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0. ABSTRACT

This paper provides an empirical implementation of some recent work by the author and
Werner Ploberger on the development of "Bayes models” for time series. The methods offer
a new data-based approach to model selection, to hypothesis testing and to forecast evalunation
in the analysis of time series. A particular advantage of the approach is that modelling issues
such as lag order, parameter constancy, and the presence of deterministic and stochastic
trends all come within the compass of the same statistical methodology, as do the evaluation
of forecasts from competing models. The paper shows how to build parsimonious empirical
"Bayes models" using the new approach and applies the methodology to some Australian
macroeconomic data, "Bayes models" are constructed for 13 quarterly Australian macroeco-
nomic time series over the period 1959(3)-1987(4). These models are compared with certain
fixed format models (like an AR(4) + linear trend) in terms of their forecasting performance
over the period 1988(1)-1991(4). The "Bayes models" are found to be superior in these fore-
casting exercises for 10 of the 13 series, while at the same time being more parsimonious in

form.

JEL Classification No. 211

Keywords: Bayes model; Bayes measure; Deterministic trend, Forecast-encompass; Model
selection; One-period ahead forecasts; PIC criterion; Unit root.



1. INTRODUCTION

Not all econometric models are designed as instruments for forecasting. Nevertheless, the
capacity of one model to forecast adequately in comparison with competing models is an
important element in the evaluation of its overall performance. Indeed, many of the pro-
cedures that are presently used to appraise a model’s performance involve summary statistics
that depend in one way or another on the model’s within-sample and outside-sample tracking
behavior. Thus, in spite of the multiplicity of objectives in econometric modelling, one com-
mon characteristic is the attempt each model makes to explain the data, or certain subsets of
the data conditionally on other data. This attempted explanation often leads directly, but
sometimes indirectly, to a model’s "probability distribution of the data.”" Again, this may be a
conditional distribution, and the statistical procedures that are employed may mean that only
certain characteristics of the distribution rather than the full distribution are modelled. How-
ever, this common element of econometric modelling provides a basis by which different
models can be compared. Thus, one model’s explanation of the data can be compared with
that of another model in terms of their implied "probability distributions of the data." In a
similar way, one model's predictions can be compared with those of a competing model in
terms of the respective "probability distributions of the prediction errors.”

These ideas underlie some recent work by the author (1992) and by the author and
Werner Ploberger (1991, 1992) on the development of "Bayes models" for time series. "Bayes
models" are essentially Jocation models conditional on the data that is available to the latest
observation. In these models, the location estimate or systematic part of the model is non-
linear and time varying even when the underlying "true model” is linear in parameters and
variables like an autoregression. The location estimate is a predictor given by the current best
estimate, using prior information and the available data, of the value of the dependent vari-
able in the pext period. The predictor is calculated as the conditional mean of the dependent
variable given data to the latest available observation. Here the conditional expectation is

taken with respect to the probability measure of the data implied by the given model and the
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prior distribution of the parameters, We call this measure the "Bayes model" measure. As
more data accumulates, this "Bayes model" measure of the data becomes independent of the
prior and is therefore "objective" in the well defined sense that it ultimately depends only on
the form of the model and the observed data. Since the Bayes measure is distinct for differ-
ent models, it may be used as the basis for comparing competing models in terms of their
implied "probability distributions or predictive distributions of the data," as discussed in the
last paragraph.

This paper implements the above ideas in an empirical study of Australian macroeco-
nomic data. Our purpose is to seek out the best "Bayes models" in a certain generic class of
time series models for each data set and then evaluate the adequacy of these models against
certain fived format competitor models in terms of one-period ahead forecasts. The method-
ology is based on earlier work in Phillips-Ploberger (1991, 1992) and Phillips (1992), which
will be briefly reviewed in Section 2 of the paper.

2. MODEL AND FORECAST EVALUATION
USING THE PIC CRITERION

Our set up in the single equation stochastic linear regression model

O  y=PBx+e, t=12.)

where the dependent variable y, and the error ¢, are real valued stochastic processes on a
probability space (Q, % P). Accompanying y, is the filtration #, c #(t = 0, 1, 2, ... ) to which
both y, and ¢, are adapted. Usually it is convenient to think of f, as the o-field generated by
{e, 2,_y, ... } and in the cases we consider this will always be appropriate. The Tegressors x,
(k x 1) in (1) are defined on the same space and are assumed to have the property that X, is
#;_1-measurable. The errors ¢, satisfy E(e,|%_;) = 0, so that the conditional mean function
in (1) is correctly specified under the probability measure P.

An example of (1) that is frequently empirically relevant is the "ARMA(p, q) + trend(r)"

model. This model can be written in difference format as



(2) Ayt =hyt—l + Ef;{(plby‘_! + 2?=1wj€t_j + z£=06‘tk + 3‘ .

which is especially convenient because it accommodates an autoregressive unit root under the
simple restriction h = 0. We call the parameter @ = 1+h the "long run autoregressive coeffi-
cient" since this parameter is instrumental in determining the shape of the spectrum of y, at
the origin - - see Phillips (1991) for elaboration on this point.

In (2) there are k = p + g + r + 1 parameters. When g > 0 some of the regressors, viz.
the €, j» are pot observed. Recursive techniques are then required, either to construct the
likelihood as in the use of the Kalman filter, or in repeated linear regressions that involve the
construction of estimates of the lagged errors ¢,_; as in the Hannan-Rissanen (1982, 1983)
recursion, When g = 0 in (2) the model is an "AR(p) + trend(r)." When r = -1 there is no
intercept in the model, when r = 0 there is a fitted intercept, and when r = 1 there is a fitted
linear trend. These are the specializations of (2) that are of primary interest in empirical
applications.

The order parameters p, ¢ and r in (2) are not known in practical applications and the
model is in any event best regarded as just an approximate generating mechanism. Various
methodologies for dealing with this complication are available. Those that concern us here
are based on formal statistical order selection methods such as the commonly used criteria
AIC and BIC. These criteria and their statistical properties in stationary systems are discussed
in detail in the recent book by Hannan and Deistler (1988). When the system is potentially
nonstationary as in (2) with h = 0 the properties of these criteria are less well understood
although they have been studied, notably by Paulsen (1984), Tsay (1984) and Potscher (1989).

Our approach to the order selection problem is based on the analysis in Phillips-Ploberger
(1992) and is closely related to the principle underlying the BIC criterion, viz. to select the
model with the highest a posteriori probability. This approach has a compelling advantage
over AIC and BIC in that it naturally accommodates models of nonstatiopary time series and
has generally superior sampling performance (see Phillips-Ploberger (1992) for simulation

evidence on this point). The probability measure used to determine our criterion is the meas-



ure associated with the "Bayes model" corresponding to (1). This model is formally derived

for the case of Gaussian errors ¢, = iid N(0, 02) in (1) and has the form
(B)  yo=Bl1x + v, wherev |z =N, f)

with

@  fi=o{14xA;lx}, A = E{xx]

and where f§,_, is the least squares estimate of B based on information in 7,_,.

The Phillips-Ploberger analysis shows that, under a uniform prior on p and a Gaussian
likelihood the passage via Bayes rule to the posterior density of B implies the replacement of
the model (1) by the time varying parameter model (3). We therefore call (3) the "Bayes
model" corresponding to (1). Note that the systematic part of (3), ﬁ,’_lx,, is the best estimate
or predictor of the location of y, given information in #,_;. This location estimate is identical
to the maximum likelihood estimate of the best predictor of the next period observation, ie. it
is precisely the predictor we would use in classical inference. Thus, the "Bayes model" is
identical to the classical model that is actually used to make predictions (in place of (1)).
From this perspective there is no difference between the Bayesian and classical approaches,
However, we can go further in our approach and find the probability measure associated with
the "Bayes model" (3). This is a forward looking measure that can be described by its
conditional density given #_;. This density is given by the Radon Nikodym (RN) derivative

of the measure at ¢ (say Q,) with respect to the measure at -1 (Q,_,) ie.
&) dQ,/dQ, , = pdiy(,17%_y) = 2nf) VPexp{-(1/2f;’} = N(O,f) ,t =k+1,k+2, ...,

We use the notation pdf,(-) here to signify that the density is taken with respect to
Q-measure not Lebesgue measure. Note that it is defined as soon as there are enough obser-
vations in a trajectory to estimate the k-vector B. Thus, (3), (4) and (5) are defined for
t > k+1. The measure Q, that appears in (5) is called the "Bayes model" measure, ie. the
measure corresponding to the "Bayes model” (3). This measure is o-finite and, as shown in

Phillips-Ploberger (1992), can also be defined in terms of the following RN derivative



©6)  dQ/dP, = |(VoH4,| P exp{(120%)B 4,8} ,

which is taken with respect to the reference measure P, for the model (1) in which B = 0 (ie.
the probability measure of the N(0, 021,) distribution).

Associated with every "Bayes model" of the form (3) is a o-finite measure Q,. Different
models of the same data may be compared in terms of the "Bayes model" measures that are
associated with them. The natural mechanism for making such comparisons is the likelihood
ratio. Suppose, for example, that we have two models of the form given in (3), one with &k
parameters and the other with X > k parameters. Indexing the variables in (3) by the number
of parameters we now have two "Bayes models" of the data: one with k parameters that we

write as
k A (kY
H(Qn) :yn+1 = Bn(k) xn+1(k) + vn+1(k) >
and the second, more complex model with K parameters

H©EY : ypur = B, %18 + v, 1K) -

The likelihood ratio of the measures associated with H(Q,’f) and H(fo) is given by the RN
derivative dQ,’:/de. This quantity can be calculated by taking the ratio of the RN derivatives
that define Qﬁ and Q‘;f in terms of the reference measure P,, ie. the ratio of the

corresponding expressions given by (6) for each model. Thus,

" dglag’ - @glap,yagkiap,)
;
= [(VoD)4,, ()| "2|(1/02)A,,(K)| ™ exp{(1/20%)[B,, (k) K)B(K) - B,(K)'A,(K)B, (K]} .

This likelihood ratic measures the support in the data for the more restrictive model
H(Qﬁ) against that of the more complex model H(Q;’f). When we assign equal prior odds to
the two competing models our decision criterion is to accept H(Q’;) in favor of H(Qf) when
dgkiagk > 1.

Since o? in (7) is usually unknown we must supply an estimate of this scale parameter

before the criterion can be used in practice. Phillips-Ploberger (1992) suggest the use of 6,%,
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the least squares estimate of o2 from the more complex model H(Qf). Our order estimator is
then given by
(8)  k = argmin, PIC,
where
()  PIC, = (dQ%id0k)(8}) .
Observe that £ maximizes 3/PIC, = dQ%/dQ%(5%) and thereby sclects the model most favored
over H(fo) according to the density of the data.

An alternative form of the PIC criterion (9) that is given in Phillips-Ploberger (1992) is
based on the predictive densities of the competing Bayes models, i.e. H(Qf,) and H(fo). By
comparing the densities for these models over the same subsample of data, say n > K,_ we

have

er n
(10)  Picy = dgMa0N Y, = Wy fFhY] {0t - v
where

5= o5+ x A, % (0) 5 T = (1 + 1K) A,y (K) x(K)) ;
v(k) =y, - B;-1(k)'xt(k) » V(K) =y, - B:-l(K)'x:(K) .

The PIC' criterion (10) has a very interesting interpretation as an encompassing test
statistic. For, if dQﬁ/de(é,%) | Vikd 1 the evidence in the sample suggests that the density for
the model with k parameters exceeds the density of the model with K parameters when both
are evalnated at the sample data. This is equivalent to saying that the model with k
parameters encompasses the model with K parameters in terms of their respective probability
densities. Thus, when dQ“/dQX(52)| 7, > 1, the "Bayes model" H(QX) encompasses the
"Bayes model" H(Q,'f) in terms of the probability distribution of the sample data over the
period ¢t = K+1, ..., n. This might be called distributional encompassing for t € [K+1, n].

Obvious extensions of this encompassing principle apply for subperiods of the overall
sample. Moreover, the principle can be extended to evaluate the forecasts from competing

models. For instance, H(Qﬁ) and H(QX) can be compared in terms of their respective per-
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formance in one-period ahead forecasts over the period ¢ = n+1, ..., N. The "Bayes model

forecast encompassing test statistic for this period is

N
) aghugiewd, - T [ls!) epl-ansleemi? + ansles!er -

Note that in this formulation the variance estimate a%(x) evolves recursively over the forecast
period. Again, H(Q",,) €ncompasses H(Q,'f) in terms of forecast performance over the period
[2+1, N] when dQ,’:ldef(&j%) | 7z > L

"Bayes models" like H(Qﬁ) may be permitted to evolve in a natural way as more observa-
tions become available. Thus, period by period we may employ the PIC criterion (8) to select
the appropriate value, £, of k for the sample data up to observation ¢-1, prior to making the
one-period ahead forecast of the value of y, This leads to an evolving sequence of best

"Bayes models"
H(Qf) Y = ﬁt-l(f‘r-l)'xz(kt-l) + vt(kl-l)

which are determined recursively using the PIC criterion (8) period after period. It is then
possible to compare the best "Bayes model" sequence H(Qf) with a fixed format "Bayes
model" sequence H(Qf ) that employs a fixed number of parameters (F). The comparison can
be made in terms of their respective predictive densities over a forecast horizon such as

t € [n+1, N]. In this case the forecast-encompassing test statistic is

dQAON(EEN I,
- o [gf kg, "‘] exp{—[l/Z&f(E‘_l)g‘ "‘]v,(k,_l)Z . (1/2&?(&,_,)3,‘”)\;,(;)2}.

twte]

We would favor the best "Bayes model" sequence {H(Q',’)}":;Y +1 over the sequence of fixed
format models {H(QD)}Y, | if

(13) de/dQ,ﬁ(az(E)mfﬂ >1,
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that is, if the sequence H(Qf) generates forecasts over t = n+1, ..., N that encompass the
forecasts of the fixed format sequence of models H(Q’: ). Note that in (12) and (13) we use
recursive estimates of the error variance from the best "Bayes model" sequence, since these
are consistent for o when (1) is the actuzl generating mechanism.

The most important property of H(Qf) is that this sequence of models adapt to the data.
When fewer parameters are needed to model the data the sequence will respond by eliminat-
ing unnecessary parameters. When more are needed, the sequence adapts by enlarging the
model, either by adding more lags or by adding deterministic trend polynomial regressors, as
appropriate. Since the PIC criterion can also be used to test for the presence of a unit auto-
regressive oot the best "Bayes model" sequence H(Q?) can also be designed to include unit
roots whenever these are supported by the data.

In general, we may expect H(QP) to have fewer parameters than H(QY), especially when
F incorporates a linear trend and several lags. Reasonable choices for H(Qf ) depend on the
time interval of observation. Thus, for annual data a fixed format model of the type "AR(3)
+ linear trend" may seem a sensible baseline competitor. For seasonally 'adjusted guarterly
data, an "AR(4) + linear trend" may be reasonable and for monthly data one might choose
models with longer lag lengths including an "AR(12) + linear trend" as a baseline competitor,

Some of these alternatives will be used in the empirical work that follows.

3. AUSTRALIAN MACROECONOMIC DATA

The data we use are quarterly and monthly Australian macroecopomic time series. The
quarterly series cover the period 1959(3)-1991(4) and the monthly series cover the periods
1959(1)-1991(12) and 1967(7)-1991(12). All variables except interest rates and stock prices
are seasonably adjusted. Table 1 gives details of the thirteen series that we use and the
variable notation that we employ.

All of the series except interest rates are lagged. Interest rates are taken in levels (% pa)
and reciprocals of levels. The latter transformation (ie. x - 1/x) is variance stabilizing and

reduces the volatility in the series that tends to occur at higher interest rate levels. The recip-
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rocal transformation was found to work well for US bond yields in Phillips (1992) and is
therefore used again here, All of the series are graphed in Figures 1(a)-13(a). Figure 11'(a),
for instance, shows the short term interest rate Intl over the period 1969(7)-1991(12). The
increased volatility in this series at higher levels of Intl is apparent. Figure 11(a) graphs the
series in reciprocals, i.e. 1/Int1, over the same period. The effects of stabilizing the volatility
in this case are quite clear from the two figures. This feature of interest rate data is less
apparent for the intermediate rate Int2 and the long term rate Int3. However, the transfor-
mation is used for both these series as well and the graphs are shown in Figures 12(a), 12'(a)
and 13(a), 13'(a), respectively.

TABLE 1: MACROECONOMIC VARIABLE NOTATION AND DESCRIPTION

#* Variable Description Period Sample Period Forecast Period

1 C Aggregate private final consumption quarterly 1959(3)-1987(4) 1988(1)-1991(4)
expenditure ($m; sa)

2 RC Aggregate real private final consumption quarterly 1959(3)-1987(4) 1988(1)-1991(4)
expenditure ($m average 1984/85 prices; sa)

3 GDP Gross domestic product ($m; sa) quarterly 1959(3)-1987(4) 1988(1)-1991(4)

4 RGDP Real gross domestic product ($m, average quarterly 1959(3)-1987(4) 1988(1)-1991(4)
1984/85 prices; 5a)

5 PGDP Implicit price deflator for GDP (sa) quarterly 1959(3)-1987(4) 1988(1)-1991(4)

6 CPl Consumer price index (1981 = 100; sa) quarterly 1959(3)-1987(4) 1988(1)-1991(4)

7 U Unemployment rate {(%; sa) quarterly 1959(3)-1987(4) 1988(1)-1991(4)

8 WR Wage rate: Average carnings of noo-farm quarterly 1959(3)-1987(4) 1988(1)-1991(4)
wage and salary earpers ($ per week)

9 RWR Real wage rate (= WR/PGDPF) quarterly 1959(3)-1987(4) 1988(1)-1991(4)

10 SP500 Austrelian share price index: all ordinaries monthly 1959(1)-1987(12) 1988(1)-1991(12)
(31 December 1979 = 500)

11 Intl Money market 13 week Treasury Notes monthly 1969{7)-1987(12) 1988(1)-1991(12)
(% pa, yield)

12 In2 Capital market 2 year Treasury Bonds monthly 1969(7)-1987(12) 1988(1)-1991(12)
(% pa, yicld)

13 In3 Capital market 10 year Treasury Bonds monthiy 1969(7)-1987(12) 1988(1)-1991(12)
(% pa, yickl)
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4. "BAYES MODELS" FOR THE DATA

Using the PIC model selection criterion we set out to find the best "Bayes model" for the
time series described in the last section. Two classes of models were considered. The first
was the "ARMA(p, q) + trend(r)" model given in (2) and the second was the simpler "AR(p)
+ trend(r)" model

The algorithm for determining the trend degree and lag orders of the ARMA model is
the one given in Phillips-Ploberger (1992). This algorithm involves the following steps:

STEP 1. Set maximum orders for the AR, MA and trend components.

STEP 2. Run a long autoregression with maximum trend degree and use PIC or BIC to select
the AR order ().

STEP 3. Select the trend degree (f) in the model chosen in Step 2 using PIC or BIC.
Calculate the residuals ¢, from this regression.

STEP 4. Run an array of ARMA(p, q) + trend(f) regressions using £, in place of e, 4 for
the MA variable. Choose the orders (f, ¢) using either PIC or BIC.

STEP 5. If p > 0, compare the "Bayes model" selected in Steps 1-4, viz. "ARMA(@p, §)
+ trend(7)" with a "Bayes model" of the same order having a unit autoregressive root.
Choose the restricted "ARMA($, ¢) with unit root + trend(F)" model if the posterior odds
criterion PIC favors this model (ie. is greater than unity) over the reference model
"ARMA(p, §) + trend(F)." If 5 = 0, then there is no autoregressive component and hence no

autoregressive unit root.

The algorithm for selecting the best "Bayes model" in the "AR(p) + trend(r)" class is the
same as the above, but simply omits the MA component and hence Step 4. One of our inter-
ests is to discover whether this simpler class of models is adequate for most economic time
series.

These algorithms of model selection were applied to the 13 Australian macroeconomic
time series described earlier. The empirical results are shown in Table 2. All of these series

are found to be stochastically nonstationary. Twelve of the series have a unit autoregressive
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root while one series, GDP, has a mildly explosive long-run autoregressive coefficient of 1.001
that is preferred to a competing model with a unit root.

Only one of the series (the GDP price deflator) is found to have trend degree r = 1,
Since the best "Bayes model" for this series also has a unit root, the implied model for the
series is a stochastic trend around a quadratic. Three of the series (real consumption, real
GDP and the real wage rate) are found to have trend degree r = 0, leading to a stochastic

trend with drift as the best "Bayes model" for these series.

TABLE 2. BEST "BAYES MODELS" FOR AUSTRALIAN MACRO TIME SERIES

Biock A Block B
Model class » ARMA(p, g) + trend(r) Model class = AR(p) + trend(r)
Series Model selected Long-run | Posterior Model selected Long-run | Posterior
auto- odds in auto- odds in
. . regressive favor of . L regressive favor of
Dynamics Deterministic | coefficient | unit root | Dynamis | Deterministic | coefficient | unit root
trend r trend 7
C ARMA(2,1) -1 1.000 3313.723 AR(3) -1 1.000 102212
RC AR(1) 0 0.994 11.221 AR(1) 0 0.994 11.221
GDP AR(2) -1 1.001 0.000 AR(2) -1 1.001 0.000
RGDP AR(1) 0 0.992 8.936 AR(1) 0 0.992 8.936
PGDP | ARMA(2,1) 1 0.993 84493 { AR(4) -1 1.001 255238
CPl AR(4) -1 1.001 472.010 AR(4) -1 1.001 472.010
U AR(4) -1 1.005 117.851 | AR(4) -1 1.005 117.851
WR AR(3) -1 1.002 3.998 AR(3) -1 1.002 3.998
RWR AR(1) L] 0.986 19.489 AR(1) 0 0.986 19.489
SP500 ] ARMA(1,1) -1 1.001 174.232 AR(2) -1 1.001 745438
Intl ARMA(1,1) -1 0.992 78.325 AR(2) -1 0.999 52635
In2 AR(2) -1 0.997 196366 | AR(2) -1 0.997 196.366
1nt3 AR(1) -1 0.996 92.544 AR(1) -1 0.996 92.544

The dynamics are generally well modelled by autoregressions. But for four series (con-
sumption, the GDP deflator, stock prices and the short term interest rate) low order ARMA
models are chosen in place of autoregressions. The choice of dynamic model has no effect on
the decision in favor of a unit root for these series. Block B of Table 2 shows the model
choice outcomes in the "AR(p) + trend(r)" class and these can be compared with the out-
comes selected in the "ARMA(p, q) + trend(r)" class given in Block A of the table. There is
only one important change from restricting the model class to be autoregressive. For the
GDP deflator series an "AR(4) + trend(-1)" process is selected as distinct from an

"ARMA(2, 1) + trend(1)" process when the model class is wider. Note that the long run
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auntoregressive coefficient is larger for the AR(4) model than the ARMA(2, 1) (1.001 as dis-
tinct from 0.993) but that a unit root "Bayes model" is chosen in each case. Looking at the
graph of this series in Figure 6(a) it is apparent that both models can be rationalized in terms
of the historical trajectory. The "AR(4) + trend(-1)" Bayes model with a unit root is, in fact,

the more parsimonious of the two (3 parameters as distinct from 4).

5. "BAYES MODEL" FORECAST PERFORMANCE

 The 4 final years of the sample data (1988-1991) were used for an ex post forecasting
exercise. This involves 16 observations for the quarterly series and 48 observations for the
monthly series. The best "Bayes model" sequence {H(Qf)}:l:;gu:)t 2) was determined
recursively using the PIC criterion. For the quarterly data an "AR(p) + trend(r)" class was
used with p < 5, r < 1. For the monthly series the parameters were prescribed as p < 12,
r < 1. The autoregressive model class was chosen in place of the ARMA class because most
of the series seemed to be well modelled within this class as discussed in the previous section.
The best "Bayes model" sequence was compared with a fixed format "Bayes model" sequence
in terms of their respective one-period ahead forecasting capabilities. For the quarterly data
an "AR(4) + linear trend" fixed format model was used. For the monthly data series, we used
both "AR(4) + linear trend" and "AR(12) + linear trend" fixed format rules.

Figures 1-13 show the one-period ahead forecast performance of these "Bayes model"
sequences over the period 1988-1991 inclusive. For each series Figure (a) displays the data
and the relevant forecast period, and Figure (b) shows the period by period forecast errors
from the two rival models. Figure (c) gives details of the evolving form of the best "Bayes
model”: the lines on the graph show the autoregressive lag order selected (0-6 lags), the
trend degree (-1 = no intercept; 0 = fitted intercept; 1 = fitted linear trend), and whether or
not a unit autoregressive root is selected (-1 = yes, 0 = no). Figure (d) gives a recursive plot
of the forecast encompassing test statistic 4Q5/dQF over the forecast period. Table 3 tabu-
lates these details, gives the root mean squared error (RMSE) of forecasts for the two models

over the forecast period, and records the evolving format of the best "Bayes model."
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TABLE 3. FORECASTING EXERCISES FOR
AUSTRALIAN MACROECONOMIC TIME SERIES 1988-1991

Forecast RMSE'"s ber of Parameter Forecast
Number o count ratio €nco: i
Series ] model changes Best "Bayes model" "Bayes model"/ est JOP i
n‘?:g; ::;:1 (date) fixed model in 1991
c 0.0064 0.0080 0 AR(H)1 2/6 13.8880
RC 0.0071 0.0065 0 AR(1)1+7(0) 16 0.5491
GDP 0.0189 0.0169 1 (1990(14)) AR(1); AR(2) 16; 26 0.0679
RGDP 0.0116 0.0102 1 (1990(13)) AR(1); AR(1) 14+7(0) 1/6; 1/6 0.2006
PGDP 0.0080 0.0004 0 AR($)™1 3% 6.5094
CPI 0.0077 0.0082 0 AR(#)! % 2.1490
U 0.0512 0.0551 0 AR()! 16 1.7985
WR 0.0121 0.0141 0 AR(3)! 246 5.3556
RWR 0.0117 0.0121 1 (1988:2) AR(D)L 0/6; 16 1.8320
SP500 0.0409 0.0415 0 AR(1Y 14+ T(0) 16 2.2081
0.0454" - AR(2)! 114 31.1012
@nt1)! 0.0036 0.0057 0 1% 22.1763
Int1* 0.5579 0.8461 AR(2)!
(lo2) ! 0.0043 0.0044 0 146 2.9060
In2* 0.5197 0.5470 AR(2)?
() ! 0.0026 0.0027 0 0% 7.1099
In3* 0.3815 0.3896 AR(1)!
Legend: * forecasts for the "Inti" series were obizined from modcks for these series in reciprocals ie. "(lnti)'l“
+ forecast RMSE for fixed mode] of form "AR(12) + T(1)"
AR(p)™! = AR(p) model with a unit autoregressive root

The main outcomes from this empirical forecasting exercise are as follows:

(i) For none of the series and for no subperiod is the fixed format "AR(4) + trend(1)"
model a chosen "Bayes model. Three series (real consumption, real wage rate, real GDP) are
chosen to have a unit root with drift. All series except for GDP and real GDP show evidence
of a unit root throughout the entire forecasting period. Moreover, the best "Bayes model" for
real GDP has a unit root from the 1990(3) quarter and, as noted in the discussion of Table 1,
the Bayes model for GDP has a mildly explosive long-run autoregressive coefficient. Thus, all
series are found to be stochastically nonstationary.

(ii) The best "Bayes model" sequence encompasses the forecasts of the fived model for all
but three of the series, these being real consumption, GDP and real GDP. Note from the
recursive graphs shown in Figures 2(d), 3(d) and 4(d) that the best "Bayes model" forecasts
encompass those of the fixed model for these series also in the first half of the forecast
period. For some series the forecast dominance of the best "Bayes model" sequence is sub-

stantial and uniform over the forecast period. This is especially notable for consumption,
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where d0B/d0" = 13.888, the short run interest rate (Intl), where dQ®/dQF = 22.1763, and
the long run interest rate (Int3), where dQBIdQF = 7.1099.

(ii1) From Table 3 it is clear that the best "Bayes models" have a substantial advantage in
parsimony over the fixed models. For all series the Bayes models have at most 50% of the
parameters of the fixed model and for 10 of the 13 series the parameter ratio is at most 1/6.
Note that the presence of a unit root in the best Bayes models for the different series also
plays a role in reducing the parameter count. For the long-run interest rate (Int3), the par-
ameter ratio is 0/6 yet the best "Bayes model” -- here a martingale -- uniformly dominates
the fixed model in terms of the forecast encompassing test.

(iv) Root mean squared errors (RMSE’s) of forecasts over the period 1988-1991 are
given in Table 3. In the graphs, Figure (b) for each series tracks the forecast error generated
by each model over the forecast period. By the traditional RMSE criterion the best "Bayes
model" is the seperior model for 10 of the series (consumption, GDP deflator, CPI, unem-
ployment rate, wage rate, real wage rate, stock prices, and the three interest rates). For real
consumption, GDP and real GDP the best "Bayes model" has a larger RMSE. For these same
series, the "Bayes model" forecasts do not encompass those of the fixed model. So the two
criteria reach the same conclusion on which model is superior for each of the 13 series.

(v) It is worth noting that for some of the series the forecast performance of the best
"Bayes model" is quite remarkable given its economical form. Thus, for the consumption
series, the "Bayes model" reduces the RMSE of forecast by 20%. Looking at Figure 1(b) it is
apparent that the Bayes model forecasts are substantially and almost uniformly better than
those of the fixed model from 1989(3)-1991(4). The "Bayes models" also do very well for the
GDP deflator and CPI series. The most dramatic improvement in forecasts comes for the
short run interest rate series (Int1), For this series the "Bayes model" (an AR(2) with only
one fitted parameter) reduces the RMSE of the fixed model by 36% from 0.0057 to 0.0036,
Figure 11(b) shows that for the subperiod 1990(1)-1991(4) the Bayes model is uniformly
superior to the fixed model, which consistently underpredicts through this subperiod (leading

to a persistently positive forecast error). The reason for this underprediction by the fixed
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model is clear from the graph of the series in Figure 11(a): a model with a linear trend, like
the fixed model, is misspecified. Even though the trend coefficient in the model is revised
each period with the latest observation this is not enough to prevent a serions and persistent
forecast error. The more parsimonious best "Bayes model" is more flexible, adapts more
quickly and convincingly outperforms the fixed model in this case,

(vi) As discussed in Section 3, models for the interest rate series are constructed in recip-
rocals of levels to make the volatility of the series more homogeneous over the sample. Fore-
casts for both reciprocals of levels and levels are then generated for these series. The results
are tabulated in Table 3 and shown in Figure 11’, 12’ and 13’. In spite of their parsimony,
the best "Bayes models" do exceedingly well and dominate the fixed model for all three series
both in levels and in reciprocals of levels. In terms of forecasts the odds in favor of the best
"Bayes model" are 22.18:1, 2.91:1 and 7.11:1 for Intl, Int2 and Int3 respectively.

(vii) For the monthly series we also considered a fixed model with the format "AR(12)
+ trend(1)" to allow for calendar year effects. In each case, this fivxed model performed worse
than the "AR(4) + trend(1)" model. Results for this choice of fived model are shown only for
stock prices -- see Figures 10’(a)-(d) and Table 3. The best "Bayes model" remains the

same in this case and now does even better than before in comparison with the fixed model

6. CONCLUSION

This paper shows that best "Bayes models" of parsimonious form can be constructed for
Australian macroeconomic time series that do very well in competition with fixed format
models. For 10 out of the 13 series considered here thé "Bayes models" not only improve on
the forecasts of more richly parameterized models but also encompass those forecasts. In
effect, the predictive distribution of the best "Bayes model" explains the forecasts delivered by
the rival model. According to our Bayesian forecast-encompassing statistic and given the
actual forecast history, the posterior odds favor the "Bayes models," sometimes by a factor as

high as 30:1, as in the case of the short-term interest rate series.
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The models we have considered in this paper are scalar time series models, However, all
of the ideas we have employed extend in a natural way to multivariate time series: The statis-
tical theory for this extension will be provided in a subsequent paper. And we hope to con-
duct some empirical exercises with these multivariate methods on Australian macroeconomic

data at a later date,

7. REFERENCES

Chong, Y. Y. and D. F. Hendry (1986). "Econometric evaluation of linear macro-economic
models," Review of Economic Studies, 53, 661-690.

Hannan, E. J. and M. Deistler (1988). The Statistical Theory of Linear Systems. New York:
John Wiley & Sons,

Hannan, E. J. and J. Rissanen (1982). "Recursive estimation of ARMA order," Biometrika,
69, 273-280 [Corrigenda, Biometrika, 1983, 70].

Paulsen, J. (1984). "Order determination of multivariate autoregressive time series with unit
roots," Journal of Time Series Analysis, 5, 115-127.

Phillips, P. C. B. (1991). "Bayesian routes and unit roots: de rebus prioribus semper est
disputandum,” Journal of Applied Econometrics, 6(4), 435-474.

Phillips, P. C. B. (1992). ‘'Bayesian model selection and prediction with empirical
applications," Yale University, mimeographed, May 1992,

Phillips, P. C. B. and W. Ploberger (1991). "Time series modeling with a Bayesian frame of
reference: 1. Concepts and illustrations," Cowles Foundation Discussion Paper No. 980,

Phillips, P. C. B. and W. Ploberger (1992). "Posterior odds testing for a unit root with data-
based model selection," Cowles Foundation Discussion Paper No, 1017.

Potscher, B. M. (1989). "Model selection under nonstationarity: Autoregressive models and
stochastic linear regression models," Annals of Statistics, 17, 1257-1274.

Tsay, R. S. (1984). "Order selection in nonstationary autoregressive models," Annals of
Statistics, 12, 1425-1433.



Figure 1(a): C:1959(3)—1991(4)
(Log—Levels)
11.54 e ———— YT
10.69
C:1959(3)—-1991(4)
9.54 ;Forecast 1
:period
399 r
8.14
7‘29 lllll | U T R . | I S R I B 1 | IS T T N | S T W T T ) l I S T S |
1958 1964 1970 1976 1982 1988 1994
Figure 1(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
4 T T T T T T T T T
3
.l
Nt ]
T o .
o 4
b
-2 f AR order(p=0,..6}
— = == Trend dagree(r=—1,0,1)
el O R Unk root{~1=yes: O=no}
~* tess 1969 BRTY Too1 Tee2

0.03

0.02

Figure

1(b): Prediction errors

T Y

Forecast RMSE's: Bayes model
i Fixed model

0.00

-0.01

-b.02 Bayes model arror i
— — — - Fixed model error
- Origin
_0-04 A L L ! 4 L L i I 1 'y
1988 1989 1990 1991 1992
Figure 1(d): Bayes Model Forecast
Encompassing Test Statistic: dQ8/dqQFf
24 gy S—
*
° 108; - 1689 1680 1991 ] ) 1692



Figure 2(a): RC:1959(3)—1991(4)
(Log—Levels)

11.08 T e TP ———————— 1
10.65
RC:1959(3)-1991(4)
10,22 ¢ Forecast 1
‘period
9.78 I J
8.35
8,92 JJJJJ ) TS W T T | ) I W T T T 1 btk I S U R B | i lllll
1958 1964 1970 1976 1982 1988 1994
Figure 2(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(i) Unit Root present or not
2 T T T T T T Ly T T T T T
1
ok — — - . ___
by
T
]
— b
2} AR order(p=D,..5) 4
= e — - Trend dagree{r=-1,0,1)
------------- Unkt root{-1=yes; O=ne}

-3 . . R L .
1988 1989 1960 1991

1992

Figure 2(b): Prediction errors

0.03
Forecast RMSE's: Bayes model = 0.0071 |
Fixed model = 0.0065 |

o.02

0.00

-0.0t

—0.02 Boyes model error
~— — — - Fixed modsl error
- Origin I
004 oae ees  teso 1991 es2
Figure 2(d): Bayes Model Forecast
Encompassing Test Statistic: dQB/dQf
1‘8 ” . Y T » > v ™ ¥ T ™
I — o . N
1988 1689 1990 1891 1092



Figure 3(a): GDP:1959(3)—1991(4)
(Log—Levels)
12.90 - - e
1204 h
GDP:1959(3)—-1991(4)
18 r : h
Forecast |
‘period
1031 !
9.45 A
8591
7.73 R WIS N0 TURN T N TV OV N N | ) S R T S T 1 | I S S S | b Y N W P J. W TP W T 1
1958 1964 1970 1976 1982 1988 1994
Figure 3{(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
3 T T T T T r T T T
2r /——
1
3 o}
o
M= == e — _— = = = = 4
AR ordar(pw(,. B)
-2 — == = . Trend degres(r=-1,0,1)
------------- Unit root(—f=yes: O=no)

1689 1980 1992

0.07

0.04

Figure 3(b): Prediction errors
Forecast RMSE's: Bayes model = 0.0189
Fixed model = 0.0169

0.00

-0.02

-0.06

-0.09

- Fhxed modsl srror

Boyes model srror

............. Oﬂg‘n
1983. 19.89 * * 19190 . . l 19191 . * . 1992
Figure 3(d): Bayes Model Forecast
Encompassing Test Statistic: dQ8/dQf

T r ” s T

1992



Figure 4(a): RGDP:1959(3)—1991(4)

4(b): Prediction errors

N e s e e e L e pe

Figure

Forecast RMSE's: Bayes model = 0.0116
Fixed model =

003 0.0102 |

0.00

-0.02

11.64 T Tr—T—T—p—r— et
1119 F
RGDP:1959(3)—1991(4) j
10.74 | ‘Forecast 1
period
10.29 | 1
9.84 |
9‘39 nnnnn | I T W WS 4 S S TR T N Y 1 | T W W ROV N ¥ | I T SR T W 1 i TR U T T 1
1958 1964 1970 1976 1982 1988 1954
Figure 4(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
1
ol .
E s
S /.
_Mlb - = = - - - - s
-2} AR order(p=0,..6)
— — — - Trend degrea{r=-1,0,1)
-+ Unlt root{-1=yes; D=no)
=3 Jeee 1989 eso oot ez

—0.04 [ Boyes model error
— — =~ - Flxed modsal error
- Qrigin
-0‘07 A L ' A ' 1 & 2 2 i I
1988 1989 1980 1991 1992
Figure 4(d): Bayes Model Forecast
Encompassing Test Statistic: dQB/dqf
1.4 —
1
1988 ' 16890 1990 . 1061 . . 1992




Figure 5(a): PGDP:1959(3)—1991(4)
(Log—Levels)

5,26 [r—r—r—r—r—T—r— pump——
4.75 |
PGDP:1959(3)—1991(4)
4.24 :Farecast
:period
st
323t
N
2.12 19.5‘8 = l1!?64.- - :|97l; = .197(::1 = I’IQBZ; — ‘1985. — .1994
Figure 5(c): Evolving Best Bayes Model
(i) AR{(p) + Trend(r) parameters
(ii) Unit Root present or not
5 T T t T T Y s T T T T T
4
5|
|
5 1)
2
[w) ot
P g S P P
=2r AR order(p=0,..6)
— — — - Trend degree(r=-1,0,1)
B3 S RERREEREEE R tUnk root({—1=yes: 0=no)
4 ess  tess . teso . teer 1992

0.04

0.02 |

0.00

-0.01

Figure 5(b): Prediction errors
Forecast RMSE's: Bayes model = 0.0080
Fixed model = 0.0094

—-0.03 ¢ Boyes modet srror T
— ww == - Fixed model error
............. Oriqln
“_0105 i L L i i A L A
1988 1989 1990 199 1992

Figure 5(d): Bayes Model Forecast

Encompassing Test Statistic: dQ®/dQf

T

T

0 .
1968

1992



5.65

4.654

4.14

3.63

3.13

Order

Figure 6(o): CPI:1959(3)—1991(4)
(Log—Levels)

CPI:1959(3)-1991(4)
5 éForecast'
‘period
195; = .19'64: = .19I70. - .19l7(::| — 1!9'82. — .19IBB. = ‘1994
Figure 6(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
5 T Lt T T ¥ v T T ¥ T T T
4
sF
2 [ .
D [ R
-2r —————— AR corder(p=0,..6) E
[ — — = - Trend degree(r=-1,0,1) 1
~-3F . - Unkt root{—1=yes; O=nq)

1689 1990 1992

Figure 6(b): Prediction errors
0.04 v " * v y v ’

Forecast RMSE's: Bayes model = 0.0077
0.02 b Fixed model = 0.0082

0.00

-0.01

—0.03 [ Bayes modsl arror
— — — - Fixed model srror
............. oﬁqin
_0.05 'y XL A A 2 [ L 3 A L i
1988 1989 1990 1991 1992
Figure 6(d): Bayes Mode! Forecast
Encompassing Test Statistic: dQB/dqQf
3.2 T v r g r
1958. 1080 A 1960 . 1991 . 1992




2.44

1.08

0.63

0.17

Order

Figure 7(a): U:1959(3)~-1991(4)
(Log—Levels)
U:1959(3)—1991(4)
- ;Forecast'
iperiod
19.53 = I‘IQG; — .1976 = .19176l — .19|82l - “|9|SB‘ = I'|994-
Figure 7(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
3 e
2
A
ol
b
AR order(p=0,..6) J
-2F — — — - Trend degree{r=-1,0,1)
------------- Unk root{—1=yes: O=no}
s ———— _

1968

1688 1990 1991

1692

0.28

0.08

-0.02

Figure 7(b): Prediction errors
Forecast RMSE's: Bayes model = 0.0512
Fixed model = 0.0551

-o.1z2r Boyes model error
— = = - Fixed modal arror
- Origin
-0.22 b—rt et el .
1988 1989 15490 1991 19492
Figure 7(d): Bayes Model Forecast
Fncompassing Test Statistic: dQB/dqQF

3.0

T r T r T r T T T

1891 1602



Figure 8(a): WR:1959(3)—1991(4)
(Log—Levels)
6.67 - S r
6.03 | 4
WR:1959(3)—-1991(4) |
sS4 EForecast'
‘period
476 |
4,12 I 1
3,"«8 ||||| ) R R S B 1 | N T R T B 1 | WSS WS T W' 1 Looa 1 4 4 9 | T N T T N
1958 1964 1970 1976 1982 1988 1994
Figure 8(c): Evolving Best Bayes Model
(i) AR(p) + Trend(r) parameters
(ii) Unit Root present or not
4 T T ™ T T v v T ™ Y T T
3
27 +
Nl
T of
o L
b e
-2 - AR order(p=D,..6}
— =— — - Trend degree(r=~1,0,1)
‘5.' ------------- Unit root(—1=yes: D=no) ;
~* Jess 7059 T e T eez

Figure

8(b): Prediction errors

0.06 v T Y Y —p——

Forecast RMSE's: Bayes model
Fixed model

0.03

0.00

-0.02

-0.05 Boyes model srmror
— — — - Fixed model error
- Origin ]

008 oee 988 1290 1991 " esz
Figure 8(d): Bayes Mode! Forecast
Encompassing Test Statistic: dQ®/daQf

8 v > Y v T v v ™

s

6l )
5 )
4L F

sl

2 -

' Joss 1089 T 1980 1991 1992
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Figure 11'(a): INT1:1969(7)—1991(12)
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Figure 12(a): INT2:1969(7)-1991(12)
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Figure 12(c): Evolving Best Bayes Model
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Figure 12(b): Prediction errors
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Figure 12°(a): INT2:1969(7)—-1991(12)
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Figure 13(a): INT3:1969(7)—1991(12)
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Figure 13(c): Evolving Best Bayes Model
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Figure 13'(a): INT3:1869(7)—-1991(12)
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