatible, the expected payoff to a rational payoff is strictly
higher than the payoff to a stubborn type. Therefore, unless every demand made with
positive probability is compatible with every other demand, the equilibrium payoff
for a rational player must be strictly higher than the payoff for a stubborn player.
Suppose that every demand is compatible with every other demand made with positive
probability, i.e., all demands have to lie below 1/2. This cannot be an equilibrium
since a rational player would then strictly prefer to deviate to a demand above 1/2.
Hence, if |C| > 1, the payoff a rational player receives is strictly higher than the payoff
a stubborn player receives.

Lemma 2. Fix any set of demands C. In any symmetric equilibrium with support C,
the following holds:

1. The lowest demand in C, which is played with positive probability by both types,
is incompatible with the highest demand in C.

2. The set (or, equivalently, number) of compatible equilibrium demands is strictly
decreasing in the demand the stubborn type makes with positive probability; i.e.,
if α < α′, with α, α′ ∈ supp s, then there exists α′′ ∈ C such that α + α′′ ≤ 1 <

α′ + α′′.

Proof. See Appendix.

While a formal proof can be found in the Appendix, a heuristic argument for the
first part of Lemma 2 is as follows: Suppose that the lowest demand were compatible
with the highest demand. Then, the payoff from making the lowest demand would be
the same for a rational and a stubborn player. However, if it is the same for the lowest
demand, it must be the same for every other demand with positive probability. By the
above argument, this cannot be.

The heuristic argument for the second part of Lemma 2 is as follows. Fix a set of
demands C. Suppose that player j makes all demands in C with positive probability,
and suppose further that the rational type of player i is indifferent over all demands in
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C. If the stubborn type of player i is indifferent, then the difference in expected payoff
between a stubborn and a rational type must be identical for each demand i makes.

Conditional on facing a compatible demand from player j, the stubborn type does
not pay a cost for being stubborn. Conditional on facing a certain incompatible demand,
call it αj, the stubborn type’s cost for being stubborn is higher the lower his own demand
is. To see this, suppose that the opponent, say player j, demands αK . Let me compare
player i demanding α1 versus demanding α2 (although this generalizes to any other two
consecutive demands when facing any other higher demand).

In equilibrium, player i is willing to wait until time T̄i to concede (i.e., the time at
which player j is known to be stubborn), where of course T̄1 < T̄2. Recall that (1) the
probability of immediate concession by the opponent is decreasing in the demand (i.e.,
αK is more likely to concede immediately to α1 than to α2); (2) the rate of concession
by αK is higher for α1 than for α2; and (3) conditional on j not conceding at t = 0,
the expected payoff for the rational type of player i at any point before T̄i is 1 − αK
regardless of whether i demands α1 or α2. Now suppose that player i does wait until
T̄i to concede (despite j expecting him to concede at the appropriate rate). Then, the
probability with which player j concedes (ever) is 1 − µ1−αK

K – i.e., regardless of the
demand i makes. Hence, conditional on j not conceding immediately, the probability
with which j concedes (ever) is higher when player i demanded α2 than when player i
demanded α1. The stubborn type only pays a cost for being stubborn conditional on his
opponent not conceding immediately. Hence, conditional on facing a certain demand,
the stubborn type’s cost for being stubborn is lower the higher the demand. Therefore,
for the expected cost to the stubborn type to be identical for α1 and α2, the opponent
must make a demand with positive probability, which imposes a cost of being stubborn
on the player when demanding α2 but not when demanding α1. In other words, there
must exist a demand that is compatible with α1 but not with α2.

Therefore, for the stubborn type to be indifferent over any two demands in C, the
set (or, equivalently, number) of compatible equilibrium demands is strictly decreasing
in the demand the stubborn type makes with positive probability.

5 Existence of pooling equilibria
This section establishes the existence of symmetric pooling equilibria and Folk-theorem-
like payoff multiplicity. By symmetric equilibria, I mean equilibria where the set of
demands over which player i randomizes is identical to the set of demands over which
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player j randomizes.11 By pooling equilibria, I mean equilibria where the set of demands
over which a player randomizes is identical for the stubborn and the rational type. Since
preferences do not satisfy single-crossing, pooling equilibria where players randomize
over multiple demands exists and fully separating equilibria (see Section 6) do not.
However, as the probability of stubbornness vanishes, an equilibrium in which both
types of players assign positive probability to every equilibrium demand must involve
one or two demands in its support. Endogenizing the choice of the stubborn type
imposes severe restrictions on the number of demands that can be made. Crucially,
despite these stark predictions regarding the structure of the equilibrium support, there
is sufficient flexibility in the demands themselves to establish Folk-theorem-like payoff
multiplicity. Any feasible payoff can arise as an equilibrium payoff when the probability
that a player is stubborn is sufficiently small. This implies that even in the limit, delay
can be arbitrarily long. In other words, the stubborn type may not find it optimal to
choose the “right” demand (in the sense of AG) – the “right” behavioral type needed
to derive payoff predictions may not be present. When the right type is not present,
even in the limit, delay does not disappear. Throughout, I order demands from lowest
to highest, denoting the lowest demand by α1 and the highest demand by αK .12

5.1 Existence with one demand

Proposition 3 below establishes that equilibria where players make only one demand
exist. In such equilibria, there is either an infinitely long delay or immediate agreement
but nothing in between.

Proposition 3. Equilibria where players make only one demand, α, exist. In any such
equilibrium, there is either

(i) an infinitely long delay, and α = 1, or

(ii) immediate agreement, and α = 1
2
.

Proof. Suppose that players choose a demand α < 1/2. Then, both types of players
have an incentive to deviate to 1 − α. Suppose instead that players choose a demand
1 > α > 1/2. The expected payoff for a rational player in this candidate equilibrium is

11Given the symmetry assumption, I will simplify notation in the remainder of the paper. In par-
ticular, ri(αk) = rk, si(αk) = sk, µi(αk) = µk etc.

12This applies in particular to supports.
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1−α. The expected payoff for a stubborn player from demanding α is (1−α)(1−z
α

1−α ).
However, a stubborn player could receive 1−α by demanding 1−α. If players demand
1/2, then α = 1−α, and hence, there is no such deviation. Suppose that α = 1/2. Then,
if any deviation is believed to come from a rational type, neither player type wants to
deviate. If players demand α = 1, then similarly, there is no such deviation.

Hence, symmetric equilibria with one demand allow for strong predictions in terms of
payoffs and behavior. Independent of the probability of stubbornness, there is either no
inefficiency or complete surplus dissipation due to the infinitely long delay. Note that in
any such equilibrium, the rational type and the stubborn type receive the same payoff.
Subsection 5.2 shows that this does not generalize to equilibria with more than one
demand. The reader might wonder whether it is reasonable to require players to assign
probability 1 to any deviation coming from the rational type – I defer the discussion of
off-equilibrium-path beliefs to Section 7, where refinements are introduced.

5.2 Existence with two demands
This subsection establishes that equilibria where the two types of players are mixing
over two demands, α1 and α2, exist. After stating the result formally, I provide intuition
by discussing the preferences of the two types.

Proposition 4. (a) Fix a sequence zn → 0. Fix a corresponding convergent sequence
of equilibria (αn1 , α

n
2 , r

n, sn). Then, there exist a1 ∈ (0, 1/2] and a2 ∈ (1 − a1, 1]

such that
lim
n→∞

αn1 = a1, lim
n→∞

αn2 = a2. (7)

Moreover, along any such sequence,

lim
n→∞

(
rn1

rn2

)
=


2(a1+a2−1)

2a2−1
,

1−2a1
2a2−1

,
and lim

n→∞

(
sn1

sn2

)
=

 1−a2
2−a1−a2 ,

1−a1
2−a1−a2 .

(8)

(b) For any a1 ∈ (0, 1/2] and a2 ∈ (1 − a1, 1], there exists a sequence zn → 0 and a
corresponding convergent sequence of equilibria (αn1 , α

n
2 , r

n, sn) satisfying (7) and
(8).

Proof. See Appendix.

Proposition 4 states that a stubborn player and a rational player can be indifferent
between the same two demands, despite the distinct preferences in the reduced game,
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Figure 2: 3D-Payoff profile for a rational type (left) and a stubborn type (right) for a
fixed set of demands and posterior probabilities of the opponent.

given their strategic differences. Note that even in the limit, as the probability of
stubbornness goes to 0, both types assign strictly positive probability to both demands.
This may be surprising to the reader – it implies that unlike in standard models of
signaling, preferences in my (reduced-form) model do not satisfy the single-crossing
property. Fixing the opponent’s belief and demand, preferences over demands are
single-peaked: players face a tradeoff between the amount they receive if the opponent
concedes and the speed with which the opponent concedes. Conditional on the opponent
conceding, a player receives more the higher his own demand is. However, everything
else being equal, the higher a player’s demand, the slower the opponent concedes. This
tradeoff makes intermediate demands particularly attractive, leading a player’s payoff
to be single-peaked in his own demand. However, the tradeoff is not identical for the
stubborn and rational types, and in particular, single-peakedness is more pronounced
for the rational type. When demands are compatible, the two types receive the same
payoff. When demands are incompatible, the rational type is able to concede while the
stubborn type cannot. During the war of attrition, a rational type is willing to wait as
long as he is uncertain about the opponent’s type. However, once the player assigns
probability 1 to facing a stubborn opponent, he strictly prefers to concede. However, a
stubborn type cannot do so. This war of attrition takes longer the higher the demands
are: loosely speaking, the higher his demand, the more willing a player is to wait until
he is conceded to. As a result, the time at which the rational type has a strict preference
for conceding is “far into the future.” Discounting then implies that the stubborn type’s
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Figure 3: Cross-sections of the 3D-payoff profile (left) and indifference correspondences
(right) for rational (red) and stubborn (black) type (see body for parameters).

cost of not being able to concede is low when demands are high. Intermediate demands
result in a short war of attrition, allowing the rational type to leverage his flexibility.
Hence, when we look at indifference curves (with the dimensions being a player’s own
demand and the opponent’s belief), they cross twice – a violation of single-crossing
that explains why pooling equilibria, where types randomize over demands, exist and
separating equilibria do not (see Section 6).

To see this with the help of an example, fix a pair of demands, say 3/10 and 8/10,
over which the opponent j randomizes. Moreover, fix an associated probability of
stubbornness for each of these demands.13 Figure 2 shows the 3D-payoff profile of a
rational and stubborn player i as a function of his own demand α and π(α). By payoff,
I mean the lottery over equilibrium payoffs in the concession game when demands and
the associated probabilities of stubbornness are drawn according to this distribution.
Therefore, Figure 2 shows the equilibrium payoff of a rational (stubborn) player i when
the opponent j mixes over 3/10 and 8/10, and I take αi and π(αi) as given (not
necessarily optimal). First, for both types of players, the payoff is increasing in the
probability of being thought to be stubborn, π(α). This is not surprising: the higher
the probability that a player is thought to be stubborn, the more likely an opponent is
to concede immediately at time 0. Second, the rational type’s payoff is single-peaked
in α. In other words, there is a unique best reply for a rational player to a given
demand of the opponent. Third, the stubborn type’s payoff is “nearly” single-peaked in

13In particular, I use the equilibrium probabilities of stubbornness conditional on the demands 3/10

and 8/10.
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α – but there are two discontinuities at the points where a player’s demand becomes
incompatible with a demand his opponent makes with positive probability. Hence, there
may be no unique best reply for a stubborn player to a given demand of the opponent
– fixing the opponent’s demand and probability of stubbornness, a stubborn player’s
payoff has three local peaks as we vary αi (either a demand is compatible with the
opponent’s, it is incompatible and stronger, or it is incompatible and weaker).

Consider an equilibrium with z = 1/100, α1 = 3/10, and α2 = 8/10. The right panel
of Figure 3 shows the indifference correspondences of a rational and stubborn type in
this equilibrium (rational type in red, stubborn type in black); in other words, this is a
(horizontal) cross-section of Figure 2. We can see that the indifference correspondences
cross at 3/10 and 8/10. The left panel of Figure 3 shows a (vertical) cross-section of the
3D-payoff profile of player i as a function of αi and πi. In particular, I take the cross-
section through (3/10, π(3/10)) and (8/10, π(8/10)), where π(3/10) and π(8/10) are the
equilibrium probabilities of stubbornness. We can see that there is a discontinuity in
the payoff of the stubborn type at αi = 2/10 and αi = 7/10, as αi becomes incompatible
with 8/10 and 3/10, respectively. To illustrate, let us consider the range of demands
that are compatible if the opponent demands 3/10 (i.e., demands between 0 and 7/10).
The difference in payoff between the two types is greatest for intermediate demands:
demands that are “just incompatible” if the opponent demands 8/10. When demanding
between 0 and 2/10, the two types receive the same payoff: the probability of facing an
incompatible demand is 0. When the probability of facing an incompatible demand is
nonzero, the payoffs of the two types differ: the rational type has the option value of
concession – if his opponent is known to be stubborn, the rational type can (and strictly
prefers to) concede, while the stubborn type cannot. In other words, conditional on
facing an incompatible demand from a stubborn type, the stubborn type’s payoff is 0.
Conditional on making a demand that is incompatible if the opponent demands 8/10

but compatible if the opponent demands 3/10, the difference between the two types is
decreasing in the demand. Making a higher demand does not change the probability of
facing an incompatible demand, but it does change the length of the war of attrition.
The higher the demand is, the longer the war of attrition in the case of incompatible
demands. An intermediate demand leads to a short war of attrition, allowing the
rational type to leverage his flexibility while the stubborn type cannot. In other words,
making a demand that is “just incompatible” with a demand that the opponent makes
with positive probability is costly to the stubborn type: the probability of facing an
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incompatible demand has increased, but the war of attrition is expected to be short,
and hence, the time at which the stubborn type would like to concede but cannot is in
the near future.

The content of Proposition 4 is that for any α1 and α2, where α1 ∈ (0, 1/2], and
α2 ∈ (1−α1, 1], such a cross-cut as in Figure 3 which makes both types indifferent exists.
The difference in the preferences of the two types imposes significant structure on the
demand configurations that can occur in equilibrium. In the case of three demands, the
lower two demands need to be compatible. Hence, as z → 0, it becomes “more difficult”
to make players indifferent between different demands. This is what I turn to in the
next subsection.

5.3 Existence with three or more demands

The proposition below states that players can be made indifferent over more than two
demands. However, the demand configurations over which players can be indifferent
have a very specific structure. Define

(s1, s2, s3) =


(

1−a3
2−a1−a3 , 0,

1−a1
2−a1−a3

)
if a1 > 1− a3

4
−
√
a3(8− 7a3),

(0, 1, 0) otherwise.

Proposition 5. (a) Fix a sequence zn → 0 and a corresponding sequence of equilibria
whose support {αn1 , αn2 , αn3}. Then, there exist a1 ∈ (0, 1/2] and a3 ∈ (1 − a1, 1]

such that

lim
n→∞

(αn1 , α
n
2 , α

n
3 ) = (a1, 1− a1, a3) . (9)

Moreover, along any such sequence,

lim
n→∞

rn = (0, 1, 0), lim
n→∞

sn = (s1, s2, s3) . (10)

(b) For any a1 ∈ (0, 1/2] and a3 ∈ (1 − a1, 1], there exists a sequence zn → 0 and a
corresponding convergent sequence of equilibria (αn1 , α

n
2 , α

n
3 , r

n, sn) satisfying (9)
and (10).

Proof. See Online Appendix.

Note that Proposition 5 states that in the limit, players face a demand of 1 − α1

with probability 1.
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Proposition 6. Fix a sequence zn → 0 and a corresponding sequence of equilibria
whose support {αn1 , . . . , αnK} converge with K > 3. Then, there exist a1 ∈ (0, 1/2] and
aK ∈ (1− a1, 1] such that

lim
n→∞

(αn1 , . . . , αk−1, αk, . . . , α
n
K) = ( a1, . . . , a1,︸ ︷︷ ︸

dK/2e−1 terms

1− a1, . . . , 1− a1, aK︸ ︷︷ ︸
K−dK/2e+1 terms

), (11)

where k = dK/2e. Moreover, along any such sequence,

lim
n→∞

rn = ( 0, . . . , 0︸ ︷︷ ︸
K−2 terms

, 1, 0).

Proof. See Online Appendix.

The intuition for Propositions 5 and 6 is as follows. It starts with two observations
already true in AG: as the probability of stubbornness vanishes, higher offers immedi-
ately concede to lower offers with probability 1. In addition, despite the rational type
being willing to randomize over a large number of offers, the offer closest to (but weakly
larger than) 1/2 is made with probability 1 (when there are more than two demands).
Given this, the stubborn type is not indifferent over multiple offers: fixing the demand
that the stubborn type faces, the cost of being stubborn is lower the higher the demand.
In other words, given the structure imposed by the rational type in terms of offers made
and concession behavior, the stubborn type strictly prefers higher demands over lower
demands.

Heuristically, the proof proceeds as follows. The difference in the stubborn type’s
cost between the lowest two demands (referred to as diff-in-diff in what follows), α1 and
α2, is given by:

∆s
1,2 =qK−1 (1− αK−1)µα2

2

(
µK−1

µ2

)1−αK−1

− qK (1− αK)

(
µα1

1

(
µK
µ1

)1−αK
− µα2

2

(
µK
µ2

)1−αK
)
,

(12)

where recall that qi simply denotes the probability that player j faces demand αi. Sup-
pose that the opponent, say player j, demands αK . Let me compare player i demand-
ing α1 versus demanding α2 (although this generalizes to any other two consecutive
demands when facing any other higher demand). Note that conditional on demand-
ing α1, a stubborn type pays a cost for being stubborn iff his opponent demands αK .
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Conditional on demanding α2, a stubborn type pays a cost for being stubborn if his
opponent demands either αK or αK−1.

In equilibrium, a (rational) player i is willing to wait until time Tαi,αKi to concede
(i.e., the time at which player j is known to be stubborn), where of course Tα1,αK

i <

Tα2,αK
i . Recall that (1) the probability of immediate concession by the opponent is

decreasing in the demand (i.e., αK is more likely to concede immediately to α1 than to
α2); (2) the rate of concession by αK is higher for α1 than for α2; and (3) conditional
on j not conceding at t = 0, the expected payoff for i at any point before Tαi,αKi is
1−αK regardless of whether i demands α1 or α2. Now suppose that player i waits until
Tαi,αKi to concede (despite j expecting him to concede at the appropriate rate). Then,
the probability with which player j concedes (ever) is 1−µ1−αK

K – i.e., regardless of the
demand i makes. Hence, conditional on j not conceding immediately, the probability
with which j concedes (ever) is higher when player i demanded α2 than when player i
demanded α1. The stubborn type only pays a cost for being stubborn conditional on his
opponent not conceding immediately. Hence, conditional on facing a certain demand,
the stubborn type’s cost for being stubborn is lower the higher the demand. In fact,
since µα1

1 goes to 0 infinitely slower than µα2
2 , conditional on facing αK , the stubborn

type’s cost for being stubborn is infinitely smaller (in the limit) when demanding α2

than when demanding α1 (cf. the last term in (12)).

To offset this difference, we need to make a player facing a demand of αK a (near)
zero-probability event, or we need to make the stubborn type’s cost of being stubborn
when demanding α2 and facing a demand of αK−1 “similarly” large as the stubborn
type’s cost of being stubborn when demanding α1 and facing a demand of αK . Hence, we
require the stubborn type’s cost for being stubborn when demanding α2 to be infinitely
larger (in the limit) when facing a demand of αK−1 than when facing a demand of αK .
This cost is infinitely larger iff µK/µK−1 → 0. Hence, in short, for ∆s

1,2 = 0 either (1)
qK → 0 or (2) µK/µK−1 → 0.14

More generally, conditional on facing demand αK−k+1, the stubborn type’s cost for
being stubborn is infinitely smaller when demanding αk+1 than when demanding αk.
Therefore, the stubborn type’s diff-in-diff for α2 and α3 means that we would want (i)
µK−1/µK−2 → 0 or qK−1 → 0 and (ii) µK/µK−1 → 0 or qK → 0.

However, if (1) qK → 0, or (2) µK/µK−1 → 0, for the rational type to be indifferent

14When K = 2, we have µ2/µ1 → 0; when K = 3, we have qK → 0.
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between α1 and α2 requires:

qi → 0, for any i 6= K − 1, (13)

µK−1/µ2 → 1, and (14)

α1 + αK−1 → 1. (15)

In words, it requires that the second-highest demand be played with probability 1 and
that the second-highest demand not concede with positive probability to the second-
lowest demand. Recall that the lowest demand, α1, is compatible with all but the
highest demand αK and that the second-lowest demand, α2, is compatible with all but
the highest and second-highest demand. Hence, the payoff from demanding α2 is strictly
higher than that from demanding α1, conditional on facing any demand αj < αK−1, and
the payoff is at best identical conditional on facing αK−1. Hence, if either the highest
demand is not being played, or the highest demand immediately concedes w.p. 1 to
both α1 and α2 in the limit, the rational type has no strict incentive to demand α1 over
α2.15 For the rational type to then be indifferent between α1 and α2, it must be that
every term in the payoff difference for the rational type has to be 0, which in particular
requires (13)–(15) to be satisfied. However, if (13)–(15) are satisfied, ∆s

2,3 = 0 cannot
be satisfied for K > 3: the stubborn type’s diff-in-diff for α2 and α3 (if α3 ≤ 1/2) is
given by:

∆s
2,3 = qK−2︸︷︷︸

→0

(1− αK−2)µα3
3

(
µK−2

µ3

)1−αK−2

︸ ︷︷ ︸
→1

− qK−1︸︷︷︸
→1

(1− αK−1)

µα2
2

(
µK−1

µ2

)1−αK−1

︸ ︷︷ ︸
→1

−µα3
3

(
µK−1

µ3

)1−αK−1

︸ ︷︷ ︸
→1


− qK︸︷︷︸
→0

(1− αK)µ1−αK
K

(
µα2+αK−1

2 − µα3+αK−1
3

)
.

(16)

The key fact is that the second condition, µK−1/µ2 → 1, implies that the second-
highest demand does not concede with positive probability to any other demand (in the
limit). This implies that the stubborn type’s cost of being stubborn when demanding
α3 and facing a demand of αK−2 cannot be made “similarly” large as the stubborn
type’s cost of being stubborn when demanding α2 and facing a demand of αK−1. More

15Recall that µK/µK−1 → 0 implies that µK/µi → 0 for any i < K.
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precisely, note that the second condition, µK−1/µ2 → 1, implies µK−2/µ3 → 1 and

µK−1/µ3 → 1. Hence, µ1−αK−1

K−1 µ
α2+αK−1−1
2 is infinitely larger than µα3

3

(
µK−2

µ3

)1−αK−2

.
The first condition states that qK−1 → 1 and qK−2 → 0, and hence, the second term in
(5) is infinitely larger than any other term in (5). Hence, ∆s

2,3 = 0 cannot be satisfied.
In particular, the stubborn type would prefer α3.16 To summarize, the key aspects
are as follows: (1) conditional on facing a certain demand, call it αk, the stubborn
type’s cost of being stubborn is infinitely larger for lower demands. (2) To equalize the
stubborn type’s cost of being stubborn across the demands he makes, either facing αk
happens with 0 probability (in the limit) or αk−1 is infinitely stronger than αk (in the
limit). (3) However, if this is true, then the highest demand concedes immediately w.p.
1 to both the lowest and the second-lowest demand (in the limit). However, then, a
rational type would not want to play the lowest demand.

Proposition 6 delivers strong predictions in terms of the size of the support. How-
ever, it is restricting attention to equilibria with finitely many demands. A natural
question is whether strategies involving a continuum of demands can be part of an
equilibrium. Proposition 7 establishes that there exists no equilibrium where players
randomize over intervals (of demands).

Proposition 7. Fix any nonempty, open interval I. Then, there exists z̄ > 0 such that
for any z < z̄, I 6⊆ supp r.

Proof. See Online Appendix.

The proposition above states the rational type cannot be made indifferent over
demands in any interval or in fact over any number of intervals (for z < z̄). The proof
has essentially two parts: I show first that if the support of the rational type includes
an interval, there must be an atom at the lowest demand. Otherwise, the rational type
strictly benefits from not making the lowest demand (for any z > 0). The second part
of the proof is then a straightforward modification of the proof of Proposition 6. It

16If α3 > 1/2, then

∆s
2,3 =qK−2 (1− αK−2)µα3

K−2

− qK−1 (1− αK−1)µ
1−αK−1

K−1

(
µ
α2+αK−1−1
2 − µα3+αK−1−1

3

)
− qK (1− αK)µ1−αK

K

(
µα2+αK−1
2 − µα3+αK−1

3

)
.

(17)

The same reasoning carries through here as with α3 ≤ 1/2 and K = 4. When K = 3, ∆s
2,3 = 0 can be

satisfied; when K = 3, µK−1/µ2 → 1 is true trivially – since K − 1 = 2.
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shows that there must be no atom at the lowest demand (for z < z̄)). Hence, strategies
involving a continuum of demands cannot be part of an equilibrium.

5.4 Inefficiency and payoffs in the limit
Proposition 4 (in Section 5.2) states that the necessary conditions for equilibrium exis-
tence (in Sections 3 and 4) are sufficient if players assign a strictly positive probability
to two demands, α1 and α2, only. For such an equilibrium to exist, the lower demand
α1 must be (weakly) less than 1/2, and α1 and α2 must sum to strictly more than
1. In such an equilibrium, when the probability of stubbornness is small, the higher
demand α2 immediately concedes to the lower demand α1 with probability close to 1.
When both players choose the higher demand, they engage in a war of attrition with an
expected payoff of 1− α2. Therefore, even in the limit, delay (and, hence, inefficiency)
may not disappear. In the limit, the equilibrium payoff for the rational type, vr, is
given by:

lim
z→0

vr =
2(a1 + a2 − 1)

2a2 − 1
(1− a1) +

1− 2a1

2a2 − 1
(1− a2) =

1

2
−
(

1
2
− a1

)2

a2 − 1
2

. (18)

The level of inefficiency is measured by the distance between 1/2 and the lower demand
α1 and between α2 and 1, as (18) shows. It is clear that when α1 is close to 0 (and
hence, α2 close to 1), a rational player’s expected equilibrium payoff is close to 0. If,
on the other hand, α1 is close to 1/2, a rational player’s expected payoff is close to 1/2

(when players are equally patient). By adjusting α1 and α2, one can generate in this
fashion any payoff between 0 and 1/2. Corollary 1 formalizes this insight. Note that
when fixing α1, a higher α2 increases the limit equilibrium payoff. This may sound
surprising at first, given that the symmetric equilibrium with the highest payoff is the
one where both types demand 1/2 with probability 1. Conditional on facing a demand
of α2, a rational type receives 1 − α2 < 1/2 from demanding α2. Hence, conditional
on facing a demand of α2, the rational payoff is higher the lower α2 is. However, there
is another effect that dominates: the probability that the rational type demands α2 is
decreasing in α2 as seen from the first line in equation 18.

Corollary 1. Fix any v ∈ (0, 1/2]. Then, there exists z̄ > 0 such that for any z < z̄,
a symmetric equilibrium exists such that the equilibrium payoff for a rational player is
v.

Proof. This follows immediately from Proposition 4. Fix any equilibrium characterized
in Proposition 4. Denote the payoff of a rational player in this equilibrium by vr. Then,
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the limit of this payoff is given by equation 18. Fix any ε > 0, and set a1 < ε. Then,
a2 > 1− ε. The result immediately follows.

Hence, unlike with an exogenously given distribution of stubborn types, there is a
Folk-theorem-like payoff multiplicity when stubborn types can freely choose their initial
demand. This is induced by the delay to agreement. For delay to disappear in the limit
with exogenous stubborn types, AG requires the “right” stubborn type to be present.
In the symmetric discounting case, this would be the type demanding 1/2. Corollary
1 shows that when the stubborn type is given choice over his initial demand, the right
stubborn type may not be present. When he is not, delay (and, hence, inefficiency)
does not disappear even when the probability of a player being stubborn is infinitely
small. It is natural to ask whether I can derive stronger predictions regarding payoffs
(and inefficiency) when using refinements.

6 Existence of (semi-)separating equilibria
In this section, I characterize (semi-)separating equilibria, i.e., equilibria where demands
are made with positive probability by some type but not the other. I first show that
under a mild assumption on the payoff of the rational type, there exists no equilibrium
with a separating demand by the rational type. This immediately implies that there
exists no fully separating equilibrium. I then show that there is at most one separating
demand by the stubborn type and that such equilibria have a particularly simple form.

6.1 Separating demands by the rational type
Throughout, any separating demand by the rational type is denoted β (or if there are
several, β, β′, etc.). The remaining demands are denoted α1 through αK (ordered in
an increasing manner) as before.

Lemma 3. If separating demands by the rational type exist, the lowest separating de-
mand must be higher than the highest pooling demand.

Sketch of proof. Suppose that there was a pooling demand that was higher than some
separating demand by the rational type. A rational player would receive a strictly
higher payoff from making the highest pooling demand regardless of the demand faced:
when facing a compatible demand, the higher demand (i.e., the pooling) would receive a
higher payoff. When facing an incompatible demand, the opponent would never concede
to the rational demand at time 0; however, the rational demand would immediately
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concede to the highest pooling demand. Hence, there cannot be a pooling demand that
is higher than a rational demand.

Assumption 1 (A1). Suppose there are two demands, β and β′, which are made ex-
clusively by the rational type:

β, β′ ∈ supp r \ supp s.

Then, conditional on facing a demand β, a player demanding β′ receives as payoff the
limit of the (unique) equilibrium payoff in the game, where each player is believed to be
stubborn with probability z.

Note that (A1) implies that the probability of immediate concession from β′ to β
(where both β and β′ are made exclusively by the rational type) is given by:

Fβ,β′(0) = lim
z→0

max

{
1− z

β′−β
1−β , 0

}

=

1 if β < β′,

0 otherwise.

(19)

In words, (A1) is equivalent to assuming that the higher rational demand will concede
to the lower rational demand with probability 1 at time 0. Denote the payoff from
demanding β conditional on facing a demand β′ by vrβ|β′ . Suppose that β < β′; then,
the conditional payoffs are as follows:

vrβ|β′ = lim
z→0

(
β

(
1− z

β′−β
1−β

)
+ (1− β′) z

β′−β
1−β

)
=β.

(20)

vrβ′|β =1− β. (21)

Proposition 8. Under (A1), there exists no symmetric equilibrium with a separating
demand by the rational type, i.e., in every symmetric equilibrium, supp r \ supp s = ∅.

Proof. See Online Appendix.

Proposition 8 implies that fully separating equilibria do not exist. This stands in
contrast to the model with exogenous types: if stubborn types in AG exclusively make
low demands, types separate in equilibrium. The proof of Proposition 8 is in two steps:
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I first show that there is at most one separating demand by the rational type. The key
intuition is as follows. Consider the two highest separating demands, say β and β′ with
β′ > β. Conditional on facing any demand other than β′, the payoffs from demanding
β and β′ are identical – either demand would concede with probability 1 to any lower
demand. However, conditional on facing β′, by (A1), a player receives β by demanding
β and 1− β′ by demanding β′. The second step is then to show that for any candidate
separating demand of the rational type, there exists a profitable deviation.

6.2 Separating demands by the stubborn type
The following propositions show that for z sufficiently small, any semiseparating equi-
librium has the following support:

supp s = {α, 1− α}; supp r = α,

where α > 1
2
. Moreover, for any α > 1

2
, such a semiseparating equilibrium exists.

Proposition 9. Fix demands {α1, . . . , αK}, with some αi ∈ supp s\ supp r and K > 2.
Then, there exists z̄ > 0 such that for any z < z̄, there exists no equilibrium with
support {α1, . . . , αK}.

Proof. See Online Appendix.

Note first that it follows immediately from Lemma 1 that any separating demand
by the stubborn type is lower than the lowest pooling demand – otherwise, the rational
type would strictly prefer to demand the separating demand of the stubborn type.17

The proof of Proposition 9 is in three steps. I first show that the lowest separating
demand must be incompatible with the highest demand for z small enough. In short, if
the highest demand were compatible with the lowest separating demand, the stubborn
type would be better off by deviating to a higher demand. The next step is to show
that there can be at most one separating demand: note that any separating demand
will be conceded to immediately (conditional on facing a rational opponent). Hence,
when the probability of facing a rational opponent goes to 1, there is no incentive to
make the lower separating demand. The last step is to prove that for a sufficiently small
probability of stubbornness, there exists no equilibrium with a separating demand by
the stubborn type when there are more than two demands. This proof is a natural
extension of the proof of the nonexistence of pooling equilibria with K > 3 demands.

17Any separating offer by the stubborn type αi has µi = 1. Hence, any rational player immediately
concedes to αi.
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Proposition 10. Fix any {α1, α2}. Then, there exists a symmetric equilibrium with
supp r = {α2} and supp s = {α1, α2} if and only if α1 + α2 = 1.

Proof. See Online Appendix.

7 Robustness
In this section, I discuss the robustness of the results to modeling choices. First, I
briefly discuss asymmetric equilibria. Then, I return to the question of off-equilibrium-
path beliefs when I discuss refinements. Finally, I cover sequential move bargaining and
briefly discuss other asymmetries in model parameters.

7.1 Other equilibria

Throughout, I have focused on symmetric equilibria. It is clear that asymmetric equi-
libria exist. For instance, there exists an equilibrium with player i demanding α and
player j demanding 1 − α for any α ∈ [0, 1]. While the differences in the two types
of preferences over demands also impose some structure on the demand configurations
that can arise in asymmetric equilibria, it remains an open question whether the strong
predictions in terms of the size of the equilibrium support are robust to considering
asymmetric equilibria.

7.2 Refinements

Recall that thus far, I have simply assigned probability 1 to any deviation coming from
a rational type, and this deterred deviations.

7.2.1 Divinity

Loosely speaking, refinement D1 attaches probability 1 to the type with the strongest
incentive to deviate to a given demand. More formally, denote the set of types by Θ =

{R, S}, where R stands for rational and S for stubborn. Let u∗i (θ) be the equilibrium
payoff of type θ ∈ {R, S}. Define D(θ, S, d) to be the set of mixed-strategy best
responses (MBRs) F2 to demand d and beliefs concentrated on S that make type θ
strictly prefer d to his equilibrium strategy,

D(θ, S, d) = ∪µ:µ(S|d)=1{F2 ∈MBR(µ, d) s.t. u∗1(θ) < u1(d, F1, θ)},

and let D0(θ, S, d) be the set of mixed best responses that make type θ exactly in-
different. A type θ is deleted for demand d under criterion D1 if there is a θ′ such
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that
{D(θ,Θ, d) ∪D0(θ,Θ, d)} ⊂ D(θ′,Θ, d).

In other words, if the set of best responses (and associated beliefs about a player being
stubborn conditional on d) for which a rational player benefits from deviating to d

is strictly smaller than the set of best responses for which a stubborn player benefits
from deviating to d, then D1 assigns probability 0 to the deviation coming from a
rational player. Note that D1 is not defined for dynamic games beyond signaling
games. However, first, note that, given the realized demands and associated beliefs, I
can compute the expected payoff from the continuation game. Hence, I can associate to
my game a corresponding game that ends once demands are chosen. This is the game
to which I apply D1.

Proposition 11. 1. Every one-demand equilibrium satisfies D1.

2. A pooling equilibrium with support {α1, . . . , αK} and K ≥ 2 satisfies D1 iff α2 =

1− α1 (and hence, K = 3).

3. Every semiseparating equilibrium with supp r = {α2} and supp s = {α1, α2} sat-
isfies D1.

Proof. See Online Appendix.

Note that Proposition 11 implies that Folk-theorem-like payoff multiplicity survives
D1: first, the payoffs 1/2 and 0 can be generated by one-demand equilibria. Second, for
any payoff v ∈ (0, 1/2), there exists z̄ > 0 such that for any z < z̄, a symmetric pooling
equilibrium with {α1, 1− α1, α3} exists that yields the rational type a payoff of v.18

7.2.2 Perturbations à la Nash (1953)

To address the problem of equilibrium selection, Nash (1953) suggested introducing
some uncertainty over whether a pair of demands are compatible (in the context of
the Nash demand game). Let the probability that a pair of demands α = (αi, αj) is
compatible be given by a function:

p : R2 → [0, 1],

18Alternatively, note that there exists z̄ > 0 such that for any z < z̄, a symmetric semiseparating
equilibrium exists such that the equilibrium payoff for a rational player is v. This simply comes
from the fact that in semiseparating equilibria, the rational player faces a demand of α > 1/2 with
probability 1 in the limit, and hence, his payoff in the limit is 1− α.
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i.e., let p(α) denote the probability that αi and αj turn out to be compatible.
To apply this selection method to my game, there are a number of modeling choices

that need to be made: What is the function p(α)? What is the size of the surplus (for
computing payoffs)? What is the size of the surplus if players revise their demands?
Moreover, there are important differences from Nash’s demand game: in Nash’s demand
game, the game ends after initial demands have been made; here, players can revise
their demands, and hence, the threat of incompatibility does not loom as large.

Using Nash’s method for equilibrium selection is particularly attractive when equi-
librium demands are exactly compatible and there is a discontinuity in payoffs at the
point where demands become incompatible. We have seen that in my model, the payoff
of the stubborn type is discontinuous in the player’s own demand at the points where it
becomes incompatible with a demand his opponent makes with positive probability.19

One may therefore imagine that introducing such trembles may eliminate multiplicity.
However, in any mixed-strategy pooling equilibrium, players randomize over demands
that are incompatible. More precisely, the lowest and highest demand over which a
player randomizes are incompatible.

7.3 Sequential move bargaining

Suppose that players make demands sequentially, rather than simultaneously; i.e., first,
player 1 makes demand α1, then player 2 makes demand α2. If α1 +α2 > 1, a concession
game starts as before. In this case, the symmetric pooling equilibria in pure strategies
(i.e., one-demand equilibria) in the simultaneous move game remain equilibria in the
sequential move game.20 However, not surprisingly, the symmetric pooling equilibria
in mixed strategies (in the simultaneous move game) are not robust to this change in
the bargaining protocol. To see this, consider a simple example with two demands. In
particular, suppose that player 1 randomizes over demands 1/3 and 3/4. If player 1

demands 1/3, then player 2 is strictly better off by demanding at least 2/3: if demanding
1/3, player 2 would receive 1/2; if demanding 2/3, player 2 would receive 2/3. Hence, the
two players cannot be made indifferent over the two demands. By a similar argument,
symmetric semiseparating equilibria do not exist.

Of course, restricting attention to symmetric equilibria is somewhat unnatural when
19Note that, regardless of the opponent’s belief, the rational type in this paper always prefers to

make a demand that is at least exactly compatible.
20In fact, there exists a symmetric pooling equilibrium in pure strategies iff α = {1/2, 1} (as in the

simultaneous move game).

32



moves are sequential. If we allow for asymmetric equilibria, Folk-theorem-like payoff
multiplicity arises (as in the simultaneous move game). In particular, fix any α1 ∈ [0, 1].
Then, there exists an equilibrium where player 1 demands α1 and player 2 demands
α2 = 1 − α1 in the sequential move game. Player i’s equilibrium payoff in such an
equilibrium is simply given by αi. Hence, there is a Folk-theorem-like payoff multiplicity
in the sequential move game. A heuristic argument for the existence of such equilibria is
as follows. Provided that player 1 places sufficiently high probability on player 2 being
rational conditional on seeing an out-of-equilibrium demand, the rational type receives
no more than 1− α1 by demanding more than 1− α1. The stubborn type will receive
a payoff strictly less than 1−α1 if he demands more than 1−α1. Moreover, regardless
of player 1’s belief, player 2 does not want to make a demand less than 1− α1. Hence,
player 2 has no incentive to deviate to an out-of-equilibrium demand. By an analogous
argument, player 1 has no incentive to deviate.

Note that any such asymmetric pooling equilibrium in pure strategies satisfies re-
finements such as D1. In short, (i) regardless of the belief of player j, a rational player
i is willing to make a demand higher than αi = 1 − αj; (ii) regardless of player j’s
belief, neither type of player i would be willing to make a demand less than αi = 1−αj.
Hence, there exists no belief of player j (and associated best response) that makes the
stubborn type of player i willing to deviate from his equilibrium demand while the
rational type of player i is not.

7.4 Model parameters

Allowing players do differ in (i) their ex ante probability of stubbornness or (ii) their
patience does not affect the set of equilibria. It does, however, affect players’ payoffs.
Everything else being equal, an increase in the ex ante probability of stubbornness of
a player or similarly in his patience increases the player’s payoff. This is analogous to
the reasoning and the results in AG.

8 Conclusion
This paper shows that the predictions of the reputation literature are sensitive to the
specification of exogenous stubborn types. Once the stubborn type is given a choice
over his initial demand, delay (and, hence, inefficiency) may not disappear even when
the probability of stubbornness vanishes. Unlike in the literature, I am able to derive
strong behavioral predictions in terms of the demand configurations that can occur in
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equilibrium.

Within the framework of this paper, a natural extension would be to broaden the
set of strategies available to the stubborn type. For instance, it may be natural to
introduce an exit option for the stubborn type when known to be facing a stubborn
opponent. This may help to better understand the tradeoff between the predictions of
the reputation literature and the flexibility given to behavioral types. However, such an
extension is unlikely to overturn the results regarding equilibrium payoff multiplicity:
further increasing the flexibility of the stubborn type only brings the game closer to a
complete-information bargaining model with rational players only.

While this paper focuses on endogenizing behavioral types in a bargaining setting,
the idea of endogenizing behavioral types applies more broadly. For instance, some
agents may restrict attention to stationary strategies in a repeated game. Whatever
drives their preference for this restriction does not mean that they do not choose opti-
mally within the set of stationary strategies. There is a middle ground between rational
and behavioral agents, and this paper is a first attempt to explore this territory in a
well-known and tractable environment.
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Appendix

Necessary conditions for equilibrium existence
For the proofs of Lemma 1 and 2 that follows it is useful to introduce some notation. De-
fine for i = 1, 2, W(αi) = {αj|µi(αi) ≤ µj(αj), αi + αj > 1}, and S(αi) = {αj|µi(αi) >
µi(αi), αi +αj > 1}. In a candidate pooling equilibrium, the payoff to the rational type
of player 2 from demanding α2 is:

vr2(α2) =

∫ 1−α2

α

1− αi + α2

2
dG(αi)

+

∫ ᾱ

1−α2

(
α2 − (αi + α2 − 1) min

{(
µ(αi)

µ(α2)

)1−αi
, 1

})
dG(αi),

(22)
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where ᾱ denotes the highest demand made by player 1 wpp; α denotes the lowest
demand made by player 1 wpp; and G(αi) is the cdf over offers by player 1.

Similarly, I can write the payoff of a stubborn player 2 demanding α2 in a candidate
pooling equilibrium as:

vs2(α2) = vr2(α2)−
∫ ᾱ

1−α2

(1− αi)µα2
i max

{
1,

(
µ2

µi

)αi+α2−1
}
dG(αi). (23)

Equivalently, for the rational and stubborn type of player 1. Using (22),(23), given
z > 0, an equilibrium with support C requires ∀α, α′ ∈ C, and j = 1, 2,

vrj (α)− vrj (α′) = 0, (24)

vsj (α)− vsj (α′) = 0, (25)

G(ᾱ) = 1, and (26)∫
C
µj(αi)

1−αigj(αi)dαi = z, (27)

with gj(αi), µj(αi) ∈ [0, 1].

Proof of Lemma 1. Note first that by definition of strength, any separating offer by the
rational type has strength 0 and any separating offer by the stubborn type has strength
1. By straightforward reasoning, the highest separating offer by the stubborn type must
be below the lowest pooling offer (otherwise, the rational type would have an incentive
to deviate to the separating offer by the stubborn type); and the lowest separating offer
by the rational type must be above the highest pooling offer (otherwise, the rational
type would have an incentive to deviate to the highest pooling offer – he is more likely
conceded to, and receives more conditional on being conceded to). As a result, I will
focus on pure pooling equilibria from now on.

Suppose the strength of player 2, µ2(α2), was not decreasing in α2.
Case 1: Suppose there exist α′2 and α′′2 with α′2 < α′′2, such that W(α′2) =W(α′′2), and
S(α′2) = S(α′′2).

(a) Suppose that ∃αi ∈ S(α′2). Recall that if α1 ∈ S(α2), then α2 + α1 > 1, and
µ1(α1)
µ2(α2)

< 1. This implies that (i) fixing strength, the rational player’s payoff vr2(α2),
as defined in (22), is increasing in α2; and (ii) fixing the offer α2, vr2(α2) is in-
creasing in the strength, µ2(α2). Evaluating (22) at α2 = α′2 and α2 = α′′2, it then
follows that µ(α′2) ≤ µ2(α′′2)⇒ vr2(α′2) < vr2(α′′2). Hence, for vr2(α′2) = vr2(α′′2), it is
necessary that µ(α′2) > µ2(α′′2).
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(b) Suppose that S(α′2) = ∅. Note that if ∃αi ≤ 1− α′2, then∫ 1−α′2

α

1− αi + α′2
2

dG(αi) <

∫ 1−α′′2

α

1− αi + α′′2
2

dG(αi).

Hence, for vr2(α′′2) = vr2(α′2), it is necessary that αi ∈ W(α′2) =W(α′′2), ∀αi.

Case 2: Suppose there exist α′2 and α′′2 with α′2 < α′′2, such that W(α′2) 6= W(α′′2),
or S(α′2) 6= S(α′′2), or both.

(a) Suppose first that (i) ∃αi such that αi < 1 − α′2, and αi ∈ W(α′′2); and (ii) that
∀αj 6= αi, αj ∈ W(α′2) ⇐⇒ αj ∈ W(α′′2), and αj ∈ S(α′2) ⇐⇒ αj ∈ S(α′′2).

Then, evaluating (22) at α2 = α′2 and α2 = α′′2, it is clear that vr2(α′′2) > vr2(α′2).

Hence, if ∃αi such that αi < 1 − α′2, and αi ∈ W(α′′2), then there must exist
αj ∈ S(α′2) \ S(α′′2). But this implies µ2(α′2) > µ2(α′′2).

(b) Suppose that ∃αi such that αi = 1 − α′2, and αi ∈ W(α′′2), and that ∀αj 6= αi,
αj ∈ W(α′2) ⇐⇒ αj ∈ W(α′′2), and αj ∈ S(α′2) ⇐⇒ αj ∈ S(α′′2). By Case 2(a),
it must be that αi = α (otherwise, there must exist αj ∈ S(α′2)\S(α′′2).). However,
since α′2 < α′′2, for vr2(α′2) = vr2(α′′2), it is necessary that S(α′2) = S(α′′2) = ∅.

(c) Suppose finally that (i)∃αi ∈ S(α′′2) \ S(α′2), and (ii) that ∀αj 6= αi, αj ∈
W(α′2) ⇐⇒ αj ∈ W(α′′2), and αj ∈ S(α′2) ⇐⇒ αj ∈ S(α′′2). Then, eval-
uating (22) at α2 = α′2 and α2 = α′′2, it is clear that vr2(α′′2) > vr2(α′2). Hence,
S(α′′2) \ S(α′2) = ∅. This implies that if there exists αi < 1 − α′2, then µ2(α′2) >

µ2(α′′2). If there does not exist αi < 1− α′2, then see Case 2 (b).

Hence, either (i) αi ∈ W(α′2) = W(α′′2), ∀αi; or (ii) α = 1 − α′2, α ∈ W(α′′2) and
αi ∈ W(α′2) =W(α′′2) \ α, ∀αi > α; or (iii) µ2(α′2) > µ2(α′′2). Note that (i) implies that
α′2 > 1 − α, and that µ(α′2) = µ(α′′2). Hence, µ2(α2) is strictly decreasing in α2 unless
α2 ≥ 1− α.

NB: If the stubborn type chooses his initial demand, then as we will see in Lemma
3, (i) cannot be. Moreover, for (ii) it must be that α′2 = 1−α and α′′2 = ᾱ by Lemma 2,
α + ᾱ > 1). This then implies µ2(ᾱ) = µ2(1− α). Hence, µ2(α2) is strictly decreasing
in α2 unless α2 = 1− α, in which case µ2(1− α) = µ2(ᾱ).
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Proof of Lemma 2, Part 1. Suppose not; i.e., suppose that there exists an offer which
is compatible with every offer made by the opponent wpp. Then the payoff to a rational
and stubborn type from making this offer is identical. This would then have to be true
for every other offer made wpp. When facing an incompatible demand, the rational
type has the option value of concession, while the stubborn type does not. Hence, there
could be no offer higher than 1/2. But if there is no offer higher than 1/2, then both
types would want to demand at least 1/2. Hence, there would not be multiple offers
being made wpp. Therefore, every offer must be incompatible with at least one offer
made by the opponent wpp.

Proof of Lemma 2, Part 2. The proof is divided into two parts: I first focus on pooling
equilibria; then I turn to semiseparating equilibria.

Pooling equilibria: Consider a candidate pooling equilibrium. Suppose the set of
compatible demands is constant between α and α′, with α < α′. Suppose further that
(24) is satisfied for all α, α′ ∈ C. Then for j = 2, I can write (25) as

0 = −
∫ ᾱ

1−α
(1− αi)·(

µ1(αi)
α max

{
1,

(
µ2(α)

µ1(αi)

)αi+α−1
}
− µ1(αi)

α′ max

{
1,

(
µ2(α′)

µ1(αi)

)αi+α′−1
})

dG(αi).

(28)

(a) Suppose S(α) = S(α′) = ∅. Then ∀αi > 1− α,

max

{
1,

(
µ2(α)

µ1(αi)

)αi+α−1
}

= 1.

Similarly, for α′, since µ2(α) ≥ µ2(α′). Clearly, µ1(αi)
α > µ1(αi)

α′ . Therefore, if
S(α) = S(α) = ∅, the RHS of (28) is strictly negative, and hence, (28) cannot be
satisfied.

(b) Suppose W(α) =W(α′) = ∅. Then ∀αi > 1− α,

max

{
1,

(
µ2(α′)

µ1(αi)

)αi+α′−1
}

=

(
µ2(α′)

µ1(αi)

)αi+α′−1

, (29)
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and similarly for α. Hence, using (29), I can simplify the RHS of (28) to:

−
∫ ᾱ

1−α
(1− αi) · µ1(αi)

1−αi
(
µ2(α)α+αi−1 − µ2(α′)α

′+αi−1
)
dG(αi). (30)

By Lemma 1, µ2(α) ≥ µ2(α′). Moreover, note that 0 < α+αi−1 < α′+αi−1 < 1.
Hence, (30) is strictly negative, and thus, (28) cannot be satisfied.

(c) Suppose ∃αi ∈ S(α) \ S(α′). Then

max

{
1,

(
µ2(α)

µ1(αi)

)αi+α−1
}

=

(
µ2(α)

µ1(αi)

)αi+α−1

and

max

{
1,

(
µ2(α′)

µ1(αi)

)αi+α′−1
}

= 1.

But

−g(αi)(1− αi) ·

(
µ1(αi)

α

(
µ2(α)

µ1(αi)

)αi+α−1

− µ1(αi)
α′

)
< 0 (31)

since µ2(α) > µ1(αi) and α < αi ≤ α′. Hence, (28) cannot be satisfied.

(d) By Lemma 1, S(α′) \ S(α) = ∅.

Therefore, if for some α, α′ ∈ C, 6 ∃α′′ ∈ C such that α ≤ 1−α′′ < α′, then (28) cannot
be satisfied. Hence, for all α, α′ ∈ C, there exists α′′ ∈ C such that α ≤ 1− α′′ < α′.

Semiseparating equilibria: Consider a candidate semiseparating equilibrium with
K offers, with multiple separating offers. If the set of compatible offers is non-decreasing
between any two separating offers, then the stubborn type strictly prefers the higher
offer: any separating offer will be conceded to immediately by the rational type, regard-
less of its value (if less than 1). Hence, the higher offer yields a strictly higher payoff
regardless of the offer made by the opponent.

Consider a candidate semiseparating equilibrium with support C, with one separat-
ing offer, α1, by the stubborn type. Denote the lowest pooling offer by α2, and the
highest offer by ᾱ. Suppose 6 ∃αi such that 1− α2 < αi ≤ 1− α1. Then conditional on
facing ᾱ, the difference in payoffs between the rational and stubborn type of player i
for α1 and α2 is:

∆r
1,2

∣∣
αj=ᾱ

− ∆s
1,2

∣∣
αj=ᾱ

= (1− ᾱ) µ̄1−ᾱ − (1− αK)

(
µ̄

µ2

)1−ᾱ

µα2
2 ,

= (1− ᾱ) µ̄1−ᾱ (1− µα2+ᾱ−1
2

)
> 0.
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Hence, the rational type has an incentive to deviate to the separating offer α1.

Existence of pooling equilibria
Before proving the existence of pooling equilibria, it is helpful to state and prove the
following supplementary lemma:

Lemma 4. There exists a pooling equilibrium with support {α1, . . . , αK} only if the
offers α1 through αK along with probabilities q1 through to qK, and positive numbers µ1

through to µK solve (36)–(39).

Proof. Fix z > 0, and an equilibrium, specifying {α1, . . . , αK}, µ1, . . . , µK > 0, and
q1, . . . , qK > 0. For any k ≤ K, define

vrk =
∑
i s.t.

αi≤1−αk

qi

(
αk + 1− αi

2

)

+
∑
i s.t.

αi>1−αk

qi

(
αk min

{
0, 1−

(
µi
µk

)1−αi
}

+ (1− αi) min

{
1,

(
µi
µk

)1−αi
})

,

(32)

vsk = vrk −
∑
i s.t.

αi>1−αk

qi (1− αi) max

{
µαki ,

(
µi
µk

)1−αi
µαkk

}
. (33)

For a detailed derivation of these payoffs see the supplementary material on my website.
For any k, k′ ≤ K, define

∆r
k,k′ =vrk − vrk′ , (34)

∆s
k,k′ =vsk − vsk′ . (35)

Given z and {α1, . . . , αK}, define the following system in (qi, µi), i = 1, . . . , K:

∆r
k,k+1 = 0, ∀k < K, (36)

∆r
k,k+1 −∆s

k,k+1 = 0, ∀k < K (37)
K∑
i=1

qiµ
1−αi
i = z, and (38)

K∑
i=1

qi = 1. (39)
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Note that there are 2K equations (and as many variables). For a candidate equilib-
rium with support {α1, . . . , αK}, both types need to be indifferent over all demands α1

through to αK , with probabilities qi > 0, given an ex ante probability of a player being
stubborn, z. Equation (36) shows the difference in payoff for a rational type between
making a demand of αk and making a demand of αk+1, conditional on the opponent
mixing over the offers α1 through to αK . Hence, equation (37) ensures indifference of
the rational type between any two offers, αk and αk+1. In the same manner, equation
(37) ensures indifference of the stubborn type between any two offers, simplified using
the indifference of the rational type. Equation (39) ensures that the probabilities of
being faced with a given offer add up to 1; and equation (38) ensures that the condi-
tional probabilities of stubbornness, µ1−αi

i , are consistent with the ex ante probability
of a player being stubborn, z.

Fix K demands (satisfying Lemmas 1 and 2). Suppose that for all z̄ > 0, there
exists z < z̄, such that there exist qi > 0, and µi > 0 for i = 1, 2, . . . , K such that
(z, α, q, µ) satisfies (36) to (39). Then there exists a sequence (zn, αn, qn, µn)n∈N, with
limn→∞ z

n → 0, solving (36)–(39), such that it is not the case that αni − αni+1 → 0

for all i, i + 1 ≤ dK/2e − 1 and all i, i + 1 ≥ dK/2e with i + 1 < K. Recall,
that αn, qn, µn ∈ [0, 1]. Hence, without loss, assume that αn, qn and µn converge. By
continuity, (z = 0, limz→0 α, limz→0 q, limz→0 µ) also solves (36)–(39). In the following,
I drop the subscript n; limits are indicated explicitly by limz→0 throughout.

In other words, if the system has a solution for small enough z, then for at least one
i 6∈ {dK/2e − 1, K}, αi 6= αi+1.

Proof of Proposition 4. When K = 2, I can write (36) and (37) for k = 1 as:

q1

(
α1 −

1

2

)
+ q2 (α1 + α2 − 1)

(
1−

(
µ2

µ1

)1−α2
)

= 0, and (40)

q1 (1− α1)µα2
1 − q2 (1− α2)µ1−α2

2

(
µα1+α2−1

1 − µ2α2−1
2

)
= 0. (41)

The proof has the following steps. First, in any sequence of equilibria, µi → 0 for
i = 1, 2 (Claim 2). Second, an equilibrium with support {α1, α2} exists in the limit
(Claim 3). Finally, I show that the system (36)–(39) can be solved locally around z = 0

when K = 2, with qi ∈ (0, 1), and µi ∈ (0, 1) for i = 1, 2 (Claim 4).

Claim 2. For (36)–(39) to be satisfied when K = 2, limz→0 µi = 0 for i = 1, 2.
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Proof. By (38) and (39), either limz→0 qi = 0 or limz→0 µi = 0 for i = 1, 2. Moreover, if
limz→0 qi = 0, then limz→0 µj = 0. Recall that by Lemma 1, µ2 < µ1, ∀z > 0. Hence,
by (38), it follows that limz→0 µ2 = 0. If limz→0 µ2 = 0, then (36) can only be satisfied
if limz→0 µ1 = 0: if limz→0 q1 = 0, then it must be that limz→0 l2,1 = 1, and hence,
limz→0 µ1 = 0. Therefore, limz→0 µi = 0 for i = 1, 2.

NB. Recall that by Lemma 1 , in order for (36) to be satisfied it must be that
µk+1 ≤ µk, ∀k, ∀z > 0. Hence, all ratios µi

µk
and µi

µk+1
in (36) and (37) are bounded

above by 1. Hence, without loss, assume that these ratios converge. Call the ratios li,k
and li,k+1.

Claim 3. The system (36)–(39) has a solution in the limit when K = 2, with

lim
z→0

r1 = lim
z→0

q1 =
2 (α1 + α2 − 1)

2α2 − 1
, and (42)

lim
z→0

s1 =
1− α2

2− α1 − α2

. (43)

Proof. I first reduce the system (38)–(41) to two equations (where recall that equations
(40) and (41) are simply (36) and (37) for K = 2). Then I use Taylor approximations
to derive (42) and (43). Using (39), I can replace q2 by 1− q1 in (40). I can then solve
(40) for q1 as a function of µ1 and µ2 only:

q1 =
2 (α1 + α2 − 1)

(
1− l1+α2

2,1

)
(2α2 − 1)− 2 (α1 + α2 − 1) l1+α2

2,1

. (44)

I can then replace q2 and q1 (using (44)) in (41) and (38). I can write the stubborn
type’s indifference, (41), as:

(1− 2α1) (1− α2)
(
µ1−α2

2 µα1−1
1 − lα2

2,1

)
+ 2 (1− α1) (α1 + α2 − 1)

(
l1−α2
2,1 − 1

)
µ−α2

1

(
2 (α1 + α2 − 1) l1−α2

2,1 − (2α2 − 1)
) = 0.

(45)

I can then show that

lim
z→0

µ1−α2
2

µ1−α1
1

=
2 (1− α1) (α1 + α2 − 1)

(1− 2α1) (1− α2)
. (46)

More precisely,

µ1 =

(
(1− 2α1) (1− α2)

2 (1− α1) (α1 + α2 − 1)

) 1
1−α1

µ
1−α2
1−α1
2 +O

(
µ

1−α2
1−α1

(1+α2−α1)

2

)
. (47)
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To derive (46) and (47), note that for (45) to be satisfied either

lim
z→0

l2,1 = K, or lim
z→0

µ1−α2
2

µ1−α1
1

= K,

where K is some positive constant. If limz→0 l2,1 = K, then limz→0
µ
1−α2
2

µ
1−α1
1

→ ∞, and

hence, (45) cannot be satisfied. If limz→0
µ
1−α2
2

µ
1−α1
1

= K, then limz→0 l2,1 = 0. Hence, we
can solve (45) for K:

K =
2 (1− α1) (α1 + α2 − 1)

(1− 2α1) (1− α2)
, (48)

and (46) follows. Using Taylor approximation, I can then derive (47). Using (47), I can
rewrite (38) and (44) as

q1 =
2 (α1 + α2 − 1)

2α2 − 1
− k1µ

(1+α2)(1−α1)−(1−α2)
2

1−α1
2 +O

µ 2(2α2−α1−α
2
2)

1−α1
2

 , (49)

z =
(1− 2α1) (2− α1 − α2)

(1− α1) (2α2 − 1)
µ1−α2

2 +O
(
µ

1−2α1+α2(2−α2)
1−α1

2

)
, (50)

where

k1 =

(
2 (α1 + α2 − 1)

2α2 − 1

)2(
1− 2α1

2 (α1 + α2 − 1)

)α2−α1
1−α1

(
1− α1

1− α2

) 1−α2
1−α1

.

To derive (49), note that I can write l1−α2
2,1 as

l1−α2
2,1 =

(
(1− 2α1) (1− α2)

2 (1− α1) (α1 + α2 − 1)

)− 1−α2
1−α1

µ
(1+α2)(1−α1)−(1−α2)

2

1−α1
2 +O

µ 2(2α2−α1−α
2
2)

1−α1
2

 .

Using (50), and recalling that s1 =
µ
1−α1
1 q1
z

, I can now write s1 as a function of µ2 only:

s1 =
1− α2

2− α1 − α2

− k2µ
(1+α2)(1−α1)−(1−α2)

2

1−α1
2 +O

(
µ

1−2α1+2α2−α
2
2

1−α1
−1+α2

2

)
, (51)

where

k2 =

(
(1− 2α1) (1− α2)

2 (α1 + α2 − 1) (1− α1)

)α2−α1
1−α1

(
2 (α1 + α2 − 1) (1− α1)

(2α2 − 1) (2− α1 − α2)

)
.

Hence,

lim
z→0

r1 =
2 (α1 + α2 − 1)

2α2 − 1
, and (52)

lim
z→0

s1 =
1− α2

2− α1 − α2

. (53)
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Claim 4. The system (36)–(39) can be solved locally around z = 0 when K = 2, with
s1 ∈ (0, 1), r1 ∈ (0, 1).

Proof. As before, I replace q2 by 1 − q1 in equations (38), (40) and (41) (using (39)).
In analogue to before, I then solve (40) for q1 as a function of µ1 and µ2 only:

q1 =

2 (α1 + α2 − 1)

(
1−

(
µ2
µ1

)1+α2
)

(2α2 − 1)− 2 (α1 + α2 − 1)
(
µ2
µ1

)1+α2
. (54)

Using this, I can then use (38) to solve for µ2 as a function of z and µ1:

µ2 = µ1

(
2 (α1 + α2 − 1)µ1−α1

1 − (2α2 − 1) z+

2 (α1 + α2 − 1)
(
µ1−α1

1 − z
)
− (1− 2α1)µ1−α2

1

) 1
1−α2

. (55)

Hence, I can express (41) as a function of µ1 and z only. Let me introduce two auxiliary
variables, p and u, where

p =z
α1−α2(1−α1)+2α22

(1−α1)(1−α2) , and (56)

u =µ1−α1
1 z−1 − (1− α2) (2α2 − 1)

2 (2− α1 − α2) (α1 + α2 − 1)
. (57)

Using the Implicit Function Theorem one can derive:

dp

du

∣∣∣∣
(p,u)=(0,0)

=
(2− α1 − α2)

1− α1

(
2(2− α1 − α2)(α1 + α2 − 1)

(1− α2)(2α2 − 1)

)α2−α1
1−α1

> 0. (58)

I can rewrite (41) as a function of p and u, using (56) and (57). Denote this new function
∆s
p,u. Taking derivatives w.r.t. p and u, evaluating these derivatives at p = u = 0, and

rearranging, I get (58), which is clearly finite and positive:

dp

du

∣∣∣∣
(p,u)=(0,0)

= −
∂∆s

p,u/∂u

∂∆s
p,u/∂p

∣∣∣∣
(p,u)=(0,0)

=
(2− α1 − α2)

1− α1

(
2(2− α1 − α2)(α1 + α2 − 1)

(1− α2)(2α2 − 1)

)α2−α1
1−α1

.

(59)

Hence, the system (36)–(39) can be solved locally around z = 0 when K = 2, with
r1 ∈ (0, 1), and s1 ∈ (0, 1).
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